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1 General comments

In their paper: "P-CSI v1.0, an accelerated barotropic solver for the high resolution
ocean model component in the Community Earth System Model v2.0" the authors
discuss the implementation of a new preconditioned iterative solver algorithm for the
solution of the elliptic PDE which arises in implicit time stepping of the barotropic mode
in ocean models. By using an iterative method which avoids global communications,
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the scalability of the solver can be improved significantly on large core counts. The
authors demonstrate that this leads to substantial performance improvements when
running the model at high spatial resolution on more than 16,000 cores of the Yellow-
stone supercomputer.

Accurate and scalable models are absolutely essential for reliable predictions of the
Earth’s climate which have wide impact in the geoscience community. In the intro-
duction the authors argue convincingly why the development of high resolution ocean
models and of massively parallel elliptic solvers is necessary and their novel algo-
rithm approach addresses an important bottleneck for scalability on large core counts
(global parallel reductions). Since the barotropic solver accounts for a large fraction in
the runtim, this work has a large impact for the numerical model they study and can
also help to improve related models in atmospheric- and ocean- modelling. The work
is put into context by referring to relevant related publications and the paper is very
well written throughout, with the results supporting the theoretical analysis (in partic-
ular the theoretical performance analysis). The scientific results, in particular the use
of a communication-avoiding iterative method as an alternative to "standard" Krylov-
subspace methdos such as CG, are very interesting and the benefits of the method
are demonstrated convincingly by detailed numerical experiments.

As stated at the end of the introduction, this paper is based on a related conference
proceedings publication [1], where the key ingredients of the algorithm and parallel
scaling tests are described in detail. Compared to [1], the present GMD paper contains
the following new material:

1. The properties of the discretised system and in particular the spectral radius
of the matrix is derived for a simplified test setup (constant ocean depth). By
a theoretical analysis of the convergence rate of the new P-CSI algorithm the
authors argue that it converges as fast as the CG and ChronGear solvers which
require additional global reductions
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2. Numerical estimates of the spectral radius for different aspect ratios and time
step sizes are presented

3. The detailed convergence history of different solvers/preconditioners is studied

However, the key concepts of the solver/preconditioner setup and similar results are
already given in [1] (for example for the convergence numbers, compare Fig. 6 in [1]
and Figs. 9 11 in the present paper, Fig. 13-15 are a subset of results from [1] and as
far as I can tell Fig. 10 and 12 are obtained with a similar setup as in [1]). I’m therefore
slightly concerned as to whether this paper contains sufficient new material to for a
new publication, in particular since I’m not sure how relevant the variations in time step
size really are in practice - the time step size is largely fixed by the CFL limit in other
model components, such as the advective time scale (see further discussion below).
To publish the paper it has to be made clear that large parts of it consist of new results.

The solver code is made available online, but I was not able to compile and run it since
it requires installation of the full model.

2 Specific comments

• Early on in the introduction and in section 2.2 the authors mention that global
reductions limit the performance of ChronGear and CG solvers, and this is one
of the main motivations for using the P-CSI method. While this is clearly shown
in Fig. 10, it might be good to already refer to numerical evidence here or quote
numbers from [1]: which percentage of the runtime is spent in global reduction
operations?

• In section 2 the authors derive the barotropic mode in the fundamental equations
and then discretise it implicitly in time. At this point it might be good to briefly
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mention how this is related to other model components: how is the implicitly
calculated height perturbation coupled back to the full equations? Are other parts
of the equations (such as advection) solved explicitly? What are the typical time
velocities/time scales (I assume that the implicit treatment of the barotropic mode
is necessary since the gravity-wave velocity

√
g ∗H is much larger than other

velocities in the system, such as advective velocities - is this correct?).

• When showing strong scaling results such as in Figs. 3, 13-15 the number of
unknowns per processor is relevant to assess the relative importance of halo
exchange, could this information be added to the figures?

• Discussion in section 4.1: the barotropic CFL number due to gravity waves of
speed cg =

√
gH, ng = cg · dt/dx, is a very important quantity and for a given

resolution directly related to the time step size. However, typically the time step
size dt is limited by other processes in the model. For example, if there is another
process with typical speed c’, which is treated explicitly, then the related CFL
number n′ = c′ · dt/dx is limited by n′ < O(1). For example in atmospherical
models cadvection 10 · cacoustic, and hence the ng should not be larger than ≈ 10.
Could the authors include a discussion of this and also discuss physical limits
on ng by referring to other components (i.e. non-barotropic) of the model? I
think this is very important since the CFL number has a significant impact on the
solver performance. By using cg =

√
9.81m/s2 × 4km = 200m/s the large time

step sizes in Fig. 5 seems to be completely unphysical if I assume that there
is another explicitly treated process in the model which is ≈ 10× slower than
the gravity waves, but my intuition from atmospheric models might be misleading
here and if the explicitly treated non-barotropic dynamics happens at much larger
time scales then those large time steps make sense. This seems to be implied
by the setup used for the 0.1 degree runs: assuming a depth of 4km, a time step
size of 172.8s would lead to a CFL number of ≈ 104. Since the condition number
depends largely on the CFL number it would be good to see what the physically
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relevant values are.

• The condition dt = dx/v, which is imposed at the bottom of page 9 should be
clarified. The authors refer to v as the "barotropic velocity" and then vary this
between 2m/s and 200m/s. Should this v be some other velocity in the system
which limits the time step size? The velocity relevant for the barotropic equation
is the gravity wave speed cg =

√
gH which is 200m/s for a depth of 4km. Same

question in section 5.1, where the authors fix v = 2m/s.

• It would help if the CFL number and (an estimate of the) condition number of the
matrix are given for the realistic 0.1 degree run. Since the largest and smallest
eigenvalue are estimated this information should be available.

• If the CFL numbers are very large (see previous points), then I really think that ad-
vanced preconditioners have the potential for improving the performance. Multi-
grid preconditioners could reduce the iteration count from O(100) to O(10), so
might pay off even if one preconditioner application is more expensive.

• In Fig. 5 it would be good to indicate the range of typical physical time step sizes
for each resolution instead of just plotting a wide range of time scales.

• Page 13, line 394: while the matrix becomes more ill conditioned as the problem
size increases, the condition dt = dx/v will limit this growth, in fact the upper
bound on the condition number is at the order of ≈ gH/v2.

• The theoretical analysis is carried out for a constant ocean depth H. How rea-
sonable is this assumption and which impact do variations in H have?

3 typos/minor comments

– at several places in the paper "scaler" should be replaced by "scalar"
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– to me "boundary communication" is a slightly unusual expression, I’d call
this "halo exchange" since "boundary" could refer to a physical boundary in
the global domain (such as the ocean-land interface).

– at the bottom of page 4: should this read "[...] the barotropic continuity Eq.
(4) *has been* linearised [...]" ("is linearised" implies that another term has
to be removed from (4) to obtain a linear equation, but (4) is already linear).

– bottom of page 8: "spectrum radius" -> "spectral radius"

– definition of Pk(ξ) between Eqs. (19) and (20) on page 10: What are α and
β here?

– in appendix A and B it might help if the global reduction operations in steps
2. and 5. of PCG and steps 3. and 4. of ChronGear are highlighted. Also, a
sentence to the appendix which clarifies that the global reduction of ρk and
σk in the ChronGear algorithm can be combined (thus halving the latency)
might help.

– Fig. 4 does not add relevant information and should be removed

– Fig. 2: replace "sparse pattern" -> "sparsity pattern"
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