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Abstract. This idealized regional atmospheric inversion study assesses the potential of the 4-dimensional variational (4D-Var)

method to estimate CO2 fluxes and the atmospheric CO2 concentration state jointly. In order to distinguish and quantify the

surface-atmosphere CO2 fluxes, combining anthropogenic CO2 emissions, photosynthesis, and respiration, we include uncer-

tainties of initial values, which arise from highly uncertain surface fluxes and night-time transport. Therefor a new calculation

of the background error standard deviation for the CO2 fluxes was developed. To suppress spurious wiggles occurring from5

advection, an absolute monotone advection scheme with low numeric diffusion and its adjoint has been implemented. The

inversion by the EURopean Air pollution Dispersion-Inverse Model (EURAD-IM) with 5 km resolution in Central Europe is

validated by synthetic half hourly measurements from eleven concentration towers. A significant improvement of the analysis

is shown if initial values and CO2 fluxes are optimised jointly, compared to optimising CO2 fluxes alone, without estimating

uncertainty of atmospheric concentration. We find that joint estimation of carbon fluxes and initial states requires a careful10

balance of the background error covariance matrices but enables a more detailed analysis of atmospheric CO2 and the surface-

atmosphere fluxes.

1 Introduction

The quantification of terrestrial CO2 sinks and sources is important in order to understand the carbon cycle and its fundamen-

tal role in the global climate system. On a global scale, approximately 30% of the anthropogenic emissions are removed by15

oceans (Wanninkhof et al., 2013) as well as 30% by terrestrial biosphere (Sitch et al., 2013), the latter one showing much larger

temporal and spatial variability (Jung et al., 2011).

One widely used method for the estimation of the surface-atmosphere CO2 exchange is atmospheric inverse modelling, us-

ing CO2 concentration measurements and atmospheric transport models. On a global scale atmospheric inversions improve

the quantification of natural and anthropogenic carbon fluxes (Tans et al., 1990; Enting et al., 1993; Rödenbeck et al., 2003;20

Rayner et al., 2008), although the uncertainty between studies is large, especially between continents (Gurney et al., 2002;

Baker et al., 2006; Peters et al., 2010).

Locally the increase of spatio-temporal model resolution leads to even higher uncertainties of atmospheric inversion studies

(Lauvaux et al., 2008; Broquet et al., 2011), mainly for two reasons: (1) A derivation of appropriate a priori surface carbon
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fluxes is difficult due to spatial heterogeneity. In particular European land use is highly variable since large parts of the ter-

restrial biosphere are actively managed by humans and are often embedded in densely populated areas, including cities and

industrial areas (Peters et al., 2010). (2) Atmospheric transport modelling introduces uncertainty to atmospheric CO2 mixing

ratio of several ppm due to advection (Lin and Gerbig, 2005) and vertical mixing (Gerbig et al., 2008). Although uncertainty

from transport model errors is considerably lower than uncertainty from CO2 surface fluxes (Tolk et al., 2009), the skills of the5

transport model are essential for CO2 inversions.

Additionally to the mentioned difficulties of proper transport models and surface-atmosphere CO2 fluxes one major obstacle

for CO2 inversions is the sparsity of representative concentration observations, e.g. Wu et al. (2016) addresses the question of

optimal location of observations in inversion systems. To address uncertainty appropriately to the mentioned model processes

and input data is among the most challenging issues for atmospheric CO2 inversions.10

Tolk et al. (2011) compare the uncertainty reduction for different strategies of inverse carbon modelling, suggesting an optimi-

sation of biosphere model parameters or a pixel inversion of respiration and photosynthesis on a regional scale.

To reduce uncertainty of a priori fluxes, additional carbon flux measurements from eddy covariance towers can be used .

Lauvaux et al. (2008), Cooley et al. (2013), and Zhu et al. (2014) combine this so-called bottom-up approach with top-down

atmospheric inversion in order to quantify regional carbon fluxes.15

To reduce errors in atmospheric transport processes, different strategies are investigated. For example additional information

from radon measurements (Broquet et al., 2011) or the energy balance (Tolk et al., 2009) are used to gain information of

atmospheric CO2 dispersion. Studies with an horizontal resolution of a few km (Ahmadov et al., 2007, 2009; Pillai et al.,

2011) increase confidence in modelled CO2 mixing ratios compared to coarser resolution, although comparisons of meso-

scale models reveal discrepancies for the vertical boundary layer (Sarrat et al., 2007; Geels et al., 2007). Uncertainty of vertical20

model transport is considerably higher during night due to uncertain mixing height (Lauvaux et al., 2008; Dolman et al., 2009;

Kretschmer et al., 2014), leading to a poor representativity of concentration during morning hours. Still, optimisation of initial

conditions is often mitigated by long spin-up periods or is investigated at a coarse subspace (Peylin et al., 2005; Lauvaux et al.,

2008).

This study investigates how CO2 flux uncertainty from inversions can be reduced by a proper accounting of uncertainty of at-25

mospheric concentration. The feasibility and limitations of a comprehensive 4D-Var inversion system to analyse anthropogenic

emissions, photosynthesis, ecosystem respiration, and initial values at each grid cell jointly, are validated in this study.

This paper is organised as follows. Section 2 delivers the theoretical background of the joint optimisation of fluxes and initial

values, Sect. 3 describes the implementation into the EURAD-IM. Numerical experiments validating the impact of erroneous

initial values are presented and discussed in Sect. 4. Section 5 summarises the results.30

2 Theory for joint variational assimilation

In this study we want to optimise two parameters with the 4D-Var data assimilation method: initial values and flux factors

jointly. While the proceeding of optimising initial values is well-known, we want to visualise the basic concept of optimising
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Figure 1. The diurnal time profile of power generation given by Memmesheimer et al. (1995) and spatial averaged biogenic fluxes calculated

with WRF-CLM at 24 July 2012 (absolute weights sum up to 1). An example with an analysed flux factor of 0.75 for photosynthesis is

shown, decreasing the total amount but preserving the profile.

flux factors and joint optimisation. The main idea (Elbern et al., 2000) is to reduce the degree of freedom of the flux rate space

by not optimising the fluxes at each time step ti. Rather it is pointed out that, due to the better knowledge of the diurnal cycle

of fluxes, one efficient parameter to optimise is their diurnal amplitude, as simulated by the forward model.

This study optimises three fluxes, anthropogenic emissions, photosynthesis, and respiration. For simplicity we will define the

flux space to be of the same dimension as the state space (Rn). The flux rate vector f ∈ Rn scales the a priori knowledge of5

the background flux Ub by an optimisation factor per grid point and per flux type, while the relative diurnal profile variation

remains unchanged. For notational convenience we define Ub ∈ Rn×n to be a diagonal matrix.

The actual fluxes are thus (diag(a) designates a diagonal matrix with entries of the vector a)

Ui+1/2 = diag(Ub
i+1/2 f) ∈ Rn×n, ∀ i= 0, . . . ,N − 1, (1)

with Ui+1/2 denoting the fluxes in the time interval [ti, ti+1] introduced instantaneously at ti+1/2. For notational convenience10

subindices in this paper will be used exclusively to identify discrete time. The simulated time period is defined as [t0, t1, . . . , tN ],

(·)i refers to ti, (·)i+1/2 to (ti + ti+1)/2, and (·)i,j to the interval [ti, tj ].

Figure 1 shows the diurnal cycle of the three CO2 fluxes, anthropogenic emissions, photosynthesis, and respiration, where the

photosynthesis is exemplarily rescaled. The actual parameter of optimisation will be g := ln(f) due to two reasons: (1) The

transformation results in analog partial costs for flux factors g and 1/g. (2) Since f > 0 it can be described by a log-normal15

distribution, resulting in a Gaussian probability density function for g. Fletcher and Zupanski (2006) and Fletcher (2010)

describe 4D-Var systems with hybrid Gaussian and log-normal distribution in general.

The idea for the main advantage of joint optimisation of initial values and flux factors is depicted in Fig. 2. While the influence
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Figure 2. If a priori initial values and flux rates are defective, the joint optimisation combines the possibility of analysing both error sources.

Optimising only initial values leads to strong forcing at the start of the assimilation window. Optimising only flux rates can not change the

initial values and may force the analysis to give more weight at the starting time than desirable.

of optimised initial values decreases with longer forecast period, optimised flux factors can hardly adjust a mismatch between

model and observation at the beginning of a forecast.

In the following we briefly present the theoretical background and the formulation of the cost function J , following Elbern

et al. (2000) and Elbern et al. (2007). We assume a background field xb
0 ∈ Rn, which is the initial concentration value of the

passive tracer CO2, and gb = (0, . . . ,0) ∈ Rn, the background logarithmic flux factors, are given. Our a priori knowledge about5

the fluxes is actually represented by the flux strength Ub
t1/2,...,tN−1/2

given in µmolCO2
m2s . If [t0, . . . , tN ] denotes the assimilation

window considered, we set further observations yi ∈ Rpi at any time step ti.

In the following subscripts i always refer to time ti. The background field xb
0 evolves from time t0 to ti by the use of the model

M0,i:

(xi,f) :=M0,i(x0,f). (2)10

The observation operatorHi projects the model state and the flux factor from R2n to the observation space Rpi . This mapping

Hi allows to compare observation yi with the model equivalentHi(xb
i ,g

b), by the innovation vector di

di := yi−Hi(xb
i ,g

b) = yi−HiM0,i(xb
0,g

b). (3)

Following Courtier et al. (1994) we define the cost function J in dependence of the increments, which is the difference between

the optimisation parameters and the a priori knowledge of initial values and flux factors, δx0 := x0−xb
0 and δg := g−gb. The15

mutually uncorrelated error covariance matrices for the initial values (IV), flux factors (FF), and observations (O) are called
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B ∈ Rn×n, K ∈ Rn×n, and Ri ∈ Rpi×pi respectively. The cost function J can now be defined as

J (δx0, δg) :=J IV +J FF +J O (4)

:=
1
2

(δx0)T B−1 (δx0) +
1
2

(δg)TK−1 (δg)+

1
2

N∑

i=0

[
di−HiM0,i(δxT

0 , δg
T)T

]T R−1
i

[
di−HiM0,i(δxT

0 , δg
T)T

]
.5

The operators Hi ∈ R2n×pi ,M0,i ∈ R2n×2n are tangent linear approximations with

Hi(xi + δxi,g + δg)≈Hi(xi,g) + Hi(δxT
i , δg

T)T, (5)

M0,i(xi + δx0,g + δg)≈M0,i(x0,g) + M0,i(δxT
0 , δg

T)T (6)

for sufficiently small δx0 and δg. Consequently the gradient of J is

∇J (δx0, δg) =


B−1δx0

K−1δg


−

N∑

i=0

(M0,i)THT
i R−1

i


di−HiM0,i


δx0

δg




 , (7)10

where (M0,i)T and HT
i are the adjoint operators, with (M0,i)T modelling backwards in time from ti to t0. Since the construc-

tion of the adjoint model uses the derivative with respect to the optimisation parameter we have to distinguish between the

adjoint model related to initial values x0 and flux factors g. See Appendix A for a detailed derivation of (M0,i)T with respect

to the initial values and flux factors. A careful balancing of the background error covariance matrices (BECM) B and K and

the matrix R for the observation errors is decisive for the analysis.15

3 Model description

The model applied here is derived from the multiscale EURopean Air pollution Dispersion-Inverse Model (EURAD-IM),

which is a state of the art Chemistry Transport Model (CTM) (Elbern et al., 2007; Goris and Elbern, 2015) including gas phase,

aerosols and pollen.

The model domain uses the Lambert conformal projection, where the center of the coarse domain is located at 54◦ N latitude,20

12.5◦ E longitude and has the staggered Arakawa C-grid structure in this study. A nesting configuration with a horizontal

resolution of 15×15 km2 and 5×5 km2 (Fig. 3 (a)) is used. The model domain includes 23 vertical levels using terrain

following σ coordinates up to 100 hPa. For the parent domain constant lateral boundary conditions are taken, the usage of

lateral boundary values from global as provided in Copernicus Atmosphere Monitoring Service (CAMS) is feasible as well.

For simplicity the background concentration of CO2 for all domains is assumed to be constant 386 ppmV.25

3.1 Observations

The measurement towers used in this study are part of the FLUXNET (http://fluxnet.ornl.gov/ ) network, with a spatial focus

on the TR32 Rur catchment area (http://tr32new.uni-koeln.de/) in western Germany. All stations are listed in detail in Table

5
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Figure 3. Topography of (a) the nests with 15 and 5 km resolution and (b) the 5 km domain with the location of the synthetic observation

sites, see also Table 1.

Table 1. Stations from FLUXNET (http://fluxnet.ornl.gov/ ) used in this study. ENF = Evergreen Needleleaf Forests, DBF = Deciduous

Broadleaf Forests

Elevation, Measurement

Code Lon, ◦ Lat, ◦ m asl Height, m agl Name Vegetation

BIS -1.23 52.4342 120 42 Biscarosse, Fra ENF

BRO 16.2995 52.4342 83 5 Brody, Pol Cropland

CBW 4.9270 51.9710 5 20, 60, 120, 200 Cabauw, Ned Grassland

HUN 16.6520 46.9559 234 10, 48, 82, 117 Hegyhatsal, Hun Cropland

HFS 7.0655 48.6742 304 22 Hesse Forest Sarre., Fra DBF

JUE 6.4094 50.9100 101 20, 100 Juelich, Deu -

OXK 11.8083 50.0301 1020 23, 90, 163 Ochsenkopf, Deu ENF

ROL 6.3041 50.6219 486 3 Rollesbroich, Deu Grassland

SEL 6.4497 50.8706 109 3 Selhausen, Deu Cropland

SRo 10.2909 43.7320 6 23.5 San Rossore 2, Ita ENF

WUE 6.3310 50.5049 578 38 Wuestebach, Deu ENF

1. Measurements are taken every 30 minutes and the data will be assimilated between 06 and 18 UTC, resulting in 340

observations in total. Except from two towers (BIS and WUE) all towers provide measurements below 30 m, which is in

the surface layer of our model. Four towers provide also measurements in several vertical heights. To ease comparison no

distinction between high altitude stations as Ochsenkopf and flat stations is made here.
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3.2 Meteorological Input

The EURAD-IM uses the Weather Research and Forecasting (WRF) model version 3.6.1 (Skamarock et al., 2008), a mesoscale5

numerical weather prediction system as meteorological driver, to provide hourly meteorological input. The necessary meteo-

rological initial and lateral boundary data are taken from six-hourly ECMWF (http://www.ecmwf.int) reanalysis, interpolated

to 0.225◦ × 0.225◦. The most important variables are wind, temperature, shortwave radiation and planetary boundary layer

height.

3.3 Anthropogenic CO2 emissions5

Anthropogenic emissions, introduced as first guess for inversion, are taken from Toegepast Natuurwetenschappelijk Onderzoek

(TNO) inventory (H. Denier van der Gon, personal communication, May 2013), following the methodology outlined in Kuenen

et al. (2014) and Pouliot et al. (2012) for air pollutants. It provides point and area sources of CO2 splitted into ten source

categories for Europe for the reference year 2005. Annual values are disaggregated for each source category in dependence

of month, day and hour. See also Memmesheimer et al. (1995) for details. Hourly values are then interpolated to model time10

step. Area sources are scaled down to 5 km resolution, using land cover and infrastructure information with the Geographic

Information System (GIS).

3.4 Biogenic CO2 fluxes

Hourly photosynthesis, leaf-, and soil-respiration are calculated using the Community Land Model (CLM) version 4.0 (Oleson

et al., 2010), which is used as land surface scheme for WRF. While photosynthesis is already included in this configuration15

of CLM according to Collatz et al. (1991) and Farquhar et al. (1980), leaf respiration was added according to the same pub-

lications. While leaf respiration is in dependence of the maximum carboxylation capacity, the calculation of photosynthesis

depends further on the internal leaf CO2 and O2 pressure, the amount of radiation, the availability of the enzyme Rubisco,

and the Michaelis-Menten constants for CO2 and O2. The Leaf Area Index (LAI) is monthly Moderate Resolution Imaging

Spectroradiometer (MODIS) data, averaged for the years 2001-2010, provided as a part of the WRF preprocessing system.20

The CLM sub-grid hierarchy is simplified to allow only one Plant Functional Type (PFT) per grid cell, following Oleson et al.

(2010) (see Fig. 1.1 in that publication for details).

Soil respiration is implemented as an Arrhenius type equation in dependence of temperature of soil layer four (ca. 11-15 cm

depth), following Lloyd and Taylor (1994, Eq. (8)). Other CO2 fluxes from the biosphere are neglected in this work.

7

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-132, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 19 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



(a) Photosynthesis (b) Leaf respiration (c) Soil respiration
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Figure 4. WRF-CLM output of photosynthesis, leaf and soil respiration at 23 July 2012 13 UTC with 5 km horizontal resolution.

3.5 Forward model of EURAD-IM

The transport-diffusion equation which describes the dispersion of the mixing ratio of CO2, C(r, t) given in dependence of5

spatial location r ∈ R3 and time t ∈ [t0, tN ], as a passive tracer can be written as (Elbern and Schmidt, 2001)

∂C

∂t
+ (u · ∇)C︸ ︷︷ ︸

advection

− 1
%
∇ (%Ke∇C)
︸ ︷︷ ︸

turbulent diffusion

= e︸︷︷︸
flux

. (8)

The equation includes terms for advection, turbulent diffusion, and additional fluxes. Here u designates the wind field, % the air

density and Ke is the eddy diffusion tensor. The sinks and sources to the atmosphere, consisting of anthropogenic emissions,

biogenic respiration and photosynthesis are aggregated to the flux e.10

The EURAD-IM forward model discretises Eq. (8) with an operator splitting approach due to different numerical characteristics

of the major transport processes advection and turbulent diffusion (Yanenko, 1971). The operators for advection and diffusion

are processed for time steps ti to ti+1/2 and ti+1/2 to ti+1 while fluxes are inserted instantaneously at time points ti+1/2. A

symmetric order of the operators A1
i,i+1/2 ∈ Rn (advection in sequence x-y-z), A2

i+1/2,i+1 ∈ Rn (advection in sequence z-y-x),

Di,i+1/2,Di+1/2,i+1 ∈ Rn (turbulent diffusion), and Ff
i+1/2 ∈ Rn (fluxes) is chosen:15

xi+1 =
(

A2
i+1/2,i+1Di+1/2,i+1Ff

i+1/2Di,i+1/2A1
i,i+1/2

)
xi, (9)

where the flux operator is defined as (background fluxes Ub are given in µmolCO2
m2s and 4t := ti+1− ti is given in seconds as

well)

Ff
i+1/2(Di,i+1/2A1

i,i+1/2xi) := (Di,i+1/2A1
i,i+1/2xi) +4tUb

i+1/2 f . (10)

We remember that Ub
i+1/2 f represents actually three fluxes, each with an independent flux factor for anthropogenic emissions,

photosynthesis, and respiration respectively.

Tests with a non-monotone advection scheme display strong deterioration of CO2 mixing ratio if strong spatial gradients of the

wind strength occur, see Fig. 5. To account for this problem the Walcek scheme (Walcek, 2000) is used to solve the advection
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Figure 5. Zoom of the 5 km horizontal resolution grid, started with constant mixing ratio after four hour run-time at a high vertical level

(∼ 373− 282 hPa) barely influenced from surface fluxes. The wind field is normalised to 30 m/s.

process. Applying dimensional dependent densities, allows splitting of the forward equation into one-dimensional realisations.5

The Walcek scheme solves the 1-dim transport equation

∂C

∂t
=−∂ (u ·C)

∂x
(11)

based on the van Leer algorithm (Van Leer, 1977) with monotonic constraints and a flux adjustment

around local mixing ratio extrema. This aggregates mass numerically and reduces numerical diffusion at

extrema. It is absolute monotone, positive definite, of order two, produces only low numeric diffusion,10

and is numerical efficient. Although an exact parallelisation of the Walcek scheme is numerically

not efficient, a good approximation with a small overlap of two grid cells was realised, which preserves the numerical efficiency.

3.6 Adjoint EURAD-IM model

The adjoint model MT discretises the adjoint of the forward PDE, Eq. (8). Let C∗ designate the adjoint variable, then the15

adjoint PDE has the form

−∂C
∗

∂t
−∇(uC∗)−∇

(
%Ke∇C

∗

%

)
= φ, (12)

where φ represents perturbation from the reference CO2 flux e of Eq. (8).

Although the flux factor f = eg is constant during the forward run, the adjoint flux factor f∗ changes with (M)T during the

background run and, in contrast to Eq. (9), we need to calculate f∗ as well. The EURAD-IM backward model applies again an20
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operator splitting to solve Eq. (12), :

(Mi,i+1)T


x∗i+1

f∗i+1


=


 (Ti,i+1)Tx∗i+1

4tUb
i+1/2 (Ti+1/2,i+1)Tx∗i+1 + f∗i+1


 (13)

with Ti,i+1 merging the transport operators from time ti to ti+1

Ti,i+1 := A2
i+1/2,i+1Di+1/2,i+1Di,i+1/2A1

i,i+1/2, Ti+1/2,i+1 = A2
i+1/2,i+1Di+1/2,i+1. (14)

See Appendix A for a detailed derivation of Eq. (13).25

The adjoint diffusion and flux operators DT and (Ff )T are constructed with the automatic differentiation tool Tapenade (Has-

coet and Pascual, 2013) from the discretisation of the forward PDE Eq. (8): The derivative of the functions specified by D and

Ff are calculated applying the chain rule to get the tangent linear of the forward operators. This linearised code is transposed

afterwards resulting in DT and (Ff )T.

To construct the adjoint of the advection operators (A1)T and (A2)T a different approach has been chosen. The Walcek scheme

is not differentiable due to the monotony and automatic differentiation is not directly applicable to obtain adjoint code. Fol-

lowing the suggestion of Gou and Sandu (2011) the continuous adjoint for advection has been used. The adjoint PDE of Eq.5

(11)

−∂C
∗

∂t
=
∂ (u ·C∗)

∂x
, (15)

can be also used by the forward Walcek scheme, if the reverse winds and a rescaling for C∗ is used. The work cited above

also suggests for 4D-Var optimisation problems to construct adjoint routines for diffusion and advection, as it is done here:

automatic differentiation for diffusion and the continuous adjoint for advection.10

3.7 Preconditioning of the cost function and minimisation

The background error covariance matrices (BECM) B and K are designed to capture the spatial correlation between initial

values and surface fluxes respectively. Increasing radii of influence lead to larger condition numbers of B, which makes effi-

cient minimisation more difficult. Using the increments δx0 and δg multiplied with the inverse square roots of B and K, a

formulation of J equivalent to Eq. (4) is possible:15

v :=B−1/2δx0 = B−1/2(x0−xb
0) and w := K−1/2δg = K−1/2(g− gb),

J (v,w) :=
1
2
vTv +

1
2
wTw +

1
2

N∑

i=0

[
di−HiM0,i(vT,wT)T

]T R−1
i

[
di−HiM0,i(vT,wT)T

]
. (16)

The gradient of J with respect to v and w reads then

∇J (v,w) =


v

w


−


BT/2 0

0 KT/2




N∑

i=0

(M0,i)THT
i R−1

i


di−HiM0,i


v

w




 . (17)

One iteration cycle of the 4D-Var system EURAD-IM to jointly analyse initial values and flux factors consists of:20
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1. The forward run, solving Eq. (8). Our a priori knowledge xb
0, gb is used as first guess, allowing to apply only the square

root (and its transposed) of the BECM’s B and K.

2. The calculation of the gradient of J during the backward time loop and its preconditioning resulting in:
BT/2 0

0 KT/2


 ∑N

i=0(M0,i)THT
i R−1

i


di−HiM0,i


v

w




.

3. The usage of limited memory quasi-Newton minimiser L-BFGS (Liu and Nocedal, 1989; Nocedal, 1980), modified for

parallel usage, which calculates a new vector (vT,wT)T and saves it for the next iteration.

4. The determination of improved initial states x0 = B1/2v−xb
0 and flux factors g = K1/2w− gb that can now be used

iteratively for step 1.

Steps 1 to 4 are repeated until the convergence criterion is fulfilled. In practice the two most recent evaluations of the cost5

function must differ by less than 1.0E−6.

3.8 Background error covariance matrices modelling

Both BECM’s B and K are modelled using the diffusion approach. Following Weaver and Courtier (2001) a generalised

diffusion equation (GDE) is formulated with a polynomial in the Laplacian, which is self-adjoint. This allows a factorisation

of B into B1/2BT/2 and analog for K. Also anisotropic and inhomogeneous spatial radii of influence can be modelled in this10

manner.

3.8.1 Initial value background error covariance matrix

The modelling of B is the same as in Elbern et al. (2007) and is given in short form here for convenience.

The background error standard deviation depends on the initial concentration
√

(Bk,k) = xb
0(k) · cIV, (18)15

with cIV = 0.025. The decomposition of B (and analog for K) is given by

B = ΣCΣ (19)

= ΣC1/2CT/2Σ (20)

= (ΣΛL1/2
v L1/2

h W−1/2)(W−1/2LT/2
h LT/2

v ΛΣ) (21)

= B1/2BT/2, (22)20

where Σ is the diagonal matrix of standard deviations, C is the correlation matrix with Λ a diagonal normalisation matrix and

Lv,h the vertical and horizontal diffusion operator. W is also a diagonal matrix accounting for the extension of each vertical

layer k = 1, . . . ,kmax = 23.
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3.8.2 Flux factor background error standard deviation

We present the variance modelling for the flux factor BECM K. Joint optimisation of initial values and flux factors requires a25

distinction of the adjoint models with respect to the two optimisation parameters. Although the flux factor f = eg is constant

during one iteration, the adjoint flux factor f∗ changes with (M)T depending on the background flux strength Ub. We want to

investigate the influence of Ub on∇J hereinafter. Using Eq. (13) iteratively and the transport operator T (Eq. (14)), we derive

(M0,i)T


x∗i

0


=


 (T0,i)Tx∗i∑i

j=14tUb
j−1/2 (Tj−1/2,i)Tx∗i


 , (23)

with an equidistant time interval [t0, . . . , tN ]: 4t := ti+1− ti for i= 0, . . . ,N − 1, see Appendix A for a detailed derivation.

Thus the adjoint model with respect to the flux factor is proportional to Ub (T)T.

With regard to Eq. (17) the quantity KT/2Ub(T)T is proportional to the observational part of the gradient of the preconditioned5

cost function. We want to construct the diagonal of K such that we achieve the following properties of the 4D-Var system:

1. Priority of optimisation of fluxes is ordered according to their strength.

2. Satisfactory sensitivity of the optimisation system to fluxes with small absolute amount.

3. Robustness of the system.

A compromise between counteracting properties 2 and 3 has to be accomplished. Identical twin experiments not presented10

here indicate that for constant diagonal of K, the 4D-Var system EURAD-IM shows a tendency to optimise only the largest

fluxes, but is too conservative for smaller fluxes and thus property 2 is not satisfied. This especially holds true for anthropogenic

emissions, dominated by few very large point sources.

Using a specific construction for the standard deviation of K in dependence of Ûb :=
∑N
i=1Ub

i−1/2 (c designates a constant),

√
Kr,r = c

N

4t
[
max
s
|̂Ub(s)|

]− 1
l
[
|̂Ub(r)|

]− l−1
l

, (24)15

enables an approximation of∇J which fulfills the three properties above

∇J (v,w)≈

v

w


−




BT/2 0

0 c
(

Ûb

max|Ûb|

) 1
l




N∑

i=0


 (T0,i)T
∑i
j=1(Tj−1/2,i)T


HT

i R−1
i


di−HiM0,i


v

w




 , (25)

see Appendix B for a derivation of Eqs. (24) and (25). Equation (24) is implemented for each of the three fluxes considered,

thus the constant c and maxs |̂Ub(s)| are with respect to anthropogenic emissions, photosynthesis, and respiration respectively.20

Thus, for l = 1 (i.e. the diagonal of K is constant) the right hand side of Eq. (25) depends linearly on Ub. With increasing l the

sensitivity of the system to smaller fluxes increases while the robustness decreases.

After several tests l = 4 has been chosen for anthropogenic emissions and l = 2 for photosynthesis and respiration, which is
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Table 2. Configuration of background initial states and flux factors, applied for anthropogenic emissions, photosynthesis, and respiration.

background background

configuration initial state flux factor

1 nature run + 2 ppmV 0.8

2 nature run - 2 ppmV 0.8

3 nature run + 2 ppmV 1.2

4 nature run - 2 ppmV 1.2

caused by different spatial heterogeneity of the three fluxes. The off-diagonal elements of K are calculated with the diffusion

approach analog to the technique outlined for matrix B. A correlation of 0.4 is used between photosynthesis and respiration,25

whereas no correlation is assumed between anthropogenic emissions and the two biogenic fluxes.

4 Numerical experiments with synthetic data

The general concept of identical twin experiments is to execute a forward run, of which selected values are used as synthetic or

artificial observations. This run is commonly called the nature run. The first guess, also called a priori run, starts thereafter with

disturbed initial values and flux rates. It is also called the background run. The identical twin analysis procedure aims to assess30

how well the 4D-Var analysis is able to reconstruct the disturbed parameters, assimilating the given synthetic observations of

varying completeness. The model run with optimised parameters is called the analysis run. Daley (1991) values the benefits of

identical twin experiments, however concludes, they “err on the optimistic side”.

Numerical experiments are executed with four different background configurations listed in Table 2. For each configuration

two experiments are executed. One optimising (1) only flux factors for anthropogenic emissions, biogenic respiration, and5

photosynthesis and another optimising (2) initial values and flux factors jointly for each grid cell. We call (1) hereinafter ”only

flux factor analysis“ and (2) “joint analysis“.

The model domain encompasses central Europe with 5 km resolution (see Fig. 3). After a model spinup time of 30 h spanning

23 July 00 UTC to 24 July 2012 06 UTC a 12 h 4D-Var analysis run is initialised from 06-18 UTC. Synthetic measurements

from the nature run are taken every 30 minutes (the model time step is 120 s) at eleven stations (see Fig. 3 and Table 1).10

The observation errors are constantly 2 ppmV and the error covariance matrices Ri are diagonal. The standard deviation for

initial background values is xb
0(k) · cIV (Eq. (18)). The standard deviation of the flux factors (i.e. the constant c in Eq. (24))

equals 1.4 for anthropogenic emissions, 0.6 for photosynthesis, and 0.8 for respiration respectively. The matrix K is modelled

with l = 4 (see Sect. 3.8) for anthropogenic emissions and with l = 2 for biogenic fluxes. The reason is that the spatial dis-

tribution of flux variations is much smoother for biogenic fluxes compared to anthropogenic emissions. While the amount of15

biogenic fluxes at different grid cells has mostly the same order of magnitude, the main contribution to anthropogenic emis-

sions is caused by very few power plants, e.g Weisweiler and Niederaußem in the Rur catchment area.
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The non-diagonal entries of B and K are calculated using an influence radius of 30 km at the bottom layer, 45 km at the top of

the modelled planetary boundary layer and 60 km at the top of the model domain. The L-BFGS optimisation is carried out for

at most 30 iterations.20

Figure 6 shows a difference plot of configuration 4 of the NmA (nature run minus joint analysis run) initial values in dif-

ferent vertical layers. White spots indicating compliance of the analysis and nature run. The overall initial value correction is

very good with a small overestimation at the lower layers. Due to the setup of the experiment with sparse observations the

meteorology is decisive for the distribution of corrections in the analysis run. Since easterly winds are predominant during the

assimilation window, correction of the initial values occurs at all measurement stations and to the east of them. The vertical25

boundary layer rises up to 2000 m, such that correction of initial values can be seen up to this height (Fig. 6 (h)). Artificial

overestimation can be seen in layer 12 (Fig. 6 (g)) southeast of Ochsenkopf. Additional tests not presented here, showed that

a longer assimilation window increases this artificial deterioration of the analysis. Due to temporal high frequency measure-

ments and the diffusive nature of atmospheric transport the LBFGS amplifies small wiggles, primarily during later iterations,

resulting in an artificial over- and underestimation.

A comparison of the assimilated flux factors for configuration four, calculated once with joint analysis and once with only5

flux factor analysis, illustrates the benefits of the joint analysis. The results of the joint analysis in the left column of Fig. 7 are

discussed first.

The flux factor analysis of anthropogenic emissions is dominated by a few but large point sources. In the Rur catchment area,

due to easterly winds, the power plant Niederaußem is captured by the observation sites Jülich and Selhausen and is better

reanalysed than Weisweiler, which is located a few kilometres downstream from both observation sites. The optimised flux10

factors of biogenic respiration (Fig. 7 (c)) and photosynthesis (Fig. 7 (e)) meet the nature run very well. Although slight under-

estimation persists, the flux factors of the joint analysis are mainly between background and nature run.

The analysis of the only flux factor optimisation has a stronger overestimation of anthropogenic emissions as compared to the

joint analysis due to 2 ppmV higher initial values of the background run (Fig. 7 (a), (b)). Both biogenic fluxes are underesti-

mated in large areas, as observations at early times result in a too strong forcing of photosynthesis, decreasing also biogenic15

respiration due to later observations. In the area of the observation stations Jülich and Selhausen, biogenic respiration is also

overestimated (Fig. 7 (d)), a clear deterioration of analysis performance compared to the joint analysis.

A comparison of the cost reduction for the four configurations (listed in Table 2) for joint optimisation and only flux factor

optimisation is shown in Fig. 8. For each configuration the cost function shows a stronger decrease (by a factor of ≈ 20) for20

the joint optimisation compared to the flux factor optimisation.

Time-series of CO2 concentrations for configuration 4 are depicted in Fig. 9. In general a good compliance of the nature

run and joint analysis at the observation sites is seen. The CO2 concentration of the background run and the only flux factor

analysis at the initial time is always two ppmV higher than the nature run. Surprisingly also the only flux factor analysis is

often in accordance with the nature run, except at Selhausen, Jülich, and Hegyhatsal. As can be seen from Fig. 7 the correction

of the flux factors close to Wuestebach, Cabauw, and Ochsenkopf, from the optimisation of only flux factors is wrong. This5
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Figure 6. Zoom of the difference from initial values NmA (nature run minus joint analysis run) of configuration 4 for different layers (black

crosses show synthetic observation sites). The given heights are valid for the U.S. standard atmosphere.
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Figure 7. Analysed flux factors of anthropogenic emissions (first row), biogenic respiration (second row), and photosynthesis (third row).

The analysis at the left column shows results of the joint initial value and flux factor assimilation while the right column shows an analysis

which optimised only flux factors. The two biogenic fluxes are shown at the surface level, while the anthropogenic emissions are given at ≈
270 m height, which is the layer with the highest impact due to power plants. Green plus signs indicate the location of the two biggest power

plants Niederaußem and Weisweiler.
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Figure 8. Calculated cost function joint (jo) and only flux factor (ff) optimisation for four configurations listed in Table 2.

shows clearly that just an evaluation of the time-series does not guarantee a sufficient analysis.

The vertical concentration profiles at the last hour of the assimilation window of the towers with measurements in higher layers

is shown in Fig. 10. The vertical profiles of Cabauw, Ochsenkopf and Jülich display a slightly better concentration correction

of the joint analysis compared to the only flux factor optimisation. Although the vertical profile of Hegyhatsal (Fig. 10 (c)) is

very similar for the joint and the only flux factor analysis, the temporal evolution (Fig. 9 (e) and (f)) towards the last hour of10

the assimilation interval is quite different, indicating again that the analysed flux factors are not sufficiently well estimated.

5 Conclusions

This study assesses the potential of reducing CO2 surface-atmosphere flux uncertainty by the proper inclusion of uncertainty

of the atmospheric state with the 4D-Var method. The EURAD-IM 4D-Var model has been used to assimilate half-hourly

time series of CO2 concentration measurements by optimising initial concentration values and CO2 fluxes jointly. CO2 fluxes15

are splitted into anthropogenic emissions, biogenic respiration, and photosynthesis. These fluxes are optimised indirectly with

a flux factor, changing the absolute amount of the flux, but not its temporal pattern over the assimilation window. To enable a

joint optimisation of initial values and flux factors, a new calculation of the background error standard deviation for the fluxes

was developed. Identical twin experiments with real meteorology and CO2 surface fluxes are performed, using background

initial values and flux factors, which are disturbed at every grid cell. A sparse observation network with eleven towers from

FLUXNET is chosen, with a focus on the TR32 Rur catchment area in western Germany. The experiments are executed once

with the joint optimisation of initial values and flux factors and once with the optimisation of only flux factors. Initial values5

are optimised up to a height of 2000 m during a 12 h assimilation run and reflect the well mixed planetary boundary layer.

It is clearly shown that errors of initial values transfer to wrong estimation of flux factors. If wrong initial values are assumed

to be error-free and are not part of the optimisation, the analysis downgrades. Especially biogenic fluxes, which are generally
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(a) Wuestebach surface layer (b) Selhausen surface layer

(c) Jülich surface layer (d) Cabauw layer 05

(e) Hegyhatsal layer 02 (f) Hegyhatsal layer 04

(g) San Rossore surface layer (h) Ochsenkopf layer 02

Figure 9. Time-series of CO2 concentration of configuration four at observations sites for observations (red), background run (black), joint

analysis (blue) and flux factor (FF) analysis (green).

18

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-132, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 19 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



(a) Jülich (b) Cabauw

(c) Hegyhatsal (d) Ochsenkopf

Figure 10. Vertical profile of CO2 concentration of configuration four at observations sites with measurements also in higher layers for

observations (red), background run (black), joint analysis (blue) and flux factor (FF) analysis (green) at the end of the assimilation window

24 July 2012 18 UTC.

more difficult to analyse than anthropogenic emissions, are markedly degraded. Optimising initial values and flux factors

jointly improves the ability of the 4D-Var system EURAD-IM to reanalyse CO2 fluxes.10

In summary our synthetic data experiments show the impact of temporal highly resolved observations for the understanding

of carbon fluxes. Wrong initial values deteriorate the ability to estimate carbon fluxes in CO2 inversions with fine

spatio-temporal resolution under the requirement, that background CO2 fluxes capture the diurnal cycle and meteorological

key parameters as planetary boundary layer and advection winds are well modelled.

15

6 Code availability

The EURAD-IM Version 5.8.1, adapted for CO2 inversion, and modified WRFV3.6.1-CLM4.0, is developed at the Rhenish

Institute for Environmental Research and stored at the Jülich Supercomputer Centre (JSC) of Research Centre Jülich and can

be obtained by contacting H. Elbern (he@eurad.uni-koeln.de). Any questions should be directed to the authors.

Appendix A: The adjoint model (M)T20

To derive the adjoint model we combine Eq. (9) and (10) of the forward run and introduce the following notation (remember

that the transport operator (see Eq. (14)) T merges the advection and diffusion operator considering the operator splitting of
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the EURAD-IM: Ti,i+1/2 = Di,i+1/2A1
i,i+1/2, Ti+1/2,i+1 = A2

i+1/2,i+1Di+1/2,i+1)

T̃i,i+1/2 :=


Ti,i+1/2 0

0 I


 , T̃i+1/2,i+1 :=


Ti+1/2,i+1 0

0 I


 ∈ R2n×2n, (A1)

F̃i+1/2 :=


I 4tUb

i+1/2

0 I


 ∈ R2n×2n (A2)5

We can now write in accordance to Eq. (9) and (10)

xi+1

f


= T̃i+1/2,i+1 F̃i+1/2 T̃i,i+1/2︸ ︷︷ ︸

=Mi,i+1


xi

f


 , (A3)

as F̃ is equivalent to Eq. (10). Using Eq. (A3), the adjoint model can be derived

(Mi,i+1)T


x∗i+1

f∗i+1


=

(
T̃i,i+1/2

)T(
F̃i+1/2

)T(
T̃i+1/2,i+1

)T


x∗i+1

f∗i+1


 (A4)

=


(Ti,i+1/2)T 0

0 I




 I 0

4tUb
i+1/2 I




(Ti+1/2,i+1)T 0

0 I




x∗i+1

f∗i+1


 (A5)10

=


 (Ti,i+1/2)T(Ti+1/2,i+1)Tx∗i+1

4tUb
i+1/2 (Ti+1/2,i+1)Tx∗i+1 + f∗i+1


 (A6)

which is Eq. (13). Equation (A6) can now be used iteratively for the calculation of (M0,i)T. For the sake of shorter notation

we write HT
i R−1

i


di−HiM0,i


v

w




=:


x∗

i

0


,

(M0,i)T


x∗i

0


= (M0,i−1)T


 (Ti−1,i)Tx∗i

4tUb
i−1/2 (Ti−1/2,i)Tx∗i


 (A7)

= (M0,i−2)T


 (Ti−2,i)Tx∗i

4tUb
i−1−1/2 (Ti−1−1/2,i)Tx∗i +4tUb

i−1/2 (Ti−1/2,i)Tx∗i


 (A8)15

=


 (T0,i)Tx∗i∑i

j=14tUb
j−1/2 (Tj−1/2,i)Tx∗i


 , (A9)

which is Eq. (23).

Appendix B: Derivation of the diagonal of K

In this Sect. the specific construction of the diagonal of K (Eq.(24)) and an approximation of the gradient of the cost function

(Eq. (25)) is shown. First an approximation for the flux factor part of
∑N
i=0(M0,i)T (Eq. (17)) is derived with the crude
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approximation5

Ub
j−1/2 ≈

1
N

N∑

i=1

Ub
i−1/2 =:

1
N

Ûb (B1)

Using Eq. (A9) and the notation [·]FF as the flux factor part we can write



N∑

i=0

(M0,i)T


x∗i

0






FF

(A9)= 4t
N∑

i=0




i∑

j=1

Ub
j−1/2(Tj−1/2,i)T


x∗i (B2)

(B1)≈ 4t
N

Ûb
N∑

i=0




i∑

j=1

(Tj−1/2,i)T


x∗i . (B3)

Using additionally the construction of the diagonal of K (c designates a constant number)10

√
Kr,r = c

N

4t
[
max
s
|̂Ub(s)|

]− 1
l
[
|̂Ub(r)|

]− l−1
l

, (B4)

the gradient of the preconditioned cost function can be approximated

∇J (v,w) (17)=


v

w


−


BT/2 0

0 KT/2




N∑

i=0

(M0,i)T


x∗i

0


 (B5)

(A9)=


v

w


−


BT/2 0

0 KT/2




N∑

i=0


 (T0,i)Tx∗i∑i

j=14tUb
j−1/2 (Tj−1/2,i)Tx∗i


 (B6)

(B3)≈


v

w


−


BT/2 0

0 KT/2
(

c 4tN |̂Ub|
)



N∑

i=0


 (T0,i)Tx∗i∑i

j=1(Tj−1/2,i)Tx∗i


 (B7)

(B4)≈


v

w


−




BT/2 0

0
(

c Ûb

maxs |̂Ub(s)|

) 1
l




N∑

i=0


 (T0,i)Tx∗i∑i

j=1(Tj−1/2,i)Tx∗i


 , (B8)

such that we get Eq. (25). As already mentioned in Sect. 3.6 and 3.8.2 the notation presented here is straightforward to apply

also for three fluxes but is avoided here for the sake of clarity.5
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