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Abstract. In the Community Earth System Model (CESM), the ocean model is computationally

expensive for high-resolution grids and is often the least scalable component for high-resolution

production experiments. The major bottleneck is that the barotropic solver scales poorly at high core

counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The

novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in5

conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and

its computational complexity are theoretically analyzed and compared with other existing methods.

We confirm the significant reduction of the global communication time with a competitive conver-

gence rate using a series of idealized tests. Numerical experiments using the CESM 0.1◦ global

ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original10

method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16,875 cores.

1 Introduction

Recent progress in high-resolution global climate models has demonstrated that models with finer

resolution can better represent important climate processes to facilitate climate prediction. Signifi-

cant improvements can be achieved in the high-resolution global simulations of Tropical Instability15

Waves (Roberts et al., 2009), El Niño Southern Oscillation (ENSO) (Shaffrey et al., 2009), the Gulf

Stream separation (Chassignet and Marshall, 2008; Kuwano-Yoshida et al., 2010), the global water

cycle (Demory et al., 2014), and other aspects of the mean climate and variability. Specifically, Gent

et al. (2010) and Wehner et al. (2014) showed that increasing the atmosphere models’ resolution

results in a better mean climate, more accurate depiction of the tropical storm formation, and more20

realistic events of extreme daily precipitation. Bryan et al. (2010) and Graham (2014) also suggested
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that increasing the ocean models’ resolution to the eddy resolving level helps to capture the positive

correlation between sea surface temperature and surface wind stress and improves the asymmetry of

the ENSO cycle in the simulation.

In the High-Resolution Model Intercomparison Project (HighResMIP) for the Coupled Model In-25

tercomparison Project phase 6 (CMIP6), global model resolutions of 25 km or finer at mid-latitudes

are proposed to implement the Tier-1 and Tier-2 experiments (Eyring et al., 2015). Because all

CMIP6 climate models are required to run for hundreds of years, tremendous computing resources

are needed for high-resolution production simulations. To run high-resolution climate models prac-

tically, additional algorithm optimization is required to efficiently utilize the large-scale computing30

resources.

This work improves the barotropic solver performance in the ocean model component (Parallel

Ocean Model, POP) of the National Center for Atmospheric Research (NCAR)’s fully coupled cli-

mate model: the Community Earth System Model (CESM). The POP solves the three-dimensional

primitive equations with hydrostatic and Boussinesq approximations and splits the time integration35

into two parts: the baroclinic and barotropic modes (Smith et al., 2010). The baroclinic mode de-

scribes the three-dimensional dynamic and thermodynamic processes, while the barotropic mode

solves the vertically integrated momentum and continuity equations in two dimensions.

The barotropic solver is the major bottleneck in the POP within the high-resolution CESM because

it dominates the total execution time on a large number of cores (Jones et al., 2005). This results40

from the implicit calculation of the free-surface height in the barotropic solver, which scales poorly

at high core counts due to an evident global communication bottleneck inherent to the algorithm. The

implicit solver allows a large time step to efficiently compute the fast gravity wave mode but requires

the solution of a large elliptic system of equations. The conjugate gradient method (CG) and its

variants are popular choices for implicit free-surface ocean solvers, such as MITgcm (Adcroft et al.,45

2014), FVCOM (Lai et al., 2010), MOM3 (Pacanowsky and Griffies, 1999), and OPA (Madec et al.,

1997). However, the standard CG method has heavy global communication overhead in the existing

POP implementation (Worley et al., 2011). The latest Chronopoulos-Gear (ChronGear) (D’Azevedo

et al., 1999) variant of the CG algorithm is currently used in the POP to reduce the number of

global reductions. A nice overview of reducing global communication costs for CG method can be50

found in the work of Ghysels and Vanroose (2014). Recent efforts to improve the performance of

CG method include a variant that overlaps the global reduction with the matrix-vector computation

via a pipelined approach (Ghysels and Vanroose, 2014). However, the improvement is still limited

when using a very large number of cores because of the remaining global reduction operations.

For example, when approximately 4,000 cores are used in the POP, the global reduction in PCG55

(Preconditioned Conjugate Gradient method) and ChronGear takes approximately 74% and 68% of

the entire barotropic mode time, respectively (Hu et al., 2015). This situation will get worse with

more cores.
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Another way to improve the CG method is preconditioning, which has been shown to effectively

reduce the number of iterations. The current ChronGear solver in the POP has benefited by using60

a simple diagonal preconditioner (Pini and Gambolati, 1990; Reddy and Kumar, 2013). Some par-

allelizable methods such as polynomial, approximate-inverse, multigrid, and block preconditioning

have drawn much attention recently. High-order polynomial preconditioning can reduce iterations

as effectively as incomplete LU factorization in sequential simulations (Benzi, 2002). However, the

computational overhead for the polynomial preconditioner typically offsets its superiority to the65

simple diagonal preconditioner (Meyer et al., 1989; Smith et al., 1992). The approximate-inverse

preconditioner, although highly parallelizable, requires a linear system that is several times larger

than the original system to be solved (Smith et al., 1992; Bergamaschi et al., 2007), making it less

attractive for the POP.

Multigrid methods are well-known scalable and efficient approaches for solving elliptic systems70

of equations. Recent works indicated that geometric multigrid is promising in atmosphere and ocean

modeling (Müller and Scheichl, 2014; Matsumura and Hasumi, 2008; Kanarska et al., 2007). How-

ever, geometric multigrid in global ocean models does not always scale ideally because of the pres-

ence of complex topography and non-uniform or anisotropic grids (Fulton et al., 1986; Stüben, 2001;

Tseng and Ferziger, 2003; Matsumura and Hasumi, 2008). The current POP, which employs gen-75

eral orthogonal grids to avoid the pole singularity, is a typical example. This leads to an elliptic

system with variable coefficients defined on an irregular domain with non-uniform grids. Algebraic

multigrid (AMG) is an alternative to geometric multigrid to handle complex topography. However,

the AMG setup in the parallel environment is more expensive than the iterative solver in climate

modeling, which makes it unfavorable as a preconditioner (Müller and Scheichl, 2014).80

Block preconditioning has been shown to be an effective parallel preconditioner (Concus et al.,

1985; White and Borja, 2011) and is appealing for the POP because it uses the block structure of

the coefficient matrix that arises from the discretization of the elliptic equations. This advantage

can further improve solver parallel performance. Some other algorithmic approaches also attempt to

improve the parallel performance of ocean models. For example, a load-balancing algorithm based85

on the space-filling curve was proposed that not only eliminates land blocks but also reduces the

communication overhead due to the reduced number of processes (Dennis, 2007; Dennis and Tufo,

2008). Beare and Stevens (1997) also proposed increasing the number of extra halos and commu-

nication overlaps in the parallel ocean general circulation. Although these approaches improve the

performance of ocean models, the global communication bottleneck still exists.90

To improve the scalability of the POP at high core counts, we abandon the CG-type approach and

design a new barotropic solver that does not include global communication in iteration steps. The

new barotropic solver, named P-CSI, uses a Classical Stiefel Iteration (CSI) method (proposed origi-

nally in Hu et al., 2015) with an efficient block preconditioner based on the Error Vector Propagation
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(EVP) method (Roache, 1995). The P-CSI solver is now the default ocean barotropic solver for the95

upcoming CESM 2.0 release.

This paper is an extension of the work in Hu et al. (2015), which was presented in the 27th In-

ternational Conference for High Performance Computing, Networking, Storage and Analysis (SC).

Note that the main focus here has shifted to emphasize the characteristics of the proposed implemen-

tation and the enhanced performance in the high-resolution POP. In particular, the characteristics of100

P-CSI are theoretically analyzed via the associated eigenvalues and their impacts on the spectrum,

condition number, and convergence rate. In addition, we provide a more comprehensive review of

barotropic modes and the existing solvers used in the default POP (only a simplified discussion is

provided in the SC paper). Finally, because the target audience is now ocean climate modellers, all

figures have been adjusted to address the major advantages of the proposed method and the overall105

performance of the high-resolution POP.

The remainder of this paper is organized as follows. Section 2 reviews the existing barotropic

solver in the POP. Section 3 details the design of the P-CSI solver, followed by an analysis of the

computational complexity and convergence rate of P-CSI in Section 4. Section 5 further compares

the high-resolution performance of the existing solvers and the P-CSI solvers. Finally, conclusions110

are given in Section 6.

2 Barotropic solver background

We briefly describe the governing equations to formally derive the new P-CSI solver in the POP. The

primitive momentum and continuity equations are expressed as:

∂

∂t
u +L(u) + f ×u =− 1

ρ0
∇p+FH(u) +FV (u), (1)115

L(1) = 0, (2)

where L(α) = ∂
∂x (uα) + ∂

∂y (vα) + ∂
∂z (wα), which is equivalent to the divergence operator when

α= 1; x,y, and z are the horizontal and vertical coordinates; u = [u,v]T is the horizontal velocity;

w is the vertical velocity; f is the Coriolis parameter; p and ρ0 represent the pressure and the constant

reference water density, respectively; FH and FV are the horizontal and vertical dissipative terms,120

respectively (Smith et al., 2010). In particular, we emphasize the two-dimensional barotropic mode

in the time-splitting scheme, where the P-CSI is implemented.

2.1 Barotropic mode

POP uses the splitting technique to solve the barotropic and baroclinic systems (Smith et al., 2010).

The governing equations for the barotropic mode can be obtained by vertically integrating Eq. (1)125
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and Eq. (2) from the ocean bottom topography to the sea surface:

∂U
∂t

=−g∇η+F, (3)

∂η

∂t
=−∇ ·HU + qw, (4)

where U = 1
H+η

∫ η
−H dzu(z)≈ 1

H

∫ 0

−H dzu(z) is the vertically integrated barotropic velocity, g is

the gravity acceleration, η is the sea surface height (defined as ps/ρ0g, where ps is the surface130

pressure associated with undulations of the free surface), H is the depth of the ocean bottom, qw is

the freshwater flux per unit area, and F is the vertical integral of all other terms except the time-

tendency and surface pressure gradient in the momentum Eq. (1). When we directly integrate the

continuity equation from the bottom to the surface, we will get a form
∫ η
−H dz(∇ ·u + ∂w

∂z ) = ∂η
∂t +

∇·(H+η)U−qw = 0 under the surface boundary condition w(η) = dη
dt −qw = ∂η

∂t +u(η)·∇η−qw.135

The term including η inside the divergence leads to a nonlinear elliptic system, which cannot be

solved by many mature numerical methods such as the conjugate gradient methods. To avoid this,

POP linearizes the continuity equation by dropping the divergence term in the boundary condition,

which becomes w(η) = ∂η
∂t − qw. Equation (4) is the resulting barotropic continuity equation, and

more details can be found in Smith et al. (2010).140

All terms in the Eq. (1) use the explicit scheme, with the exception of the implicit treatment of

barotropic mode and the semi-implicit treatment of the Coriolis and vertical mixing terms. Because

of the restriction of barotropic CFL number (defined as CFL= c·τ
∆x , where c=

√
gH is the fastest

speed in barotropic mode, and τ and ∆x are the step sizes in time and space, respectively), the

implicit treatment of the barotropic mode is necessary to simulate the fast gravity waves with a145

speed of c= 200 m/s so that we can use the same time step as the baroclinic mode, which has a

velocity scale of less than 2 m/s (Hu et al., 2015). Solving the barotropic mode with an implicit

method allows for a much larger time step than with an explicit method. For example, with the 0.1◦

POP model, an implicit method can use a time step of 172.8 s; otherwise, it would be only 1.73 s.

Equation (3) and Eq. (4) are then discretized in time using an implicit scheme as follows:150

Un+1−Un

τ
=−g∇ηn+1 +F, (5)

ηn+1− ηn

τ
=−∇ ·HUn+1 + qw, (6)

where τ is the time step associated with the time advance scheme. By replacing the barotropic

velocity in Eq. (6) with the barotropic velocity at the next time step in Eq. (5), an elliptic system of

sea surface height η is obtained155

[−∇ ·H∇+
1

gτ2
]ηn+1 =−∇ ·H[

Un

gτ
+
F

g
] +

ηn

gτ2
+
qw
gτ
. (7)

For simplicity, we can rewrite the elliptic Eq. (7) as

[−∇ ·H∇+
1

gτ2
]ηn+1 = ψ(ηn, τ), (8)
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where ψ represents a function of the current state of η.

Spatially, the POP utilizes the Arakawa B-grid on the horizontal grid (Smith et al., 2010) with the160

following nine-point stencils to discretize Eq. (8) as follows (see Fig. 1):

∇ ·H∇η =
1

∆y
δx[∆yHδxη

y]
y

+
1

∆x
δy[∆xHδyη

x]
x
, (9)

where δξ (ξ ∈ {x,y}) are finite differences and ∆ξ (ξ ∈ {x,y}) are the associated grid lengths. The

finite difference δξ(ψ) and average ψ
ξ

notations are defined, respectively, as follows:

δξψ = [ψ(ξ+ ∆ξ/2)−ψ(ξ−∆ξ/2)]/∆ξ, (10)165

ψ
ξ

= [ψ(ξ+ ∆ξ/2) +ψ(ξ−∆ξ/2)]/2. (11)

Because the POP uses general orthogonal grids, the coefficient matrix varies in space. To demon-

strate the properties of the sparse matrix used in the POP, we can simplify Eq. (9) using a special

case with uniform grids as follows:

[∇ ·H∇η]i,j =− 1

Si,j
[BOHηi,j +BNWHi−1,jηi−1,j+1 +

1

2
BN (Hi,j +Hi−1,j)ηi,j+1170

+BNEHi,jηi+1,j+1 +
1

2
BW (Hi−1,j +Hi−1,j−1)ηi−1,j +

1

2
BE(Hi,j +Hi,j−1)ηi+1,j

+BSWHi−1,j−1ηi−1,j−1 +
1

2
BS(Hi,j−1 +Hi−1,j−1)ηi,j−1 +BSEHi,j−1ηi+1,j−1],

(12)

where Si,j = ∆x∆y and H = 1
4 (Hi,j +Hi−1,j +Hi,j−1 +Hi−1,j−1); the H inside this equation

is the ocean bottom depth in the columns of U-points (Smith et al., 2010). The Bs are determined

using ∆x and ∆y:175

α=
∆y

∆x
, β = 1/α,

BNW =BNE =BSW =BSE =−(α+β)/4,

BW =BE = (β−α)/2,

BN =BS = (α−β)/2,

BO = α+β.

(13)

To make the discretization of Eq. (8) more succinct, notations are introduced as follows:

AOi,j =BOH,

ANi,j =
1

2
BN (Hi,j +Hi−1,j),A

W
i,j =

1

2
BW (Hi−1,j +Hi−1,j−1),

AEi,j =
1

2
BE(Hi,j +Hi,j−1),ASi,j =

1

2
BS(Hi,j−1 +Hi−1,j−1),

ANWi,j =BNWHi−1,j ,A
NE
i,j =BNEHi,j ,

ASWi,j =BSWHi−1,j−1,A
SE
i,j =BSEHi,j−1,

(14)
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TheseAχi,j(χ ∈Q= {O,NW,NE,SW,SE,W,E,N,S}) are coefficients between a grid point (i, j)

and its neighbours using the nine-point stencil discretization (9).180

The full discretization of Eq. (8) for any given grid point (i, j) can then be written as

(AOi,j +φ)ηi,j +ANWi,j ηi−1,j+1 +ANi,jηi,j+1 +ANEi,j ηi+1,j+1 +AWi,jηi−1,j

+AEi,jηi+1,j +ASWi,j ηi−1,j−1 +ASi,jηi,j−1 +ASEi,j ηi+1,j−1 = Si,jψi,j , (15)

where φ=
Si,j

gτ2 is a factor of the time step.

Therefore, the elliptic Eq. (7) leads to a linear system of η, i.e., Ax= b, where A is a block185

tridiagonal matrix composed of coefficients Aχi,j(χ ∈Q). The simplified equation set of (13), (14)

and (15) shows that A is mainly determined by the horizontal grid sizes, ocean depth and time step.

These impacts will be further discussed in Section 4.1. Note that Eq. (15) also indicates that the

sparsity pattern of A comes directly from the nine nonzero elements in each row (Fig. 2).

POP divides the horizontal domain into small blocks evenly and distributes them to processes.190

We assume that there are N and M grids along longitude and latitude respectively, and the global

domain is divided into n ∗m small blocks with a size of N
n ∗

M
m . These blocks are distributed to

processors using simple Cartesian strategy or space-filling curve method (Smith et al., 2010).

2.2 Barotropic solvers

The barotropic solver in the original POP uses the PCG method with a diagonal preconditioner195

M = Λ(A) because of its efficiency in small-scale parallelism (Dukowicz and Smith, 1994) (see

Appendix B1 for the details). To mitigate the global communication bottleneck, ChronGear, a variant

of the CG method proposed by D’Azevedo et al. (1999), was later introduced as the default solver

in the POP. It combines the two separated global communications of a single scalar into a single

global communication (see Appendix B2). By this strategic rearrangement, the ChronGear method200

achieves a one-third latency reduction in the POP. However, the scaling bottleneck still exists in the

high-resolution POP using this solver, particularly with a large number of cores (Fig. 3).

To accurately profile the parallel cost of the barotropic solvers, we clearly separate the timing

for computation, halo exchange, and global reduction. Operations such as scalar computations and

vector scalings are categorized as pure computations, which are relatively cheap due to the inde-205

pendent operations on each process. The extra halo exchange is required for each process to update

the boundary values from its neighbors (Fig. 1) after the matrix-vector multiplication. This halo ex-

change usually costs more than the computation when a large number of cores is used (due to a

decreasing problem size per core). The global reduction, which is needed by the inner products of

vectors, is even more costly (Hu et al., 2013). Worley et al. (2011) and Dennis et al. (2012) specifi-210

cally indicated that the global reduction in the POP’s barotropic solver is the main scaling bottleneck

for the high-resolution ocean simulation.
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Figure 3 confirms that the percentage of execution time for the barotropic mode in 0.1◦ POP

indeed increases with increasing number of processor cores on Yellowstone. When 470 cores are

used, the execution time of the barotropic solver is approximately 5% of the total execution time215

(excludes initialization and I/O). However, when several thousand cores are used, the percentage of

time spent in the baroclinic mode decreases, associated with the increasing percentage of time in the

barotropic solver. With more than sixteen thousand cores, the percentage of the total execution time

due to the barotropic solver is nearly 50%.

3 Design of the P-CSI solver220

The CG-type solver converges rapidly in the sequential computation (Golub and Van Loan, 2012).

However, the bottleneck of global communication embedded in ChronGear still limits the large-scale

parallel performance. Here, we design a new solver targeted for reducing global communication so

that the speed-up can be as close to unity as possible when a significant number of cores are used.

3.1 Classical Stiefel Iteration method225

The CSI is a special type of Chebyshev iterative method (Stiefel, 1958). Saad et al. (1985) proposed

a generalization of CSI on linearly connected processors and claimed that this approach outperforms

the CG method when the eigenvalues are known. This method was revisited by Gutknecht and Röllin

(2002) and shown to be ideal for massively parallel computers. In the procedure of preconditioned

CSI (P-CSI; details are provided in Appendix B3), the iteration parameters, which control the search-230

ing directions in the iteration step, are derived from a stretched Chebyshev function of two extreme

eigenvalues (Stiefel, 1958). We demonstrate in Section 4.2 that the stretched Chebyshev function

in P-CSI provides a series of preset parameters for iteration directions. As a result, P-CSI requires

no inner product operation, thus potentially avoiding the bottleneck of global reduction. This makes

the P-CSI more scalable than ChronGear on massively parallel architectures. However, it requires235

a priori knowledge about the spectrum of coefficient matrix A (Gutknecht and Röllin, 2002). It is

well known that obtaining the eigenvalues of a linear system of equations is equivalent to solving

it. Fortunately, the coefficient matrix A and its preconditioned form in the POP are both positive

definite real symmetric matrices. Approximate estimation of the largest and smallest eigenvalues, µ

and ν, respectively, of the preconditioned coefficient matrix is sufficient to ensure the convergence240

of P-CSI.

To efficiently estimate the extreme eigenvalues of the preconditioned matrix M−1A (where M is

the preconditioner), we adopt the Lanczos method (Paige, 1980) (see the algorithm in Appendix C).

Initial tests indicate that only a small number of Lanczos steps are necessary to reasonably estimate

the extreme eigenvalues of M−1A that result in near-optimal P-CSI convergence (Hu et al., 2015).245

Therefore, the computational overhead of the eigenvalue estimation is very small in our algorithm.
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3.2 A block EVP preconditioner

Block preconditioning is quite promising in the POP because parallel domain-decomposition is ideal

for the block structure. A block preconditioning based on the EVP method is proposed and detailed in

Hu et al. (2015); it improves the parallel performance of the barotropic solver in the POP. To the best250

of our knowledge, the EVP and its variants are among the least costly algorithms for solving elliptic

equations in serial computation (Roache, 1995) and have also been used in several different ocean

models (Dietrich et al., 1987; Sheng et al., 1998; Young et al., 2012). The parallel EVP solver was

also implemented by Tseng and Chien (2011). The standard EVP is actually a direct solver, which

requires two solution steps: preprocessing and solving. In the preprocessing stage, the influence255

coefficient matrix and its inverse are computed, involving a computational complexity of Cpre =

(2n−5)∗9n2 +(2n−5)3 =O(26n3), which is intensive but computed only once at the beginning.

The solving stage is computed at every time step and requires only Cevp = 2 ∗ 9n2 + (2n− 5)2 =

O(22n2) (Hu et al., 2015), which is a much lower computational cost than those of other direct

solvers, such as LU.260

The EVP method is efficient for solving elliptic equations. Although EVP preconditioning may

increase the required computation for each iteration, the barotropic solver can greatly benefit from

the resulting reduction in the number of iterations, particularly at very large numbers of cores when

communication costs dominate (Hu et al., 2015). For large-scale parallel computing, a larger num-

ber of processors typically results in smaller domains, which in fact favors the application of the265

EVP method (Dietrich, 1975; Roache, 1995). If the domain size is too large without using domain

decomposition, the computation will be very slow (see the complexity analysis in Section 4.3 when

p= 1). Using parallel domain decomposition can actually help and speed up the EVP solver.

4 Algorithm analysis and comparison

The extreme eigenvalues of the coefficient matrix are critical to determine the convergence of the270

iterative solvers (such as P-CSI, PCG and ChronGear). Here, the characteristics of P-CSI are inves-

tigated in terms of the associated eigenvalues and their connection with the convergence rate. The

computational complexity is also addressed.

4.1 Spectrum and condition number

Because the coefficient matrix A in the POP is symmetric and positive-definite (Smith et al., 2010),275

its eigenvalues are positive real numbers (Stewart, 1976). We assume that the spectrum (Golub and

Van Loan, 2012) of A is S = {λ1,λ2, · · · ,λN}, where λmin = λ1 ≤ λi ≤ λN = λmax( 1< i <N ,

N is the size of A) are the eigenvalues of A. The condition number, defined as κ= λmax/λmin, is

determined based on the spectral radius. Using the Gershgorin circle theorem (Bell, 1965), we know
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that for any λ ∈ S , there exists a pair of (i, j) satisfying280

|λ− (AOi,j +φ)| ≤
∑

χ∈Q−{O}

|Aχi,j |, (16)

where φ= S
gτ2 is defined in Section 2.1. With the definition of the coefficients in (13) and (14), we

obtain

λmax ≤ (4max(α,
1

α
) + Φ)max(H),

λmin ≥ (2min(α− 1

α
,

1

α
−α) + Φ)max(H).

(17)

where Φ = φ
max(H) , where max(H) is the maximal depth of the ocean bottom; for more details,285

refer to Appendix A,

To quantitatively evaluate the impacts of the condition number, we set up a series of idealized test

cases to solve Eq. (8) in which the coefficient matrices are derived from Eq. (13), (14) and (15) on an

idealized cylinder with an earth-sized perimeter, which is 2πR (radius R is 6,372 km), and a height

of πR. A uniform grid with a size of N ×M is used, where the grid size along the perimeter and290

height are ∆x= 2πR/N and ∆y = πR/M , respectively. The depth H is set as a constant 4 km to

simplify the analysis.

The inequalities (17) suggest that the lower bound of the eigenvalues is mostly determined by Φ.

If we assume that the grid aspect ratio is unity, we can rewrite Φ = S
gτ2H as Φ = 1

(CFL)2 in terms

of the barotropic CFL number (as defined in Section 2.1). This indicates that, for a given ocean295

configuration and grid size, the lower bound of the eigenvalues will decrease with increasing CFL

number, resulting in a larger condition number. Figure 4 shows the relationship between condition

number and the CFL number. In this idealized test case, Φ becomes very large and dominates both

λmax and λmin when the CFL number is sufficiently small (smaller than 10−1 s) . As a result, the

condition number approaches 1. When the CFL number is large enough (i.e., approaches 5), the300

condition number is highly determined by the grid aspect ratio α because of the reduced impact of

Φ.

When the aspect ratio of the horizontal grid cell approaches unity, the upper (lower) bound of the

largest (smallest) eigenvalue decreases (increases), leading to a reduced spectral radius ([λmin,λmax]).

This implies that the condition number is also reduced simultaneously. Figure 5 shows the condi-305

tion number versus the aspect ratio, which is consistent with the theoretical bounds of the extreme

eigenvalues in Eq. (17). As expected, the smallest condition number is found in Fig. 5 when the grid

aspect ratio approaches unity regardless of the CFL number. When the aspect ratio equals unity (i.e.,

α= ∆y
∆x = 1), we obtain λmax ≤ (4 + Φ)H and λmin ≥ ΦH .

Our analysis suggests that the spectral radius is confined in (ΦH,(4 + Φ)H) if the aspect ratio310

is unity regardless of grid sizes. However, the condition number may vary greatly because of the

dependency on the grid size N and the aspect ratio. When the grid size N increases, the largest

eigenvalue remains close to 4H , whereas the smallest eigenvalue becomes closer to ΦH . Therefore,
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the condition number is significantly affected when the aspect ratio is far from unity. To focus on the

impact of the number of grid points, we choose a constant aspect ratio α= 1. Figure 6 shows that315

the condition number increases monotonically with increasing grid size for the four given different

CFL conditions. It also shows that the CFL number has a large impact on the condition number.

In the 0.1◦ POP simulation, the CFL number is approximately c ·∆t/∆x≈ 3.46 (where c= 200

m/s, ∆t= 172.8 s, and ∆x= 10000 m are the typical gravity wave speed, time step and spatial res-

olution, respectively) and the condition number is approximately 250. For comparison, the condition320

number in the 1◦ POP simulation is higher, which is approximately 1200.

4.2 Convergence rate

The convergence rate of any elliptic solver relies heavily on the condition number of the precon-

ditioned coefficient matrix A′. Both PCG and ChronGear have the same theoretical convergence

rate because they are different implementations of the same numerical algorithm (D’Azevedo et al.,325

1999). Their relative residual in the k-th iteration has an upper bound as follows (Liesen and Tichý,

2004):

||xk − x∗||A′
||x0− x∗||A′

≤ min
p∈Pk,p(0)=1

max
λ∈S
|p(λ)|, (18)

where xk is the solution vector after the k-th iteration, x∗ is the solution of the linear equation (i.e.,

x∗ =A−1b), λ represents an eigenvalue of A′, and Pk is the vector space of polynomials with real330

coefficients and a degree less than or equal to k. Applying the Chebyshev polynomials of the first

type to estimate this min-max approximation, we obtain

||xk − x∗||A′ ≤ 2(

√
κ− 1√
κ+ 1

)k||x0− x∗||A′ , (19)

where κ= κ2(A′) =
λ′max

λ′min
is the condition number of matrix A′ with respect to the l2-norm. Equa-

tion (19) indicates that the theoretical bound of the convergence rate of PCG decreases with increas-335

ing condition number. PCG converges faster for a well-conditioned matrix (e.g., a matrix with a

small condition number) than an ill-conditioned matrix.

We now show that the P-CSI has the same order of convergence rate as PCG and ChronGear

with the additional advantage of fewer global reductions in parallel computing. With the estimated

smallest and largest extreme eigenvalues of coefficient matrix ν and µ, the residual for the P-CSI340

algorithm satisfies

rk = Pk(A′)r0, (20)

where Pk(ζ) = τk(β−αζ)
τk(β) for ζ ∈ [ν,µ] (Stiefel, 1958), α= 2

µ−ν and β = µ+ν
µ−ν . τk(ξ) is a Chebyshev

polynomial expressed as

τk(ξ) =
1

2
[(ξ+

√
ξ2− 1)k + (ξ+

√
ξ2− 1)−k]. (21)345
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when ξ ∈ [−1,1], the Chebyshev polynomial has an equivalent form

τk(ξ) = cos(k cos−1 ξ), (22)

which clearly shows that |τk(ξ)| ≤ 1 when |ξ| ≤ 1. Pk(ζ) is the polynomial satisfying

Pk = min
p∈Pk,p(0)=1

max
ζ∈[ν,µ]

|p(ζ)|. (23)

Assume that A′ =QTΛQ, where Λ is a diagonal matrix having the eigenvalues of A′ on the350

diagonal and Q is a real orthogonal matrix with columns that are eigenvectors of A′. We then have

Pk(A′) =QTPk(Λ)Q=QT


Pk(λ1)

Pk(λ2)

. . .

Pk(λN )

Q. (24)

Assuming that ν and µ satisfy 0< ν ≤ λi ≤ µ (i= 1,2, · · · ,N ), Eq. (22) indicates that |β−αλi| ≤ 1

and |Pk(λi)|= τk(β−αλi)
τk(β) ≤ τ−1

k (β). Equations (20) and (24) indicate that

||rk||2
||r0||2

≤ τ−1
k (β) =

2(β+
√
β2− 1)k

1 + (β+
√
β2− 1)2k

≤ 2(

√
κ′− 1√
κ′+ 1

)k, (25)355

where κ′ = µ
ν . Equation (25) shows that P-CSI has the same theoretical upper bound of the conver-

gence rate as PCG and ChronGear when the estimation of eigenvalues is appropriate (e.g., κ′ = κ).

The foregoing analysis applies to cases in which a nontrivial preconditioning is used. Assume

that the preconditioned coefficient matrix A′ =M−1A. Note that the preconditioned matrix in the

PCG, ChronGear and P-CSI algorithms is actually M−1/2A(M−1/2)T , which is symmetric and360

has the same set of eigenvalues as M−1A (Shewchuk, 1994). Thus, the condition number of the

preconditioned matrix is κ= κ2(M−1/2A(M−1/2)T ), which is usually smaller than the condition

number of A. The closer M is to A, the smaller the condition number of M−1A is. When M is the

same as A, then κ2(M−1A) = 1.

Because the convergence rate of P-CSI is on the same order as that of PCG and ChronGear, the365

performance between P-CSI and the CG-type solvers should be comparable when a small number

of cores is used. When a large number of cores is used for the high-resolution ocean model, P-

CSI should be significantly faster than PCG or ChronGear per iteration due to the bottleneck in the

CG-type method. This is shown in the following analysis of computational complexity.

4.3 Computational complexity370

To analyse the computational complexity of P-CSI and compare it with ChronGear, we define p

as the number of processes and N as the number of grid points (using the same notation as in

Hu et al. (2015)). Both the ChronGear and P-CSI solver time can then be divided into three major
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components: computation Tc, halo exchanging Tb, and global communication Tg . The complexity of

computation varies among different solvers and preconditioners. The halo exchange complexity is375

Tb =O(4$+ 8
√
N
p ϑ), where $ is the ratio of point-to-point communication latency per message

to the time of one floating-point operation and ϑ is the ratio of the transfer time per byte (inverse

of bandwidth) to the time of one floating-point operation. All halo exchange times show a similarly

decreasing trend with increasing number of processes but have a lower bound of 4$. The global

communication exists only in the ChronGear solver and contains one global reduction per iteration,380

resulting from the MPI_Allreduce and a masking operation that excludes land points. The cost of

the masking operation decreases with increasing processes p, whereas the cost of MPI_Allreduce

monotonically increases; thus, the global reduction complexity satisfies Tg =O(2Np + logp$).

The execution time of one diagonal preconditioned ChronGear solver step can then be expressed

as:385

Tcg =Kcg(Tc + Tb + Tg) =O(Kcg(18
N
p

+ 8

√
N
p
ϑ+ (4 + logp)$), (26)

where Kcg is the number of iterations, which does not change with the number of processes (Hu

et al., 2015). The complexity of P-CSI with a diagonal preconditioner is

Tpcsi =O(Kpcsi(12
N
p

+ 8

√
N
p
ϑ+ 4$)), (27)

where Kpcsi is the number of iterations.390

Equation (26) indicates that the computation and halo exchange time decrease with increasing

numbers of processes. However, the time required for the global reduction increases with increasing

numbers of processes. Therefore, we can expect the execution time of the ChronGear solver to

increase when the number of processors exceeds a certain threshold. Our analysis shows that P-

CSI has a lower computational complexity than that of ChronGear due to the lack of a logp term395

associated with global communications.

We further consider the computational complexity of preconditioning. The EVP preconditioning

hasO(22Np ). Thus, with the EVP preconditioning, the computational complexity of ChronGear and

P-CSI becomesO(39Np ) andO(33Np ), respectively. As a result, the total complexities of ChronGear

and P-CSI with EVP preconditioning are400

Tcg−evp =O(Kcg−evp(39
N
p

+ 8

√
N
p
ϑ+ (4 + logp)$), (28)

Tpcsi−evp =O(Kpcsi−evp(33
N
p

+ 8

√
N
p
ϑ+ 4$)). (29)

Although the computation time in each iteration doubles with the EVP preconditioning, the total

time may still decrease if the number of iterations is reduced. Indeed, with EVP preconditioning,405

the number of iterations Kpcsi−evp decreases by almost one-half (see Fig. 8). As a result, the total
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number of communications, which is the most time-consuming part for a large number of cores,

decreases by approximately one-half.

5 Numerical experiments

To evaluate the new P-CSI solver, we first demonstrate its characteristics and compare it with PCG410

(and thus ChronGear) using an idealized test case. The actual performance of P-CSI in the CESM

POP is then evaluated and compared with that of the existing solvers using the 0.1◦ high-resolution

simulation.

5.1 Condition number and convergence rate

To confirm the theoretical analysis of the convergence in Section 4.2, we created a series of ma-415

trices with the idealized setting illustrated in Section 4.1. Instead of a cylindrical grid, we choose

a spherical grid with two polar continents (ocean latitude varies from 80◦S to 80◦N). A uniform

latitude-longitude grid is used in which the grid size along the longitude varies with latitude coordi-

nate θ, that is, ∆x= (2πR/N)cosθ. The barotropic CFL number is set as CFL= 3.46 (a typical

value for a 0.1◦ POP simulation, as discussed in the Section 2.1). These cases differ with respect420

to the number of grid points; thus, the condition numbers vary. We compare the results using PCG

and P-CSI solvers with no preconditioning, diagonal preconditioning or EVP preconditioning. Here,

the block size in EVP preconditioning is set as 5× 5 and the convergence tolerance is tol = 10−6.

We note that the theoretical convergence rates of ChronGear and PCG are identical; thus, the results

here also apply to ChronGear.425

As shown in Fig. 7, when the problem size increases, the coefficient matrix becomes more poorly

conditioned, thus increasing the number of iterations. For both PCG and P-CSI, the convergence rate

varies with different preconditioners. Given the same problem size, the solvers without precondi-

tioning need the largest number of iterations, while those using the EVP preconditioning require the

fewest. This confirms that with the EVP preconditioning, the matrix becomes better conditioned than430

the matrix without preconditioning or with diagonal preconditioning. As shown in the previous sec-

tion, the P-CSI has the same theoretical lower bound of the convergence rate as PCG and ChronGear

when the estimation of extreme eigenvalues is appropriate (k
′
= k). However, P-CSI commonly has

a slower convergence rate than that of PCG if the same preconditioning is applied (Fig. 7). Because

P-CSI requires that 0< ν < λi < µ(i= 1, ...,N), which means that k
′
= µ/ν ≥ λmax/λmin = k,435

Eq. (19) and Eq. (25) suggest that the P-CSI will converge more slowly than the PCG unless the

estimation of extreme eigenvalues is optimal. Furthermore, the theoretical bound is often too conser-

vative for PCG as the problem size increases in application, which is not completely linear (known

as superlinear convergence of the PCG method (Beckermann and Kuijlaars, 2001)). Note that the
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diagonal preconditioner only slightly improves the convergence in our idealized cases because of440

the uniform grid and the constant ocean depth configuration.

If the condition numbers are very large, any advanced preconditioner that can quickly reduce the

iteration count will be very useful for improving performance. In fact, the EVP solver is a direct fast

solver; thus, it is well suitable as the preconditioner within each block. It is also simple enough to

effectively reduce the condition number of the coefficient matrix by approximately 5 times in both 1445

and 0.1 degree cases, leading to a 2/3 reduction in the number of iterations. Even so, further studies

regarding the preconditioner in practical climate models will be very useful and will be our future

work.

5.2 A practical application using the high-resolution CESM POP

5.2.1 Experiment platform and configuration450

We evaluate the performance of P-CSI in CESM1.2.0 on the Yellowstone supercomputer, located at

NCAR-Wyoming Supercomputing Center (NWSC) (Loft et al., 2015). Yellowstone uses Intel Xeon

E5-2670 (Sandy Bridge: 16 cores @ 2.6 GHz, hyperthreading enabled, 20 MB shared L3 cache)

and provides a total of 72,576 cores connected by a 13.6 GBps InfiniBand network. More than 50%

of Yellowstone’s cycles are consumed by CESM. Therefore, the ability to accelerate the parallel455

performance on Yellowstone is critical to support the CESM production simulations.

To emphasize the advantage of P-CSI, we use the finest 0.1◦ grid and a POP with 60 vertical levels

with the “G_NORMAL_YEAR” configuration, which uses active ocean and sea ice components

(i.e., the atmosphere and land components are replaced by pre-determined forcing data sets). The

I/O optimization is another important issue for the high-resolution POP (Huang et al., 2014) but is460

not addressed here.

The choice of ocean block size and layout has a large impact on performance for the high-

resolution POP because it directly affects the distribution of the workload among processors. To

remove the influence of different block distributions on our results, we carefully specify block de-

compositions for each core with the same ratio. The time step is set to the default of 172.8 s. For a465

fair comparison among solvers, the convergence is checked every 10 iterations for all tests. The im-

pacts of CSI and the EVP preconditioner are evaluated separately using several different numerical

experiments.

5.2.2 Overall performance of P-CSI

This experiment is designed to illustrate the overall performance of P-CSI, which is particularly im-470

portant for high-resolution production simulations. Figure 8 compares the convergence rate (relative

residual versus the number of iterations) among different barotropic solvers with different precondi-

tioners. The P-CSI converges slightly more slowly than PCG and ChronGear with the same diagonal
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preconditioner at the beginning and final iteration steps, which is related to the unstable distribution

of the coefficient matrix’s eigenvalues. However, the slopes are similar for all of these solvers, thus475

supporting the same upper bound for the convergence rate, as discussed in Section 4.2.

Figure 9 further evaluates the solver time for the different phases. P-CSI outperforms ChronGear

primarily because it only requires a few global reductions in the convergence check. No significant

differences can be found for the halo exchange and the computation phases when using large core

counts, except for the evident reduction in execution time for the halo exchange with the EVP pre-480

conditioner. The reduction in global communications will also significantly reduce the sensitivity of

the ocean model component to operating system noise (Ferreira et al., 2008) by increasing the time

interval between global synchronizations.

According to Fig. 8, the P-CSI solver can reach the same relative residual using many fewer

iterations with the EVP preconditioner. As a result, it reduces not only the execution time of global485

reduction but also the execution time of halo exchange owing to the reduced iterations which is

illustrated in Fig. 9. All of these results are consistent with the theoretical analysis in Section 4.3.

Note that the extra computation operations required by the EVP preconditioner have only a small

impact on the overall performance of the barotropic solver.

The overall performance of P-CSI in a realistic 0.1◦ POP simulation is illustrated in Fig. 10. Using490

the EVP preconditioner, P-CSI can accelerate the barotropic calculation from 6.2 SYPD (Simulated

Years Per wall-clock Day) to 10.5 SYPD on 16,875 cores. Dennis et al. (2012) indicated that 5 simu-

lated years per wall-clock day is the minimum requirement to run long-term climate simulations. In

Section 2, we demonstrated that the percentage of the POP execution time required by the barotropic

solver increases with increasing number of cores using the original ChronGear solver. In particular,495

ChronGear with diagonal preconditioning accounts for approximately 50% of the total execution

time on 16,875 cores (see Fig. 3). In contrast, Fig. 10 also shows that by using the scalable P-CSI

solver, the barotropic calculation time constitutes only approximately 16% of the total execution

time on 16,875 cores. Finally, we note that based on an ensemble-based statistical method for the 1◦

POP, Hu et al. (2015) verified that the climate is not changed by using our new solver.500

6 Conclusions

We accelerated the high-resolution POP in the CESM framework by implementing a new P-CSI

ocean barotropic solver. This new solver adopts a Chebyshev-type iterative method to avoid the

global communication operations in conjunction with an effective EVP preconditioner to improve

the parallel performance further. The superior performance of the P-CSI is carefully investigated505

using the theoretical analysis of the algorithm and computational complexity. Compared with the

existing ChronGear solver, it significantly reduces the global reductions and realizes a competitive
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convergence rate. The proposed alternative has become the default barotropic solver in the POP

within CESM and may greatly benefit other climate models.

7 Code availability510

The present P-CSI solver v1.0 is available on https://zenodo.org/record/56705 and https://github.com/

hxmhuang/PCSI. This solver is also included in the upcoming CESM public release v2.0. For the

older CESM versions 1.2.x, the user should follow these steps indicated in the Readme.md file:

(1) Create a complete case or an ocean component case.

(2) Copy our files into the corresponding case path and build this case.515

(3) Add two lines at the end of user_nl_pop2 file to use our new solver.

(4) Execute the preview_namelists file to activate the solver.

(5) Run the case.

The user are welcome to see the website mentioned above for more details and use the configuration

files to repeat our experiments.520
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Appendix A: Estimation of extreme eigenvalues with variable ocean depth H

Rewrite the full discretization of Eq. (8) for any given grid point (i, j):

(AOi,j +φ)ηi,j +ANWi,j ηi−1,j+1 +ANi,jηi,j+1 +ANEi,j ηi+1,j+1 +AWi,jηi−1,j

+AEi,jηi+1,j +ASWi,j ηi−1,j−1 +ASi,jηi,j−1 +ASEi,j ηi+1,j−1 = Si,jψi,j , (A1)

According to the Gershgorin circle theorem (Bell, 1965), we know that for any λ ∈ S , there exists a525

pair of (i, j) satisfying

|λ− (AOi,j +φ)| ≤
∑

χ∈Q−{O}

|Aχi,j |. (A2)

The upper bound of eigenvalues can be deduced as follows

λ≤AOi.j +φ+
∑

χ∈Q−{O}

|Aχi,j |

= 2(α+β)H + 2|α−β|H +φ

= 4max(α,
1

α
)H +φ

≤ (4max(α,
1

α
) + Φ)max(H)

(A3)

The lower bound of eigenvalues can be deduced as follows530

λ≥AOi.j +φ−
∑

χ∈Q−{O}

|Aχi,j |

=−2|α−β|H +φ

= 2min(α−β,β−α)H +φ

≥ (2min(α− 1

α
,

1

α
−α) + Φ)max(H)

(A4)

where H is defined in Section 2.1.

Appendix B: Algorithms

B1 PCG algorithm

The procedure of PCG is shown as follows (Smith et al., 2010):535

Initial guess: x0

Compute residual r0 = b−Ax0

Set s0 = 0, β0 = 1

For k = 1,2, · · · ,kmax do540

1. r′k−1 = M−1rk−1
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2. βk = rTk−1r′k−1

3. sk = r′k−1 + (βk/βk−1)sk−1

4. s′k = Ask

5. αk = βk/(sTk s′k)545

6. xk = xk−1 +αksk

7. rk = rk−1−αks′k

8. convergence_check(rk)

End Do

550

Operations such as βk/βk−1 in line (3) are scalar computations, whereas αksk in line (6) are vector

scalings. Ask in line (4) is a matrix-vector multiplication. Inner products of vectors are rTk−1r′k−1 in

line (2) and sTk s′k in line (5), these inner products use two global reduction operations.

B2 ChronGear algorithm

The procedure of ChronGear is shown as follows:555

Initial guess: x0

Compute residual r0 = b−Ax0

Set s0 = 0, p0 = 0, ρ0 = 1, σ0 = 0

For k = 1,2, · · · ,kmax do560

1. r′k = M−1rk−1

2. zk = Ar′k

3. ρk = rTk−1r′k

4. σk = zTk r′k −β2
kσk−1

5. βk = ρk/ρk−1565

6. αk = ρk/σk

7. sk = r′k +βksk−1

8. pk = zk +βkpk−1

9. xk = xk−1 +αksk
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10. rk = rk−1−αkpk570

11. convergence_check(rk)

End Do

The inner products in ρk and σk use two global reduction operations. However, these two global

reductions can be combined into one operation thus halving the latency.575

B3 P-CSI algorithm

The pseudocode of the P-CSI algorithm is shown as follows:

Initial guess: x0, estimated eigenvalue boundaries [ν,µ]

Set α= 2
µ−ν , β = µ+ν

µ−ν , γ = β
α , ω0 = 2

γ580

Compute residual r0 = b−Ax0, ∆x0 = γ−1M−1r0, x1 = x0 + ∆x0, r1 = b−Ax1

For k = 1,2, · · · ,kmax do

1. ωk = 1/(γ− 1
4α2ωk−1)

2. r′k = M−1rk

3. ∆xk = ωkr′k + (γωk − 1)∆xk−1585

4. xk+1 = xk + ∆xk

5. rk+1 = b−Axk+1

6. convergence_check(rk)

End Do

590

Appendix C: Eigenvalue Estimation

The procedure of the Lanczos method to estimate the extreme eigenvalues of the matrix M−1A is

shown as follows:

Initial guess: r0595

Set s0 = M−1r0; q1 = r0/(rT0 s0); q0 = 0; β0 = 0; µ0 = 0; T0 = ∅
For j = 1,2, · · · ,m do

1. pj = M−1qj

2. rj = Apj −βj−1qj−1
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3. αj = pTj rj600

4. rj = rj −αjqj

5. sj = M−1rj

6. βj = rTj sj

7. if βj == 0 then return

8. µj =max(µj−1,αj +βj +βj−1)605

9. Tj = tri_diag(Tj−1,αj ,βj)

10. νj = eigs(Tj ,
′ smallest′)

11. if| µj

µj−1
− 1|< ε and |1− νj

νj−1
|< ε then return

12. qj+1 = rj/βj

End Do610

In step (9), T is a tridiagonal matrix which contains αj(j = 1,2, ...,m) as the diagonal entries and

βj(j = 1,2, ...,m− 1) as the off-diagonal entries.

Tm =



α1 β1

β1 α2 β2

β2
. . . . . .
. . . . . . βm−1

βm−1 αm


Let ξmin and ξmax be the smallest and largest eigenvalues of Tm, respectively. Paige (1980)615

demonstrated that ν ≤ ξmin ≤ ν+ δ1(m) and µ− δ2(m)≤ ξmax ≤ µ. As m increases, δ1(m) and

δ2(m) will gradually converge to zero. Thus, the eigenvalue estimation of M−1A is transformed to

solve the eigenvalues of Tm. Step (8) in eigenvalue estimation employs the Gershgorin circle theorem

to estimate the largest eigenvalue of Tm, that is, µ= max1≤i≤m
∑m
j=1 |Tij |= max1≤i≤m(αi+βi+

βi−1). The efficient QR algorithm (Ortega and Kaiser, 1963) with a complexity of Θ(m) is used to620

estimate the smallest eigenvalue ν in step (9).
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Figure 1. Grid domain decomposition of the ocean model component in CESM.
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Figure 2. Sparsity pattern of the coefficient matrix in the case with 30× 15 grids using nine-point stencils.
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Figure 3. Number of unknowns per processor and percentage of execution time in 0.1◦ POP using the default

diagonal-preconditioned ChronGear solver on Yellowstone.
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Figure 4. Relationship between the CFL number and the condition number of the coefficient matrix, where the

CFL number varies from 10−2 to 5.
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Figure 5. Relationship between aspect ratio and the condition number of the coefficient matrix under the con-

dition of different typical CFL numbers.
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Figure 6. When the aspect ratio is constant α= 1, relationship between the number of grid points and the

condition number of the coefficient matrix under the condition of different typical CFL numbers.
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Figure 7. Relationship between grid sizes and number of iterations of different solvers in test cases with the

idealized configuration.
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Figure 8. The convergence rate of different barotropic solvers with diagonal preconditioner and the convergence

rate of CSI solver with different preconditioners in the 0.1◦ POP on Yellowstone.
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Figure 9. The execution time for different phases using different barotropic solvers and the execution time for

different phases with different preconditioners in the P-CSI solver in 0.1◦ POP.
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Figure 10. The simulated speed of the 0.1◦ ocean model component using different barotropic solver. The num-

bers on the dotted line represent the percentage of execution time spent in barotropic mode with P-CSI(EVP)

using different number of processor cores. Information about the number of grid points per processor can be

deduced from Fig. 3.
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