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Abstract. In the Community Earth System Model (CESM), the ocean model is computationally

expensive for high-resolution grids and is often the least scalable component for high-resolution

production experiments. The major bottleneck is that the barotropic solver scales poorly at high core

counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The

novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in5

conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and

its computational complexity are theoretically analyzed and compared with other existing methods.

We confirm the significant reduction of the global communication time with a competitive conver-

gence rate using a series of idealized tests. Experimental results obtained with the CESM 0.1◦ global

ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original10

method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16,875 cores.

1 Introduction

Recent progress in high-resolution global climate models has demonstrated that models with finer

resolution can better represent important climate processes to facilitate climate prediction. Signifi-

cant improvements can be achieved in the high-resolution global simulations of Tropical Instability15

Waves (Roberts et al., 2009), El Niño Southern Oscillation (ENSO) (Shaffrey et al., 2009), the Gulf

Stream separation (Chassignet and Marshall, 2008; Kuwano-Yoshida et al., 2010), the global water

cycle (Demory et al., 2014), and other aspects of the mean climate and variability. Specifically, Gent

et al. (2010) and Wehner et al. (2014) showed that increasing the atmosphere models’ resolution

results in a better mean climate, more accurate depiction of the tropical storm formation, and more20

realistic events of extreme daily precipitation. Bryan et al. (2010) and Graham (2014) also suggested
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that increasing the ocean models’ resolution to the eddy resolving level helps capture the positive

correlation between sea surface temperature and surface wind stress and improve the asymmetry of

the ENSO cycle in the simulation.

In the High-Resolution Model Intercomparison Project (HighResMIP) for the Coupled Model In-25

tercomparison Project phase 6 (CMIP6), global model resolutions of 25 km or finer at mid-latitudes

are proposed to implement the Tier-1 and Tier-2 experiments (Eyring et al., 2015). Because all

CMIP6 climate models are required to run for hundreds of years, tremendous computing resources

are needed for high-resolution production simulations. To run high-resolution climate models prac-

tically, additional algorithm optimization is required to efficiently utilize the large-scale computing30

resources.

This work improves the barotropic solver performance in the ocean model component (Parallel

Ocean Model, POP) of the National Center for Atmospheric Research (NCAR)’s fully coupled cli-

mate model: the Community Earth System Model (CESM). The POP solves the three-dimensional

primitive equations with hydrostatic and Boussinesq approximations and splits the time integra-35

tion into two parts: the baroclinic and barotropic modes (Smith et al., 2010). The baroclinic mode

describes the three-dimensional dynamic and thermodynamic processes, and the barotropic mode

solves the vertically integrated momentum and continuity equations in two dimensions.

The barotropic solver is the major bottleneck in the POP within the high-resolution CESM because

it dominates the total execution time on a large number of cores (Jones et al., 2005). This results from40

the implicit calculation of the free-surface height in the barotropic solver, which scales poorly at the

high core counts due to an evident global communication bottleneck inherent with the algorithm. The

implicit solver allows a large time step to efficiently compute the fast gravity wave mode but requires

a large elliptic system of equations to be solved. The conjugate gradient method (CG) and its variants

are popular choices in the implicit free-surface ocean solvers, such as MITgcm (Adcroft et al., 2014),45

FVCOM (Lai et al., 2010), MOM3 (Pacanowsky and Griffies, 1999), and OPA (Madec et al., 1997).

However, the standard CG method has heavy global communication overhead in the existing POP

implementation (Worley et al., 2011). The latest Chronopoulos-Gear (ChronGear) (D’Azevedo et al.,

1999) variant of the CG algorithm is currently used in the POP to reduce the number of global

reductions. A nice overview of reducing global communication costs for CG method can be found50

in the work of Ghysels and Vanroose (2014). Recent efforts to improve the performance of CG

method include a variant that overlaps the global reduction with the matrix-vector computation via a

pipelined approach (Ghysels and Vanroose, 2014). However, the improvement is still limited when

using a very large number of cores because of the remaining global reduction operations.

Another way to improve the CG method is preconditioning, which has been shown to effectively55

reduce the number of iterations. The current ChronGear solver in the POP has benefited by using

a simple diagonal preconditioner (Pini and Gambolati, 1990; Reddy and Kumar, 2013). Some par-

allelizable methods such as polynomial, approximate-inverse, multigrid, and block preconditioning
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have drawn much attention recently. High-order polynomial preconditioning can reduce iterations

as effectively as incomplete LU factorization in sequential simulations (Benzi, 2002). However, the60

computational overhead for the polynomial preconditioner typically offsets its superiority to the

simple diagonal preconditioner (Meyer et al., 1989; Smith et al., 1992). The approximate-inverse

preconditioner, although highly parallelizable, requires a linear system that is several times larger

than the original system to be solved (Smith et al., 1992; Bergamaschi et al., 2007), which makes it

less attractive for the POP.65

The multigrid method is another well-known scalable and efficient approach to solve the elliptic

systems and is commonly used as a preconditioner in the sequential models. Recent works indicated

that the geometric multigrid is promising in atmosphere and ocean modeling (Müller and Scheichl,

2014; Matsumura and Hasumi, 2008; Kanarska et al., 2007). However, the geometric multigrid in

global ocean models does not always scale ideally because of the presence of complex topogra-70

phy, non-uniform or anisotropic grids (Fulton et al., 1986; Stüben, 2001; Tseng and Ferziger, 2003;

Matsumura and Hasumi, 2008). The current POP, which employs general orthogonal girds to avoid

the pole singularity, is a typical example. This leads to an elliptic system with variable coefficients

defined on an irregular domain with non-uniform grids. The algebraic multigrid (AMG) is an alter-

native to the geometric multigrid to handle complex topography. However, the AMG setup in the75

parallel environment is more expensive than the iterative solver in climate modelling, which makes

it unfavorable as a preconditioner (Müller and Scheichl, 2014).

Block preconditioning has been shown to be an effective parallel preconditioner (Concus et al.,

1985; White and Borja, 2011) and is appealing for the POP because it uses the block structure of

the coefficient matrix that arises from the discretization of the elliptic equations. This advantage80

can further improve solver parallel performance. Some other algorithmic approaches also attempt to

improve the parallel performance of ocean models. For example, a load-balancing algorithm based

on the space-filling curve was proposed that not only eliminates land blocks but also reduces the

communication overhead due to the reduced number of processes (Dennis, 2007; Dennis and Tufo,

2008). Beare and Stevens (1997) also proposed increasing the number of extra halos and commu-85

nication overlaps in the parallel ocean general circulation. Although these approaches improve the

performance of ocean models, the global communication bottleneck still exists.

To improve the scalability of the POP at the high core counts, we abandon the CG-type approach

and design a new barotropic solver that does not include global communication in iteration steps.

The new barotropic solver, named P-CSI, uses a Classical Stiefel Iteration (CSI) method (proposed90

originally in Hu et al., 2015) with an efficient block preconditioner based on the Error Vector Prop-

agation (EVP) method (Roache, 1995). The P-CSI solver is now the default ocean barotropic solver

for the upcoming CESM 2.0 release. This paper extends our conference paper (Hu et al., 2015) pre-

sented at the 27th International Conference for High Performance Computing, Networking, Storage
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and Analysis (SC2015) to emphasize the theoretical analysis of the computational complexity, the95

convergence of P-CSI and the high-resolution POP results.

The remainder of this paper is organized as follows. Section 2 reviews the existing barotropic

solver in the POP. Sections 3 details the design of the P-CSI solver, followed by an analysis of the

computational complexity and convergence rate of P-CSI in Section 4. Section 5 further compares

the high-resolution performance of the existing solvers and the P-CSI solvers. Finally, conclusions100

are given in Section 6.

2 Barotropic solver background

We briefly describe the governing equations to formally derive the new P-CSI solver in the POP. The

primitive momentum and continuity equations are expressed as:

∂

∂t
u +L(u) + f ×u =− 1

ρ0
∇p+FH(u) +FV (u), (1)105

L(1) = 0, (2)

where L(α) = ∂
∂x (uα) + ∂

∂y (vα) + ∂
∂z (wα), which is equivalent to the divergence operator when

α= 1; x,y, and z are the horizontal and vertical coordinates; u = [u,v]T is the horizontal velocity;

w is the vertical velocity; f is the Coriolis parameter; p and ρ0 represent the pressure and the water

density, respectively; and FH and FV are the horizontal and vertical dissipative terms, respectively110

(Smith et al., 2010). In particular, we emphasize the two-dimensional barotropic mode in the time-

splitting scheme, where the P-CSI is implemented .

2.1 Barotropic mode

The governing equations for the barotropic mode can be obtained by vertically integrating Eq. (1)

and Eq. (2) from the ocean bottom topography to the sea surface:115

∂U
∂t

=−g∇η+F, (3)

∂η

∂t
=−∇ ·HU + qw, (4)

where U = 1
H+η

∫ η
−H dzu(z)≈ 1

H

∫ 0

−H dzu(z) is the vertically integrated barotropic velocity, g is

the acceleration due to gravity, η is the sea surface height (defined as ps/ρ0g, where ps is the surface

pressure associated with undulations of the free surface), H is the depth of the ocean bottom, qw120

is the freshwater flux per unit area, and F is the vertical integral of all other terms except the time-

tendency and surface pressure gradient in the momentum Eq. (1). To simplify the solution procedure,

the barotropic continuity Eq. (4) is linearized by dropping the term involving ∇η in the boundary

condition (Smith et al., 2010).
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Equation (3) and Eq. (4) are then discretized in time using an implicit scheme as follows:125

Un+1−Un

τ
=−g∇ηn+1 +F, (5)

ηn+1− ηn
τ

=−∇ ·HUn+1 + qw, (6)

where τ is the time step associated with the time advance scheme. By replacing the barotropic

velocity in Eq. (6) with the barotropic velocity at the next time step in Eq. (5), an elliptic system of

sea surface height η is obtained130

[−∇ ·H∇+
1
gτ2

]ηn+1 =−∇ ·H[
Un

gτ
+
F

g
] +

ηn

gτ2
+
qw
gτ
. (7)

For simplicity, we can rewrite the elliptic Eq. (7) as

[−∇ ·H∇+
1
gτ2

]ηn+1 = ψ(ηn, τ), (8)

where ψ represents a function of the current state of η.

Spatially, the POP utilizes the Arakawa B-grid on the horizontal grid (Smith et al., 2010) with the135

following nine-point stencils to discretize Eq. (8) as follows (see Fig. 1):

∇ ·H∇η =
1

∆y
δx[∆yHδxηy]

y
+

1
∆x

δy[∆xHδyηx]
x
, (9)

where δξ (ξ ∈ {x,y}) are finite differences and ∆ξ (ξ ∈ {x,y}) are the associated grid lengths. The

finite difference δξ(ψ) and average ψ
ξ

notations are defined, respectively, as follows:

δξψ = [ψ(ξ+ ∆ξ/2)−ψ(ξ−∆ξ/2)]/∆ξ, (10)140

ψ
ξ

= [ψ(ξ+ ∆ξ/2) +ψ(ξ−∆ξ/2)]/2. (11)

Because the POP uses general orthogonal girds, the coefficient matrix varies in space. To demon-

strate the properties of the sparse matrix used in the POP, we can simplify Eq. (9) using a special

case with uniform grids and constant ocean depth H as follows:

[∇ ·H∇η]i,j =− H

Si,j
(AOi,jηi,j +ANWi,j ηi−1,j+1 +ANi,jηi,j+1 +ANEi,j ηi+1,j+1 +AWi,jηi−1,j145

+AEi,jηi+1,j +ASWi,j ηi−1,j−1 +ASi,jηi,j−1 +ASEi,j ηi+1,j−1), (12)

where Si,j = ∆x∆y, Aχi,j(χ ∈Q= {O,NW,NE,SW,SE,W,E,N,S}) are coefficients between

grid point (i, j) and its neighbors using the nine-point stencil discretization (9), as determined by

∆x, ∆y, τ and H:

α=
∆y
∆x

, β = 1/α,

ANWi,j =ANEi,j =ASWi,j =ASEi,j =−(α+β)/4,

AWi,j =AEi,j = (β−α)/2,

ANi,j =ASi,j = (α−β)/2,

AOi,j = α+β.

(13)150
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The full discretization of Eq. (8) for any given grid point (i, j) can then be written as

(AOi,j +φ)ηi,j +ANWi,j ηi−1,j+1 +ANi,jηi,j+1 +ANEi,j ηi+1,j+1 +AWi,jηi−1,j

+AEi,jηi+1,j +ASWi,j ηi−1,j−1 +ASi,jηi,j−1 +ASEi,j ηi+1,j−1 =
Si,j
H

ψi,j , (14)

where φ= Si,j

gτ2H is a factor of the time step.

Therefore, the elliptic Eq. (7) leads to a linear system of η, i.e., Ax= b, where A is a block155

tridiagonal matrix composed of coefficients Aχi,j(χ ∈Q). The simplified equation set of (13) and

(14) show thatA is mainly determined by the horizontal grid sizes, ocean depth and time step. These

impacts will be further discussed in Section 4.1. Note that Eq. (14) also indicates that the sparse

pattern of A comes directly from the nine nonzero elements in each row (Fig. 2).

2.2 Barotropic solvers160

The barotropic solver in the original POP uses the PCG method with a diagonal preconditioner

M = Λ(A) because of its efficiency in small-scale parallelism (Dukowicz and Smith, 1994) (see

Appendix A1 for the details). To mitigate the global communication bottleneck, ChronGear, a variant

of the CG method proposed by D’Azevedo et al. (1999), was later introduced as the default solver

in the POP. It combines the two separated global communications of a single scalar into a single165

global communication (see Appendix A2). By this strategic rearrangement, the ChronGear method

achieves a one-third latency reduction in the POP. However, the scaling bottleneck still exists in the

high-resolution POP using this solver, particularly with a large number of cores (Fig. 3).

To accurately profile the parallel cost of the barotropic solvers, we clearly separate the timing for

computation, boundary communication and global reduction. Operations such as scaler computa-170

tions and vector scalings are categorized as pure computations, which are relatively cheap due to

the independent operations on each process. The extra boundary communication is required for each

process to update the boundary values from its neighbors (Fig. 1) after the matrix-vector multiplica-

tion. This boundary communication usually costs more than the computation when a large number

of cores is used (due to a decreasing problem size per core). The global reduction, which is needed175

by the inner products of vectors, is even more costly (Hu et al., 2013). Worley et al. (2011) and

Dennis et al. (2012) specifically indicated that the global reduction in the POP’s barotropic solver is

the main scaling bottleneck for the high-resolution ocean simulation.

Figure 3 confirms that the percentage of execution time for the barotropic mode in 0.1◦ POP

indeed increases with increasing number of processor cores on Yellowstone. When 470 cores are180

used, the execution time of the barotropic (baroclinic) solver is approximately 5% (90%) of the total

execution time (excludes initialization and I/O). However, when several thousand cores are used, the

percentage of time spent in the baroclinic mode decreases, associated with the increasing percentage

of time in the barotropic solver. With more than sixteen thousand cores, the percentage of the total

execution time due to the barotropic solver is nearly 50%.185
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3 Design of the P-CSI solver

The CG-type solver converges rapidly in the sequential computation (Golub and Van Loan, 2012).

However, the bottleneck of global communication embedded in ChronGear still limits the large-scale

parallel performance. Here, we design a new solver with the goal of reducing global communication

so that the speed-up can be as close to unity as possible when a significant number of cores is used.190

3.1 Classical Stiefel Iteration method

The CSI is a special type of Chebyshev iterative method (Stiefel, 1958). Saad et al. (1985) proposed

a generalization of CSI on linearly connected processors and claimed that this approach outper-

forms the CG method when the eigenvalues are known. This method was revisited by Gutknecht and

Röllin (2002) and shown to be ideal for massively parallel computers. In the procedure of precon-195

ditioned CSI (P-CSI, details are provided in Appendix A3), the iteration parameters, which control

the searching directions in the iteration step, are derived from a stretched Chebyshev function of

two extreme eigenvalues (Stiefel, 1958). We demonstrate in Section 4.2 that the stretched Cheby-

shev function in P-CSI provides a series of preset parameters for iteration directions. As a result,

P-CSI requires no inner product operation, thus potentially avoiding the bottleneck of global reduc-200

tion (see the workflow of ChronGear and P-CSI in Fig. 4). This makes the P-CSI more scalable than

ChronGear on massively parallel architectures. However, it requires a priori knowledge about the

spectrum of coefficient matrix A (Gutknecht and Röllin, 2002). It is well known that obtaining the

eigenvalues of a linear system of equations is equivalent to solving it. Fortunately, the coefficient

matrix A and its preconditioned form in the POP are both positive definite real symmetric matri-205

ces. Approximate estimation of the largest and smallest eigenvalues, µ and ν, respectively, of the

preconditioned coefficient matrix is sufficient to ensure the convergence of P-CSI.

To efficiently estimate the extreme eigenvalues of the preconditioned matrix M−1A (where M is

the preconditioner), we adopt the Lanczos method (Paige, 1980) (see the algorithm in Appendix B).

Initial tests indicate that only a small number of Lanczos steps is necessary to reasonably estimate the210

extreme eigenvalues of M−1A that results in the near-optimal P-CSI convergence (Hu et al., 2015).

Therefore, the computational overhead of the eigenvalue estimation is very small in our algorithm.

3.2 A block EVP preconditioner

Block preconditioning is quite promising in POP because the parallel domain-decomposition is ideal

for the block structure. A block preconditioning based on the EVP method is proposed and detailed215

in Hu et al. (2015) to improve the parallel performance of the barotropic solver in the POP. To the best

of our knowledge, the EVP and its variants are among the least costly algorithms for solving elliptic

equations in serial computation (Roache, 1995), which have also been used in several different Ocean

models (Dietrich et al., 1987; Sheng et al., 1998; Young et al., 2012). The parallel EVP solver was
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also implemented by Tseng and Chien (2011). The standard EVP is actually a direct solver, which220

requires two solution steps: preprocessing and solving. In the preprocessing stage, the influence

coefficient matrix and its inverse are computed, involving a computational complexity of Cpre =

(2n−5)∗9n2 +(2n−5)3 =O(26n3), which is intensive but computed only once at the beginning.

The solving stage is computed at every time step and requires only Cevp = 2 ∗ 9n2 + (2n− 5)2 =

O(22n2) (Hu et al., 2015), which is a much lower computational cost than other direct solvers such225

as LU.

The EVP method is efficient for solving elliptic equations. However, a major drawback of the

standard EVP is that, without applying additional modifications, it cannot be used for a large domain

due to its global error propagation, which will cause arithmetic overflow in the marching process

(Roache, 1995). The fact that the EVP is not well-suited for large domains is not an issue for large-230

scale parallel computing, where a larger number of processors typically results in smaller domains.

Thus, the serial disadvantage becomes an advantage in parallel computing, making the EVP ideal for

parallel block preconditioning on a large number of cores. Although the EVP preconditioning may

increase the required computation for each iteration, the barotropic solver can greatly benefit from

the resulting reduction in iterations, particularly at very large numbers of cores when communication235

costs dominate the total costs (Hu et al., 2015). We will further illustrate this advantage in Section

5.2.3.

4 Algorithm analysis and comparison

The extreme eigenvalues of the coefficient matrix are critical to determine the convergence of the

iterative solvers (such as P-CSI, PCG and ChronGear). Here, the characteristics of P-CSI are inves-240

tigated in terms of the associated eigenvalues and their connection with the convergence rate. The

computational complexity is also addressed.

4.1 Spectrum and condition number

Because the coefficient matrix A in POP is symmetric and positive-definite (Smith et al., 2010),

its eigenvalues are positive real numbers (Stewart, 1976). We assume that the spectrum (Golub and245

Van Loan, 2012) of A is S = {λ1,λ2, · · · ,λN}, where λmin = λ1 ≤ λi ≤ λN = λmax( 1< i <N ,

N is the size of A) are the eigenvalues of A. The condition number, defined as κ= λmax/λmin, is

determined by the spectrum radius. Using the Gershgorin circle theorem (Bell, 1965), we know that

for any λ ∈ S , there exists a pair of (i, j) satisfying

|λ− (AOi,j +φ)| ≤
∑

χ∈Q−{O}
|Aχi,j |, (15)250
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where φ= S
gτ2H is defined in Section 2.1. With the definition of the coefficients in (13), we obtain

λmax ≤max(5α− 1
α
,

5
α
−α) +φ,

λmin ≥ 2min(α− 1
α
,

1
α
−α) +φ.

(16)

To quantitatively evaluate the impacts of the condition number, we set up a series of idealized test

cases to solve Eq. (8) in which the coefficient matrices are derived from Eq. (13) and (14) on an

idealized cylinder with an earth-size perimeter, which is 2πR (radius R is 6372 km), and a height of255

πR. A uniform grid with a size ofN×M is used, where the grid size along the perimeter and height

are ∆x= 2πR/N and ∆y = πR/M , respectively. The depth H is 4km.

The inequalities (16) suggest that the lower bound of eigenvalues is mostly determined by φ.

This indicates that for a given ocean configuration and grid size, the lower bound of the eigenvalues

will decrease with increasing time step, resulting in a larger condition number. Figure 5 shows the260

condition number versus the time step size when the total number of grid points is a constant N =

N ×M = 2048. Three different grid decompositions (32× 64, 64× 32 and 128× 16) are shown

to reflect the influence of different grid aspect ratios. When the size of the time step is sufficiently

small (smaller than 106s), φ in all cases becomes very large and dominates both λmax and λmin. As

a result, the condition number is close to 1. However, when the size of the time step is large enough265

(larger than 108s), the condition number is highly determined by the grid aspect ratio α because of

the small φ.

Consistent with the theoretical bounds of the extreme eigenvalues in Eq. (16), the condition

number in Fig. 5 is smallest when the grid aspect ratio is close to unity (i.e., the decomposition

of 64× 32). When the aspect ratio of the horizontal grid cell is close to unity, the upper (lower)270

bound of the largest (smallest) eigenvalue decreases (increases), leading to a reduced spectrum ra-

dius ([λmin,λmax]). This implies that the condition number is also reduced at the same time. When

the aspect ratio equals to unity (i.e., α= ∆y
∆x = 1), we obtain λmax ≤ 4 +φ and λmin ≥ φ. Figure 6

shows the condition number versus the aspect ratio with fixed grid size N = 2048. Three different

time step sizes are tested: 1.0×105s, 5.0×105s and 10.0×105s. Under this configuration, it is clear275

to see that the condition number reaches its minimum when the aspect ratio is unity, regardless of

the time step size.

When the time step is sufficiently large, the foregoing analysis indicates that the spectrum radius

is confined in (φ,4 +φ) if the aspect ratio is 1 regardless of grid sizes. However, the condition

number may vary greatly because when the grid size N increases, the largest eigenvalue remains280

close to 4, whereas the smallest eigenvalue becomes closer to φ. The previous discussion implies

that the condition number is significantly affected when the aspect ratio is far from unity. To focus

on the impact of the number of grid points, we choose a constant aspect ratio. Because different time

step sizes may play an important role when the grid size increases, we assumed that the time step

must satisfy the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1967), that is, τ = ∆x
v ,285

9

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-135, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 1 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



where v is the supported barotropic velocity. Three different configurations of the time step based

on v = 2m/s, v = 20m/s and v = 200m/s are chosen. Figure 7 shows that the condition number

increases monotonically with increasing grid size. It also shows that the time step (specified by a

different propagating speed) has a large impact on the condition number.

4.2 Convergence rate290

The convergence rate of any elliptic solver relies heavily on the condition number of the precondi-

tioned coefficient matrix A′. Both PCG and ChronGear have the same theoretical convergence rate

because of the same numerical algorithm but different implementations (D’Azevedo et al., 1999).

Their relative residual in the k-th iteration has an upper bound as follows (Liesen and Tichý, 2004):

||xk − x∗||A′
||x0− x∗||A′

≤ min
p∈Pk,p(0)=1

max
λ∈S
|p(λ)|, (17)295

where xk is the solution vector after the k-th iteration, x∗ is the solution of the linear equation (i.e.,

x∗ =A−1b), λ represents an eigenvalue of A′, and Pk is the vector space of polynomials with real

coefficients and degree less than or equal to k. Applying the Chebyshev polynomials of the first kind

to estimate this min-max approximation, we obtain

||xk − x∗||A′ ≤ 2(
√
κ− 1√
κ+ 1

)k||x0− x∗||A′ , (18)300

where κ= κ2(A′) = λ′max

λ′min
is the condition number of the matrix A′ with respect to the l2-norm.

Equation (18) indicates that the theoretical bound of the convergence rate of PCG decreases with

increasing condition number. PCG converges faster for a well-conditioned matrix (e.g., a matrix

with a small condition number) than an ill-conditioned matrix.

We now show that the P-CSI has the same order of convergence rate as PCG and ChronGear305

with the additional advantage of fewer global reductions in parallel computing. With the estimated

smallest and largest extreme eigenvalues of coefficient matrix ν and µ, the residual for the P-CSI

algorithm satisfies

rk = Pk(A′)r0, (19)

where Pk(ζ) = τk(β−αζ)
τk(β) for ζ ∈ [ν,µ] (Stiefel, 1958). τk(ξ) is a Chebyshev polynomial expressed310

as

τk(ξ) =
1
2

[(ξ+
√
ξ2− 1)k + (ξ+

√
ξ2− 1)−k]. (20)

When ξ ∈ [−1,1], the Chebyshev polynomial has an equivalent form

τk(ξ) = cos(k cos−1 ξ), (21)

which clearly shows that |τk(ξ)| ≤ 1 when |ξ| ≤ 1. Pk(ζ) is the polynomial satisfying that315

Pk = min
p∈Pk,p(0)=1

max
ζ∈[ν,µ]

|p(ζ)|. (22)
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Assume that A′ =QTΛQ, where Λ is a diagonal matrix having the eigenvalues of A′ on the

diagonal, and Q is a real orthogonal matrix with the columns that are eigenvectors of A′. We then

have

Pk(A′) =QTPk(Λ)Q=QT




Pk(λ1)

Pk(λ2)
. . .

Pk(λN )



Q. (23)320

Assuming that ν and µ satisfy 0< ν ≤ λi ≤ µ (i= 1,2, · · · ,N ), then Eq. (21) indicates that |β−
αλi| ≤ 1 and |Pk(λi)|= τk(β−αλi)

τk(β) ≤ τ−1
k (β). Equations (19) and (23) indicate that

||rk||2
||r0||2

≤ τ−1
k (β) =

2(β+
√
β2− 1)k

1 + (β+
√
β2− 1)2k

≤ 2(
√
κ′− 1√
κ′+ 1

)k, (24)

where κ′ = µ
ν . Equation (24) shows that the P-CSI has the same theoretical upper bound of conver-

gence rate as PCG and ChronGear when the estimation of eigenvalues is appropriate (e.g., κ′ = κ)325

.

The foregoing analysis applies to cases in which a nontrivial preconditioning is used. Assume that

the preconditioned coefficient matrix A′ =M−1A. It is worth mentioning that the preconditioned

matrix in the PCG, ChronGear and P-CSI algorithms is actually M−1/2A(M−1/2)T , which is sym-

metric and has the same set of eigenvalues asM−1A (Shewchuk, 1994). Thus, the condition number330

of the preconditioned matrix is κ= κ2(M−1/2A(M−1/2)T ), which is usually smaller than the con-

dition number of A. The closer M is to A, the smaller the condition number of M−1A is. When M

is the same as A, then κ2(M−1A) = 1.

Because the convergence rate of P-CSI is on the same order as PCG and ChronGear, the perfor-

mance between P-CSI and the CG-type solvers should be comparable when a small number of cores335

is used. When a large number of cores is used for the high-resolution ocean model, P-CSI should

be significantly faster than PCG or ChronGear per iteration due to the bottleneck in the CG-type

method. This is shown in the following analysis of computational complexity.

4.3 Computational complexity

To analyze the computational complexity of P-CSI and compare it with ChronGear, we assume340

that p is the number of processes and N is the number of grid points following the same defini-

tion as in Hu et al. (2015). Both ChronGear and P-CSI solver time can then be divided into three

major components: computation, boundary updating, and global communication. The complexity

of computation varies among different solvers and preconditioners. The boundary communication

complexity is Tb =O(4$+ 8
√
N
p ϑ), where $ is the ratio of point-to-point communication latency345

per message to the time of one floating-point operation and ϑ is the ratio of the transfer time per byte

(inverse of bandwidth) to the time of one floating-point operation. All boundary update times show
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a similarly decreasing trend with increasing number of processes but have a lower bound 4$. The

global communication exists only in the ChronGear solver and contains one global reduction per it-

eration, resulting from the MPI_Allreduce and a masking operation to exclude land points. The cost350

of the masking operation decreases with increasing processes p, whereas the cost of MPI_Allreduce

monotonically increases, so the global reduction complexity satisfies Tg =O(2Np + logp$).

The execution time of one diagonal preconditioned ChronGear solver step can then be expressed

as:

Tcg =Kcg(Tc + Tb + Tg) =O(Kcg(18
N
p

+ 8

√
N
p
ϑ+ (4 + logp)$), (25)355

where Kcg is the number of iterations, which does not change with the number of processes (Hu

et al., 2015). The complexity of P-CSI with a diagonal preconditioner is

Tpcsi =O(Kpcsi(12
N
p

+ 8

√
N
p
ϑ+ 4$)), (26)

where Kpcsi is the number of iterations.

Equation (25) indicates that the computation and boundary update time decreases with increasing360

number of processes. However, the time required for the global reduction increases with increasing

numbers of processes. Therefore, we can expect the execution time of the ChronGear solver to

increase when the number of processors exceeds a certain threshold. Our analysis shows that P-CSI

has a lower computational complexity than ChronGear due to the lack of a logp term associated with

global communications.365

We further consider the computational complexity of preconditioning. The EVP preconditioning

hasO(22Np ). Thus, with the EVP preconditioning, the computational complexity of ChronGear and

P-CSI becomesO(39Np ) andO(33Np ), respectively. As a result, the total complexities of ChronGear

and P-CSI with EVP preconditioning are

Tcg−evp =O(Kcg−evp(39
N
p

+ 8

√
N
p
ϑ+ (4 + logp)$), (27)370

Tpcsi−evp =O(Kpcsi−evp(33
N
p

+ 8

√
N
p
ϑ+ 4$)). (28)

Although the computation time in each iteration doubles with the EVP preconditioning, the total

time may still decrease if the number of iterations is reduced. Indeed, with EVP preconditioning, the

iteration number Kpcsi−evp decreases by almost one-half (see Fig. 11). As a result, the total number375

of communications, which is the most time-consuming part on a large number of cores, decreases

by approximately one-half.
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5 Numerical experiments

To evaluate the new P-CSI solver, we first demonstrate its characteristics and compare it with PCG

(and thus ChronGear) using an idealized test case. The actual performance of P-CSI in CESM POP380

is then evaluated and compared with the existing solvers using the 0.1◦ high-resolution simulation.

5.1 Condition number and convergence rate

To confirm the theoretical analysis of the convergence in Section 4.2, we created a series of ma-

trices with the idealized setting illustrated in Section 4.1. Instead of a cylindrical grid, we choose

a spherical grid with two polar continents (ocean latitude varies from 80◦S to 80◦N). A uniform385

latitude-longitude grid is used, in which the grid size along the longitude varies with latitude coordi-

nate θ, that is, ∆x= πRcosθ. The time step size is set to τ = ∆x
v , where v = 2m/s is the barotropic

velocity of the ocean water as used in Section 4.1. These cases differ in the number of grid points,

so the condition numbers vary. We compare the results using PCG and P-CSI solvers with no pre-

conditioning, diagonal preconditioning and EVP preconditioning, respectively. Here, the block size390

in EVP preconditioning is set to be 5×5, and the convergence tolerance is tol = 10−6. We note that

the theoretical convergence rates of ChronGear and PCG are identical, so the results here can apply

to the ChronGear at the same time.

As shown in Fig. 8, as the problem size increases, the coefficient matrix becomes more poorly

conditioned. All solvers must iterate more to obtain the same level of relative residual. For both395

PCG and P-CSI, the convergence rate varies with different preconditioners. Given the same problem

size, the solvers without preconditioning have the most iterations, and those using the EVP precon-

ditioning require the fewest iterations. This confirms that, with the EVP preconditioning, the matrix

becomes better conditioned than the one without preconditioning or with diagonal preconditioning.

It also shows that with the same preconditioning, P-CSI has a slower convergence rate than PCG. It400

is worth mentioning that the diagonal preconditioner improves the convergence only slightly in our

idealized cases because the grid is uniform and the ocean depth is constant in this configuration.

5.2 A practical application using the high-resolution CESM POP

5.2.1 Experiment platform and configuration

We evaluate the performance of P-CSI in CESM1.2.0 on the Yellowstone supercomputer, located at405

NCAR-Wyoming Supercomputing Center (NWSC) (Loft et al., 2015). Yellowstone uses Intel Xeon

E5-2670 (Sandy Bridge: 16 cores @ 2.6 GHz, hyperthreading enabled, 20 MB shared L3 cache)

and provides a total of 72,576 cores connected by a 13.6 GBps InfiniBand network. More than 50%

of Yellowstone’s cycles are consumed by CESM. Therefore, the ability to accelerate the parallel

performance on Yellowstone is critical to support the CESM production simulations.410
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To emphasize the advantage of P-CSI, we use the finest 0.1◦ grid and 60 vertical levels POP with

the “G_NORMAL_YEAR” configuration, which uses active ocean and sea ice components (i.e.,

the atmosphere and land components are replaced by pre-determined forcing data sets). The I/O

optimization is another important issue for the high-resolution POP (Huang et al., 2014) but is not

addressed here.415

The choice of ocean block size and layout has a large impact on performance for the high-

resolution POP because it directly affects the distribution of the workload among processors. To

remove the influence of different block distribution on our results, we carefully specify block de-

compositions for each core with the same ratio. The time step is set to the default of 172.8 seconds.

For a fair comparison among solvers, the convergence is checked every 10 iterations for all tests.420

The impacts of CSI and the EVP preconditioner are evaluated separately using several different

numerical experiments.

5.2.2 Performance of CSI

The first experiment compares the parallel performance among the three solvers using the same

diagonal preconditioners: PCG, ChronGear and P-CSI. Figure 9 compares the convergence rate (rel-425

ative residual versus the number of iterations) among them. Although the order of computation in

ChronGear differs slightly with that in PCG, their convergence rates are almost identical as expected.

P-CSI converges slightly slower than PCG and ChronGear at the beginning and the final iteration

steps, which is related to the unstable distribution of the coefficient matrix’s eigenvalues. However,

all of these solvers have very similar order of slopes, thus supporting the same upper bound of con-430

vergence rate discussed in Section 4.2.

Through a number of experiments, we set the Lanczos convergence tolerance ε to 0.15 to obtain

the balance between fast convergence rate and reasonable relative residual at the same time. Gen-

erally, we can estimate the largest and smallest eigenvalues in no more than 50 Lanczos steps. This

causes P-CSI to result in near-optimal convergence.435

Figure 10 further evaluates the timing for the different phases in the solver. It is clear that P-CSI

outperforms ChronGear primarily because it only requires a few global reductions in convergence

check. No obvious difference can be found for the boundary updates and the computation phases

when using large core counts. The reduction in global communications will also significantly reduce

the sensitivity of the ocean model component to operating system noise (Ferreira et al., 2008) by440

increasing the time interval between global synchronizations.

5.2.3 Performance of EVP preconditioner

The second experiment evaluates the performance of the EVP preconditioner used in the P-CSI

solver by comparing the CSI solvers with no preconditioner, the diagonal preconditioner and the

EVP preconditioner. Figure 11 shows that the preconditioners can effectively reduce the number445
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of iterations. The standard CSI without any preconditioner requires 350 iterations to achieve 10−15

relative residual. The iterations are significantly reduced to approximately 100 and 200 steps for EVP

and diagonal preconditioners, respectively. This confirms that the preconditioned matrix M−1A

indeed has a smaller condition number than the original matrix A and effectively accelerates the

convergence without any consideration of parallelization.450

As a result, the EVP preconditioner reduces not only the execution time of global reduction but

also the execution time of boundary update owing to the reduced iterations (Fig. 12). All of these

results are consistent with the theoretical analysis in Section 4.3. Note that the extra computation

operations required by the EVP preconditioner have only a small impact on the overall performance

of the barotropic solver.455

5.2.4 Parallel performance

The last experiment compares the simulated speeds of P-CSI and ChronGear on a variety of com-

puting cores, ranging from 470 to 16,875 cores. When the timing refers to the barotropic mode

calculation only, we find that the performance of the ChronGear solver begins to degrade after ap-

proximately 2700 cores, but the execution time for P-CSI is relatively flat beyond that core count460

regardless of preconditioner (Fig. 13). Using the EVP preconditioner, P-CSI can accelerate the

barotropic calculation from 19.0 s to 4.4 s per simulation day on 16,875 cores. Dennis et al. (2012)

indicated that 5 simulated years per wall-clock day is the minimum requirement to run long-term

climate simulations. For the completed POP simulation, Fig. 14 indicates that the simulated tim-

ing of P-CSI achieves 10.5 simulated years per wall-clock day on 16,875 cores, whereas the timing465

of ChronGear with a diagonal preconditioner achieves only 6.2 simulated years per wall-clock day

using the same number of cores. In Section 2, we demonstrated that the percentage of the POP ex-

ecution time required by the barotropic solver increases with increasing number of cores using the

original ChronGear solver. In particular, ChronGear with diagonal preconditioning accounts for ap-

proximately 50% of the total execution time on 16,875 cores (see Fig. 3). In contrast, Fig. 15 shows470

that by using the scalable P-CSI solver, the barotropic calculation time constitutes only approxi-

mately 16% of the total execution time on 16,875 cores. Finally, note that verification results for 1◦

POP by an ensemble-based statistical method in Hu et al. (2015) indicate that our new solver does

not introduce statistically significant error into the simulation results.

6 Conclusions475

We accelerated the high-resolution POP in the CESM framework by implementing a new P-CSI

ocean barotropic solver. This new solver adopts a Chebyshev-type iterative method to avoid the

global communication operations in conjunction with an effective EVP preconditioner to improve

the parallel performance further. The superior performance of the P-CSI is carefully investigated
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using the theoretical analysis of the algorithm and computational complexity. Compared with the480

existing ChronGear solver, it significantly reduces the global reductions and realizes a competitive

convergence rate. The proposed alternative has become the default barotropic solver in the POP

within CESM and may greatly benefit other climate models.

7 Code availability

The present P-CSI solver v1.0 is available on https://zenodo.org/record/56705 and https://github.com/485

hxmhuang/PCSI. This solver is also included in the upcoming CESM public release v2.0. For the

older CESM versions 1.2.x, the user should follow these steps indicated in the Readme.md file:

(1) Create a complete case or an ocean component case.

(2) Copy our files into the corresponding case path and build this case.

(3) Add two lines at the end of user_nl_pop2 file to use our new solver.490

(4) Execute the preview_namelists file to activate the solver.

(5) Run the case.

The user are welcome to see the website mentioned above for more details and use the configuration

files to repeat our experiments.
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Appendix A: Algorithms495

A1 PCG algorithm

The procedure of PCG is shown as follows (Smith et al., 2010):

Initial guess: x0

Compute residual r0 = b−Ax0500

Set s0 = 0, β0 = 1

For k = 1,2, · · · ,kmax do

1. r′k−1 = M−1rk−1

2. βk = rTk−1r′k−1

3. sk = r′k−1 + (βk/βk−1)sk−1505

4. s′k = Ask

5. αk = βk/(sTk s′k)

6. xk = xk−1 +αksk

7. rk = rk−1−αks′k

8. convergence_check(rk)510

End Do

Operations such as βk/βk−1 in line (3) are scaler computations, whereas αksk in line (6) are vector

scalings. Ask in line (4) is a matrix-vector multiplication. Inner products of vectors are rTk−1r′k−1 in

line (2) and sTk s′k in line (5).515

A2 ChronGear algorithm

The procedure of ChronGear is shown as follows:

Initial guess: x0

Compute residual r0 = b−Ax0520

Set s0 = 0, p0 = 0, ρ0 = 1, σ0 = 0

For k = 1,2, · · · ,kmax do

1. r′k = M−1rk−1

2. zk = Ar′k
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3. ρk = rTk−1r′k525

4. σk = zTk r′k −β2
kσk−1

5. βk = ρk/ρk−1

6. αk = ρk/σk

7. sk = r′k +βksk−1

8. pk = zk +βkpk−1530

9. xk = xk−1 +αksk

10. rk = rk−1−αkpk

11. convergence_check(rk)

End Do

535

A3 P-CSI algorithm

The pseudocode of the P-CSI algorithm is shown as follows:

Initial guess: x0, estimated eigenvalue boundaries [ν,µ]

Set α= 2
µ−ν , β = µ+ν

µ−ν , γ = β
α , ω0 = 2

γ540

Compute residual r0 = b−Ax0, ∆x0 = γ−1M−1r0, x1 = x0 + ∆x0, r1 = b−Ax1

For k = 1,2, · · · ,kmax do

1. ωk = 1/(γ− 1
4α2ωk−1)

2. r′k = M−1rk

3. ∆xk = ωkr′k + (γωk − 1)∆xk−1545

4. xk+1 = xk + ∆xk

5. rk+1 = b−Axk+1

6. convergence_check(rk)

End Do

550
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Appendix B: Eigenvalue Estimation

The procedure of the Lanczos method to estimate the extreme eigenvalues of the matrix M−1A is

shown as follows:

Initial guess: r0555

Set s0 = M−1r0; q1 = r0/(rT0 s0); q0 = 0; β0 = 0; µ0 = 0; T0 = ∅
For j = 1,2, · · · ,m do

1. pj = M−1qj

2. rj = Apj −βj−1qj−1

3. αj = pTj rj560

4. rj = rj −αjqj

5. sj = M−1rj

6. βj = rTj sj

7. if βj == 0 then return

8. µj =max(µj−1,αj +βj +βj−1)565

9. Tj = tri_diag(Tj−1,αj ,βj)

10. νj = eigs(Tj ,′ smallest′)

11. if| µj

µj−1
− 1|< ε and |1− νj

νj−1
|< ε then return

12. qj+1 = rj/βj

End Do570

In step (9), T is a tridiagonal matrix which contains αj(j = 1,2, ...,m) as the diagonal entries and

βj(j = 1,2, ...,m− 1) as the off-diagonal entries.

Tm =




α1 β1

β1 α2 β2

β2
. . . . . .
. . . . . . βm−1

βm−1 αm




Let ξmin and ξmax be the smallest and largest eigenvalues of Tm, respectively. Paige (1980)575

demonstrated that ν ≤ ξmin ≤ ν+ δ1(m) and µ− δ2(m)≤ ξmax ≤ µ. As m increases, δ1(m) and

19

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-135, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 1 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



δ2(m) will gradually converge to zero. Thus, the eigenvalue estimation of M−1A is transformed to

solve the eigenvalues of Tm. Step (8) in eigenvalue estimation employs the Gershgorin circle theorem

to estimate the largest eigenvalue of Tm, that is, µ= max1≤i≤m
∑m
j=1 |Tij |= max1≤i≤m(αi+βi+

βi−1). The efficient QR algorithm (Ortega and Kaiser, 1963) with a complexity of Θ(m) is used to580

estimate the smallest eigenvalue ν in step (9).
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Figure 1. Grid domain decomposition of the ocean model component in CESM.
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Figure 2. Sparse pattern of the coefficient matrix in the case with 30× 15 grids using nine-point stencils.
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Figure 3. Percentage of execution time in 0.1◦ POP using the default diagonal-preconditioned ChronGear

solver on Yellowstone.
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Figure 4. Workflow of ChronGear and P-CSI iterations when four processes are used.
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number of grid points. N and M are numbers of grid points along the perimeter and height of the cylinder.
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idealized configuration.
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Figure 9. The convergence rate of different barotropic solvers in the 0.1◦ POP.
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Figure 10. The execution time for different phases in the barotropic solvers in the 0.1◦ POP on Yellowstone.
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Figure 11. The convergence rate of P-CSI solver with different preconditioners in the 0.1◦ POP on Yellowstone.
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Figure 12. The execution time for different phases with different preconditioners in the P-CSI solvers.
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Figure 13. The execution time for P-CSI solver with different preconditioners in the 0.1◦ ocean model com-

ponent for one simulation day on Yellowstone. Note that this figure is a subset of Fig. 8 in Hu et al. (2015)
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Figure 14. The simulated speed of the 0.1◦ ocean model component on Yellowstone. Note that this figure is a

subset of Fig. 8 in Hu et al. (2015)
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Figure 15. Percentage of execution time in the 0.1◦ POP using P-CSI. Note that this figure uses the same data

as that in Fig. 9 in Hu et al. (2015)
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Figure 16. sparsity pattern of the coefficient matrix developed from nine-point stencils. the whole domain is

divided into 3×3 non-overlapping blocks. elements in red rectangles are coefficients between points in blocks.

elements in blue rectangles are coefficients between points from the i-th block and its neighbor blocks.
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Figure 17. evp marching method for nine-point stencil. the solution on point (i+1, j+1) can be calculated

using the equation on point (i, j), providing solutions on other neighbor points of point (i, j).
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