
Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 5 January 2017

Application of the adjoint approach to optimise the
initial conditions of a turbidity current
(AdjointTurbidity 1.0)
Samuel D. Parkinson1, Simon W. Funke2, Jon Hill3, Matthew D. Piggott1,4, and
Peter A. Allison1

1Department of Earth Science and Engineering, Imperial College London, UK
2Center for Biomedical Computing, Simula Research Laboratory, Oslo, Norway
3Environment Department, University of York, UK
4Grantham Institute – Climate Change and the Environment, Imperial College London, UK

Correspondence to: Simon W. Funke (simon@simula.no)

Abstract.

Turbidity currents are one of the main drivers for sediment transport from the continental shelf

to the deep ocean. The resulting sediment deposits can reach hundreds of kilometres into the ocean.

Computer models that simulate turbidity currents and the resulting sediment deposit can help to

understand their general behaviour. However, in order to recreate real-world scenarios, the challenge5

is to find the turbidity current parameters that reproduce the observations of sediment deposits.

This paper demonstrates a solution to the inverse sediment transportation problem: for a known

sedimentary deposit, the developed model reconstructs details about the turbidity current that pro-

duced these deposits. The reconstruction is constrained here by a shallow water sediment-laden den-

sity current model, which is discretised by the finite element method and an adaptive time-stepping10

scheme. The model is differentiated using the adjoint approach and an efficient gradient-based opti-

misation method is applied to identify turbidity parameters which minimise the misfit between mod-

elled and observed field sediment deposits. The capabilities of this approach are demonstrated using

measurements taken in the Miocene-age Marnoso Arenacea Formation (Italy). We find that whilst

the model cannot match the deposit exactly due to limitations in the physical processes simulated, it15

provides valuable insights into the depositional processes and represents a significant advance in our

toolset for interpreting turbidity current deposits.

1 Introduction

Turbidity currents are density currents driven by sediment particles that are suspended by turbulence

in the containing fluid (Lowe, 1979). They occur frequently throughout the Earth’s oceans and are20

one of the main processes by which sediment is moved from the continental shelf to the deep ocean.

The largest turbidity currents can involve several hundred cubic-kilometres of sediment (Talling
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et al., 2007c), and can travel for hundreds of kilometres across the sea bed at speeds of tens of

metres per second (Heezen and Ewing, 1952).

The vast majority of available data for turbidity currents is contained in the sedimentary deposits25

that they leave behind. Significant effort is spent on attempting to diagnose details about the turbidity

current that produced them. Talling et al. (2007a) and Talling et al. (2012) describe the current the-

ories for how deposits found in the field are formed. The experimental evidence cannot yet validate

all of these theories. Computer models, along with laboratory experiments, have been useful tools

in improving our understanding of the dynamics of turbidity currents (Talling et al., 2007a; Kneller30

and Buckee, 2000; Parkinson et al., 2014). However, computer models have not often been directly

applied to recreating deposits found in the field despite their capacity to do so. They are generally

applied on idealised cases to understand a specific physical mechanism. It is useful to directly ap-

ply models in attempts to recreate real-world deposits (Fukushima et al., 1985; Huang et al., 2009;

Doyle et al., 2010) but this requires good knowledge of the initial and boundary conditions, and ac-35

curate estimates of values for other controlling model parameters which are often hard to determine

(Talling et al., 2007a).

The task of obtaining a set of model input parameters based upon a desired model output repre-

sents an inverse problem. It can also be interpreted as an optimisation problem where model param-

eters are sought to minimise the misfit between the deposit profile generated by the model, and a40

target deposit profile, which is produced from measurements taken in the field.

In this paper a shallow water model is used to simulate turbidity currents. The shallow water equa-

tions are a set of partial differential equations (PDEs). Optimisation of PDE-based models occurs

throughout science and engineering, and is already applied for instance in ocean science (Menemen-

lis et al., 2008), renewable energy (Funke et al., 2014) and design problems (Giles and Pierce, 2000).45

In addition, there is a growing interest in applying inverse modelling techniques to the modelling of

turbidity currents (Lesshafft et al., 2011; Naruse, 2013; Rowley, 2013). In particular, Lesshafft et al.

(2011) applied a gradient-free optimisation method to reconstruct parameters for a turbidity model.

PDE models of turbidity currents require the definition of initial and boundary conditions. In

the simplest case this could involve the definition of a static lock-release laboratory configuration50

with uniform sediment depth and a single, uniform sediment grain size. Such a simple configuration

would at least require the definition of the initial depth of the current, concentration of sediment in

the fluid, ratio of initial depth to length, and parameters controlling the particle settling velocity and

flow front speed. More realistic initial conditions would be an inflow condition with time-varying

depth, velocity, and concentrations of a wide range of sediment grain sizes, along with information55

defining the topography of the bed, its composition, and parameterisations governing bed erosion

rates, flow rheology, and bedload transport. As the choice of boundary and initial conditions, and

model complexity increase, the range of deposit shapes that can be generated by the model increase

such that it is capable of better recreating a range of deposits found in the field. However, with this
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Figure 1. Schematic representation of a dense gravity current (left), and a corresponding depth-averaged shal-

low water approximation (right), shows current height h, volume fraction c, and depth-averaged volume fraction

ψ, velocity u, and forward component of the depth-averaged velocity u, and deposit depth η .

added complexity, the parameter space grows and manual tuning of parameters becomes a greater60

challenge.

This paper presents a shallow water sediment-laden density current model, released under the

name AdjointTurbidity 1.0, that uses a novel finite element mixed discontinuous Galerkin function

space, with adaptive time-stepping (Section 2). The model implementation is verified through com-

parison with analytical solutions and convergence analyses (Section 2.5). The model is then differ-65

entiated using the adjoint method, which is an efficient way of computing the sensitivity of a model

output to many input parameters (Section 3). This enables the use of fast converging gradient-based

optimisation techniques. Finally, a gradient-based optimisation technique is applied to minimise

data misfit between the modelled sediment deposit and field measurements taken in the Miocene-

age Marnoso Arenacea Formation (Section 4). To the best of the authors’ knowledge this paper70

represents the first published work with adjoint based optimisation applied to turbidity currents and

demonstrates the usefulness of these techniques for interpreting sedimentary successions that have

been deposited by turbidity currents.

2 Model

Shallow water models solve the Navier-Stokes equations in depth-averaged form (Figure 1). They75

are a valid approximation when the horizontal length scale, or length of the current, is much larger

than the vertical length scale, the height of the current. This is the case for sediment-laden density

currents for all times a short period after an initial release. In this case the vertical pressure gradients

are in near hydrostatic balance. Sediment in the current is assumed to be well mixed by the turbulence

in the flow such that there is a vertically-uniform sediment distribution.80

Shallow water sediment-laden density current models come in a variety of forms. Parker et al.

(1986) proposed the ‘four-equation’ model. This is a complex model which accounts for entrainment

of sediment from the bed, and entrainment of ambient fluid into the flow. It has an extra equation

for the internal kinetic energy of the flow, which is translated into potential energy through these

mixing processes. A drag force is applied along the length of the current which takes into account85

3



the viscous forces impeding the flow motion at the base, and top of the flow. This model has been

applied to the modelling of large-scale turbidity currents (Fukushima et al., 1985; Huang et al.,

2009). It is dependent upon the selection of numerous governing parameters and hence is a good use

case for inverse-modelling. A similar, but slightly simplified model was used by Doyle et al. (2008,

2010) for modelling the plume of a dense pyroclastic basal flow. This model also included a dense90

underflow. This has been applied in direct comparison with field measurements (Doyle et al., 2010).

Bonnecaze et al. (1993) proposed one and two-layer sediment-laden shallow water density current

models. The two-layer model includes equations for the motion of the ambient fluid through which

the density current is propagating, which is important where the ambient fluid depth is similar to

the initial current depth. The one and two-layer models presented by Bonnecaze et al. (1993) use a95

coordinate system that adapts relative to the length of the flow. The moving coordinate system allows

the speed to be prescribed at the front of the current. This speed can be well approximated using the

Froude number, the height, and the volume fraction of sediment in the current. This is a good ap-

proach as the speed of the front of a gravity current is governed by dynamics that cannot be resolved

by a vertically averaged model. The moving coordinate system also results in a discretisation that100

scales with the horizontal length scale of the flow. This is beneficial for capturing the important flow

features. This model has been used extensively in understanding turbidity current flow characteris-

tics (Harris et al., 2001; Hogg, 2006), including the effects of modelling polydisperse suspensions

(Harris et al., 2002; Garcia, 1994) and the effects of external flow (Hallworth et al., 1998). The model

used in this paper is based upon the single layer shallow water model of Bonnecaze et al. (1993).105

2.1 Governing equations

The equations governing the current column height, h, and vertically integrated momentum, q = uh,

with u being the depth-averaged current velocity, are described in non-dimensionalised conservative

form as

∂h

∂t
+
∂q

∂x
= 0 , (1)110

∂q

∂t
+

∂

∂x

(
q2

h
+
ϕh

2

)
= 0 , (2)

with boundary conditions

q = 0 at x= 0 , (3)

q = ẋNh at x= xN (t) , (4)

given that115

ẋN = Frϕ1/2 at x= xN (t) , (5)

where xN is the location of the front of the current, ẋN is the velocity of the front of the current, Fr

is the Froude number, and ϕ= ψh is the vertically-integrated volume fraction of sediment where
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ψ is the depth-averaged volume fraction of sediment within the flow. Through experimentation, the

Froude number for a density current, with head height < 0.075 of the total water depth, has been120

found to be 1.19 (Huppert and Simpson, 1980). The evolution of ϕ is described using

∂ϕ

∂t
+

∂

∂x

(qϕ
h

)
=−βϕ

h
, (6)

where β is a constant particle settling parameter. Hence the gravitational forcing term in (2) (the last

term on the left hand side) changes with time as ϕ is advected and settles out of the column.

This single layer model ignores the effect of the motion of the overlying fluid on the current. This125

approximation is valid for flows where the maximum column height is significantly less than the

depth of the ambient fluid (Bonnecaze et al., 1993; Hogg, 2006). Viscous forces are also ignored.

For high Reynolds number flows the viscous forces will be negligible in relation to the buoyancy

forces. Bonnecaze et al. (1993) found that this was valid while the Reynolds number was greater

than O(1).130

The amount of deposited sediment, η, is also recorded and is calculated using

∂η

∂t
= β

ϕ

h
. (7)

The model is non-dimensionalised with the length, time, and velocity scales h0, (h0/g
′
0)1/2,

and (h0 g
′
0)1/2 respectively. Here, h0 is the dimensional depth of the initial sediment release, g′0 =

ψ0 g (ρp− ρa)/ρa is the initial reduced gravity of the current, ρp is the sediment particle density, ρa135

is the ambient fluid density, which is assumed to equal the interstitial fluid density, ψ0 is the initial

volume fraction of sediment, and g is the acceleration due to gravity. Finally, the volume fraction is

scaled such that
∫ xN (0)

0
ϕ dx= 1.

Following Bonnecaze et al. (1993), a coordinate transformation from (x,t) to (y,τ) is applied

where y = x/xN (t) and t= τ . This is a convenient form for the equations as the front of the current140

is always at the right hand boundary of a fixed computational domain, and hence the boundary

condition at the front of the flow is applied at the right-hand side of the domain. The transformed

derivatives are given by

∂

∂t
=

∂

∂τ
− yẋN

xN

∂

∂y
, (8)

∂

∂x
=

1

xN

∂

∂y
. (9)145
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Applying this coordinate transformation, but keeping t in place of τ for notational simplicity

following Bonnecaze et al. (1993), produces the system of equations:

∂h

∂t
=

1

xN

(
yẋN

∂h

∂y
− ∂q

∂y

)
, (10)

∂q

∂t
=

1

xN

(
yẋN

∂q

∂y
− ∂

∂y

(
q2

h
+
ϕh

2

))
, (11)

∂ϕ

∂t
=

1

xN

(
yẋN

∂ϕ

∂y
− ∂

∂y

(qϕ
h

))
−βϕ

h
, (12)150

∂η

∂t
=

1

xN

(
yẋN

∂η

∂y

)
+β

ϕ

h
, (13)

∂xN
∂t

= ẋN , (14)

with boundary conditions

q = 0 at y = 0 , (15)

q = ẋNh at y = 1 , (16)155

η = 0 at y = 1 , (17)

given that

ẋN = Frϕ1/2 at y = 1 . (18)

Note that an equation (14) for xN has been introduced to close the system.

It is now shown that the boundary conditions (15) to (17) are sufficient to uniquely solve this160

system. Equations (10) to (13) are a hyperbolic system of PDEs. For such a system to be well posed

there must be a boundary conditions for each inwardly propagating characteristic. This system of

equations has four characteristic velocities

dy
dt

= c± :=
1

xN

(
u− y ẋN ±ϕ1/2

)
, (19)

dy
dt

= c :=
1

xN
(u− y ẋN ) , (20)165

dy
dt

= cη :=− 1

xN
y ẋN . (21)

These are obtained using the method of characteristics. c± is the characteristic velocity of waves in

shallow water, c is the advection velocity of sediment, and cη is the advection velocity of deposited

sediment which is advected away from the current head as the domain length increases.

Due to the boundary conditions on momentum the following is true, u= q/h= 0 at y = 0 and170

u= q/h= ẋN at y = 1. Hence, c= 0 at both y = 0 and y = 1. Therefore there are three inwardly

propagating characteristics, c+ = ϕ1/2/xN at y = 0, c− =−ϕ1/2/xN at y = 1 and cη =−y ẋN/xN
at y = 1. Hence three boundary conditions are required for the problem to be well posed such that

the three boundary conditions (15) to (17) are exactly what is required.
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2.2 Discretisation and numerical method175

As the cell size grows throughout the simulation, it is possible to use a much larger timestep at the

end of the simulation than at the start of the simulation. To exploit this property an adaptive time-

stepping scheme is used in this model. A new time-dependent variable is introduced, ∆t, which will

vary according to a CFL-criteria, C, based upon a velocity scale ẋN and the mesh element size such

that180

∆t= C
∆x

ẋN
= C

xN∆y

ẋN
, (22)

where ∆x is the mesh element size in x and ∆y is the mesh element size in the transformed coordi-

nate system y.

The time-dependent model variables are defined as a vector

U = [ h, q, ϕ, η, xN , ẋN , ∆t]
T
. (23)185

The system is discretised in time using a second-order explicit Runge-Kutta time discretisa-

tion (Cockburn and Shu, 2001). An implicit term is added to the semi-discrete system in order

to solve for the diagnostic variables, ẋN and ∆t. With Un as the solution at the beginning of the

timestep, Un+1 as the solution at the end of the timestep, and U (0), U (1) and U (2) being intermediate

values, the system of equations, discretised in time can be written as190

U (0) = Un ,

U (1) =A(U (0)) +L(U (0)) +K(U (1)) ,

U (2) =A(U (1)) +L(U (1)) +K(U (2)) ,

Un+1 =
1

2
U (0) +

1

2
U (2) ,

(24)

where

A(U) = [ h, q, ϕ, η, xN , 0, 0 ]
T
, (25)

L(U) = ∆t

(
1

xN

(
yẋN

∂f1(U)

∂x
− ∂f2(U)

∂x

)
+ f3(U)

)
, (26)

f1 = [ h, q, ϕ, η, 0, 0, 0]
T
, (27)195

f2 =

[
q,
q2

h
+
ϕh

2
,
qϕ

h
, 0, 0, 0, 0

]T
, (28)

f3 =
[

0, 0, −βϕ
h
, β

ϕ

h
, 0, 0, 0

]T
. (29)

A(U) is non-zero where there is a time derivative term. L(U) is the explicit right hand side terms

multiplied by ∆t. Note that K(U) contains the implicit right hand side terms. K(U) can only be

easily described well in weak form, so this is defined later.200
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The spatial weak form of the semi-discrete system (24) is obtained by multiplying by a test func-

tion, Ψ, and integrating over the domain, Ω. This gives, for all Ψ in an appropriately chosen test

space∫
Ω

Ψ ·U (0) dΩ =

∫
Ω

Ψ ·Un dΩ ,

∫
Ω

Ψ ·U (1) dΩ =

∫
Ω

Ψ ·A(U (0))dΩ+

∫
Ω

Ψ ·L(U (0))dΩ +

∫
Ω

Ψ ·K(U (1))dΩ ,

∫
Ω

Ψ ·U (2) dΩ =

∫
Ω

Ψ ·A(U (1))dΩ+

∫
Ω

Ψ ·L(U (1))dΩ +

∫
Ω

Ψ ·K(U (2))dΩ ,

∫
Ω

Ψ ·Un+1 dΩ =
1

2

∫
Ω

Ψ ·
(
Un +U (2)

)
dΩ .

(30)

Piecewise-linear discontinuous Galerkin (DG) elements are used to discretise the spatially varying205

state variables. Thus the spatial and temporal discretisations both have second-order accuracy. DG

element types are known to be particularly suitable for advection dominated problems (Peraire and

Persson, 2008). They are good at preserving discontinuities as they produce stable discretisations

without the need for diffusive stabilisation strategies such as streamline-upwinding (Peraire and

Persson, 2008). These are important features in shallow water particle-laden density current models.210

In order to construct a DG formulation a regular partition, Th = {e}, of Ω into non-overlapping

sub-domains Ωe ∈ Ω with boundaries ∂Ωe is considered. The piecewise-linear DG function space

is denoted DG1. For this function space, piecewise-linear test functions with no global continuity

requirement are considered, i.e. functions that have the potential to be double-valued on ∂Ωe. xN ,

ẋN and ∆t are defined on a function space, R, which is constant throughout the spatial domain.215

Therefore, the vector of model unknowns U is defined on a mixed function space, Vh = DG1
4×

R3. The test function in the mixed function space is denoted with Ψh ∈ Vh, and the discretised

approximation of the state variable with Uh ∈ Vh.

Notice that L(U) contains derivatives of discontinuous functions. Its undiscretised weak form is∫
Ω

Ψ ·L(U)dΩ =∆t

∫
Ω

Ψ ·
(

1

xN

(
y ẋN

∂f1(U)

∂x
− ∂f2(U)

∂x

)
+ f3(U)

)
dΩ . (31)220

The discretised DG formulation of (31) is then∑
e∈Th

∫
Ωe

Ψh ·L(Uh)dΩ =

∆t
∑
e∈Th

∫
Ωe

Ψh ·
(

1

xN

(
y ẋN

∂f1(Uh)

∂x
− ∂f2(Uh)

∂x

)
+Ψh f3(Uh)

)
dΩ .

(32)
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Integrating the gradient terms by parts and rearranging slightly yields∑
e∈Th

∫
Ωe

Ψh ·
xN
∆t

L(Uh)dΩ =

−
∑
e∈Th

∫
Ωe

∂

∂x
(Ψh y ẋN ) · f1(Uh)dΩ

+
∑
e∈Th

∫
∂Ωe

Ψ̂h · y ẋN f̂1(Uh) n̂dσ+
∑
e∈Th

∫
Ωe

∂Ψh
∂x
· f2(Uh)dΩ

−
∑
e∈Th

∫
∂Ωe

Ψ̂h · f̂2(Uh) n̂dσ+
∑
e∈Th

∫
Ωe

Ψh ·xNf3(Uh)dΩ ,

(33)

where ·̂ indicates that the function is double-valued and special attention is required. The various225

summations can now be rewritten as integrals over the entire domain Ω, all element interfaces Σh,

and the domain boundaries Γh. Note that∑
e∈Th

∫
∂Ωe

Ψh · Ûh dσ ≡
∫
Σh

Ψh · Ûh dσ+

∫
Γh

Ψh ·U0 dσ , (34)

and∑
e∈Th

∫
Ωe

Ψh ·Uh dΩ≡
∫
Ω

Ψh ·Uh dΩ . (35)230

Additionally, note that within domain boundary integrals the ·̂ notation is dropped as the function

is single-valued at this location, and also that Uh is replaced with U0 which is either the boundary

value if a Dirichlet boundary condition is present, or the function value at the boundary if it is not.

Note that in the case of the boundary condition for q at y = 1, U0 is still a function of Uh. Applying

(34) and (35) to (33) yields235 ∫
Ω

Ψh ·
xN
∆t

L(Uh)dΩ =

−
∫
Ω

∂

∂x
(Ψh y ẋN ) · f1(Uh)dΩ +

∫
Σh

Ψ̂h · y ẋN f̂1(Uh) n̂dσ

+

∫
Γh

Ψh · y ẋN f1(U0)ndσ

+

∫
Ω

∂Ψh
∂x
· f2(Uh)dΩ−

∫
Σh

Ψ̂h · f̂2(Uh) n̂dσ

−
∫
Γh

Ψh · f2(U0)ndσ

+

∫
Ω

Ψh ·xNf3(Uh)dΩ .

(36)

A choice of flux term must be made to handle the double valued terms. This will involve some cou-

pling between the elements on either side of the interface. An upwind flux is used for the advection
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term, f̂1, and based upon experience an average flux works well for f̂2. This gives∫
Ω

Ψh ·
xN
∆t

L(Uh)dΩ =

−
∫
Ω

∂

∂x
(Ψh y ẋN ) ·Uh dΩ +

∫
Γh

Ψh · y (ẋN n)down f1(U0)dσ

+

∫
Σh

(
Ψ+
h −Ψ−h

)
· y
(
f+

1 (Uh)(ẋN n
+)up + f−1 (Uh)(ẋN n

−)up
)

dσ

+

∫
Ω

∂Ψh
∂x
· f2(Uh)dΩ−

∫
Γh

Ψh · f2(U0)ndσ

−
∫
Σh

(
Ψ+
h −Ψ−h

)
· 1

2

(
f2(Uh)+ + f2(Uh)−

)
n+ dσ

+

∫
Ω

Ψh ·xNf3(Uh)dΩ ,

(37)240

where (·)+, and (·)− indicate the function values on either side of an interior element boundary.

(·)up is equal to (·) where ẋN n± > 0 and zero otherwise. Conversely, (·)down is equal to (·) where

ẋN n± < 0 and zero otherwise.

K(U) can be described in weak discretised form as∫
Ω

Ψh ·K(Uh) dΩ =

∫
Ω

Ψh ·KΩ(Uh) dΩ +

∫
∂ΩR

Ψh ·Kσ(Uh) dσ , (38)245

KΩ(Uh) =

[
0, 0, 0, 0, 0, 0, C

xN∆y

ẋN

]
, (39)

Kσ(Uh) =
[

0, 0, 0, 0, 0, F r(ϕ)1/2, 0
]
, (40)

where ∂ΩR is the right-hand boundary at y = 1 such that a solution for ẋN is obtained by solving

only at the front of the current.

Using (30), (37) and (38), and applying (35) the full weak, discontinuous form of (24) can be250

obtained:
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Find U (0)
h ,U

(1)
h ,U

(2)
h ,U

(n+1)
h ∈ Vh such that ∀ Ψh ∈ Vh∫

Ω

Ψh ·U (0)
h dΩ =

∫
Ω

Ψh ·Unh dΩ ,

∫
Ω

Ψh ·U (1)
h dΩ =

∫
Ω

Ψh ·A(U
(0)
h )dΩ+

∫
Ω

Ψh ·L(U
(0)
h )dΩ +

∫
Ω

Ψh ·K(U
(1)
h )dΩ ,

∫
Ω

Ψh ·U (2)
h dΩ =

∫
Ω

Ψh ·A(U
(1)
h )dΩ+

∫
Ω

Ψh ·L(U
(1)
h )dΩ +

∫
Ω

Ψh ·K(U
(2)
h )dΩ ,

∫
Ω

Ψh ·Un+1
h dΩ =

1

2

∫
Ω

Ψh ·
(
U

(0)
h +U

(2)
h

)
dΩ .

(41)

This set of equations is solved for each timestep of the simulation as a non-linear variational problem

using Newton’s method with an LU decomposition solver for the linear problems.255

2.3 Slope limiting

Discontinuous Galerkin discretisations for convection dominated problems can suffer from over- and

under-shoots at discontinuities that can cause instability problems (Kuzmin, 2010; Cockburn and

Shu, 2001). Slope limiting can be applied to solve this problem, but this typically involves discon-

tinuous operations, which are problematic in a gradient-based optimisation framework. Therefore,260

we do not use slope limiting here and limit ourselves to the assumption of smooth initial conditions

where slope limiting is not necessary. It would be possible to formulate a continuous slope-limiting

function to overcome this limitation if it was required.

2.4 Implementation

The shallow water sediment-laden density current model described above was built using the FEn-265

iCS framework (Logg et al., 2012), an open-source software project that provides features for the

automated, efficient solution of differential equations. Using a high-level interface, the model partial

differential equations are described in variational form using UFL (Unified form language) (Alnæs

et al., 2012). This can be achieved in Python or C++ code in a way that is remarkably similar to how

one would describe the equations on paper. At run-time this model description is compiled into effi-270

cient C++ kernels that handle assembly of the required matrices to generate the systems of equations

that are then solved using PETSc (Balay et al., 2014).
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Figure 2. Schematic diagram of the lock-release static initial condition (a) and the following dam-break (b) and

slumping (c) phases with shock wave propagation direction indicted ( ).

2.5 Forward model verification

Many laboratory experiments and computer models are based around the classical lock-release static

initial condition (Figure 2a). Following release of the lock-gate the current accelerates forwards.275

This is known as the dam-break stage (Ungarish, 2010) (Figure 2b). As the lock-gate is released a

shock forms which travels in the opposite direction to the front of the current. This shock carries

information that sets the fluid in motion. Once this shock reaches the rear wall, all of the fluid behind

the lock-gate is in motion. This marks the point of transfer from the dam-break to the slumping phase

(Ungarish, 2010) (Figure 2c). For a non-depositional current (i.e. β = 0) with initial h and xN = 1,280

the slumping phase begins at t= 1. The current front height and velocity remain approximately

constant during this phase of motion. The rear propagating shock is reflected off of the no flow

boundary and travels faster than the front of the current. A short while later it reaches the front of

the current marking the end of the slumping phase. The current is now able to ‘forget’ the initial

condition and begins adjusting to self-similar propagation (Ungarish, 2010). For a non-depositional285

current (i.e. β = 0) the reflected shock reaches the front of the current at t= 3 (Ungarish, 2010).

Hoult (1972) showed that a similarity solution, a solution that looks the same at all times or at all

length scales, could be obtained for a single-layer shallow water density current model during the

self-similar phase of propagation. This is described as

xN = κt2/3, u=
2

3
κt−1/3us, h= κ−1t−2/3hs, ψ = 1 , (42)290

where

y = x/κt2/3, κ=

(
27Fr2

12− 2Fr2

)1/3

,

us = y, hs =
4

9
κ3

(
y2

4
− 1

4
+

1

Fr2

)
.

(43)

The domain is unit length, as in all cases for this model. This solution is valid for the model de-

scribed in this paper so long as the settling velocity of particles, β, is equal to zero (i.e. no particle

settling). This analytical solution is useful in verifying the implementation of the governing equa-295

tions and boundary conditions for this model. The solution to the model PDEs should converge to
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Figure 3. Similarity convergence analysis. All variables are shown to converge on the correct solution at the

correct order. ε(∗) indicates the L2-norm of the error in the solution obtained for variable (∗).

this analytical solution as the mesh resolution is refined, at the correct rate for the temporal, and

spatial discretisation. The use of piecewise discontinuous linear elements and a second-order time

stepping regime mean that the convergence order should be quadratic in both space and time.

For the convergence test the analytical solution is projected on to the model function space forming300

the initial condition at t= 3. At t= 10 the L2 norm of the difference between the model variables

and the analytical solution is obtained and used to measure convergence. The analysis shows that all

variables converge on to the analytical solution at the correct order (Figure 3). Note that the time step

is adaptive and will therefore decrease along with the element size such that this test is checking both

spatial and temporal convergence. This verifies that the model equations are implemented correctly305

(Farrell et al., 2011). Qualitative comparison shows that the solution matches the analytical solution

very well (Figure 4).

3 The adjoint model

Here we describe the adjoint model and its derivation generally rather than specifically applying it

to this model.310

Consider a problem with N input parameters, forming a vector, m. Let F (U,m) = 0 denote the

set of PDEs that describe a model where U represents the model variables throughout time. Note that

U can be seen as an implicit function of m, U = U(m), through finding a solution to F (U,m) = 0.

Suppose now that the aim is to minimise an objective functional, J(U,m) by optimising m. Here,

J(U,m), will be defined as a function measuring the difference between a deposit profile generated315

by the model and a target deposit profile. Where optimisation is required to a tolerance of δmi,
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Figure 4. Similarity results for the finest resolution mesh (solid lines), compared against the analytical results

(dashed lines) at t= 10.0.

with i being the index of each parameter, and where each parameter has bounds spanning a range

∆mi, optimisation by a brute force approach will require
∏N
i ∆mi/δmi evaluations of the model

to find the solution. N may be very large for a sediment-laden density current model which could

potentially have time-varying boundary conditions for sediment concentration, velocity and height,320

uncertainty in the elevation profile and friction coefficient of the surface over which the current is

flowing, and uncertainty in parameters that govern physics of the flow such as entrainment of ambient

fluid, front speed, and sediment erosion. Many of these parameters vary over space and time such

that the parameter space grows as the resolution in time or space increases. Such a large potential

parameter space motivates the use of a more advanced and efficient optimisation strategy.325

Numerous algorithms have been developed to improve this brute force approach. These optimisa-

tion algorithms begin with an initial guess of the input parameters and iterate, generating improved

estimates until they terminate, hopefully at the optimised solution. The authors refer the reader to

Jorge and Stephen (1999) for an extensive description of the range of numerical optimisation meth-

ods.330

Most of these optimisation algorithms require the gradient of the objective functional with respect

to the input parameters, dJ/dm. Approximation techniques, such as finite-differencing, could be

used to evaluate the gradient, but this will require an excessive number of PDE evaluations and may

suffer from noise (Jorge and Stephen, 1999). Here, the adjoint model is used to efficiently calculate

the gradient. This approach is favoured as it calculates dJ/dm for any number of input parameters335

with a single evaluation of the adjoint model.
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Obtaining the adjoint model begins by applying the chain rule to dJ/dm

dJ(U(m),m)

dm
=

〈
∂J

∂U
,

dU
dm

〉
+
∂J

∂m
. (44)

∂J/∂U and ∂J/∂m are both vectors, and they are typically straightforward to compute as J is

typically a given analytical function of U and m. dU/dm on the other hand is a matrix that is340

typically dense and is expensive to compute. A relationship for dU/dm can be obtained by taking

the total derivative of F (U,m) = 0 with respect to m

0 =
dF (U(m),m)

dm
=
∂F

∂U

dU
dm

+
∂F

∂m
, (45)

⇒ ∂F

∂U

dU
dm

=− ∂F
∂m

. (46)

Equation 46 is termed the tangent-linear equation. ∂F/∂U and ∂F/∂m are both matrices. The345

solution of this equation is obtained by solving N systems of equations. When there are many func-

tionals, J , and a small set of parameters, m, then this equation can be useful for obtaining dJ/dm

via (44). With a large set of parameters and only one functional, as is the case here, this is not an

efficient approach.

However, suppose that ∂F/∂U in (46) is invertible so that one can obtain350

dU
dm

=−
(
∂F

∂U

)−1
∂F

∂m
. (47)

This expression can be substituted for dU/dm directly into (44) to obtain

dJ(m)

dm
=−

〈
∂J

∂U
,

(
∂F

∂U

)−1
∂F

∂m

〉
+
∂J

∂m
. (48)

A simple property of inner products, 〈y,Ax〉= 〈A∗y,x〉, where A∗ is the conjugate transpose, or

adjoint, of A, can be used to shift (∂F/∂U)
−1 to the left hand side of the inner product355

dJ(m)

dm
=−

〈(
∂F

∂U

)−∗
∂J

∂U
,
∂F

∂m

〉
+
∂J

∂m
. (49)

Gathering the left-hand side of the inner product into a new variable,

λ:=

(
∂F

∂U

)−∗
∂J

∂U
, (50)

yields the linear system of equations that can be solved for the adjoint variable, λ(
∂F

∂U

)∗
λ=

∂J

∂U
. (51)360

Equation (51) is termed the adjoint equation. The right hand side is a vector and only one evalua-

tion is required to obtain λ for a specific functional, J . Once (51) is solved, dJ/dm can easily be

computed with respect to any parameter m by substituting the value of λ into (48).
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As commented above, ∂J/∂U and ∂J/∂m are typically straightforward to compute. However,

(∂F/∂U)∗ and ∂F/∂m still need to be derived and implemented which is not a simple task for a365

large set of complex PDEs. The challenge of obtaining these matrices is the main obstacle to using

the adjoint model. However, the high-level abstraction of the coding provided by using FEniCS to

create this model makes calculating (∂F/∂u)∗ and ∂F/∂m an automatable task using an additional

tool, dolfin-adjoint (Farrell et al., 2013). This powerful tool automatically derives the discrete adjoint

and tangent linear models from a forward model written in FEniCS. This makes differentiating the370

forward model, and solving the adjoint equation to obtain the derivative of the objective functional

a much simpler task. Additionally to this, dolfin-adjoint also contains tools for carrying out opti-

misation of model parameters by interfacing with IPOPT (Wächter and Biegler, 2006) optimisation

algorithms (Funke and Farrell, 2013).

4 Estimation of parameters for the turbidity current that generated Bed 1.1 in the Marnoso375

Arenacea Formation

The Marnoso Arenacea Formation spans 17 to 7 Ma (Late Burdigalian to Tortonian) and is over

3500m thick (Talling et al., 2007b). Deposition occurred from two sources: the northwestern Alpine

source and the southwestern Apennine source (Lucchi and Valmori, 1980; Gandolfi et al., 1983).

The depositional environment was an elongate foreland basin adjacent to the Apennine thrust belt380

with turbidites being deposited in a relatively wide (>60km) basin, in a non-channelised manner

(Talling et al., 2007b; Lucchi and Valmori, 1980; Gandolfi et al., 1983). The formation provides the

most extensive and detailed correlation of flow deposits (beds) in any ancient turbidite system and is

therefore a natural laboratory for studying turbidite depositional processes (Amy and Talling, 2006).

It has been extensively mapped with more than 100 sections being accurately recorded over a corre-385

lated distance of more than 120 km (Amy and Talling, 2006). Bed volumes range fromO(10−3)km3

to several km3 (Talling et al., 2007a). It contains extensive data for evaluating the performance of

the adjointed turbidity current model described here.

In this section an optimisation algorithm is used to select model parameters that produce an output

deposit that best matches part of Bed 1.1 in the Marnoso Arenacea Formation, as recorded by Amy390

and Talling (2006). This is defined as a small volume flow deposit with a total sediment volume of

≈ 0.215km3 (Talling et al., 2007a). Talling et al. (2007a) produced an approximate one-dimensional

deposit parallel to the palaeoflow (Figure 5). The shape of the deposit strongly resembles that of very

low concentration currents in laboratory tests, and also resembles the shape of bed profiles generated

by the Bonnecaze et al. (1993) model. This implies that the flow that created this deposit was a very395

low concentration current. The model used in this chapter is very simple. It does not model any

stratification, or particle-particle interactions in the flow. As such its application is limited to very

low concentration flows and hence Bed 1.1 is a good candidate case study for this model.
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Figure 5. Sandstone depths measured for Bed 1.1 along the Pietralunga and Ridracoli structural elements ori-

entated approximately parallel to the palaeoflow. This has been reconstructed from Figure 5 in Talling et al.

(2007a). A fourth-order polynomial approximation of the deposit profile, ηT is also shown. This is used as a

target for the optimisation algorithm. The base of the bed is shown as a horizontal datum in order to illustrate

lateral changes in deposit thickness. Note that a different datum is used in the source figure, which uses the

top of Bed 1.2.2 rather than the top of Bed 1. The palaeo-elevation of the base of the bed would have varied

spatially, reflecting basin-floor relief.

The deposit consists of sandstone and mudstone components. The focus here will be on attempting

to recreate only the sandstone portion of the deposit. It is likely that ponding effects have influenced400

the shape of the mud deposit in this bed (Talling et al., 2007b) which this model cannot replicate. The

outcrop quality also deteriorates beyond the extent of the sandstone deposit. Therefore, no attempt

is made to model this portion of the bed.

4.1 Choice of initial conditions and parameters

The initial conditions are based upon the analytical solution for a non-depositional flow at a non-405

dimensional time, t= ts = 3 after a column collapse, as described by (42). Some assumptions are

therefore made as to the initial shape, sediment concentration profile, and velocity profile of the flow.
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The non-dimensional particle settling velocity, β is calculated using the standard Stokes settling

law for a particle in suspension (Lamb, 1993), non-dimensionalised by (h0 g
′
0)1/2 to give

β =
g′D2

18 ν (h0 g′0)1/2
=

g′1/2D2

18 ν (h0ψ0)
1/2

, (52)410

whereD is the average sediment diameter. The sediment reduced gravity, g′ = g′0/ψ0 = (ρp−ρa)g/ρa =

16, is based upon the reduced gravity of silica in water. Using these initial conditions there are three

unknowns, h0, the dimensional length scale of the current, ψ0, the initial sediment concentration

throughout the current, and D, the mean sediment diameter. These become the set of input parame-

ters that will be optimised, m= (h0,ψ0,D)
T .415

The beginning of the basin is defined as being at the front of the current at t= ts such that the

current is not in the basin prior to the start of the simulation. The current enters the domain as soon as

the simulation starts. The end of the simulation, tf , is defined as the time at which the total suspended

sediment is less than 1% of the starting quantity.

4.2 Choice of optimisation functional420

The aim here is to reduce the difference between the deposit profile generated by this model and

the target deposit profile from field measurements. To do this we need to map the non-dimensional,

transformed results from the model back to the observation space. We also only measure the variation

over the length of the measured deposit. Therefore, the functional that we will aim to minimise, J ,

has the form425

J(U(m),m) =

x̂max∫
0

(η̃− ηT )
2 dx̂ , (53)

where ηT is the dimensional target deposit profile, η̃ = ψ0h0 η, is the dimensionalised modelled

deposit, x̂max = 82000, is the extent of the measured data, and x̂= x̃− x̃N (ts), is a coordinate

transformation such that x̂= 0 at the front of the current at t= ts, x̃= y x̃N (tf ) is the dimension-

alised reverse of the coordinate transformation outlined in Section 2.1, and x̃N (t) = h0xN (t), is the430

dimensional length of the current.

To calculate this functional, ηT must be a function of x̂. The deposit is approximated using a

fourth-order polynomial as

ηT =

4∑
i=0

ci x̂
i , (54)

where ci is the ith coefficient. The coefficients are obtained using the least squares method. The435

fourth-order approximation fits the measured data points well (Figure 5).

It is important to note that at the end of the simulation, t= tf , the length of the current does not

necessarily match the length of the deposit, or x̂N 6= x̂max, where x̂N (t) = x̃N (t)− x̃N (ts), is the
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dimensional length of the modelled deposit within the basin. This complicates the calculation of the

above integral.440

Calculation of J is split in to two components, an integral over the lesser of the length of the

modelled current, or the length of the measured data, J0, and an integral over any remaining length

of measured data, J1, such that

J = J0 + J1 . (55)

The first integral takes the form445

J0 =

min(x̂N , x̂max)∫
0

(ηT (x̂)− η̃(x̂))
2 dx̂ , (56)

This can be approximately transformed in to the model coordinate system as

J0 =

∫
Ω

(γ0 ηT (x̂(y))− γ0 η̃(x̂(y)))
2 dy (57)

where γ0 is a scaled filter. This filter is zero in the region x̂ < 0 and x̂ > x̂max. Elsewhere the filter

value is a constant such that the integral of the filter over the domain is equal to the length of the450

dimensional integral, min(x̂N , x̂max). As such the filter defines the region of the domain over which

the integral is evaluated and scales the resultant value appropriately. The filter is defined as

γ0(x̂) = min(x̂N , x̂max)
exp( min(x̂− x̂max, x̂, 0) )

sγ0
, (58)

sγ0 =

∫
Ω

exp( min(x̂− x̂max, x̂, 0) ) dx̂ . (59)

It is important the functional is differentiable. Therefore the min and max functions are replaced by455

smooth approximations fmin and fmax defined as

fmin(a,b) = ln(exp(10a) + exp(10b))/10 , (60)

fmax(a,b) = fmin(−a,−b) . (61)

The second integral, J1, takes the form

J1 =

x̂max∫
min(x̂N , x̂max)

ηT (x̂)2 dx̂ , (62)460

such that J1 integrates the target deposit volume beyond the extent of the modelled deposit. If the

modelled deposit length exceeds the length of the measured data this integral will be zero. Again,

this can be approximately transformed in to the model coordinate system as

J1 =

∫
Ω

(γ1 ηT (x̃(y)))
2 dy , (63)

x̃(y) = min(x̂N + y(x̂max− x̂N ), x̂N ) , (64)465
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δxN R0(δxN ) order R1(δxN ) order

1.0 1.16e-8 2.67e-9

0.5 5.11e-9 1.18 6.54e-10 2.03

0.25 2.39e-9 1.01 1.56e-10 2.07

0.0125 1.15e-9 1.05 3.54e-11 2.14

0.00625 5.64e-10 1.03 6.97e-12 2.34

Table 1. Taylor reminders R0 = |Ĵ(xN (0) + δxN )| and R1 = |Ĵ(xN (0) + δxN )− Ĵ(xN (0))−
dĴ(xN (0))/duδxN | for the with functional given by J(η) =

∫
Ω
η(t= tf )2dΩ.

where γ1 is a scaled filter similar to γ0 defined as

γ1(x̂) = ( x̂max−min(x̂N , x̂max))
exp( min(x̂− x̂max, 0) )

sγ0
, (65)

sγ0 =

∫
Ω

exp( min(x̂− x̂max, 0) ) dx̂ , (66)

Again, min and max are replaced by smooth differentiable alternatives.

4.3 Verification of the gradient calculation470

The gradient computation was verified using the Taylor remainder convergence test. Let Ĵ(m)≡
J(U(m),m), a pure function of m. The zero-order Taylor expansion states that∣∣∣Ĵ(m+ δm)− Ĵ(m)

∣∣∣=O (‖δm‖) , (67)

while the first-order Taylor expansion states that∣∣∣∣∣Ĵ(m+ δm)− Ĵ(m)− dĴ(m)

dm
δm

∣∣∣∣∣=O
(
‖δm‖2

)
. (68)475

Even small errors in the derivative destroy the second order convergence in (68). Therefore, testing

the convergence of these expansions with the gradient calculated from the adjoint yields a strong

indicator if the adjoint gradient computation is correct.

The above convergence was succesfully carried out for the implemented adjoint model with a

number of different controls and functionals. As example, table 1 shows the results with m as the480

initial initial deposit length. The convergence of the remainder term is second order with respect to

varying magnitudes of δm, providing strong evidence that the adjoint model and gradient computa-

tion are implemented correctly.
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4.4 Optimisation of a model with one sediment class

With confidence that the forward and backward models are working, optimisation of the input pa-485

rameters, m= [h0,ψ0,D], to minimise the objective functional J can now be performed.

min
m

= J(U(m),m) , (69)

with the the following bounding constraints on the input parameters

10m≤ h0 ≤ 10km , (70)

0.001%≤ ψ0 ≤ 50% , (71)490

1µm≤D ≤ 1mm . (72)

These bounding constraints are chosen based upon very loose limits of expected values that each

parameter may possibly take. The principal purpose of these bounds is to avoid invalid negative

values being generated for any of the parameters.

The nonlinear optimisation library, IPOPT (Wächter and Biegler, 2006), is used to solve this495

problem. This library implements a primal-dual interior-point algorithm which has good global and

local convergence properties (Wächter and Biegler, 2005). The interface to this library is supplied

by dolfin-adjoint (Funke and Farrell, 2013).

The initial input parameters are set to

m=


h0 = 2.3km

ψ0 = 0.07%

D = 200.0µm

 . (73)500

The aim is to recreate the sand deposit by modelling only the sand in the flow using a single average

grain size,D. The value of ψ0 is based upon a combined initial volumetric concentration for the sand

and mud mixture of 0.5%, with 86% of the mixture being mud. The starting value for h0 is based

upon the area of the two-dimensional deposit profile and the value of ψ0. The average sediment grain

size is a reasonable estimate of the average grain size based upon the information provided by Talling505

et al. (2007a). The input parameters provided to the optimisation algorithm, m̄, are normalised such

that they are all equal to one. Thus

mi = m̄im0 (74)

where m0 are the initial parameter values in (73), and mi indicates the value of m after optimisation

iteration i. This scaling helps the optimisation algorithm work effectively (Jorge and Stephen, 1999).510

The criteria for finishing the parameter optimisation is based upon the relative change in J be-

tween iterations such that

|Ji− Ji−1|
Ji

< 1.0× 10−5 , (75)
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Figure 6. Values of parameters over the optimisation iterations against the value of the objective functional,

J , that we are aiming to minimise. Values shown are normalised by their starting values. (∗)n is the value of

parameter ∗ at the start of iteration n.

where Ji is the value of J after the ith iteration. The optimisation is completed in 21 iterations, with

a final functional value of J = 1.75 (Figure 6). The optimised deposit profile, η, compares relatively515

well with ηT (Figure 7). Most notably there is a significant variation in the thickness towards the end

of the deposit. This will be addressed later.

The final optimised values are

m=


h0 = 2.56km

ψ0 = 0.0494%

D = 103µm

 . (76)

These optimised values are not completely acceptable. The value for h0 represents the initial height520

of the current if it started from a static lock-release initial condition. This translates to an initial

current height of 993.3m at the start of this simulation, and as the current enters the basin plain.

This value appears to be quite large for a relatively small turbidity current. Additionally, the average

sediment diameter of 103µm is lower than expected. Talling et al. (2007a) defines the sandstone

interval as being dominated by sediment grains estimated to be larger than ≈ 125µm.525

With the exception of the sediment diameter, the optimised values are fairly similar to those chosen

as input values. This confirms that the input parameters chosen were sensible predictions of the

starting conditions for the gravity current. To test this hypothesis we ran the same situation from a

number of alternative starting initial conditions. We found that there are indeed a number of local
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Figure 7. Dimensional deposit output η̃0 from initial parameter guess (73), and optimised dimensional deposit

output η̃ from the optimised parameter (76), shown against the field measurement from Bed 1.1 (Talling et al.,

2007a) and fourth-order polynomial target deposit profile, ηT .

minima. An optimisation with starting inital conditions as530

m=


h0 = 3.0km

ψ0 = 0.02%

D = 100.0µm

 (77)

optimised to

m=


h0 = 3.95km

ψ0 = 0.02%

D = 154.0µm

 . (78)

Figure 8 shows a comparison of the two generated deposit profiles. The two profiles are very com-

parable, even though the alternative profile is created by a much larger, but much less dense initial535

current.

The existence of alternative minima must always be considered when running optimisations of this

type. It is important to have a good understanding of the problem to choose sensible initial starting

conditions and also to assess resultant optimised values. A regularisation approach would avoid this

problem, but assumes prior knowledge about the target profile.540
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Figure 8. Dimensional deposit output η̃ from the optimised deposit output from initial parameter guess (73),

and dimensional deposit output η̃alt from an alternative minima achieved by using initial parameter guess, (77),

shown against the fourth-order polynomial target deposit profile, ηT .

A clear omission from the model is the presence of mud in the suspension. The presence of mud

will significantly alter the energy budget of the flow. A mud sediment class can easily be included

such that the model produces more realistic optimised values. This is detailed below.

4.5 Extending the model to include an additional sediment class for the mud in suspension

Investigating the effect of including mud in the sediment mixture can be achieved relatively simply545

by including an additional transport equation with a form identical to (12) (Dorrell et al., 2013)

∂ϕm
∂t

=
1

xN

(
yẋN

∂ϕm
∂y
− ∂

∂y

(qϕm
h

))
−βm

ϕm
h

, (79)

where ϕm = ψmh is the vertically-integrated volume fraction of mud in the suspension with ψm

being the depth-averaged volume fraction of mud within the flow, and βm is the settling velocity of

the mud particles. Using a single tracer equation we approximate the distribution of mud particle550

sizes using a single mud diameter, in the same way as the distribution of sand is modelled in the

flow. We neglect flocullation of mud particles. Assuming that the density of both sediment classes

are the same, (11) is modified to include this new sediment class in the gravity term

∂q

∂t
=

1

xN

(
yẋN

∂q

∂y
− ∂

∂y

(
q2

h
+

(ϕ+ϕm)h

2

))
. (80)
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Finally ϕ and ϕm are scaled such that at the start of the simulation ϕ+ϕm = 1, where previously555

ϕ= 1. The aim is still to recreate the deposit of sand and hence the equation for η stays the same. We

term the sand deposit generated by this modified model η2. The discretisation for (79) is consistent

with the rest of the model, as presented in section 2.2.

The initial condition needs to be altered to include the new sediment class. The initial vertically-

averaged volume fraction of sand is changed to be ψ = fs, and a new initial condition for the560

vertically-averaged volume fraction of mud is introduced ψm = 1− fs. The sand fraction, fs, is

estimated by Talling et al. (2007a) to be 0.14 and is kept fixed.

βm must also be calculated. This is done in the same way as for β except that a different sediment

diameter parameter, Dm, the mean diameter of mud particles in the flow, is used and optimised. The

equation for βm is therefore565

βm =
g′1/2D2

m

18 ν (h0ψ0)
1/2

. (81)

Note that ψ0 is now the combined initial volume fraction of sand and mud in the flow.

4.6 Optimisation for a model with two sediment classes

The set of optimised input parameters is redefined asm= [h0,ψ0,D,Dm]
T . An additional bounding

constraint is added for Dm such that the new bounding constraints for m are570

10m≤ h0 ≤ 10.0km , (82)

0.001%≤ ψ0 ≤ 50% , (83)

1.0µm≤D ≤ 1.0mm , (84)

1.0µm≤Dm ≤ 100.0µm . (85)

The initial input parameters are set to575

m=


h0 = 2.1km

ψ0 = 5%

D = 200.0µm

Dm = 20.0µm

 . (86)

The input parameter are normalised as detailed in section 4.4 before being passed to the optimisation

algorithm. The criteria for finishing the optimisation is consistent with the previous optimisation (see

(75)).

Optimisation of the model with two sediment classes is completed in 17 iterations with a final580

functional value of J = 2.13 (see Figure 9). Therefore, quantitatively the fit is very slightly worse

when mud is included in the model. This is a surprising result as the model now more closely matches

reality. Qualitatively it is very hard to determine which model fits the data better. The resultant

deposit is very similar in shape to that obtained when only modelling sand in the flow (see Figure
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Figure 9. Values of parameters from the model with both mud and sand sediment classes over the optimisation

iterations against the value of the objective functional, J , that we are aiming to minimise. Values shown are

normalised by their starting values. (∗)n is the value of parameter ∗ at the start of iteration n.

10). The fit appears to be worse at the start of the deposit. The runout length is slightly longer when585

mud is included such that the fit towards the end of the deposit is slightly improved.

The fit with the measured data is still poor towards the end of the deposit. Talling et al. (2007a)

noted how the distal section of small deposits in the Marnoso Arenacea formation show evidence of

transport in a tractional boundary layer. This simulation does not model bedload transport or erosion

which is the likely reason for the difference in results. The velocity of the head of the turbidity current590

in this simulation varies between 10ms−1 and 2.4ms−1 over the period where sand is deposited

(Figure 12). At these head velocities erosion is very likely to occur. Models for erosion and bedload

transport exist (Garcia, 1994; Sequeiros et al., 2009). These could be added in future work.

The final optimised values are

m=


h0 = 1.92µkm

ψ0 = 5.94× 10−3

D = 125µm

Dm = 28.1µm

 . (87)595

Comparing these results to those obtained without a mud sediment class, the value of h0 has reduced

by 25% and translates to an initial current height of 745.0m as the current enters the basin plain.

The average sediment diameter has also increased by 21% to 125µm bringing the average diameter
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Figure 10. Optimised dimensional deposit output from the model with both mud and sand sediment classes, η̃2

shown against the optimised results from the single sediment class model, η̃, the field measurement from Bed

1.1 (Talling et al., 2007a) and fourth-order polynomial target deposit profile, ηT .

in line with the estimates from field measurements by Talling et al. (2007a). Arguably, the sand and

mud classes should be subdivided further. Dorrell et al. (2013) described how polydisperse density600

currents will have longer run out distances than equivalent currents with uniform sediment at the

mean value of the poydisperse current.

It is also interesting to assess the sensitivity of the model to variations in the input parameters by

analysing the final gradient of the objective functional,

dJ
dm̄

=


dJ/dh̄0 = 5.1× 10−3

dJ/dψ̄0 = −1.8× 10−3

dJ/dD̄ = −2.4× 10−3

dJ/dD̄m = 1.5× 10−6

 . (88)605

where ·̄ indicates a parameter value normalised by its value on the initial optimisation iteration. The

sensitivity of the functional to changes in the mud diameter is several orders of magnitude smaller

than the sensitivity to changes in the other variables.

It is indeed found that changing this value has very little effect on the obtained deposit. The same

simulation is run with the mud diameter decreased by two orders of magnitude such that the input610
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Figure 11. Optimised dimensional deposit output from the model with both mud and sand sediment classes, η̃2

shown against results from the same model, with the same parameters but a mud settling velocity reduced by

two orders of magnitude, η̃3.

parameter values are

m=


h0 = 1.92µkm

ψ0 = 5.94× 10−3

D = 125µm

Dm = 0.281µm

 . (89)

The resulting functional value, J = 2.13, which is identical to that obtained for the optimised sim-

ulation. There is no discernible difference in the resulting deposit, η3 (Figure 11). The head height

and velocity only vary a small amount over the period where sand is deposited (Figures 12a and615

12b). The current properties vary significantly after the sand has been deposited and mud is still in

suspension, but this does not have any effect on the sand deposit.

Although the sandstone deposits generated by the single and two sediment class models are very

similar, properties of the turbidity currents that produced them are very different (Figure 12). The

turbidity current with mud in suspension travels approximately twice as quickly due to the increased620

gravitational forces produced by the sand and mud mixture (Figure 12b). Sand also drops out of the

suspension much more rapidly (Figure 12d). All of the sand is deposited within approximately six

hours. The model without mud deposits sand over a period of more than twenty hours. This is due to

the reduced height of the current at the start of the simulation, and the faster decrease in the height of
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Figure 12. Time evolution of dimensionalised variables for three simulations: a simulation with a single sand

sediment class and optimised input parameters to match the Bed 1.1 sand deposit, a simulation with sand and

mud classes and optimised input parameters to match the Bed 1.1 sand deposit, and a simulation with sand and

mud classes and the same optimised input parameters but a mud diameter two-orders of magnitude smaller. The

results are shown against the dimensional time, t̃= t(h0/g0)1/2.

the current as a result of the higher head velocity (Figures 12a and 12d). Clearly the presence of mud625

in the suspension has a significant impact on the resultant flow and must be included in the model.

The simulated turbidity currents that produced η2 and η3 deposited sand over a similar time period.

After all of the sand had fallen out of suspension less than 25% of the mud has settled from the flow

for both of these currents, the current head is> 50m tall, and the head is moving at> 1.0m/s (Figure

12). Hence there is still a significant amount of energy in the flow. The remaining mud suspension630

will reach the end of the basin (x̃N ≈ 130km) and will still have a significant amount of energy left

when it does so. It is very hard to predict what will happen after this point. The current may be partly

reflected and ponding of the suspended mud is likely to occur. This result is in agreement with the

explanations of Talling et al. (2007b).
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The height of the current in the optimised simulation with both sand and mud sediment classes635

is ≈ 750m as it enters the basin, although this decreases very quickly as the current propagates. It

is possible that including processes such as fluid entrainment, erosion, and bedload transport, may

reduce the necessity for such a large initial current height in producing this deposit. More complex

initial and boundary conditions may also have a significant impact on this value. It is unclear what

effect an inflow boundary condition with time-varying height, sediment concentration, and velocity640

would have on the results. This would be an interesting addition to the models capabilities.

The model also neglects variations in the bed profile. The gradient of the sea floor in the basin

where the Marnoso Arenacea formation was created was substantially less than one degree (Amy

and Talling, 2006). Variations in gradient of this magnitude will have negligible impact on the head

velocity (Middleton, 1966). However, small variations will have an impact on the velocity of the645

body of the current. Future work will address this.

5 Conclusions

This paper has presented a novel implementation of the shallow water equations for modelling den-

sity currents using a mixed finite element formulation. The model has been differentiated to allow

for parameter optimisation using gradient-based optimisation techniques, and the use of gradient650

information in sensitivity analyses.

The proposed model is based upon simplifying shallow water sediment-laden density current as-

sumptions, and has been used here to recreate a low volume deposit from the Marnoso Arenacea

Formation, Italy with some success. However, the lack of many key flow processes within the cur-

rent model, including bedload transport and reentrainment, has arguably led to optimised parameters655

values which would be improved upon with a more complete underlying model.

This paper has demonstrated the power of gradient-based optimisation methods for determining

the set of input parameters that best fits a particular turbidity current deposit. Since input parameters

are rarely known with any accuracy for these flows, optimisation represents a sensible way to better

estimate these values.660

Future development of the model could enable more complex boundary conditions and add pa-

rameterisations for ambient fluid entrainment, bed erosion, and bedload transport. This will increase

the capacity for the model to recreate a range of deposits found in the field, while the parameter space

will grow significantly. The optimisation techniques presented in this paper will allow for efficient

selection of optimised values for a large parameter space.665

Code availability

The model implementation and the test setups described in this paper are freely available as a sepa-

rate git repository on bitbucket: https://bitbucket.org/simon_funke/adjoint-turbidity. This repository
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contains a README file which guides the user through the installation and how to reproduce the

results of the paper. The experiments configuration files can viewed and changed with the graphical670

configuration tool spud from the Fluidity project (http://fluidityproject.github.io/). The dynamical

core of the model is implemented with the finite element software FEniCS and its extension dolfin-

adjoint. The documentation for FEniCS is available on http://fenicsproject.org/documentation. and

the documentation for dolfin-adjoint can be found on http://www.dolfin-adjoint.org.

All FEniCS core components and dolfin-adjoint are licensed under the GNU LGPL as published675

by the Free Software Foundation, either version 3 of the license, or (at your option) any later version.
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