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Abstract 1 

Large uncertainties in Land surface models (LSMs) simulations still arise from inaccurate 2 

forcing, incorrect model parameter values and incomplete representation of biogeochemical 3 

processes. The recent increase in the number and type of carbon cycle related observations, 4 

including both in situ and remote sensing measurements, has opened a new road to optimize 5 

model parameters via robust statistical model-data integration techniques, in order to reduce 6 

the simulated carbon fluxes and stocks uncertainties. In this study we present a Carbon Cycle 7 

Data Assimilation System (CCDAS) that assimilates three major data streams, namely 8 

MODIS-NDVI observations of vegetation activity, net ecosystem exchange (NEE) and latent 9 

heat (LE) flux measurements at more than 70 sites (FLUXNET), and atmospheric CO2 10 

concentrations at 53 surface stations, in order to optimize the main parameters of the 11 

ORCHIDEE LSM (around 180 parameters in total). The system relies on a step-wise 12 

approach that assimilates each data stream in turn, propagating the information gained on the 13 

parameters from one step to the next. 14 

Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, 15 

which suggests that current LSMs have reached the level of development to assimilate these 16 

observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length 17 

in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual 18 

gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in 19 

the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for 20 

temperate ecosystems). The assimilation of atmospheric CO2, using the atmospheric transport 21 

model LMDz (step 3), provides an overall constraint (i.e., constraint on large scale net CO2 22 

fluxes), resulting in an improvement of the fit to the observed atmospheric CO2 growth rate. 23 

Thus the optimized model predicts a land C sink of around 2.2 PgC.yr-1 (for the 2000-2009 24 

period), which is more compatible with current estimates from the Global Carbon Project 25 

(GCP) than the prior value. The consistency of the step-wise approach is evaluated with back-26 

compatibility checks. The final optimized model (after step 3) does not significantly degrade 27 

the fit to MODIS-NDVI and FLUXNET data that were assimilated in the first two steps, 28 

suggesting that a stepwise approach can be used instead of the more “challenging” 29 

implementation of a simultaneous optimization in which all data streams are assimilated 30 

together. Most parameters, including the scalar of the initial soil carbon pool size, changed 31 
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during the optimization with a large error reduction. This work opens new perspectives for 1 

better predictions of the land carbon budgets. 2 

 3 

1 Introduction 4 

Atmospheric CO2 concentrations have increased at an unprecedented rate over the last few 5 

decades, predominantly due to anthropogenic fossil fuel and cement emissions, as well as 6 

land use and land cover change (LULCC). The oceans and the terrestrial biosphere have 7 

absorbed CO2, removing on average 50% of anthropogenic emissions from the atmosphere. 8 

However, knowledge about the exact location of sources and sinks of carbon (C) and the 9 

driving mechanisms is still lacking. Land surface models (LSMs) can be used to improve our 10 

understanding of the spatio-temporal patterns of sources and sinks, as well as for attributing 11 

changes due to CO2, climate variability and other environmental drivers. However, the spread 12 

in the model predictions of terrestrial net C exchange currently has the same order of 13 

magnitude as the uncertainty of the terrestrial C budget estimated as the residual of the other 14 

components (Le Quéré et al., 2015). In addition to uncertainties in the mean global annual 15 

terrestrial C budget and its trend over time (Sitch et al., 2015), there remains strong 16 

discrepancies between LSMs in their predictions of regional budgets (Canadell, 2013) at 17 

seasonal and inter-annual timescales and in their sensitivity to climate and atmospheric CO2 18 

forcing (Piao et al., 2013).  19 

Uncertainties in model simulations arise from inaccurate forcing, incorrect model parameter 20 

values and/or an inadequate or incomplete representation of biogeochemical processes in the 21 

model (for example the impact of nutrient limitation on C fluxes, or C release related to 22 

permafrost thawing). Arguably the best way to improve model predictions is to confront 23 

simulations with multiple sources of data within an appropriate and rigorous framework 24 

(Prentice et al., 2015). In the last two decades significant efforts by the site and satellite 25 

observation communities have resulted in a large increase in the number and type of C cycle-26 

related observations. These data contain some information at various spatial and temporal 27 

scales and should be combined together to robustly address different aspects of the models. 28 

One way in which these data can be used to better quantify and reduce model uncertainty is 29 

by optimizing or calibrating the model parameters via robust statistical model-data fusion (or 30 

data assimilation – DA) techniques. In particular a Bayesian inference framework allows us to 31 
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update our prior knowledge of the parameters based on new information contained in the 1 

observations.  2 

There is a long history of using DA techniques for parameter optimization, particularly in 3 

Geophysics (Tarantola, 1987), but the initial studies in the field of global terrestrial C cycle 4 

data assimilation started with the initial study of Fung et al. (1987) and a pioneering work by 5 

Knorr and Heimann  (1995) who used atmospheric CO2 concentration to constrain the Simple 6 

Diagnostic Biosphere Model (SDBM). This effort was continued by the original Carbon 7 

Cycle Data Assimilation System (CCDAS) described in Rayner et al. (2005) and Kaminski et 8 

al. (2012) which used both atmospheric CO2 and satellite-derived Fraction of Absorbed 9 

Photosynthetic Radiation (FAPAR) data to optimize vegetation productivity by adjusting the 10 

C cycle-related parameters of the Biosphere Energy-Transfer Hydrology (BETHY) model 11 

(see a review in Kaminski et al., 2013). Meanwhile substantial efforts have been put into the 12 

use of local eddy covariance flux tower measurements of net exchange of CO2 and latent and 13 

sensible heat fluxes to optimize photosynthesis, respiration and energy-related parameters of 14 

terrestrial ecosystem models, both at individual sites (e.g. Wang et al., 2001, 2007; Williams 15 

et al., 2005; Braswell et al., 2005; Knorr and Kattge, 2005; Moore et al., 2008; Ricciuto et al., 16 

2008), and more recently using multiple sites together (hereafter multiple sites) from the 17 

global FLUXNET network (e.g. Groenendijk et al., 2011; Kuppel et al., 2012, 2014; Alton, 18 

2013; Xiao et al., 2014). Increasingly the focus in carbon cycle data assimilation is moving 19 

towards using multiple different data streams as independent constraints, with the aim of 20 

bringing more information at different spatial and temporal scales and constraining several 21 

processes at once in order to reduce the likelihood of model equifinality (where multiple sets 22 

of parameters achieve the same reduction in model-data misfit). Recent examples include the 23 

combination of in-situ eddy covariance flux observations and ground-based information on 24 

vegetation structure and C stocks (Richardson et al., 2010; Ricciuto et al., 2011; Keenan et al., 25 

2012, 2013; Thum et al., 2015), or in-situ flux data and satellite FAPAR (Kato et al., 2013; 26 

Zobitz et al., 2014; Bacour et al., 2015). This is a non-trivial task however, especially when 27 

optimizing a complex LSM (see MacBean et al, submitted), which has many parameters 28 

acting from local to global scales.  29 

When assimilating multiple different data streams we have two options: i) to optimize the 30 

model with each data stream in turn, and to propagate the information gained on the 31 

parameter values from one step to the next (hereafter referred to as “stepwise” assimilation), 32 
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or ii) to include all data streams together in the same optimization (hereafter referred to as 1 

“simultaneous” assimilation). Kaminski et al. (2012) suggested that it is essential to perform a 2 

consistent, simultaneous assimilation that includes all data streams in the same optimization. 3 

It is important to note that this is an implementation question. Tarantola (2005) recasts the 4 

fundamentals of the approach as the conjunction or multiplication of probability densities. 5 

This multiplication is associative so it makes no difference whether it is performed in one step 6 

or several. In complex problems such as these, one cannot carry or even describe the full 7 

structure of the relevant probability densities so which approach will work best in each case is 8 

unclear. In particular, technical difficulties associated with the different number of 9 

observations for each data stream and the characterization of error correlations between them, 10 

in addition to computational constraints to run global LSMs, might result in the preference for 11 

a step-wise assimilation framework. Additionally, it may be more straightforward, to expose a 12 

restricted set of parameters to each observation type in a stepwise approach to ensure that 13 

each data stream constrains only the most relevant parts of the model. This reduces biases 14 

from other poorly-represented processes caused by inadequate model structure. For these 15 

reasons we follow the stepwise approach in this paper.  16 

We present the first global-scale CCDAS that assimilates three of the main global data 17 

streams that have been used to date to understand the terrestrial carbon cycle – atmospheric 18 

CO2 concentration, satellite-derived information of vegetation greenness (from the MODIS 19 

instrument) and multisite eddy covariance net CO2 and latent heat flux measurements (from 20 

FLUXNET) – to optimize the parameters of the Organizing Carbon and Hydrology in 21 

Dynamics Ecosystems (ORCHIDEE) process-based LSM (Krinner et al., 2005). The main 22 

questions that we aim to answer in this paper are as follows: 23 

i) How and to which extend the optimization of the ORCHIDEE model allows to fit the three 24 

data streams that are considered?  25 

ii) Does the step-wise optimization result in a degradation of the fit to other data streams used 26 

in the previous steps?   27 

iii) What are the main changes in the optimized parameters when using sequentially these 28 

three data streams in a global CCDAS and which processes are constrained?  29 

iv) What are the improvements for the land C cycle in terms of net/gross fluxes and stocks as 30 

a result of multi-data stream optimization? What preliminary perspectives can we draw that 31 
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may help us in improving model predictions of trends, variability and the location of 1 

terrestrial C sources and sinks? 2 

Following these objectives, the paper first describes the new ORCHIDEE-CCDAS including 3 

the concept, the observations, the models and the optimization approach. We then present the 4 

results, including the fit to the data, consistency checks (question i) above) as well as mean 5 

global and regional C cycle budget for the period 2000-2009. The last section discusses issues 6 

and perspectives associated with these results.  7 

 8 

2 Methods 9 

2.1 ORCHIDEE-CCDAS concept 10 

We have designed a CCDAS around the ORCHIDEE land surface model (ORCHIDEE-11 

CCDAS, later also referred to as ORCHIDAS for simplicity) that combines a state-of-the-art 12 

description of the driving biogeochemical processes within the model with multiple 13 

observational constraints in a robust statistical framework, in order to improve the simulation 14 

of land carbon fluxes and stocks. The system allows us to retrieve the best estimate, given the 15 

observations and prior information, of selected parameters (see §2.3.3) as well as to evaluate 16 

their uncertainty. It relies on a stepwise assimilation of a comprehensive set of three C cycle-17 

related observations that are representative of small (100 m) to large (continental) scales (see 18 

§2.2):  19 

• Step 1: Satellite measurements of vegetation activity using the Normalized Difference 20 

Vegetation Index (NDVI) from the MODIS instrument over the 2000-2008 period for 21 

a randomly selected set of sites for boreal and temperate deciduous vegetation types;  22 

• Step 2: In-situ eddy-covariance net CO2 and water (latent heat) flux measurements 23 

from the FLUXNET database for a large set of sites, spanning 7 different vegetation 24 

types; 25 

• Step 3: In-situ monthly atmospheric surface CO2 concentration measurements from 26 

the GLOBALVIEW-CO2 database over three years (2002-2004). 27 

The system relies on two models: 28 

• The ORCHIDEE global LSM, whose main C cycle parameters are optimized (see 29 

§2.3) 30 
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• The atmospheric transport model, LMDz (see §2.3), to relate the surface carbon fluxes 1 

to atmospheric CO2 concentrations.  2 

The framework combines the different observational data streams within ORCHIDAS in 3 

order to optimize selected model parameters using a variational data assimilation system, 4 

described in section 2.4. Figure 1 illustrates the structure of the CCDAS and the different 5 

components that are involved. Such a framework distinguishes i) the assimilated observations, 6 

ii) an ensemble of forcing and input data streams, iii) the models and optimization framework, 7 

as well as iv) an evaluation step, where independent datasets are compared to the optimized 8 

model stocks and fluxes. As explained in the introduction, a major feature of the current 9 

system is the stepwise approach, in which all data streams are assimilated sequentially (i.e. 10 

one after the other). The information retrieved at a given step (retrieved optimal parameter 11 

values and associated uncertainty) is propagated to the next step (see Fig. 2 and §2.4). Note 12 

that for simplicity we did not propagated the error correlations in this first implementation of 13 

the system. 14 

At each step, the parameter optimization relies on a Bayesian framework that explicitly 15 

minimizes the difference between the simulated and observed quantities in addition to 16 

minimizing the difference between the optimized model parameters and “a priori” values (see 17 

§2.4.2). The dependence of the simulated quantities on the optimized variables is non-linear, 18 

which thus necessitates the use of an iterative algorithm. Note that all components of the 19 

surface C budget need also to be included in the ORCHIDAS, particularly when using 20 

atmospheric CO2 measurements which requires the atmospheric transport model to be 21 

prescribed with fossil fuel emissions, CO2 fluxes associated with biomass burning and ocean 22 

CO2 fluxes (see §2.5) in addition to net ecosystem exchange (NEE) from ORCHIDEE. 23 

2.2 Assimilated observations 24 

2.2.1 MODIS-NDVI 25 

MODIS collection 5 obtained from surface reflectance data (from 2000-2008) in the red (R) 26 

and near-infrared (NIR) bands at 5 km resolution (CMG) are used to optimize the phenology-27 

related parameters of ORCHIDEE in the first step. The R and NIR data were processed to 28 

correct for directional effects following Vermote et al. (2009) and then used to calculate the 29 

NDVI, which is assumed to be linearly related to the model FAPAR. The NDVI are then i) 30 

aggregated to the 0.72° spatial resolution of the ERA-Interim meteorological fields that are 31 
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used to force ORCHIDEE, ii) interpolated to a daily time series and iii) checked for quality 1 

(see MacBean et al., 2015 for details). If there is a gap in the observations of more than 15 2 

days, no interpolation is done (i.e., no data during the gap are assimilated). Figure 3 displays 3 

the location of the sites that were selected (see §2.4.1). 4 

2.2.2 Eddy covariance flux data 5 

Eddy covariance flux measurements of net surface CO2 flux – hereafter referred to as net 6 

ecosystem exchange (NEE) and latent heat flux (LE) from 78 observation sites of a network 7 

of regional networks (FLUXNET; see Fig. 3) are used to constrain ecosystem physiology and 8 

fast C-related processes at daily to seasonal timescales in ORCHIDEE in the second step. We 9 

use quality-checked and gap-filled data from a global synthesis called the La Thuile dataset 10 

(Papale, 2006). In order to avoid dealing with the large error correlations in the half-hourly 11 

data (see Lasslop et al., 2008), daily mean values of NEE and LE are used in the ORCHIDAS. 12 

Days with less than 80% of the half-hourly data are left out of the assimilation. The selection 13 

of the sites and the data processing (gap-filling, correction for energy balance closure) are 14 

detailed in Kuppel et al. (2014). 15 

2.2.3 Atmospheric CO2 concentrations 16 

Atmospheric CO2 concentration measurements were taken from an ensemble of selected 17 

surface stations around the world (Fig. 3). The spatial concentration gradients relate to the 18 

integral of the fluxes over large areas and thus allow the optimization of large-scale global 19 

patterns of carbon fluxes. These data were taken from the NOAA Earth System Laboratory 20 

(ESRL) GLOBALVIEW-CO2 collaborative product (GLOBALVIEW-CO2, 2013) and 21 

averaged to monthly means. We assimilated the monthly values for 53 sites for the 2002-2004 22 

period inclusive in the last step of the assimilation system. Such restricted period (3 years 23 

only) was chosen for practical reasons (computing resources) while constructing the 24 

ORCHIDAS system. The station locations, indicated in Fig. 3, favor the background 25 

conditions i.e. the surrounding air masses are only weakly influenced by local continental 26 

sources, such as power plants. The choice of monthly mean is related to the use of pre-27 

calculated transport fields with LMDZ (see §2.3.2).  28 
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2.3 Models and optimized parameters 1 

2.3.1 ORCHIDEE land surface model 2 

In this study we use the ORCHIDEE process-oriented land surface model (Krinner et al., 3 

2005), which computes water, carbon and energy balances at the land surface on a half hourly 4 

time step, using a mechanistic description of the physical and biogeochemical processes (see, 5 

http://labex.ipsl.fr/orchidee/). The model describes the exchange of carbon and water at the 6 

leaf level, the allocation of carbon within plant compartments (leaves, roots, heartwood and 7 

sapwood), the autotrophic respiration, the production of litter, the plant mortality and the 8 

degradation of soil organic matter (CENTURY model; Parton et al., 1988). The hydrological 9 

processes for the soil reservoir rely on a double bucket scheme (Ducoudré et al., 1993). The 10 

link between the water and carbon modules is via photosynthesis, which is based on the leaf-11 

scale equations of Farquhar et al., (1980) for C3 plants, and Collatz et al. (1992) for C4 plants, 12 

that are then integrated over the canopy by assuming an exponential attenuation of light. The 13 

FAPAR by each layer of the canopy is calculated from the leaf area index (LAI) following a 14 

Beer-Lambert extinction law (Bacour et al., 2015).  15 

ORCHIDEE uses the concept of the plant functional type (PFT) to describe the vegetation 16 

distribution, with 13 PFTs (including bare soil) that can co-exist in each grid cell. Except for 17 

the phenology (see a recent description in MacBean et al., 2015), the equations governing the 18 

different processes are generic, but with specific parameter values for each PFT. Detailed 19 

descriptions of model equations can be found in numerous publications (see for instance 20 

Krinner et al., 2005). ORCHIDEE can be run at either global scale on a grid, or at site-level 21 

using point-scale surface meteorological forcing variables. It is the land surface component of 22 

the Institut Pierre Simon Laplace (IPSL) Earth System Model, and the version that we used 23 

corresponds to CMIP5 simulations in the IPCC 5th Assessment Report (Dufresne et al., 2013). 24 

However, in this study the model is run offline using the ERA-Interim 3-hourly near surface 25 

meteorological forcing fields (Dee et al., 2011) aggregated at the spatial resolution of the 26 

atmospheric transport model for the global simulations (see § 2.3.2). However, when we 27 

assimilate in situ flux data in the second step, we force the model with the gap-filled half-28 

hourly meteorological data measured at each site. The global PFT map was derived from the 29 

high-resolution IGBP AVHRR land data set (Vérant et al., 2004). The carbon pools are 30 

brought to equilibrium (spin-up procedure) for both site and global scale simulations by 31 

cycling the available meteorological forcing over several millennia, to ensure that the long-32 
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term net carbon flux is close to zero. For the global simulation in third step, we spun-up the 1 

model recycling the 1989-1998 meteorology and then used a transient simulation from 1990 2 

to 2001 with changing climate (ERA-Interim) and increasing CO2, before starting the 3 

optimization with atmospheric data over 2002-2004. For the site simulations (i.e., the 4 

assimilation of flux data) we recycled the available in situ meteorological forcing to spin-up 5 

the model, with present day CO2. 6 

2.3.2 LMDz model 7 

The transport model used in this study is version 3 of the General Circulation Model (GCM), 8 

LMDz (Hourdin and Armengaud, 1999) with a horizontal resolution of 3.75° (longitude) x 9 

2.5° (latitude) and 19 sigma-pressure layers up to 3 hPa. The calculated winds (u and v) are 10 

relaxed to the ECMWF ERA-40 meteorological data (Uppala et al. 2005) with a relaxation 11 

time of 2.5h (guiding) in order to realistically account for large-scale advection (Hourdin et 12 

al., 2000). Deep convection is parameterized according to the scheme of Tiedtke (1989) and 13 

the turbulent mixing in the planetary boundary layer is based on a local second-order closure 14 

formalism. The LMDz GCM model has been widely used to model climate (IPCC, 2007, 15 

2013) and its derived transport model has been used for the simulation of chemistry of gas 16 

and particles and greenhouse gases distributions (Hauglustaine et al., 2004; Folberth et al., 17 

2005; Bousquet et al. 2005, 2006; Rivier et al., 2006). For this study, we used pre-calculated 18 

transport fields, as described in Peylin et al. (2005), that correspond to the sensitivity of 19 

concentration at each atmospheric site and each month to the surface flux of each model grid-20 

cell for each day (often called influence functions). The sensitivities (using inter-annual 21 

winds) were calculated with the “retro-transport” formulation implemented in the LMDz 22 

transport model (Hourdin et al. 2006). This approach decreases the computing time of the 23 

optimization compared to the use of the full forward LMDz model at each iteration, as the 24 

transport is replaced by a matrix multiplication with the vector of surface fluxes. Note that the 25 

initial 3D state of the atmospheric concentrations was be defined from Chevallier et al. (2010) 26 

2.3.3 Parameters optimized 27 

The optimized parameters are described in Table 1, and their prior values, uncertainty and 28 

range are given in Table 2. In the most recent studies using ORCHIDAS at site scales a large 29 

set of ORCHIDEE parameters has been optimized (Kuppel et al., 2014; Santaren et al., 2014; 30 

Bacour et al., 2015). In this study a smaller set was chosen, based on a Morris sensitivity 31 
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analysis (Morris, 1991; results not shown) that determines the sensitivity of the NEE and LE 1 

to all model parameters at various FLUXNET sites (for each PFT), in order to reduce the 2 

computational cost of the global optimization in step 3 (see §2.5). We considered 9 PFT-3 

dependent and 4 “global” (i.e. non PFT-dependent) parameters that control mostly the fast 4 

carbon processes (diurnal to seasonal). In addition, we introduced a new parameter, KsoilC, to 5 

scale the initial values (after spin-up) of the modeled slow and passive soil carbon pools, in 6 

order to take account of all the historical effects not accounted for in the model that would 7 

result in a disequilibrium of these pools in reality. For the site-specific optimizations with 8 

FLUXNET data, we have one KsoilC,site parameter per site. For the global scale optimization 9 

step, we used 30 KsoilC,reg parameters corresponding to 30 regions (see Fig. A2), thus the initial 10 

soil carbon pools of all pixels within each region were scaled by the same value. The prior 11 

value for all KsoilC parameters was set to one, i.e. the default state of soil carbon pools is 12 

assumed to be in equilibrium. 13 

Overall (including all PFT-dependent parameters), we optimize 16 parameters related to 14 

phenology, 36 to photosynthesis, 3 to respiration, 1 to the energy budget, 78 soil C pool 15 

scalars (one for each FLUXNET site), and 30 regional soil C pool scalars for the global 16 

simulations – a total of 184 parameters. Note that the soil C pool multipliers at the FLUXNET 17 

sites are independent from the regional C pool multipliers, as the history of soil carbon over 18 

large eco-regions of several millions square kilometers is rather heterogeneous (as it is mainly 19 

related to previous land use changes), and most likely, the FLUXNET sites are not 20 

representative of larger regions in terms of the soil carbon disequilibrium. The prior standard 21 

deviation for each parameter is equal to 40% of the parameter range (lower and higher 22 

boundaries) prescribed for each parameter following Kuppel et al. (2012). The parameter 23 

ranges were specified following expert judgment of their meaning in the ORCHIDEE 24 

equations and based on literature reviews or databases (such as TRY, Kattge et al., 2011). 25 

2.4 System description:  a step-wise approach 26 

2.4.1 Stepwise assimilation of three data streams 27 

The ORCHIDAS system relies on a stepwise assimilation of the three data streams described 28 

in section 2.2. Figure 2 illustrates the flow of information in this sequential approach: 29 

Step 1 – Assimilation of MODIS-NDVI: Four parameters related to the seasonal cycle of the 30 

vegetation (phenology) are optimized for the temperate and boreal deciduous PFTs (TeBD, 31 
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BoND, BoBD and NC3 – see caption of Table 2). These four deciduous PFTs alone are 1 

considered in step 1 in this ORCHIDAS version because the tropical deciduous phenology 2 

modules in ORCHIDEE require further modifications to improve the functions that control 3 

leaf growth and fall in response to water availability (MacBean et al., 2015). Evergreen PFTs 4 

were also not considered, as the there are no phenology modules related to these PFTs in the 5 

model. The procedure is similar to that described in detail in MacBean et al. (2015) and 6 

therefore only briefly recalled here. A simple linear relationship between the modeled 7 

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and MODIS-NDVI 8 

observations is assumed, based on studies such as Knyazikhin et al. (1998). Following Bacour 9 

et al. (2015), we use only the temporal information in the NDVI observations and not the 10 

actual values, and thus we normalized both the model FAPAR output and the NDVI 11 

observations to their 5th and 95th percentiles. The model was run for fifteen randomly selected 12 

grid cells for each of the four PFTs using the ERA-Interim meteorological forcing. Only grid 13 

cells that included vegetation fraction of greater than 60% for the PFT optimized were 14 

considered. The fifteen sites for each PFT were included in one optimization for each PFT 15 

following a multi-site approach, in which all observations are used simultaneously to optimize 16 

the model parameters. The optimized parameters are described in Table 1. They correspond to 17 

a scalar on the growing degree days (GDD) threshold for the start of the vegetation (Kpheno,crit), 18 

a parameter controlling the use of carbohydrate reserve during the start of leaf growth 19 

(Klai,happy), a temperature threshold for the onset of leaf senescence (CT,senes) and the critical 20 

age for leaves (Lagecrit).  21 

Step 2 – Assimilation of FLUXNET data: Mean daily NEE and LE flux measurements for 78 22 

sites, including up to 10 years worth of data for each site, are used to optimize a set of model 23 

parameters controlling the fast carbon and water processes (photosynthesis, respiration, 24 

phenology – see Table 1). The site selection and the choice of a daily time step are described 25 

in more details in Kuppel et al. (2014). These sites cover 7 of the PFTs in ORCHIDEE (see 26 

Table 2). The posterior parameter values of the four phenology parameters derived in step 1, 27 

and their associated uncertainties, are input as prior information in step 2. For the additional 28 

parameters, the default ORCHIDEE values are used for the prior and the uncertainties are set 29 

as described in §2.3.3. A multi-site optimization is performed for each PFT independently as 30 

in step 1. Global parameters, i.e. those that are not PFT-dependent, were optimized for each 31 

PFT and the mean across all PFTs was then calculated to define the prior parameter vector in 32 

step 3 of the assimilation with atmospheric CO2 data (at global scale). Such an approach was 33 
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chosen to allow us to optimize all PFTs in parallel and therefore to simplify the assimilation 1 

process.  2 

Step 3 – Assimilation of atmospheric CO2 concentrations: We use monthly mean CO2 3 

concentrations from 53 surface stations over three years (2002-2004) to provide a large-scale 4 

constraint to the land surface fluxes (i.e. to match the global CO2 growth rate, mean seasonal 5 

cycle and its latitudinal variation, as well as the spatial gradients between stations). We use 6 

the LMDz atmospheric transport model (see §2.3.2) to assimilate these observations. The set 7 

of parameters optimized in step 2 are included in step 3, except for the albedo scaling 8 

parameter (Kalbedo,veg), as the net carbon fluxes are only weakly sensitive to that parameter. We 9 

used the posterior parameter distributions from step 2 (parameter optimal values and 10 

associated uncertainties) as prior information for step 3, and expanded the parameter vector to 11 

include the 30 KsoilC parameters that scale the initial soil carbon pools for large “spatially-12 

coherent regions” (see §2.1.2 and Fig. A2). The air-sea fluxes and fossil fuel and biomass 13 

burning emissions are also accounted for (but not optimized) in this final step, in order to 14 

close the global carbon budget within the atmospheric transport model (see §2.5).  15 

2.4.2 Optimization procedure (for all steps): 16 

In each step the statistically optimal parameter values are derived with an optimization 17 

procedure following the principle of the 4-D variational assimilation systems (developed for 18 

numerical weather prediction), using a tangent linear operator (and finite differences for a few 19 

parameters, Bacour et al. 2015). Assuming that the errors associated with the parameters, the 20 

observations and the model outputs follow Gaussian distributions, the optimal parameter set 21 

corresponds to the minimum of a cost function, J(x), that measures the mismatch between i) 22 

the observations (y) and the corresponding model outputs, H(x), (where H is the model 23 

operator), and ii) the a priori (xb) and optimized parameters (x), weighted by their error 24 

covariance matrices (Tarantola, 1987; Eq. (1)):  25 

𝐽 𝒙 =  !
!

 𝐻 𝒙 − 𝒚 !  𝐑!! 𝐻 𝒙 − 𝒚 + 𝒙− 𝒙! !𝐁!! 𝒙− 𝒙!         (1) 26 

R represents the error variance/covariance matrix associated with the observations and B the 27 

parameter prior error variance/covariance matrix. At each step a different cost function is 28 

defined with the observations and parameters related to that step (see Fig. 2). R includes the 29 

errors on the measurements, the model structure and the meteorological forcing. Model errors 30 

are rather difficult to assess and may be much larger than the measurement error itself. 31 
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Therefore we chose to focus on the structural error and defined the variances in R as the mean 1 

squared difference between the prior model and the observations for both step 1 and step 2 2 

(see Kuppel et al. 2013). For simplicity we assumed that the observation error covariances 3 

were independent between the different observations and therefore we kept R diagonal (off-4 

diagonal terms set to zero), given the rapid decline of the model error auto-correlation beyond 5 

one day (Kuppel et al., 2013). For step 3 we used a different approach, given the large bias in 6 

the model a priori concentrations, and therefore followed the methodology of Peylin et al. 7 

(2005) based on the observed and modeled temporal concentration variability at each site. 8 

Overall, data uncertainties in the optimization procedure are between 0.1 and 0.45 for NDVI 9 

(step 1), around 3-6 gCm-2d-1 for daily NEE, and 15-30 Wm-2 for daily LE (step 2) and 10 

between 0.1 ppm at remote oceanic stations and 4 ppm at continental sites (step 3).  11 

The determination of the optimal parameter vector that minimizes J(x) is performed by 12 

successive calls to a “gradient-descent” minimization algorithm L-BFGS-B (Byrd et al. 13 

1995), which is specifically dedicated to solving large nonlinear optimization problems that 14 

are subject to simple bounds on the parameter values. In order to find the minimum of J(x) the 15 

algorithm requires the gradient of J(x) (Jacobian) with respect to the ORCHIDEE parameters. 16 

L-BFGS-B explores each parameter space simultaneously along the gradient of the cost 17 

function, and uses an approximation of the Hessian (second derivative) of J(x), which is 18 

updated at each iteration, to define the size of the step at each iteration. 19 

For step 1 and step 2, the model “H” simply corresponds to the land surface model: H = S, 20 

with S(x) representing the surface fluxes from the ORCHIDEE model using the parameter 21 

vector, x. The gradients dJ(x)/dx are calculated from the tangent linear model of ORCHIDEE 22 

that was automatically generated by the numerical Transformation of Algorithms in Fortran 23 

(www.fastopt.de), except for two parameters linked to the model phenology for which the 24 

threshold functions prevent the use of a linear approximation. A finite difference approach 25 

was used for these parameters.   26 

For step 3, the model “H” corresponds to the composition of the land surface model with the 27 

transport model: H = T o S (see Kaminski et al. (2002) for details), with T representing the 28 

LMDz transport model. T is a linear operator for a non-reactive species: T(S(x)) = T . S(x), 29 

with T a matrix representation of the transport operator. It corresponds to the sensitivity of 30 

CO2 concentrations at each site and for each month to the daily surface flux of each model 31 

grid-cell. It is then combined with the ORCHIDEE surface fluxes (S(x)) through a matrix 32 
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multiplication to derive H(x). T has been pre-calculated for all atmospheric stations in order 1 

to save computing time during the iterative optimization process (see §2.3.2). For simplicity 2 

we use monthly mean values for both the fluxes S(x) and the transport sensitivities (T) in the 3 

computation of the gradients dJ(x)/dx.  4 

For improved minimization efficiency, the inversion is preconditioned (following Chevallier 5 

et al., 2005), which means that L-BFGS-B is fed with the control variable 𝒙! = 𝐁!𝟏/𝟐 𝒙−6 

𝒙! , rather than with x, as this homogenizes the range of variation of the optimized 7 

parameters.  8 

2.4.3 Error estimation  9 

The posterior parameter error covariance matrix, A, can be approximated to the  inverse 10 

Hessian of the cost function, using the linearity assumption at the minimum of J(x). It can be 11 

derived with the Jacobian of the model at the end of the minimization (i.e. the last iteration), 12 

𝐇!, following Tarantola (1987): 13 

    𝐀 = 𝐇!! .𝐑!!.𝐇! + 𝐁!! !!
                      (4) 14 

Note that for step 3, 𝐇! = 𝐓. 𝐒!, where 𝐒! is the Jacobian of the ORCHIDEE model at the 15 

last iteration. The posterior parameter error covariance, A, can then be propagated into the 16 

model state variable space (e.g. carbon fluxes and stocks), 𝐀𝐯𝐚𝐫, given the following matrix 17 

product (only used for the global fluxes in step 3): 18 

    𝐀𝐯𝐚𝐫 =  𝐒!.𝐀. 𝐒!!                                                               (5) 19 

The square root of the diagonal elements of 𝐀𝐯𝐚𝐫 corresponds to the standard deviation, σ, of 20 

carbon fluxes/stocks for each grid cell. In order to evaluate the knowledge improvement 21 

brought by the assimilation, the uncertainty reduction between the prior (σprior) and posterior 22 

(σpost) is determined as 1 – (σpost / σprior). 23 

2.4.4 Additional processing steps  24 

In order to analyze the fit to the atmospheric CO2 concentrations in terms of the trend and 25 

seasonal cycle, we decomposed the observed and modeled time series by fitting the monthly 26 

mean values with a function comprising a first order polynomial term and four harmonics, 27 

and then filtered the residuals of that function in frequency space using a low pass filter 28 

(cutoff frequency of 65 days), following Thoning et al. (1989). The polynomial term defines 29 
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the trend while the seasonal cycle corresponds to the harmonics plus the filtered residuals. 1 

The amplitude of the seasonal cycle is then calculated as the difference between the monthly 2 

mean maximum and minimum for year 2003 (middle year of the optimization period). 3 

Finally, we define the Carbon Uptake Period (CUP) as the sum of the days when the values of 4 

the seasonal cycle extracted from the CO2 concentration time series are negative (a negative 5 

convention being for CO2 removed from the atmosphere).  6 

2.5  Prescribed emissions of carbon fluxes 7 

In this section we describe the other components of the carbon cycle (apart from the surface C 8 

exchange with terrestrial vegetation) that are imposed in step 3 of the optimization process as 9 

fixed fluxes. 10 

2.5.1 Ocean fluxes  11 

The ocean contributes to an uptake of about a quarter to a third of the anthropogenic 12 

emissions with significant year-to-year variations (Sabine et al., 2004). For this version of the 13 

ORCHIDAS, we developed a statistical model to estimate the spatial and temporal variations 14 

(monthly) of the ocean surface CO2 partial pressure (pCO2
SW), and from that the air-sea CO2 15 

fluxes, using satellite and in-situ ocean measurements and model outputs. The air-sea CO2 16 

fluxes are primarily controlled by the ocean biogeochemistry, the horizontal transport and the 17 

vertical mixing in the ocean and the atmospheric forcing (CO2 partial pressure at the interface 18 

to the water (𝑃𝐶𝑂!!"#) and wind); they can be defined from the following equation: 19 

𝐹!"! =  𝐾!" × 𝑃𝐶𝑂!!" −  𝑃𝐶𝑂!!"#      (6)                                20 

where Kex stands for the exchange coefficient and FCO2 the CO2 flux from the sea surface 21 

water to the atmosphere.  22 

The computation of pCO2
SW is performed using feedforward artificial neural networks, i.e., a 23 

MultiLayer Perceptron (MLP; Rosenblatt 1958) that maps a set of spatio-temporal variables 24 

(input) onto observed pCO2
SW data. We use a two-step approach: the first step to derive a 25 

monthly mean pCO2SW climatology and the second step to correct for the year to year 26 

variations. The pCO2
SW observations come from the Global Surface pCO2 (Lamont-Doherty 27 

Earth Observatory, LDEO) Database (Takahashi et al., 2009). The inputs are a series of 28 

variables connected to the spatial and temporal evolution of pCO2
SW: i) sea surface 29 

temperature (SST), sea surface salinity (SSS) and mixed layer depth (MLD) as a proxy of the 30 
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physical processes (these fields come from a re-analysis of the NEMO-OPA ocean model 1 

(Madec et al., 1998) with the assimilation of several satellite observations), ii) chlorophyll 2 

content from SeaWiFS, as a proxy of the biogeochemistry (CHL), iii) spatial and temporal 3 

coordinates (LAT, LON and MONTH) and the pCO2
SW at previous time step (recursive 4 

approach), i.e.: 5 

𝑃𝐶𝑂!!" ! = 𝑀𝐿𝑃 𝑆𝑆𝑇, 𝑆𝑆𝑆,𝑀𝐿𝐷,𝐶𝐻𝐿 (!!!,!!!,!), 𝑃𝐶𝑂!!" (!!!,!!!)  𝐿𝐴𝑇, 𝐿𝑂𝑁   (7) 6 

with m the monthly index. The available data (20685 points) is divided into two parts: 75% is 7 

used for the learning phase of the ANN and 25% for the validation phase. The overall 8 

performance of the neural network for extrapolating the spatial and seasonal distribution of 9 

pCO2
SW is relatively good, with a spatio-temporal correlation coefficient between the 10 

estimated pCO2
SW and the independent observations of 0.80. 11 

pCO2
ATM at the surface are taken from a global simulation of atmospheric CO2 concentrations 12 

with optimized fluxes (Chevallier et al. 2010). Kex is defined as the product of k, the gas 13 

transfer velocity, taken from the Wanninkhof (1992) formulation using winds from ERA-14 

Interim, and s, the solubility of CO2, taken from the Weiss formulation (Weiss, 1974). The 15 

system is further described in Roedenbeck et al. (2015). The global ocean sink is around 1.60 16 

PgC.yr-1 for the period 2002-2004 used in step 3. It is within the uncertainty range of the 17 

Global Carbon Project estimates (Le Quéré et al., 2015) if we account for the pre-industrial 18 

ocean out-gazing flux included in our “delta pCO2” approach. Its temporal evolution is 19 

depicted in Fig. A1 20 

2.5.2 Global fossil fuel and cement CO2 emissions 21 

We have used a recently developed CO2 fossil fuel and cement emission product (see 22 

http://www.carbones.eu/wcmqs/) that covers the period 1980 to 2009 at the spatial resolution 23 

of 1° x 1° and hourly resolution. It is based on EDGAR v4.2 spatially distributed annual 24 

emissions (Olivier et al., 2012) and time profiles developed by the University of Stuttgart. It 25 

was assumed that EDGAR delivers the most up-to-date spatially distributed and sector 26 

specific emissions, based on national emission statistics. IER further applied country and 27 

sector specific time profiles, taking into account monthly, daily, and hourly variations 28 

depending on the sector. The derivation of the time profiles relies on different data sets (e.g. 29 

Eurostat, ENSTO-E, UN monthly bulletin) as well as correlations between recorded 30 

emissions and climate variables. Currently, the temporal profiles are derived mostly from data 31 
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sets over Europe that were extrapolated using information on climate zone, average monthly 1 

temperature for the seasonal cycles and similarity in socio-economic parameters like 2 

population and Gross Domestic Product (GDP). The annual mean emission for the period 3 

2002-2004 is 7.14 PgC.yr-1.  4 

2.5.3 Fire emissions: 5 

Fire emissions data from the Global Fire Data (GFEDv3 – 6 

http://www.globalfiredata.org/Data/index.html) are prescribed in the ORCHIDAS. The 7 

GFEDv3 data are broken-down into 6 sectors (deforestation, peat fires, savanna fires, 8 

agriculture, forest fires, and woodland) that are further grouped into 3 main types. We 9 

generated fluxes of CO2 relevant for typical "burning - regrowth" processes, as detailed in 10 

Appendix A2. The first type corresponds to deforestation and peat fires with carbon 11 

permanently lost to the atmosphere, the second to agriculture and savannah fires which are 12 

assumed to be compensated by a sink during the regrowth period (i.e. with zero annual net 13 

emission for each pixel) and the third to woodland and burnt forests which are assumed to be 14 

at steady state for a given region (10 sub-continental scale regions) over the period covered by 15 

GFEDv2 (i.e. regrowth of nearby forest compensates for the burned forest derived in GFED). 16 

The sum of these three components leads to the global flux, with a gross emission around 2.1 17 

PgC.yr-1 and a net emission after regrowth of only 1.1 PgC.yr-1 (Fig. A2 in Appendix) that is 18 

prescribed to the ORCHIDAS over the period 2002-2004. 19 

 20 

3 Results 21 

3.1 Model fit to the data 22 

3.1.1 Step 1: assimilation of MODIS NDVI data 23 

The optimization in Step 1 resulted in an improved fit to the MODIS NDVI observations for 24 

the four PFTs considered (TeBD, BoND, BoBD, NC3, see §2.4) as seen in Fig. 4, which 25 

shows the mean seasonal cycle across the 2000-2008 period for all sites for each PFT. The 26 

most prominent change after the optimization was a substantially shorter growing season for 27 

all PFTs due to an earlier start of leaf senescence. This was caused by both a lower critical 28 

leaf age (Lagecrit) and a higher temperature threshold for senescence (CTsenes) (Fig. 8). The 29 

impact on the start of leaf growth was less dramatic but important nonetheless, with a shift to 30 
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a later start of leaf growth as a result of an increase in the Kpheno,crit parameter which acts as a 1 

scalar on the threshold of Growing Degree Days (GDD) used to trigger leaf onset (see 2 

Appendix A in MacBean et al., 2015). Overall, a mean reduction in RMSE of 23, 17, 58 and 3 

19% was achieved for TeBD, BoBD, BoND trees and NC3 grasses respectively, with the 4 

greatest improvement for BoND trees. The mean correlation between the normalized MODIS-5 

NDVI and modeled FAPAR time series over the 2000 – 2008 period increased for TeBD and 6 

BoND trees and NC3 grasses (prior and posterior of 0.9 to 0.93, 0.42 to 0.91 and 0.6 to 0.66, 7 

respectively). The prior correlation of 0.55 remained similar after the assimilation for BoBD 8 

trees. 9 

Following the improvement at the sites selected for the optimization, we evaluated the impact 10 

for each PFT at the global scale using the global median correlation between the MODIS-11 

NDVI and the model FAPAR time series (from all pixels where the fraction of a given PFT is 12 

above 60%, see Maignan et al. 2011). The global correlation increased for BoND trees and 13 

NC3 grasses from 0.36 to 0.91 and 0.53 to 0.59 (prior to posterior), respectively. It remains 14 

stable for BoBD (0.54) or slightly increased for TeBD (0.88 to 0.89).  15 

3.1.2 Step 2: assimilation of FLUXNET data  16 

The optimization in Step 2 brings an improvement to the simulated NEE and LE for all seven 17 

PFTs considered, with Fig. 5 showing the corresponding PFT-averaged mean NEE seasonal 18 

cycles (mean across all sites/years). NEE is overestimated by the prior model for all PFTs on 19 

average. This is partly due to the model spin-up procedure, which brings each simulated site 20 

to a near equilibrium state with a mean NEE close to zero (i.e. no net carbon sink, see §2.1.1). 21 

This bias is significantly corrected by the optimization to match the observed carbon uptake at 22 

most sites, notably via the scaling of the initial soil carbon pool content at each site 23 

(parameters KsoilC,site; Table 1) which thus significantly reduces the ecosystem respiration 24 

(Kuppel et al., 2014). Overall, the largest reductions of model-data RMSE are found in 25 

temperate forests (TeNE, TeBE and TeBD), where the RMSE decreased by more than 25% 26 

compared with the prior model. The improvements are less significant for the other PFTs, 27 

with RMSE reductions between 10 and 18%.  28 

In addition, the optimization increases the NEE seasonal amplitude in temperate evergreen 29 

forests (TeNE and TeBE) and temperate broadleaf deciduous forests (TeBD), and reduces the 30 

amplitude for boreal needle leaf forest (BoNE) and natural C3 grasses (NC3), in agreement 31 
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with the observations (except for BoNE where the amplitude decrease is too large). Despite 1 

the better model-data agreement for evergreen broadleaf forests (TrBE and TeBE), the 2 

optimized model still fails to catch some seasonal features such as a persistent carbon uptake 3 

(i.e. negative NEE) in the dry season for the tropical regions (TrBE) and nearly-null carbon 4 

exchange in the first months of the year for temperate regions (TeBE). These results are 5 

discussed further in Kuppel et al. (2014), who used a similar optimization set-up with a 6 

slightly different parameter set – see §2.3.3. Similar improvements, although of smaller 7 

amplitude, occur for the latent heat fluxes (not shown).  8 

3.1.3 Step 3: assimilation of atmospheric CO2 data 9 

The final optimization step with the atmospheric CO2 concentrations provides a large 10 

improvement of the fit to the observed concentrations at most stations. The cost function J 11 

was reduced through the minimization by a factor of 5.7 within 37 iterations.  12 

Figure 6 illustrates the simulated concentrations for four stations (representative of different 13 

conditions) with the standard prior parameter vector (used in step 1), the posterior vector from 14 

step 2 (used as prior in step 3) and the posterior vector from this last step. The improvement 15 

in the fit to the observations can be quantified with the reduction in RMSE (from the prior to 16 

the posterior of step 3) - the largest reduction is at the South Pole station (73%) and is on 17 

average around 25% across all sites. Note that for a few stations the fit is slightly degraded 18 

(up to 10%) except for one Pacific site (regular ship measurements around the equator, 19 

POCN00) for which there is a 40% degradation, possibly due to small biases in the simulation 20 

of the ITCZ position in LMDz. When calculated with respect to the standard prior (used in 21 

step 1) the RMSE decrease is slightly larger on average, especially for the northern mid to 22 

high latitude stations. For these stations the optimization performed in step 2 with FLUXNET 23 

data led to a significant improvement of the mean seasonal cycle amplitude of the 24 

atmospheric CO2 data, as discussed in Kuppel et al. (2014). 25 

We then investigated the fit to the observed CO2 concentrations in terms of the mean seasonal 26 

cycle and trend (see section 2.4.4). With only three years of data the mean trend is more 27 

difficult to define as it varies between stations; however, the optimization in step 3 increases 28 

the net land carbon sink in order to match the observed trend at most stations. If we take the 29 

Mauna Loa and South Pole stations that are representative of an integration of the fluxes at 30 

hemispheric scales, the prior CO2 trend of 2.8 and 2.9 ppm.yr-1 respectively, is reduced to 2.1 31 
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and 2.2 ppm.yr-1 close to the observations (2.1 ppm.yr-1 for both). The left panel of Fig. 7 1 

illustrates changes in the amplitude of the simulated seasonal cycle at each station (see 2 

definition in §2.4.4). The values correspond to relative changes between the prior and 3 

posterior of the absolute difference between observed and modeled amplitude ( ∆𝐴!"#$% −4 

 ∆𝐴!"#$" / ∆𝐴!"#$" ). They reveal an improvement in the seasonal cycle amplitude at nearly 5 

all stations of the southern hemisphere (≈ 40% improvement) and at the majority of the 6 

northern hemisphere stations (≈ 15%). A few stations in north East Asia (3) and northwest 7 

America (4) show a small degradation of the amplitude (≈ 15%). The right panel of Fig. 7 8 

displays the changes of the Carbon Uptake Period (CUP, see §2.4.4) expressed in terms of 9 

relative changes between prior and posterior of the absolute values of model-data differences, 10 

as for the amplitude. Most stations reveal an improvement of the CUP of around 20%, which 11 

is slightly lower than the improvement for the seasonal cycle amplitude.  12 

3.2  Consistency of the step-wise optimization  13 

The main issue with a step-wise data assimilation system (versus a simultaneous approach) 14 

concerns the potential degradation of the model – data fit for the different data streams that 15 

are assimilated in previous steps. We noted that CO2 concentrations were already improved 16 

when NDVI and FLUXNET data are assimilated (see §3.1.3), but we need to check if the 17 

final parameter set from step 3 leads to a degradation of the fit to MODIS-NDVI (step 1) and 18 

to FLUXNET (step 2) data compared to the fit achieved during the respective steps and, in the 19 

case of a significant degradation, if we still have an improvement for these data streams 20 

compared to the initial a priori fit.  21 

Figure 8 summarizes the performance of the model data fit for MODIS-NDVI and 22 

FLUXNET-NEE data streams for the prior and posterior of each step by evaluating the 23 

median RMSE between the model and the observations across all sites. The values are 24 

calculated for each PFT separately. In this section, we keep in mind the fact that we do not 25 

optimize the same PFTs with FLUXNET data and with MODIS-NDVI. 26 

Consistency for MODIS-NDVI 27 

First, we notice again the significant RMSE reduction between the prior and step 1, as 28 

discussed in section 3.1. The fit to MODIS-NDVI (normalized data) for step 2 and step 3 29 

shows only a significant degradation (increased RMSE) for temperate broadleaf deciduous 30 
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forest (TeBD), which decreases the improvement achieved in step 1 (compared to the prior) 1 

by a factor of two. A marginal degradation for natural C3 grassland (NC3) is obtained after 2 

step 3: the RMSE increases slightly from 0.24 to 0.26, but is still lower than the prior value of 3 

0.3. There is no degradation for boreal needleleaf deciduous trees (BoND), but a surprising 4 

small decrease of the RMSE (i.e. improvement in the model-data fit) for boreal broadleaf 5 

deciduous forests (BoBD; from 0.26 to 0.23). In this latter case, the use of additional 6 

parameters in steps 2 and 3 (see §2.4) allows further improvement of the fit between the 7 

normalized FAPAR and NDVI time series. On average the degradation of the fit to NDVI is 8 

thus very limited in step 2 and step 3, and in no case is the RMSE worse than the prior.  9 

Consistency for FLUXNET data  10 

Figure 8 again reveals the significant reduction of the RMSEs for NEE in step 2 compared to 11 

the standard prior or to the posterior of step 1 for most PFTs, except BoNE. We see only 12 

small degradations (increases) in RMSE between step 2 and step 3 for temperate needle leaf 13 

evergreen forests (TeNE: from 1.06 to 1.13 gC.m2.d-1), temperate broadleaf evergreen forests 14 

(TeBE: from 1.06 to 1.09 gC.m2.d-1), temperate broadleaf deciduous forests (TeBD: from 1.06 15 

to 1.13 gC.m2.d-1) and boreal needle leaf evergreen forests (BoNE: from 0.59 to 0.60 gC.m2.d-16 
1). An interesting feature to notice is that the NEE RMSE increases between the prior to the 17 

posterior of step 1 (i.e. before NEE has been used in the optimization in step 2). Using remote 18 

sensing products of vegetation activity or “greenness” (e.g. NDVI) to calibrate the phenology 19 

of ORCHIDEE thus does not always improve the simulated NEE, the possible reasons for 20 

which were discussed in Bacour et al. (2015) who used the same LSM and assimilation 21 

system. Overall, the reduction of the improvement of the model data fit to the NEE (step 3 22 

versus step 2) is marginal (limited to a few percent), thus further suggesting the consistency of 23 

our step-wise approach. Similar results are also obtained for the latent heat flux (LE) (not 24 

shown). 25 

3.3 Estimated parameter values 26 

We now discuss the parameter values, focusing on the changes obtained though the 27 

successive steps. Figure 9 presents the prior and posterior values for each parameter together 28 

with their associated uncertainties (estimated through Eq. (4)) and the allowed range of 29 

variation. Note that nine parameters are PFT-dependent while four are global (non PFT-30 

dependent). For the global non PFT-dependent parameters included in the step 2 optimization, 31 
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we took the mean value (see §2.4) as the prior for step 3. Note finally that the parameters 1 

linked to the initial soil carbon pools (KsoilC,site, KsoilC,reg) are not shown in Fig. 9 as they are 2 

too numerous (though see Fig. A2 for the regional values). 3 

If we first consider the phenology parameters optimized in step 1 (Klai,happy, Kpheno,crit, Lage_crit, 4 

CT,senes; see Table 1) we see that for most PFTs they do not change significantly between step 5 

1 and step 3, although they differ significantly from the prior. There are few exceptions, 6 

including Kpheno,crit (the threshold for the start of the growing season) for Boreal Needleleaf 7 

deciduous forests and Klai,happy (level of carbohydrate use) for temperate and boreal broadleaf 8 

deciduous forests (TeBD, BoBD). Note that a few phenology parameters hit one of the 9 

physical bounds, which may indicate model structural errors or model parameter equifinality. 10 

For most phenology parameters, the uncertainties are strongly reduced during their first 11 

optimization (step 1), except for a few cases like CT,senes for C3 grassland. Note finally that a 12 

more in depth spatio-temporal validation demonstrated the generality of the optimized 13 

phenology parameters across multiple sites (for further details see MacBean et al., 2015).  14 

For the photosynthesis parameters (Vcmax, Gs,slope, CTopt, SLA, fstress; see Table 1), we find a 15 

similar result with little changes between step 2 and step 3, but still a significant departure 16 

from the prior values. Most parameters are well constrained by the inversion, with posterior 17 

uncertainties that are greatly reduced compared to the prior, except for Tropical broadleaf 18 

rain-green forest (TrBR) and Boreal needle-leaf deciduous forest (BoND) for which there is 19 

nearly no constraint on Gs,slope, and fstress (see Table 1).  20 

The non-PFT dependent respiration-related parameters (HRH,c, Q10, MRb) mostly change in 21 

step 2 and only slightly in step 3 (with an additional reduction of the error) in order to fit the 22 

large-scale constraint provided by the atmospheric observations. The values of the scalar of 23 

the initial soil carbon pools size for the FLUXNET site optimizations (KsoilC,site, one parameter 24 

per site, not shown) were largely reduced on average, in order to decrease the heterotrophic 25 

respiration (see Kuppel et al. (2014) for additional discussion). In step 3 the same scalars that 26 

were defined for an ensemble of large regions (KsoilC,reg) have decreased in the southern 27 

hemisphere (less than 10%; see Fig. A2 in Appendix A3) and slightly increased in the 28 

northern hemisphere (around 1%), to achieve a better match to the atmospheric CO2 growth 29 

rate and north-south gradient. Importantly, we notice that for step 3, the fit to the atmospheric 30 

CO2 concentrations (especially to the trend) is achieved mainly by small changes in KsoilC,reg 31 

and in few other respiration-related parameters. Note finally that the parameter controlling the 32 
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albedo (Kalbedo,veg), modified with the FLUXNET observations only (see §2.4), is not well 1 

constrained by the optimization (only a small reduction in uncertainty). Overall, most 2 

parameters appear to be well constrained when first optimized, with only small changes in the 3 

following steps. This suggests that the targeting of different parameter subspaces in the 4 

various optimisation steps was well-chosen. 5 

3.4  Estimated carbon fluxes and uncertainties     6 

The main objective of a carbon cycle data assimilation procedure is to improve the simulated 7 

land surface net and gross carbon fluxes as well as the simulated carbon stocks for both 8 

present and future conditions. Given the focus of the paper, i.e. to describe the potential of a 9 

step-wise global carbon cycle data assimilation system, we only discuss a few large-scale 10 

features of the optimized annual net and gross carbon fluxes, as well as one of the carbon 11 

stock variables (forest above-ground biomass). We thus do not discuss the inter-annual flux 12 

variability.  13 

Large-scale annual mean net fluxes 14 

The mean annual carbon fluxes (NEE) for the globe, northern extra tropics, tropics, and 15 

southern extra tropics are reported in Fig. 10 for the 2000-2009 decade for the prior and 16 

posterior model simulations for all steps together with one other estimate of the land surface 17 

residual from the Global Carbon Project (GCP, Le Quéré et al, 2015) over the same decade. 18 

The prior NEE indicates a total sink of 0.5 PgC.yr-1 over this period, from both the northern 19 

and tropical regions. Such a prior sink is due to the increase of atmospheric CO2 during the 20 

transient simulation following the spin-up (1990-2009, see section 2.3.1) and climate 21 

variability. Changes from the prior are rather small in step 1 (assimilation of MODIS NDVI)) 22 

with an increase of the northern sink by 0.12 PgC.yr-1 and a decrease of the tropical sink by 23 

0.05 PgC.yr-1 (Fig. 10). Step 2 (assimilation of FLUXNET data) does not significantly change 24 

the net C sink from step 1, with only a small increase in the tropical sink by 0.1 PgC.yr-1. The 25 

assimilation of atmospheric CO2 data in step 3 provides a large-scale constraint, as already 26 

discussed, and increases the total land sink to 2.2 PgC.yr-1, a value in much closer agreement 27 

with the estimate by the GCP. A larger tropical NEE uptake is responsible for the large 28 

increase of the terrestrial biosphere C sink (from 0.3 PgC.yr-1 in step 2 to 1.7 PgC.yr-1) while 29 

the sink in the north increases by less than 0.1 PgC.yr-1. The comparison with the GCP 30 

number should be taken with caution. The ORCHIDAS estimated sink include all effects 31 
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(natural and anthropogenic), since that we used atmospheric CO2 as a global constraint. Thus 1 

the optimized parameters must account for any missing processes like nitrogen limitation or a 2 

proper description of agricultural processes and management. However, the GCP number is 3 

only for the anthropogenic uptake, excluding the pre-industrial sink due for instance to river 4 

export of carbon (around 0.45 PgC.yr-1; Regnier et al. 2013).  5 

Spatial distribution of the annual mean net flux 6 

Figure 11 shows the spatial distribution of NEE averaged over 2002-2004 for the standard 7 

prior and posterior after step 3. The large tropical net land carbon sink that is inferred in step 8 

3 is mainly explained by an increase of the carbon uptake for the tropical forests of the 9 

Amazon basin and equatorial Africa, as well as a decrease of the carbon release on the 10 

southern edge of the Amazon basin (tropical rain-green forests and grasses). In the northern 11 

mid-high latitudes only smaller regional changes from the prior occur. For Europe, most of 12 

north Asia and Canada, the strength of the C sink slightly decreased from the prior (up to 30 13 

gC.m2.yr-1), while for central USA the strength of C source slightly decreased. If we now 14 

consider the uncertainties on the net annual carbon flux that arise from the parameter 15 

uncertainty (second row of Fig. 10; Eq. (5)) we observe a very large reduction (compared to 16 

the prior) in the monthly flux uncertainty (averaged over the three years used in step 3) over 17 

tropical forests. It is reduced by a factor four with initial values around 150 gC.m2.y-1 and 18 

posterior values between 22 and 66 gC.m2.y-1. For mid-to-high latitude boreal ecosystems, the 19 

uncertainty reduction is smaller, but the posterior errors are slightly lower than over the 20 

tropics, between 18 and 55 gC.m2.y-1.  21 

Large-scale annual mean Gross Primary Production (GPP) 22 

For the GPP the relative changes from the prior are smaller than for the NEE (Fig. 10b). The 23 

mean annual total GPP is 169, 160, 154 and 156 PgC.yr-1 for the prior and posterior of step 1, 24 

2 and 3, respectively. The small overall decrease (8%) brings the GPP slightly closer to the 25 

estimate by Jung et al. (2011), around 120 PgC.yr-1, based on a statistical Model Tree 26 

Ensemble (MTE) that upscaled the in-situ flux measurements (resulting from the partition of 27 

measured NEE into GPP and total ecosystem respiration). The decrease in GPP occurs mainly 28 

in the northern hemisphere after step 1 (-10 PgC.yr-1) following the decrease in Vcmax (Fig. 9) 29 

while it remains relatively stable over the tropics across all steps. Note that i) the study of 30 

Welp et al. (2011) suggests a GPP around 150 PgC.yr-1, similar to our estimate, based on 31 
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measurements of 18O/16O ratio in atmospheric CO2 and ii) Koffi et al. (2012) found optimized 1 

GPP of 146 PgC.yr-1 from a CCDAS using the BETHY model. 2 

Above-ground forest biomass 3 

We analyze the impact of the optimization on the forest above-ground biomass at equilibrium 4 

(i.e. after spin-up; see Fig. 12) as an example of the impact on model C stocks, and compare 5 

the simulated values, for the same three latitude bands than above, to the estimate based on 6 

field observations and remote sensing data. This product, which was produced in the 7 

GEOCARBON project (and thus is referred to by the same name), integrates a pan-tropical 8 

biomass map (Avitabile et al., 2016) with a boreal forest biomass product (Santoro et al., 9 

2015).  10 

For the northern extra tropics, the prior above-ground C stock (~180 PgC) is reduced by the 11 

optimization to 140 PgC, mainly through the decrease of the growing season length in step 1 12 

with the assimilation of MODIS-NDVI. The significant decrease in GPP during step 1 (18 %) 13 

led indeed to a similar decrease of the forest biomass (16%). Parameter changes through the 14 

assimilation of FLUXNET and CO2 data have a smaller impact (a change of less than 5 PgC). 15 

These changes in the northern extra tropics bring the estimates by the ORCHIDEE model 16 

closer to the satellite-based GEOCARBON product (~ 120 PgC).  17 

For the tropics, while there is nearly no change with the assimilation of MODIS-NDVI in step 18 

1, the use of FLUXNET data leads to a significant increase of the forest above ground 19 

biomass (close to 25%). Such an increase does not correspond to an increase of the GPP (Fig. 20 

10) but to changes in the autotrophic respiration parameter (MRb) that lead to a decrease of 21 

autotrophic respiration and an increase of NPP. The value does not change through step 3 and 22 

remains significantly higher than the data-driven estimate. Note however that the lower value 23 

in the GEOCARBON product could be partly due to the fact that we did not yet account for 24 

land use effects in the CCDAS, such as deforestation in the Amazon.  25 

 26 

4 Discussion and conclusions 27 

In this paper we have described a first global Carbon Cycle Data Assimilation System that 28 

assimilates three major carbon-cycle data streams, namely MODIS-NDVI observations of 29 

vegetation activity at 60 sites, FLUXNET NEE and LE measurements at more than 70 sites, 30 

and atmospheric CO2 concentrations at 53 surface stations over three years in order to 31 
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optimize the C cycle parameters of the ORCHIDEE process-based LSM (ORCHIDEE-1 

CCDAS). The study details the concept, the implementation and the main results of a 2 

stepwise assimilation approach where the data streams have been assimilated in three 3 

successive steps (including a propagation of the retrieved posterior parameter distributions 4 

from one step to the next).  5 

The assimilation of MODIS-NDVI (60 grid cell points, step 1) improved the phenology of 6 

ORCHIDEE with a significant reduction of the growing season length and thus a direct 7 

impact on the GPP. The results are similar to those presented in MacBean et al. (2015) who 8 

describe the impact of such optimization on the global FAPAR simulations and the 9 

improvement in the bias of the calculated leaf onset and senescence dates in more detail. The 10 

optimization with FLUXNET data (78 sites, step 2) led to large improvements in the seasonal 11 

cycle of the NEE and LE fluxes, constraining primarily the photosynthetic processes. Some 12 

discrepancies remain due to site heterogeneity (i.e. different species and edaphic conditions) 13 

that the model does not fully capture, and due to missing processes in the model (see Kuppel 14 

et al. (2014) for a more thorough discussion). However, without the assimilation of 15 

atmospheric CO2 concentrations, the global (and continental) net carbon balance after step 2 16 

was still clearly outside the admitted range (as reported by the GCP in Le Quéré et al. (2015), 17 

which highlights the importance of assimilating a data stream such as this that provides 18 

information at larger scales (constraining large scale respiration fluxes). The use of 19 

atmospheric CO2 concentration as an overall constraint in step 3 was technically challenging 20 

as it required the coupling of ORCHIDEE with an atmospheric transport model in forward 21 

and reverse mode (i.e. to compute the cost function and its gradients at each step of the 22 

minimization process). As a result of the final step, we were able to fit the atmospheric CO2 23 

growth rate and thus to derive a land C sink compatible with current best estimates from the 24 

GCP. The assimilation of CO2 data also slightly changed the seasonality of the NEE, which 25 

improved the fit to the atmospheric CO2 seasonal cycle. Note that assimilating only CO2 data 26 

would lead to a similar global land C sink but with a different model parameter set not 27 

compatible with the information provided by MODIS-NDVI and FLUXNET data. 28 

The consistency of the stepwise approach has been evaluated with back-compatibility checks 29 

after the final step (step 3: assimilation of atmospheric CO2 concentration). The optimized 30 

model with the final set of parameters does not degrade the fit to MODIS-NDVI and 31 

FLUXNET data that were assimilated in the first two steps (only minor changes of the 32 
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RMSEs occur; see Fig. 8). This result has two important consequences. Most importantly it 1 

suggests that current state of the art LSMs (at least ORCHIDEE) have reached a level of 2 

development where consistent assimilation of multiple data streams is finally possible. This 3 

overcomes the most important limitation noted by Rayner (2010) to the widespread use of 4 

CCDAS systems. At a more technical level it suggests that stepwise assimilation is a valid 5 

and feasible approach. Although we only carried the estimated parameter uncertainties from 6 

one step to the next (as a first simple approach), and not the full error variance-covariance 7 

matrix, we were able to propagate enough information to maintain an optimal model-data fit 8 

after the last step for the three data streams (see MacBean et al. (2016) for a more specific 9 

analysis of this issue). However, not propagating the covariance terms may have a larger 10 

impact for the reduction of the inferred parameter uncertainties (see for instance the large 11 

parameter / flux error reduction in Fig. 9 / Fig. 11). The order of the different steps was 12 

dictated by the number of parameters we choose to expose to each data stream, from only a 13 

few phenology parameters for NDVI up to the largest set for atmospheric CO2. Recall that 14 

under the fundamental theory the order of assimilation is unimportant. Testing whether our 15 

system meets this criterion is an important check on the robustness of the method but is not 16 

technically feasible with the full-blown system; it is currently being tested with some smaller 17 

models.  18 

Most of the optimized parameter values have significantly changed compared to their prior 19 

values, with a large error reduction for most (Fig. 9) that results in a strong constraint on the 20 

simulated fluxes (Fig. 11). In the last step, the assimilation of atmospheric CO2 data mainly 21 

led to the optimization of respiration-related parameters, especially the regional soil carbon 22 

multipliers (KsoilC,reg). Note that this was also the case for the BETHY-CCDAS, as described 23 

in Rayner et al. (2005) (see their Table 2). This is linked to the difficult issue of representing 24 

the effects of historical changes in land cover and land management as well as soil texture 25 

effects on soil carbon dynamics, and the necessary choice of a standard spin-up procedure to 26 

account for these effects. Ideally one would need to perform the optimization of the model 27 

over a long historical period with LULCC and land management practices included and the 28 

optimization of related parameters. However, this is not currently feasible at global scale and 29 

uncertainties in the forcing would introduce as much difficulty as uncertainties in the initial 30 

condition. The adjustment of the initial C pool contents is thus a logical compromise and 31 

further investigations into the impact of the selected set-up (number of regions for KsoilC,reg, 32 

their associated uncertainties) on the C fluxes simulated in the future are needed. Note that a 33 
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first improvement would be to include LULCC in the transient simulation (to define the initial 1 

state) before the assimilation period. 2 

Nonetheless, several limitations, inherent to the optimization of model parameters in a 3 

CCDAS, need to be called to mind when evaluating these results (see also Rayner et al., 4 

2010). First, the structure of the land surface model (i.e. how biogeochemical processes are 5 

represented) is critical. Any missing/misrepresented processes may have a direct impact and 6 

thus lead to biases in the selected parameters. Note that this limitation could be even more 7 

severe when using atmospheric CO2 measurements, as these data provide a direct constraint 8 

on the overall net C exchange between the atmosphere and the vegetation, thus including all 9 

processes. As an example, the model sensitivity to atmospheric CO2 increase (e.g. through the 10 

parameters Vcmax and Gs,slope) could be non optimal as the current model version does not 11 

include explicit nitrogen and phosphorus limitations on photosynthesis. Second, the chosen 12 

set of observations does not provide specific constraints on long term C processes such as tree 13 

mortality, disturbance effects, or C allocation within a plant. For instance Fig. 12 illustrates 14 

that the optimized model may still significantly overestimate tropical forest biomass. The 15 

assimilation of above-ground biomass or soil carbon stock observations (i.e. site-level 16 

measurements or regional estimates) should thus provide critical complementary information 17 

(see Thum et al., in revision for AFM).  18 

To conclude, this work is a step forward in terms of multiple data streams assimilation that 19 

opens new perspectives for a better understanding of the carbon cycle and better predictions 20 

of the fate of the land carbon sink in the 21st century as a consequence of anthropogenic 21 

changes. As ORCHIDEE is part of the IPSL earth system model the impact of the 22 

optimization on future climate change predictions will be assessed in a future study. However, 23 

we first need to run the ORCHIDAS with a longer atmospheric CO2 record (i.e. several 24 

decades) in order to provide stronger constraints on parameters controlling the impact of 25 

climate extremes on the net carbon fluxes at continental to global scales, and the sensitivity of 26 

photosynthesis to increasing CO2 concentration. The optimized model will allow a more in-27 

depth investigation of the trend and inter-annual variations of land surface C fluxes at 28 

continental to regional scales, as well as their driving mechanisms. It will offer a more 29 

reliable and robust process-based diagnostic of the land C cycle that is compatible with 30 

current major data streams. Overall, we have illustrated the benefit of combining multiple 31 

data streams in a process-based model to optimize different processes of the model, related to 32 
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different temporal and spatial scales. The optimization will be updated regularly as new 1 

processes are integrated into the ORCHIDEE model, such as for instance land management 2 

(Naudts et al., 2015). 3 

 4 

Code availability 5 

The ORCHIDEE model code and the run environment are open source 6 

(http://forge.ipsl.jussieu.fr/orchidee) and the associated documentation can be found at 7 

https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. Note that the tangent linear version 8 

of the ORCHIDEE model has been generated using commercial software (TAF; 9 

http://www.fastopt.com/products/taf/taf.shtml). For this reason, only the “forward” version of 10 

the ORCHIDEE model is available for sharing. The optimization scheme (in Python) is 11 

available through a dedicated web site for data assimilation with ORCHIDEE 12 

(http://orchidas.lsce.ipsl.fr/). Nevertheless readers interested in running ORCHIDEE are 13 

encouraged to contact the corresponding author for full details and latest bug fixes. Finally, 14 

the source code of the LMDZ atmospheric transport model can be found at 15 

http://web.lmd.jussieu.fr/trac. 16 

 17 

Appendix 18 

A1. Ocean fluxes 19 

Figure A1 displays the air-sea fluxes from the statistical model. 20 

A2. Fire fluxes 21 

In order to account for fundamental differences between six fire flux categories provided by 22 

the GFED product, we grouped these emissions into 3 types with specific treatments. The first 23 

group includes C emissions from deforestation and peat fires, which are considered to be 24 

permanent carbon lost to the atmosphere, at least over the considered time scales. These 25 

fluxes are rescaled to an annual emission of 1.1 PgC.yr-1 globally following typical values 26 

reported in the literature for deforestation (Houghton R., 2003). The second group consists of 27 

C emissions from agriculture and savannah fires, which are compensated by a C sink during 28 

the regrowth of these biomes (i.e., savannah and some type of plants on the farmland). These 29 
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effects are not completely accounted for in ORCHIDEE as the model does not simulate 1 

savannah and agriculture fire. Hence, the emissions over the whole period and for each pixel 2 

become zero, but their seasonal variations are used. The final group includes emissions from 3 

woodland and burnt forests. We considered that at steady state and for a given region certain 4 

forests burn but that nearby forests are re-growing following older fires. We thus imposed 5 

regrowth at the region scale given that the ORCHIDEE model version that we use does not 6 

account for such regrowth. The main assumption is that over century time scale the 7 

forest/woodland system is at steady state over a given region (few thousand square km), i.e. 8 

there is no net deforestation. We selected an ensemble of small regions over which we 9 

calculated the regrowth of these biomes. The derived emissions over the whole period and for 10 

each region thus become zero; though we include their spatial and temporal variations. The 11 

overall biomass burning flux considered in the CCDAS for the optimization process is the 12 

sum of the three fluxes as described above. 13 

A3. Multipliers of the soil initial carbon pools 14 

Figure A2 provides the optimized values of the KsoilC,reg parameters that optimize the initial 15 

soil carbon pool sizes. 16 

 . 17 
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Tables  1 

Table 1. Parameters description, generality (PFT dependent, global, specific to FLUXNET 2 

sites or for a set of regions) and data stream(s) that were used to constrain them. 3 

Parameter Description Dependent Constraint 

Vcmax Maximum carboxylation rate (µmol·m–2·s–1) PFT Flux, CO2 

Gs,slope Ball-Berry slope PFT Flux, CO2 

cT,opt Optimal photosynthesis temperature (°C) PFT Flux, CO2 

SLA Specific leaf area (m2·g–1) PFT Flux, CO2 

KLAI,happy 
LAI threshold to stop using carbohydrate 
reserves PFT Sat, Flux, CO2 

Kpheno,crit 
Multiplicative parameter of the threshold that 
determines the start of the growing season PFT Sat, Flux, CO2 

Lage,crit Average critical age of leaves (days) PFT Sat, Flux, CO2 

CT,sen Temperature threshold for senescence (°C) PFT Sat, Flux, CO2 

Fstress,h 
Parameter reducing the hydric limitation of 
photosynthesis PFT Flux, CO2 

MRoffset 
Offset of the temperature dependence of 
maintenance respiration Global Flux, CO2 

Q10 Temperature dependency of heterotrophic 
respiration Global Flux, CO2 

HRHc Offset of the soil/litter moisture control function Global Flux, CO2 

KsoilC,site Multiplicative factor of the initial soil carbon 
pools 

per Site Flux 

KsoilC,reg 36 regions CO2 

Kalbedo Multiplicative factor of the vegetation albedo Global Flux, CO2 

 4 

 5 
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Table 2. Prior information for all parameters except initial soil C pool multipliers: prior value, 1 

uncertainty and range of variation for the different plant functional types (Tropical Broadleaf 2 

Evergreen/Raingreen forests (TrBE / TrBR), Temperate Needle leaf / Broadleaf Evergreen 3 

forests (TeNE, TeBE), Temperate Broadleaf Deciduous forest (TeBD), Boreal Needle leaf 4 

Evergreen forests (BoNE), Boreal Broadleaf / Needle leaf Deciduous forests (BoBD / BoND) 5 

and C3 grassland.  6 

Parameter 
Plant functional type 

TrBE TrBR TeNE TeBE TeBD BoNE BoBD BoND NC3 

Vcmax 
65 ± 24 

[35; 95] 

65 ± 24 

[35; 95] 

35 ± 12.8 

[19; 51] 

45 ± 16 

[25; 65] 

55 ± 20 

[30; 80] 

35 ± 12.8 

[19; 51] 

45 ± 16 

[25; 65] 

35 ± 12.8 

[19; 51] 

70 ± 25.6 

[38; 102] 

Gs,slope 
6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

cT,opt 
37 ± 6.4 

[29; 45] 

37 ± 6.4 

[29; 45] 

25 ± 6.4 

[17; 33] 

32 ± 6.4 

[24; 40] 

26 ± 6.4 

[18; 34] 

25 ± 6.4 

[17; 33] 

25 ± 6.4 

[17; 33] 

25 ± 6.4 

[17; 33] 

27.25 ± 6.4 

[19.25; 35.25] 

SLA 
0.015 ± 

0.0092 

[0.007; 0.03] 

0.026 ± 

0.0148 

[0.013; 0.05] 

0.009 ± 

0.0064 

[0.004; 0.02] 

0.02 ± 

0.012 

[0.01; 0.04] 

0.026 ± 

0.0148 

[0.013; 0.05] 

0.009 ± 

0.0064 

[0.004; 0.02] 

0.026 ± 

0.0148 

[0.013; 0.05] 

0.009 ± 

0.0064 

[0.004; 0.02] 

0.026 ± 0.0148 

[0.013; 0.05] 

KLAI,happy 
0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

Kpheno,crit — 
1.0 ± 0.44 

[0.7; 1.8] 
— — 

1.0 ± 0.44 

[0.7; 1.8] 
— 

1.0 ± 0.44 

[0.7; 1.8] 

1.0 ± 0.44 

[0.7; 1.8] 

1.0 ± 0.44 

[0.7; 1.8] 

Lage,crit 
730 ± 192 

[490; 970] 

180 ± 48 

[120; 240] 

910 ± 240 

[610; 1210] 

730 ± 192 

[490; 970] 

180 ± 48 

[120; 240] 

910 ± 240 

[610; 1210] 

180 ± 48 

[120; 240] 

180 ± 48 

[120; 240] 

120 ± 60 

[30; 180] 

CT,sen — — — — 
12 ± 8 

[2; 22] 
— 

7 ± 8 

[–3; 17] 

2 ± 8 

[–8; 12] 

–1.375 ± 8 

[–11.375; 9.375] 

Fstress,h 
6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

MRoffset 
1.0 ± 0.6 

[0.5; 2.0] 

Q10 
1.99372 ± 0.8 

[1.0; 3.0] 

HRHc 
–0.29 ± 0.24 

[–0.59; 0.01] 

Kalbedo 
1.0 ± 0.16 

[0.8; 1.2] 
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Figures 1 
 2 
 3 

 4 

 5 

 6 

Figure 1. Schematic of the ORCHIDEE Carbon Cycle Data Assimilation System 7 
(ORCHIDAS). 8 
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 1 

Figure 2. Illustration of the step-wise data assimilation approach used for the assimilation of 2 
multiple data streams in the ORCHIDEE-CCDAS. The list of parameters for each step is 3 
summarized in Table 1.  4 

 5 

 6 

 7 

 8 

Figure 3: Location of the different observations used for each data stream assimilated in the 9 
system: MODIS-NDVI measurements, FLUXNET sites with NEE and LE measurements and 10 
atmospheric CO2 stations. 11 
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 1 

Figure 4. Mean seasonal cycle (2000-2008) of the normalised modelled FAPAR before and 2 
after optimisation, compared to that of the MODIS NDVI data, for the temperate and boreal 3 
deciduous PFTs (TeBD, BoBD, BoND and NatC3). Black = MODIS NDVI data; Grey = 4 
prior simulation (default ORCHIDEE parameters); Green = posterior multi-site optimisation. 5 

 6 

 7 

 8 

Figure 5: Mean seasonal cycle of the Net Carbon Ecosystem Exchange (NEE) for the 9 
different plant functional type optimize in Step 2 of the assimilation. The mean across all sites 10 
for a given PFT is provided for the observations (black), the prior ORCHIDEE (grey), the 11 
posterior of step 1 (green) and the posterior of step 2 (blue). 12 

TeBD BoBD 

BoND NatC3 

-4

-2

0

2

NE
E (

gC
/m

²/d
)

-6

-4

-2

0

2
TropEBF TempENF TempEBF BorENF BorDBF C3grass TempDBFTrBE!!! TeNE! TeBE! BoNE! BoBD! NC3! TeBD!

(Obs!Prior!Posterior)!

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-13, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 28 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 46 

 1 

Figure 6: Monthly mean atmospheric CO2 concentrations after step 3 of the optimization, for 2 
several stations over the period 2002-2004 of the optimization. The observations (black), the 3 
prior model (grey) and the posterior model after step 2 (blue) and step 3 (red) are displayed. 4 
Numbers in parenthesis correspond to RMSEs.  5 
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Figure 7: Changes in the mean seasonal cycle of the atmospheric CO2 concentrations after 1 
step 3 of the optimization at all atmospheric stations. Left: Relative changes (in percentage) 2 
between the prior and posterior absolute model-data differences for the amplitude of the 3 
seasonal cycle. Right: Same metric but for the length of the Carbon Uptake Period (CUP), 4 
measured as the sum of the days when the de-trended concentrations are negative (see text).  5 

 6 

 7 

 8 

 9 

Figure 8: RMSE between model outputs and observations for two types of observations: 10 
MODIS-NDVI on the left and FluxNet-NEE on the right, for different Plant Functional Types 11 
(PFT: TrBE, TeNE, TeBE, TeBD, BoBD, BoND, NC3) and for the prior model simulation 12 
and the posterior of each step of the assimilation framework. Missing bars correspond to the 13 
fact that no data were available to constrain a given PFT.  14 
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1 
Figure 9: Prior and posterior parameter values and uncertainties for a set of optimized 2 
parameters (9 PFT dependent and 4 non-PFT dependent). The prior value corresponds to the 3 
horizontal black line and the physical allowed range of variation to the “y” range (i.e. the 4 
white zone). For PFT-dependent parameters, there are 9 sub-plots corresponding to PFTs that 5 
were optimized (except for Kpheno_crit with only 5 PFTs). For each parameter, there are 3 6 
estimated values for the three successive steps: step1: assimilation of MODIS-NDVI data 7 
(green symbol); step2: adding FLUXNET data (blue symbol); step3: adding atmospheric CO2 8 
data (red symbol). The parameter values are depicted with the symbols and the estimated 9 
uncertainties with the vertical line (± sigma).   10 
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 1 

Figure 10: Left: Net Ecosystem Exchange (NEE) for three regions (North of 35°N, Tropics, 2 
South of 35°S) for the prior model, and after each step of the optimizations (mean over 2002-3 
2004). The total NEE is indicated with the vertical brown bar and compared to the Global 4 
Carbon Project (GCP) estimate for the same period (Le Quéré et al. 2015). Right: same but 5 
for Gross Primary Production where the data driven estimate (MTE product using FluxNet 6 
data; Jung et al., 2009) is provided for comparison. 7 

 8 

  9 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-13, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 28 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 50 

 1 

 2 

Figure 11:  Simulated annual net carbon exchange (NEE) for the land ecosystems prior to any 3 
optimization (left column) and after step 3 of the optimization process (right column). Upper 4 
figures correspond to the mean NEE (in gC.m-2.y-1) over the assimilation period (2001-2003) 5 
and lower figures to the associated monthly flux uncertainties (averaged over the whole 6 
period and expressed in gC.m-2.y-1) due to the parameter uncertainties (see text). 7 
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 1 

Figure 12: Above ground forest biomass data for the prior ORCHIDEE model and after step 2 
1, step 2 and step 3 of the optimization process. Estimates from satellite observations (Santoro 3 
et al., 2015) and referred as “GEOCARBON” (following the EU-GEOCARBON project) are 4 
provided for comparison. 5 
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Appendix figures 1 

 2 

 3 

Figure A1: CO2 air-sea fluxes including the natural ocean out-gazing, used as input to the 4 
ORCHIDEE-CCDAS and estimated from a neural network approach using observed pCO2 5 
data (see main text, section 2.5.1). The Northern, Tropical and Southern ocean contributions 6 
to the global ocean flux (blue curve) are also provided. 7 
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 9 

Figure A2: Map of the posterior values of the coefficient scaling the initial carbon pool sizes 10 
per regions. 11 
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