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Dear Dr. Müller:
We would like to express our sincere appreciation to your valuable feedback. Your
comments are highly insightful and enable us to significantly improve our manuscript.
The following pages are our point-by-point responses to each of your comments.
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1 Response to general comments

In their paper: "P-CSI v1.0, an accelerated barotropic solver for the high resolution
ocean model component in the Community Earth System Model v2.0" the authors
discuss the implementation of a new preconditioned iterative solver algorithm for the
solution of the elliptic PDE which arises in implicit time stepping of the barotropic mode
in ocean models. By using an iterative method which avoids global communications,
the scalability of the solver can be improved significantly on large core counts.
The authors demonstrate that this leads to substantial performance improvements
when running the model at high spatial resolution on more than 16,000 cores of the
Yellowstone supercomputer.
Accurate and scalable models are absolutely essential for reliable predictions of
the Earth’s climate which have wide impact in the geoscience community. In the
introduction the authors argue convincingly why the development of high resolution
ocean models and of massively parallel elliptic solvers is necessary and their novel
algorithm approach addresses an important bottleneck for scalability on large core
counts (global parallel reductions). Since the barotropic solver accounts for a large
fraction in the runtime, this work has a large impact for the numerical model they study
and can also help to improve related models in atmospheric- and ocean- modelling.
The work is put into context by referring to relevant related publications and the paper
is very well written throughout, with the results supporting the theoretical analysis (in
particular the theoretical performance analysis). The scientific results, in particular
the use of a communication-avoiding iterative method as an alternative to "standard"
Krylov subspace methods such as CG, are very interesting and the benefits of the
method are demonstrated convincingly by detailed numerical experiments. As stated
at the end of the introduction, this paper is based on a related conference proceedings
publication [1], where the key ingredients of the algorithm and parallel scaling tests are
described in detail. Compared to [1], the present GMD paper contains the following
new material:
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1.The properties of the discretized system and in particular the spectral radius of the
matrix is derived for a simplified test setup (constant ocean depth). By a theoretical
analysis of the convergence rate of the new P-CSI algorithm the authors argue that it
converges as fast as the CG and ChronGear solvers which require additional global
reductions.

2.Numerical estimates of the spectral radius for different aspect ratios and time step
sizes are presented.

3.The detailed convergence history of different solvers/preconditioners is studied.

However, the key concepts of the solver/preconditioner setup and similar results
are already given in [1] (for example for the convergence numbers, compare Fig. 6
in [1] and Figs. 9 11 in the present paper, Fig. 13-15 are a subset of results from [1]
and as far as I can tell Fig. 10 and 12 are obtained with a similar setup as in [1]). I am
therefore slightly concerned as to whether this paper contains sufficient new material
to for a new publication, in particular since I’m not sure how relevant the variations in
time step size really are in practice - the time step size is largely fixed by the CFL limit
in other model components, such as the advective time scale (see further discussion
below). To publish the paper it has to be made clear that large parts of it consist of
new results. The solver code is made available online, but I was not able to compile
and run it since it requires installation of the full model.

[Response]:
Thank you for your highly valued comments that our study has a large impact for the
numerical model development and can help to improve related models in atmospheric
and oceanic modelling.
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This paper is an extended work originally presented in the 27th International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC
2015) as we indicated in Section I. Most of the audiences in the SC conference are
supercomputing specialists. Therefore, we simplified the background of the ocean
model and focused on the design of algorithm, scalability tests and efficiency in
the SC paper. We introduced our solver with some pseudo-code and used a lot of
computer terminologies since the main readers are computer scientists. In order
to expand the influence of our work to more general readers, we decide to extend
our paper to GMD which is an outstanding academic exchange platform for climate
modelers. Therefore, we made a lot of changes to the content and structure of the
GMD manuscript comparing with the SC paper. Although you have mentioned part of
them in the general comments, we summarize our major changes as follows:

(1) We enriched the review of barotropic mode and introduced two solvers including
PCG and ChronGear adopted in the original POP. We believe that this important part
will help other climate modelers to comprehensively understand a general large-scale
computing problem in POP, MOM, MITgcm, FVCOM, OPA models etc. They can
associate their own climate models with our new solver through the detailed barotropic
equations. In SC paper, we only give a simple version of barotropic mode and the
ChronGear solver.

(2) We combined sections 3 and 4 in SC paper into the section "Design of the P-CSI
solver" in GMD manuscript. In order to make the climate modelers instead of computer
scientists to better understand the new solver, we rewrote most of sentences and
moved the pseudo-code and the procedure of preconditioned into the appendix for
interested readers. We also avoided the use of obscure computer jargon to make it
more readable.
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(3) After our presentation at SC conference last year, many helpful advices were
gathered. Some specialists pointed out that we should provide more information
about the universal applicability of our new solver in different situations and different
applications. Therefore, in the GMD manuscript, a new section 4 is dedicated to the
characteristics of the new approach. We theoretically analyzed the characteristics of
P-CSI through the associated eigenvalues and their connection with the convergence
rate. Based on different solvers/preconditioners, we derived the properties of the
discretized system and, in particular, the spectral radius of the matrix by theoretical
analysis of the Spectrum, condition number and the convergence rate. We concluded
that P-CSI can converge as fast as the CG and ChronGear solvers which require
additional global reductions. In SC paper, we only presented the computational
complexity.

We agree that there are some similar materials in the GMD manuscript and SC
paper in section 5 because this section presents the actual computational evaluation
about the actual performance. We will make some adjustments as follows:

(1) Fig. 9 is pretty new (not in the SC paper) and verifies the theoretical analysis of the
convergence rate of different barotropic solvers, we will merge it with Fig. 11 which is
also new and confirms the improvement of convergence rate. We will add some slopes
on Fig. 11 to reflect the condition numbers improved in the different pre-conditioners.

(2) The material we discuss about Figs. 10, and 12 is very similar to that in SC
paper. I believe it is still very important to emphasize that the global reduction is
the major bottleneck in the large-scale computing (>O(103) processor counts) in
the GMD paper. The P-CSI with EVP preconditioner enhances the performance
by significantly reducing the iteration number so that the time for computation
part is further reduced. In the revised version, we will further combine Fig. 10 and
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12 and reemphasize this point by shortening the discussion and an overall comparison.

(3) We will eliminate Fig. 13 because it illustrates the problem of ChronGear +
Diagonal and doesn’t add much. Figs. 14 and 15 will be reduced into one figure. In the
SC paper, we presented the analysis for barotropic solver only. Here, we will extend to
the overall performance of model by including the timing for other components. This
information is very important because the performance of 1/10 degree POP is not
clearly documented yet. So, we will put the total time (all components). This will make
a big difference and show the major advantage of our new approach.

According to your concern about the unphysical time step size in Fig.5, we will
use a typical value for the first baroclinic wave speed of 2m/s and a typical gravity wave
velocity of 200m/s to reanalyze the solver property. In the 0.1 degree ocean simulation,
the CFL number is about c∆t/∆x ≈ 3.46, thus the corresponding time step size are
17280s and 172.8s. We also believe it will make more senses to use CFL number as
the x-axis in some plots (see the following responses) instead of time-step (which is
also connected by dx). Therefore, all relevant figures will be changed accordingly.
In conclusion, after making the above modifications, we believe that this GMD
manuscript will be an expanded, more fully developed, and more refined version of the
conference paper. These new results are confirmed by a valuable theoretical analysis.
All figures have completely different stories and key messages comparing the SC
paper. We will clearly introduce these differences in the revised manuscript if we have
the opportunity.
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2 Response to specific comments

(1) Early on in the introduction and in section 2.2 the authors mention that global
reductions limit the performance of ChronGear and CG solvers, and this is one of the
main motivations for using the P-CSI method. While this is clearly shown in Fig. 10, it
might be good to already refer to numerical evidence here or quote numbers from [1]:
which percentage of the runtime is spent in global reduction operations?
[Response]:
In the introduction, we will add the following sentence,
"For example, when around four thousand cores are used, the global reduction in
PCG and ChronGear takes approximately 74% and 68% of the whole barotropic time,
respectively [1]. This situation will get worse with more cores."
Also, Fig. 10 will be merged with Fig. 12 so that we can reemphasize the advantage
of our proposed method. This discussion will be shortened.

(2) In section 2 the authors derive the barotropic mode in the fundamental equations
and then discretise it implicitly in time. At this point it might be good to briefly mention
how this is related to other model components: how is the implicitly calculated height
perturbation coupled back to the full equations? Are other parts of the equations
(such as advection) solved explicitly? What are the typical time velocities/time scales(I
assume that the implicit treatment of the barotropic mode is necessary since the
gravity-wave velocity

√
g ∗H is much larger than other velocities in the system, such

as advective velocities - is this correct?).
[Response]:
Thanks for your good suggestion. In the beginning of section 2.1, we will briefly
introduce the following time scheme.
"POP uses the splitting technique to solve the barotropic and baroclinic system [1]. All
terms in the Eq. (1) use the explicit scheme except the implicit treatment of barotropic
mode and semi-implicit treatment of Coriolis and vertical mixing terms. The implicit
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treatment of barotropic mode is necessary to simulate the fast gravity waves with the
speed of

√
g ∗H ≈200m/s so that we can use the same time step as the baroclinic

mode which has a velocity scale less than 2 m/s [1]. The time step of the 0.1 degree
POP model is 172.8s."
Yes, you are correct that the implicit approach is necessary to match the same time
step between the barotropic and baroclinic modes. Hope the above brief discussion
can give the readers an overall description.

(3) When showing strong scaling results such as in Figs. 3, 13-15 the number
of unknowns per processor is relevant to assess the relative importance of halo
exchange, could this information be added to the figures?
[Response]:
This advice is valuable and we will add this information to Fig. 3 by including the new
axis labeled as "number of grids per core" . We will eliminate Fig.13 because it just
says the problem of ChronGear + Diagonal. The Figs. 14 and 15 will be reduced into
one figure. We will refer to Fig. 3 for this information.

(4) Discussion in section 4.1: the barotropic CFL number due to gravity waves
of speed cg =

√
gH, ng = cgdt/dx, is a very important quantity and for a given

resolution directly related to the time step size. However, typically the time step
size is limited by other processes in the model. For example, if there is another
process with typical speed c

′
, which is treated explicitly, then the related CFL num-

ber n
′

= c
′
dt/dx is limited by n

′
< O(1). For example in atmospherical models

cadvection10 · cacoustic, and hence the ng should not be larger than ≈ 10. Could the
authors include a discussion of this and also discuss physical limits on ng by referring
to other components (i.e. non-barotropic) of the model? I think this is very important
since the CFL number has a significant impact on the solver performance. By using
cg =

√
9.81m/s2 × 4km = 200m/s the large time step sizes in Fig. 5 seems to be

completely unphysical if I assume that there is another explicitly treated process in the
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model which is ≈ 10× slower than the gravity waves, but my intuition from atmospheric
models might be misleading here and if the explicitly treated non-barotropic dynamics
happens at much larger time scales then those large time steps make sense. This
seems to be implied by the setup used for the 0.1 degree runs: assuming a depth
of 4km, a time step size of 172.8s would lead to a CFL number of ≈ 104. Since the
condition number depends largely on the CFL number it would be good to see what
the physically relevant values are.
[Response]:
Thanks for your corrections. Considering the limitation of CFL condition, the time
step size in Fig. 5 is beyond the physical range indeed. The original purpose of this
selection is to make it more intuitive to readers that the time step sizes have a large
influence on the condition number of the coefficient matrix without taking the physical
consistency into account. We will redraw Fig.5 with the CFL number as the x-axis
and make the values more credible in physics. In 0.1 degree ocean simulation, the
time step size is ∆t=172.8s (500 steps per simulation day), thus for the barotropic
mode, the CFL number is about c · ∆t/∆x ≈ 3.46 where c = 200m/s is the gravity
wave velocity in the barotropic mode and ∆x = 10000m is the horizontal grid length. If
c

′
= 2m/s is a typical value for the first baroclinic wave speed, the CFL number is less

than c
′ ·∆t/∆x ≈ 0.035. CFL numbers varying from 0.01 to 5 will be used in Fig. 5 to

cover more physically relevant cases in POP.

(5) The condition dt = dx/v, which is imposed at the bottom of page 9 should
be clarified. The authors refer to v as the "barotropic velocity" and then vary this
between 2m/s and 200m/s. Should this v be some other velocity in the system which
limits the time step size? The velocity relevant for the barotropic equation is the gravity
wave speed cg =

√
gH which is 200m/s for a depth of 4km. Same question in section

5.1, where the authors fix v = 2m/s.
[Response]:
Thanks for your corrections. We will use the typical value for the first baroclinic wave
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speed 2m/s and the typical gravity wave velocity cg =
√
gH = 200m/s for a depth

of 4km as the lower bound and the upper bound of the velocity range, respectively.
Besides, we will use the non-dimensional barotropic CFL number instead of velocity
as the legend of Fig. 7 to show the dependency.

(6) It would help if the CFL number and (an estimate of the) condition number
of the matrix are given for the realistic 0.1 degree run. Since the largest and smallest
eigenvalue are estimated, this information should be available.
[Response]:
We will add this information in Section 4.1.
"In 0.1 degree realistic run, the CFL number is about c · ∆t/∆x ≈ 3.46(c =
200m/s,∆t = 172.8s,∆x = 10000m is the typical gravity wave speed, time step and
spatial resolution, respectively) and the condition number is about 250."

(7) If the CFL numbers are very large (see previous points), then I really think
that advanced preconditioners have the potential for improving the performance.
Multigrid preconditioners could reduce the iteration count from O(100) to O(10), so
might pay off even if one preconditioner application is more expensive.
[Response]:
As you point out, any advanced preconditioner which can quickly reduce the iteration
count will be very useful to improve the performance. In fact, the EVP solver is a
direct fast solver so that it has this capability and is the main reason we choose here.
Furthermore, as we indicated in lines 66-77 of section 1, the multigrid method is a
well-known scalable and efficient approach to solve the elliptic systems too. However,
some related works confirmed that the geometric multigrid in global ocean models
does not always scale ideally because of the presence of complex topography (land
particularly), non-uniform or anisotropic grids ([2], [3], [4], [5], [6]). These constraints
lead to an elliptic system with variable coefficients defined on an irregular domain
in POP and complicate the modeling system. The algebraic multigrid (AMG) is an
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alternative to the geometric multigrid to handle the complex topography. However, the
AMG setup in the parallel environment is more expensive than the iterative solver in
climate modelling, which makes it unfavorable as a preconditioner [2]. On the contrary,
the EVP preconditioner is simple enough and can effectively reduce the condition
number of coefficient matrix by about 5 times in both 1 and 0.1 degree cases, which
leads to a reduction of 2/3 iterations. Therefore, we use the direct EVP solver. Even
so, more study about the preconditioner in practical climate models will be very useful
and we will take it as our future work.

(8) In Fig. 5 it would be good to indicate the range of typical physical time step
sizes for each resolution instead of just plotting a wide range of time scales.
[Response]:
We will replace the time step sizes in the x-axis of Fig. 5 with the non-dimensional
CFL number and make the values more credible in physics.

(9) Page 13, line 394: while the matrix becomes more ill conditioned as the
problem size increases, the condition dt = dx/v will limit this growth, in fact the upper
bound on the condition number is at the order of ≈ gH/v2.
[Response]:
Thanks for the corrections. We will add the following sentences in line 394 to make
our revised version more rigorous.
"As shown in Fig. 8, when the problem size increases, the coefficient matrix becomes
more poorly conditioned until it reaches the upper bound at the order of gH/v2. "

(10) The theoretical analysis is carried out for a constant ocean depth H. How
reasonable is this assumption and which impact do variations in H have?
[Response]:
The purpose of this assumption is to succinctly demonstrate the properties of the
sparse matrix used in the POP. This assumption is not convincing in physics indeed,
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while it provides a bound for cases with various H. We will expand our discussion to
support variations in H, which should lead to similar results.

3 Response to typos/minor comments

(1) at several places in the paper "scaler" should be replaced by "scalar"
[Response]: We will replace "scaler" with "scalar" in our revised version.

(2) to me "boundary communication" is a slightly unusual expression, I’d call this
"halo exchange" since "boundary" could refer to a physical boundary in the global
domain (such as the ocean-land interface).
[Response]: We will replace "boundary communication" with "halo exchange" in our
revised version.

(3) at the bottom of page 4: should this read " [...] the barotropic continuity Eq.
(4) *has been* linearised [...]" ("is linearised" implies that another term has to be
removed from (4) to obtain a linear equation, but (4) is already linear).
[Response]: We will change "is linearized" into "has been linearized" in our revised
version.

(4) bottom of page 8: "spectrum radius" -> "spectral radius"
[Response]: We will revise "spectrum radius" with "spectral radius" in our revised
version.

(5) definition of Pk(ξ)between Eqs. (19) and (20) on page 10: What are α and
β here?
[Response]: We will introduce the meaning of α and β in our revised version. The α is
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the aspect ratio and β is the reciprocal of α which are defined in Eq. (13).

(6) in appendix A and B it might help if the global reduction operations in steps
2. and 5. of PCG and steps 3. and 4. of ChronGear are highlighted. Also, a sentence
to the appendix which clarifies that the global reduction of ρk and σk in the ChronGear
algorithm can be combined (thus halving the latency) might help.
[Response]: We will highlight these steps and add some sentences to clarify the
global reduction operations. In line 515, we will add "these inner products use two
global reduction operations."; In line 535, we will add "The inner products in ρk and
σk use two global reduction operations. However, these two global reductions can be
combined into one operation thus halving the latency."

(7) Fig. 4 does not add relevant information and should be removed.
[Response]: We will remove Fig.4 and related paragraphs in our revised version.

(8) Fig. 2: replace "sparse pattern" -> "sparsity pattern"
[Response]: We will replace "sparse pattern" with "sparsity pattern" in our revised
version.
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