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 2 

Abstract 1 

Large uncertainties in Land surface models (LSMs) simulations still arise from inaccurate 2 

forcing, poor description of land surface heterogeneity (soil and vegetation properties), 3 

incorrect model parameter values and incomplete representation of biogeochemical processes. 4 

The recent increase in the number and type of carbon cycle related observations, including 5 

both in situ and remote sensing measurements, has opened a new road to optimize model 6 

parameters via robust statistical model-data integration techniques, in order to reduce the 7 

uncertainties of simulated carbon fluxes and stocks. In this study we present a Carbon Cycle 8 

Data Assimilation System (CCDAS) that assimilates three major data streams, namely 9 

MODIS-NDVI observations of vegetation activity, net ecosystem exchange (NEE) and latent 10 

heat (LE) flux measurements at more than 70 sites (FLUXNET), and atmospheric CO2 11 

concentrations at 53 surface stations, in order to optimize the main parameters of the 12 

ORCHIDEE LSM (around 180 parameters in total). The system relies on a step-wise 13 

approach that assimilates each data stream in turn, propagating the information gained on the 14 

parameters from one step to the next. 15 

Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, 16 

which suggests that current LSMs have reached the level of development to assimilate these 17 

observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length 18 

in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual 19 

gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in 20 

the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for 21 

temperate ecosystems). The assimilation of atmospheric CO2, using the atmospheric transport 22 

model LMDz (step 3), provides an overall constraint (i.e., constraint on large scale net CO2 23 

fluxes), resulting in an improvement of the fit to the observed atmospheric CO2 growth rate. 24 

Thus the optimized model predicts a land C sink of around 2.2 PgC.yr-1 (for the 2000-2009 25 

period), which is more compatible with current estimates from the Global Carbon Project 26 

(GCP) than the prior value. The consistency of the step-wise approach is evaluated with back-27 

compatibility checks. The final optimized model (after step 3) does not significantly degrade 28 

the fit to MODIS-NDVI and FLUXNET data that were assimilated in the first two steps, 29 

suggesting that a stepwise approach can be used instead of the more “challenging” 30 

implementation of a simultaneous optimization in which all data streams are assimilated 31 

together. Most parameters, including the scalar of the initial soil carbon pool size, changed 32 
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 3 

during the optimization with a large error reduction. This work opens new perspectives for 1 

better predictions of the land carbon budgets. 2 

 3 

1 Introduction 4 

Atmospheric CO2 concentrations have increased at an unprecedented rate over the last few 5 

decades, predominantly due to anthropogenic fossil fuel and cement emissions, as well as 6 

land use and land cover change (LULCC). The oceans and the terrestrial biosphere have 7 

absorbed CO2, removing on average 50% of anthropogenic emissions from the atmosphere. 8 

However, knowledge about the exact location of sources and sinks of carbon (C) and the 9 

driving mechanisms is still lacking. Land surface models (LSMs) can be used to improve our 10 

understanding of the spatio-temporal patterns of sources and sinks, as well as for attributing 11 

changes due to CO2, climate variability and other environmental drivers. However, the spread 12 

in the model predictions of terrestrial net C exchange currently has the same order of 13 

magnitude as the uncertainty of the terrestrial C budget estimated as the residual of the other 14 

carbon cycle components (Le Quéré et al., 2015). In addition to uncertainties in the mean 15 

global annual terrestrial C budget and its trend over time (Sitch et al., 2015), there remain 16 

strong discrepancies between LSMs in their predictions of regional budgets (Canadell, 2013) 17 

at seasonal and inter-annual timescales and in their sensitivity to climate and atmospheric CO2 18 

forcing (Piao et al., 2013).  19 

Uncertainties in model simulations arise from inaccurate forcing, incorrect model parameter 20 

values and/or an inadequate or incomplete representation of biogeochemical processes in the 21 

model (for example the impact of nutrient limitation on C fluxes, or C release related to 22 

permafrost thawing). Arguably the best way to improve model predictions is to confront 23 

simulations with multiple sources of data within an appropriate and rigorous framework 24 

(Prentice et al., 2015). In the last two decades significant efforts by the site and satellite 25 

observation communities have resulted in a large increase in the number and type of C cycle-26 

related observations. These data contain some information at various spatial and temporal 27 

scales and should be combined together to robustly address different aspects of the models. 28 

One way in which these data can be used to better quantify and reduce model uncertainty is 29 

by optimizing or calibrating the model parameters via robust statistical model-data fusion (or 30 

data assimilation – DA) techniques. In particular a Bayesian inference framework allows us to 31 
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 4 

update our prior knowledge of the parameters based on new information contained in the 1 

observations.  2 

There is a long history of using DA techniques for parameter optimization, particularly in 3 

Geophysics (Tarantola, 1987), but the initial studies in the field of global terrestrial C cycle 4 

data assimilation started with the initial study of Fung et al. (1987) and a pioneering work by 5 

Knorr and Heimann  (1995) who used atmospheric CO2 concentration to constrain the Simple 6 

Diagnostic Biosphere Model (SDBM). This effort was continued by the original Carbon 7 

Cycle Data Assimilation System (CCDAS) described in Rayner et al. (2005) and Kaminski et 8 

al. (2012) which used both atmospheric CO2 and satellite-derived Fraction of Absorbed 9 

Photosynthetic Radiation (FAPAR) data to optimize vegetation productivity by adjusting the 10 

C cycle-related parameters of the Biosphere Energy-Transfer Hydrology (BETHY) model 11 

(see a review in Kaminski et al., 2013). Meanwhile substantial efforts have been put into the 12 

use of local eddy covariance flux tower measurements of net exchange of CO2 and latent and 13 

sensible heat fluxes to optimize photosynthesis, respiration and energy-related parameters of 14 

terrestrial ecosystem models, both at individual sites (e.g. Wang et al., 2001, 2007; Williams 15 

et al., 2005; Braswell et al., 2005; Knorr and Kattge, 2005; Moore et al., 2008; Ricciuto et al., 16 

2008), and more recently using multiple sites together (hereafter multiple sites) from the 17 

global FLUXNET network (e.g. Groenendijk et al., 2011; Kuppel et al., 2012, 2014; Alton, 18 

2013; Xiao et al., 2014). Increasingly the focus in carbon cycle data assimilation is moving 19 

towards using multiple different data streams as independent constraints, with the aim of 20 

bringing more information at different spatial and temporal scales and constraining several 21 

processes at once in order to reduce the likelihood of model equifinality (where multiple sets 22 

of parameters achieve the same reduction in model-data misfit). Recent examples include the 23 

combination of in-situ eddy covariance flux observations and ground-based information on 24 

vegetation structure and C stocks (Richardson et al., 2010; Ricciuto et al., 2011; Keenan et al., 25 

2012, 2013; Thum et al., 2015), or in-situ flux data and satellite FAPAR (Kato et al., 2013; 26 

Zobitz et al., 2014; Bacour et al., 2015) or atmospheric CO2 and biomass data using a simple 27 

biosphere model (Saito et al., 2014). This is a non-trivial task however, especially when 28 

optimizing a complex LSM (see MacBean et al, submitted), which has many parameters 29 

acting from local to global scales.  30 

When assimilating multiple different data streams we have two options: i) to optimize the 31 

model with each data stream in turn, and to propagate the information gained on the 32 
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 5 

parameter values from one step to the next (hereafter referred to as “stepwise” assimilation), 1 

or ii) to include all data streams together in the same optimization (hereafter referred to as 2 

“simultaneous” assimilation). Kaminski et al. (2012) suggested that it is essential to perform a 3 

consistent, simultaneous assimilation that includes all data streams in the same optimization. 4 

It is important to note that this is an implementation question. Tarantola (2005) recasts the 5 

fundamentals of the approach as the conjunction or multiplication of probability densities. 6 

This multiplication is associative so it makes no difference whether it is performed in one step 7 

or several (and whether the system is linear or not). In complex problems such as these, one 8 

cannot carry or even describe the full structure of the relevant probability densities so which 9 

approach will work best in each case is unclear. In particular, technical difficulties associated 10 

with the different number of observations for each data stream and the characterization of 11 

error correlations between them, in addition to computational constraints to run global LSMs, 12 

might result in the preference for a step-wise assimilation framework. Additionally, it may be 13 

more straightforward, to expose a restricted set of parameters (following a global sensitivity 14 

analysis) to each observation type in a stepwise approach to ensure that each data stream 15 

constrains only the most relevant parts of the model. This reduces biases from other poorly-16 

represented processes caused by inadequate model structure. For these reasons we follow the 17 

stepwise approach in this paper.  18 

We present the first global-scale CCDAS that assimilates three of the main global data 19 

streams that have been used to date to understand the terrestrial carbon cycle – atmospheric 20 

CO2 concentration, satellite-derived information of vegetation greenness (from the MODIS 21 

instrument) and multisite eddy covariance net CO2 and latent heat flux measurements (from 22 

FLUXNET) – to optimize the parameters of the Organizing Carbon and Hydrology in 23 

Dynamics Ecosystems (ORCHIDEE) process-based LSM (Krinner et al., 2005). The main 24 

questions that we aim to answer in this paper are as follows: 25 

i) How and to which extend the optimization of the ORCHIDEE model allows to fit the three 26 

data streams that are considered?  27 

ii) Does the step-wise optimization result in a degradation of the fit to other data streams used 28 

in the previous steps?   29 

iii) What are the main changes in the optimized parameters when using sequentially these 30 

three data streams in a global CCDAS and which processes are constrained?  31 



 6 

iv) What are the improvements for the land C cycle in terms of net/gross fluxes and stocks as 1 

a result of multi-data stream optimization? What preliminary perspectives can we draw that 2 

may help us in improving model predictions of trends, variability and the location of 3 

terrestrial C sources and sinks? 4 

Following these objectives, the paper first describes the new ORCHIDEE-CCDAS including 5 

the concept, the observations, the models and the optimization approach. We then present the 6 

results, including the fit to the data, consistency checks (question i) above) as well as mean 7 

global and regional C cycle budget for the period 2000-2009. The last section discusses issues 8 

and perspectives associated with these results.  9 

 10 

2 Methods 11 

2.1 ORCHIDEE-CCDAS concept 12 

We have designed a CCDAS around the ORCHIDEE land surface model (ORCHIDEE-13 

CCDAS, later also referred to as ORCHIDAS for simplicity) that combines a state-of-the-art 14 

description of the driving biogeochemical processes within the model with multiple 15 

observational constraints in a robust statistical framework, in order to improve the simulation 16 

of land carbon fluxes and stocks. The system allows us to retrieve the best estimate, given the 17 

observations and prior information, of selected parameters (see §2.3.3) as well as to evaluate 18 

their uncertainty. It relies on a stepwise assimilation of a comprehensive set of three C cycle-19 

related observations that are representative of small (100 m) to large (continental) scales (see 20 

§2.2):  21 

• Step 1: Satellite measurements of vegetation activity using the Normalized Difference 22 

Vegetation Index (NDVI) from the MODIS instrument over the 2000-2008 period for 23 

a randomly selected set of sites for boreal and temperate deciduous vegetation types;  24 

• Step 2: In-situ eddy-covariance net CO2 and water (latent heat) flux measurements 25 

from the FLUXNET database for a large set of sites, spanning 7 different vegetation 26 

types; 27 

• Step 3: In-situ monthly atmospheric surface CO2 concentration measurements from 28 

the GLOBALVIEW-CO2 database over three years (2002-2004). 29 

The system relies on two models: 30 
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• The ORCHIDEE global LSM, whose main C cycle parameters are optimized (see 1 

§2.3) 2 

• The atmospheric transport model, LMDz (see §2.3), to relate the surface carbon fluxes 3 

to atmospheric CO2 concentrations.  4 

The framework combines the different observational data streams within ORCHIDAS in 5 

order to optimize selected model parameters using a variational data assimilation system, 6 

described in section 2.4. Figure 1 illustrates the structure of the CCDAS and the different 7 

components that are involved. Such a framework distinguishes i) the assimilated observations, 8 

ii) an ensemble of forcing and input data streams, iii) the models and optimization framework, 9 

as well as iv) an evaluation step, where independent datasets are compared to the optimized 10 

model stocks and fluxes. As explained in the introduction, a major feature of the current 11 

system is the stepwise approach, in which all data streams are assimilated sequentially (i.e. 12 

one after the other). The information retrieved at a given step (retrieved optimal parameter 13 

values and associated uncertainty) is propagated to the next step (see Fig. 2 and §2.4). Note 14 

that for simplicity we did not propagate the error correlations in this first implementation of 15 

the system (section 4 discusses the potential impact of this simplification). 16 

At each step, the parameter optimization relies on a Bayesian framework that explicitly 17 

minimizes the difference between the simulated and observed quantities in addition to 18 

minimizing the difference between the optimized model parameters and “a priori” values (see 19 

§2.4.2). The dependence of the simulated quantities on the optimized variables is non-linear, 20 

which thus necessitates the use of an iterative algorithm. Note that all components of the 21 

surface C budget need also to be included in the ORCHIDAS, particularly when using 22 

atmospheric CO2 measurements which requires the atmospheric transport model to be 23 

prescribed with fossil fuel emissions, CO2 fluxes associated with biomass burning and ocean 24 

CO2 fluxes (see §2.5) in addition to net ecosystem exchange (NEE) from ORCHIDEE. 25 

2.2 Assimilated observations 26 

2.2.1 MODIS-NDVI 27 

MODIS collection 5 obtained from surface reflectance data (from 2000-2008) in the red (R) 28 

and near-infrared (NIR) bands at 5 km resolution (CMG) are used to optimize the phenology-29 

related parameters of ORCHIDEE in the first step. The R and NIR data were processed to 30 
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correct for directional effects following Vermote et al. (2009) and then used to calculate the 1 

NDVI, which is assumed to be linearly related to the model FAPAR. The NDVI are then i) 2 

aggregated to the 0.72° spatial resolution of the ERA-Interim meteorological fields that are 3 

used to force ORCHIDEE, ii) interpolated to a daily time series and iii) checked for quality 4 

(see MacBean et al., 2015 for details). If there is a gap in the observations of more than 15 5 

days, no interpolation is done (i.e., no data during the gap are assimilated). Figure 3 displays 6 

the location of the sites that were selected (see §2.4.1). 7 

2.2.2 Eddy covariance flux data 8 

Eddy covariance flux measurements of net surface CO2 flux – hereafter referred to as net 9 

ecosystem exchange (NEE) and latent heat flux (LE) – from 78 observation sites of a network 10 

of regional networks (FLUXNET; see Fig. 3) are used to constrain ecosystem physiology and 11 

fast C-related processes at daily to seasonal timescales in ORCHIDEE in the second step. We 12 

use quality-checked and gap-filled data from a global synthesis called the La Thuile dataset 13 

(Papale, 2006). In order to avoid dealing with the large error correlations in the half-hourly 14 

data (see Lasslop et al., 2008), daily mean values of NEE and LE are used in the ORCHIDAS. 15 

Days with less than 80% of the half-hourly data are left out of the assimilation. The selection 16 

of the sites and the data processing (gap-filling, correction for energy balance closure) are 17 

detailed in Kuppel et al. (2014). 18 

2.2.3 Atmospheric CO2 concentrations 19 

Atmospheric CO2 concentration measurements were taken from an ensemble of selected 20 

surface stations around the world (Fig. 3). The spatial concentration gradients relate to the 21 

integral of the fluxes over large areas and thus allow the optimization of large-scale global 22 

patterns of carbon fluxes. These data were taken from the NOAA Earth System Laboratory 23 

(ESRL) GLOBALVIEW-CO2 collaborative product (GLOBALVIEW-CO2, 2013) and 24 

averaged to monthly means. We assimilated the monthly values for 53 sites for the 2002-2004 25 

period inclusive in the last step of the assimilation system. Such restricted period (3 years 26 

only) was chosen for practical reasons (computing resources) while constructing the 27 

ORCHIDAS system. The station locations, indicated in Fig. 3, favor the background 28 

conditions i.e. the surrounding air masses are only weakly influenced by local continental 29 

sources, such as power plants. The choice of monthly mean is related to the use of pre-30 

calculated transport fields with LMDZ (see §2.3.2). We also used additional sites to evaluate 31 
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the result of the optimization (locations indicated in Fig. 3): 17 sites more representative of 1 

local continental fluxes and 7 sites from Pacific Ocean cruises that were left aside in order not 2 

to overweight that particular region in the optimization. 3 

2.3 Models and optimized parameters 4 

2.3.1 ORCHIDEE land surface model 5 

In this study we use the ORCHIDEE process-oriented land surface model (Krinner et al., 6 

2005), which computes water, carbon and energy balances at the land surface on a half hourly 7 

time step, using a mechanistic description of the physical and biogeochemical processes (see, 8 

http://labex.ipsl.fr/orchidee/). The model describes the exchange of carbon and water at the 9 

leaf level, the allocation of carbon within plant compartments (leaves, roots, heartwood and 10 

sapwood), the autotrophic respiration, the production of litter, the plant mortality and the 11 

degradation of soil organic matter (CENTURY model; Parton et al., 1988). The hydrological 12 

processes for the soil reservoir rely on a double bucket scheme (Ducoudré et al., 1993). The 13 

link between the water and carbon modules is via photosynthesis, which is based on the leaf-14 

scale equations of Farquhar et al. (1980) for C3 plants, and Collatz et al. (1992) for C4 plants, 15 

that are then integrated over the canopy by assuming an exponential attenuation of light. The 16 

FAPAR by each layer of the canopy is calculated from the leaf area index (LAI) following a 17 

Beer-Lambert extinction law (Bacour et al., 2015).  18 

ORCHIDEE uses the concept of the plant functional type (PFT) to describe the vegetation 19 

distribution, with 13 PFTs (including bare soil) that can co-exist in each grid cell. Except for 20 

the phenology (see a recent description in MacBean et al., 2015), the equations governing the 21 

different processes are generic, but with specific parameter values for each PFT. Detailed 22 

descriptions of model equations can be found in numerous publications (see for instance 23 

Krinner et al., 2005). ORCHIDEE can be run at either global scale on a grid, or at site-level 24 

using point-scale surface meteorological forcing variables. It is the land surface component of 25 

the Institut Pierre Simon Laplace (IPSL) Earth System Model, and the version that we used 26 

corresponds to CMIP5 simulations in the IPCC 5th Assessment Report (Dufresne et al., 2013). 27 

However, in this study the model is run offline using the ERA-Interim 3-hourly near surface 28 

meteorological forcing fields (Dee et al., 2011) aggregated at the spatial resolution of the 29 

atmospheric transport model for the global simulations (2.5° x 3.75°; see § 2.3.2). However, 30 

when we assimilate in situ flux data in the second step, we force the model with the gap-filled 31 

Philippe Peylin� 5/7/16 00:08
Mis en forme: Police :12 pt

Philippe Peylin� 5/7/16 00:08
Mis en forme: Police :12 pt

Philippe Peylin� 5/7/16 00:08
Mis en forme: Police :12 pt

Philippe Peylin� 5/7/16 00:08
Mis en forme: Police :12 pt

Philippe Peylin� 10/6/16 19:43
Supprimé: ,32 



 10 

half-hourly meteorological data measured at each site. The global PFT map was derived from 1 

the high-resolution IGBP AVHRR land data set (Vérant et al., 2004). The carbon pools are 2 

brought to equilibrium (spin-up procedure) for both site and global scale simulations by 3 

cycling the available meteorological forcing over several millennia, to ensure that the long-4 

term net carbon flux is close to zero. For the global simulation in the third step, we spun-up 5 

the model recycling the 1989-1998 meteorology and then used a transient simulation from 6 

1990 to 2001 with changing climate (ERA-Interim) and increasing CO2, before starting the 7 

optimization with atmospheric data over 2002-2004. For the site simulations (i.e., the 8 

assimilation of flux data) we recycled the available in situ meteorological forcing to spin-up 9 

the model, with present day CO2. 10 

2.3.2 LMDz model 11 

The transport model used in this study is version 3 of the General Circulation Model (GCM), 12 

LMDz (Hourdin and Armengaud, 1999) with a horizontal resolution of 3.75° (longitude) x 13 

2.5° (latitude) and 19 sigma-pressure layers up to 3 hPa. The calculated winds (u and v) are 14 

relaxed to the ECMWF ERA-40 meteorological data (Uppala et al. 2005) with a relaxation 15 

time of 2.5h (guiding) in order to realistically account for large-scale advection (Hourdin et 16 

al., 2000). Deep convection is parameterized according to the scheme of Tiedtke (1989) and 17 

the turbulent mixing in the planetary boundary layer is based on a local second-order closure 18 

formalism. The LMDz GCM model has been widely used to model climate (IPCC, 2007, 19 

2013) and its derived transport model has been used for the simulation of chemistry of gas 20 

and particles and greenhouse gases distributions (Hauglustaine et al., 2004; Folberth et al., 21 

2005; Bousquet et al. 2005, 2006; Rivier et al., 2006). For this study, we used pre-calculated 22 

transport fields, as described in Peylin et al. (2005), that correspond to the sensitivity of 23 

concentration at each atmospheric site and each month to the surface flux of each model grid-24 

cell for each day (often called influence functions). The sensitivities (using inter-annual 25 

winds) were calculated with the “retro-transport” formulation implemented in the LMDz 26 

transport model (Hourdin et al. 2006). This approach decreases the computing time of the 27 

optimization compared to the use of the full forward LMDz model at each iteration, as the 28 

transport is replaced by a matrix multiplication with the vector of surface fluxes. Note that the 29 

initial 3D state of the atmospheric concentrations was be defined from Chevallier et al. (2010) 30 
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2.3.3 Parameters optimized 1 

The optimized parameters are described in Table 1, and their prior values, uncertainty and 2 

range are given in Table 2. In the most recent studies using ORCHIDAS at site scales a large 3 

set of ORCHIDEE parameters has been optimized (Kuppel et al., 2014; Santaren et al., 2014; 4 

Bacour et al., 2015). In this study a smaller set was chosen, based on a Morris sensitivity 5 

analysis (Morris, 1991; results not shown) that determines the sensitivity of the NEE and LE 6 

to all model parameters at various FLUXNET sites (for each PFT), in order to reduce the 7 

computational cost of the global optimization in step 3 (see §2.5). We considered 9 PFT-8 

dependent and 4 “global” (i.e. non PFT-dependent) parameters that control mostly the fast 9 

carbon processes (diurnal to seasonal). In addition, we introduced a new parameter, KsoilC, to 10 

scale the initial values (after spin-up) of the modeled slow and passive soil carbon pools, in 11 

order to take account of all the historical effects not accounted for in the model that would 12 

result in a disequilibrium of these pools in reality. For the site-specific optimizations with 13 

FLUXNET data, we have one KsoilC,site parameter per site. For the global scale optimization 14 

step, we used 30 KsoilC,reg parameters corresponding to 30 regions potentially coherent for land 15 

use and land management history as well as ecosystem and edaphic properties (see Fig. A2). 16 

The initial soil carbon pools of all pixels within each region were thus scaled by the same 17 

value. The prior value for all KsoilC parameters was set to one, i.e. the default state of soil 18 

carbon pools is assumed to be in equilibrium. 19 

Overall (including all PFT-dependent parameters), we optimize 16 parameters related to 20 

phenology, 36 to photosynthesis, 3 to respiration, 1 to the energy budget, 78 soil C pool 21 

scalars (one for each FLUXNET site), and 30 regional soil C pool scalars for the global 22 

simulations – a total of 184 parameters (16, 134 and 86 in step 1, 2 and 3, respectively). Note 23 

that the soil C pool multipliers at the FLUXNET sites are independent from the regional C 24 

pool multipliers, as the history of soil carbon over large eco-regions of several millions square 25 

kilometers is rather heterogeneous (as it is mainly related to previous land use changes), and 26 

most likely, the FLUXNET sites are not representative of larger regions in terms of the soil 27 

carbon disequilibrium. The prior standard deviation for each parameter is equal to 40% of the 28 

parameter range (lower and higher boundaries) prescribed for each parameter following 29 

Kuppel et al. (2012). The parameter ranges were specified following expert judgment of their 30 

meaning in the ORCHIDEE equations and based on literature reviews or databases (such as 31 

TRY, Kattge et al., 2011). 32 
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2.4 System description:  a step-wise approach 1 

2.4.1 Stepwise assimilation of three data streams 2 

The ORCHIDAS system relies on a stepwise assimilation of the three data streams described 3 

in section 2.2. Figure 2 illustrates the flow of information in this sequential approach: 4 

Step 1 – Assimilation of MODIS-NDVI: Four parameters related to the seasonal cycle of the 5 

vegetation (phenology) are optimized for the temperate and boreal deciduous PFTs (TeBD, 6 

BoND, BoBD and NC3 – see caption of Table 2). These four deciduous PFTs alone are 7 

considered in step 1 in this ORCHIDAS version because the tropical deciduous phenology 8 

modules in ORCHIDEE require further modifications to improve the functions that control 9 

leaf growth and fall in response to water availability (MacBean et al., 2015). Evergreen PFTs 10 

were also not considered, as there are no phenology modules related to these PFTs in the 11 

model. The procedure is similar to that described in detail in MacBean et al. (2015) and 12 

therefore only briefly recalled here. A simple linear relationship between the modeled 13 

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and MODIS-NDVI 14 

observations is assumed, based on studies such as Knyazikhin et al. (1998). Given that 15 

considerable discrepancies exist between so-called “high-level” satellite products such as LAI 16 

or fAPAR when considering their magnitude (D’Odorico et al., 2014),  we thus only use the 17 

temporal information in the NDVI observations and normalized both the model FAPAR 18 

output and the NDVI observations to their 5th and 95th percentiles (following Bacour et al. 19 

(2015)). The model was run for fifteen randomly selected grid cells for each of the four PFTs 20 

using the ERA-Interim meteorological forcing. Only grid cells that included vegetation 21 

fraction of greater than 60% for the PFT optimized were considered. We selected a set of grid 22 

points instead of the whole grid to substantially decrease the computing time; but the 23 

remaining points are used for the evaluation of the optimized model. The fifteen sites for each 24 

PFT were included in one optimization for each PFT following a multi-site approach, in 25 

which all observations are used simultaneously to optimize the model parameters. The 26 

optimized parameters are described in Table 1. They correspond to a scalar on the growing 27 

degree days (GDD) threshold for the start of the vegetation (Kpheno,crit), a parameter controlling 28 

the use of carbohydrate reserve during the start of leaf growth (Klai,happy), a temperature 29 

threshold for the onset of leaf senescence (CT,senes) and the critical age for leaves (Lagecrit).  30 
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Step 2 – Assimilation of FLUXNET data: Mean daily NEE and LE flux measurements for 78 1 

sites, including up to 10 years worth of data for each site, are used to optimize a set of model 2 

parameters controlling the fast carbon and water processes (photosynthesis, respiration, 3 

phenology – see Table 1). The site selection and the choice of a daily time step are described 4 

in more details in Kuppel et al. (2014). These sites cover 7 of the PFTs in ORCHIDEE (see 5 

Table 2). The posterior parameter values of the four phenology parameters derived in step 1, 6 

and their associated uncertainties, are input as prior information in step 2. For the additional 7 

parameters, the default ORCHIDEE values are used for the prior and the uncertainties are set 8 

as described in §2.3.3. A multi-site optimization is performed for each PFT independently as 9 

in step 1. Global parameters, i.e. those that are not PFT-dependent, were optimized for each 10 

PFT and the mean across all PFTs was then calculated to define the prior parameter vector in 11 

step 3 of the assimilation with atmospheric CO2 data (at global scale). Such an approach was 12 

chosen to allow us to optimize all PFTs in parallel and therefore to simplify the assimilation 13 

process.  14 

Step 3 – Assimilation of atmospheric CO2 concentrations: We use monthly mean CO2 15 

concentrations from 53 surface stations over three years (2002-2004) to provide a large-scale 16 

constraint to the land surface fluxes (i.e. to match the global CO2 growth rate, mean seasonal 17 

cycle and its latitudinal variation, as well as the spatial gradients between stations). We use 18 

the LMDz atmospheric transport model (see §2.3.2) to assimilate these observations. The set 19 

of parameters optimized in step 2 are included in step 3, except for the albedo scaling 20 

parameter (Kalbedo,veg), as the net carbon fluxes are only weakly sensitive to that parameter. We 21 

used the posterior parameter distributions from step 2 (parameter optimal values and 22 

associated uncertainties) as prior information for step 3, and expanded the parameter vector to 23 

include the 30 KsoilC parameters that scale the initial soil carbon pools for large “spatially-24 

coherent regions” (see §2.1.2 and Fig. A2). The air-sea fluxes and fossil fuel and biomass 25 

burning emissions are also accounted for (but not optimized) in this final step, in order to 26 

close the global carbon budget within the atmospheric transport model (see §2.5).  27 

2.4.2 Optimization procedure (for all steps): 28 

In each step the statistically optimal parameter values are derived with an optimization 29 

procedure following the principle of the 4-D variational assimilation systems (developed for 30 

numerical weather prediction), using a tangent linear operator (and finite differences for a few 31 

parameters, Bacour et al. 2015). Assuming that the errors associated with the parameters, the 32 
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observations and the model outputs follow Gaussian distributions, the optimal parameter set 1 

corresponds to the minimum of a cost function, J(x), that measures the mismatch between i) 2 

the observations (y) and the corresponding model outputs, H(x), (where H is the model 3 

operator), and ii) the a priori (xb) and optimized parameters (x), weighted by their error 4 

covariance matrices (Tarantola, 1987; Chapter 4):  5 

𝐽 𝒙 =  !
!

 𝐻 𝒙 − 𝒚 !  𝐑!! 𝐻 𝒙 − 𝒚 + 𝒙− 𝒙! !𝐁!! 𝒙− 𝒙!         (1) 6 

R represents the error variance/covariance matrix associated with the observations and B the 7 

parameter prior error variance/covariance matrix. At each step a different cost function is 8 

defined with the observations and parameters related to that step (see Fig. 2). R includes the 9 

errors on the measurements, the model structure and the meteorological forcing. Model errors 10 

are rather difficult to assess and may be much larger than the measurement error itself. 11 

Therefore we chose to focus on the structural error and defined the variances in R as the mean 12 

squared difference between the prior model and the observations for both step 1 and step 2 13 

(see Kuppel et al. 2013). For simplicity we assumed that the observation error covariances 14 

were independent between the different observations and therefore we kept R diagonal (off-15 

diagonal terms set to zero), given the rapid decline of the model error auto-correlation beyond 16 

one day (Kuppel et al., 2013). For step 3 we used a different approach, given the large bias in 17 

the model a priori concentrations, and therefore followed the methodology of Peylin et al. 18 

(2005) based on the observed and modeled temporal concentration variability at each site. 19 

Overall, data uncertainties in the optimization procedure are between 0.1 and 0.45 for NDVI 20 

(step 1), around 3-6 gCm-2d-1 for daily NEE, and 15-30 Wm-2 for daily LE (step 2) and 21 

between 0.1 ppm at remote oceanic stations and 4 ppm at continental sites (step 3).  22 

The determination of the optimal parameter vector that minimizes J(x) is performed by 23 

successive calls to a “gradient-descent” minimization algorithm L-BFGS-B (Byrd et al. 24 

1995), which is specifically dedicated to solving large nonlinear optimization problems that 25 

are subject to simple bounds on the parameter values. In order to find the minimum of J(x) the 26 

algorithm requires the gradient of J(x) (Jacobian) with respect to the ORCHIDEE parameters. 27 

L-BFGS-B explores each parameter space simultaneously along the gradient of the cost 28 

function, and uses an approximation of the Hessian (second derivative) of J(x), which is 29 

updated at each iteration, to define the size of the step at each iteration. 30 
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For step 1 and step 2, the model “H” simply corresponds to the land surface model: H = S, 1 

with S(x) representing the surface fluxes from the ORCHIDEE model using the parameter 2 

vector, x. The gradients dJ(x)/dx are calculated from the tangent linear model of ORCHIDEE 3 

that was automatically generated by the numerical Transformation of Algorithms in Fortran 4 

(www.fastopt.de), except for two parameters linked to the model phenology for which the 5 

threshold functions prevent the use of a linear approximation. A finite difference approach 6 

was used for these parameters in order to define a mean derivative at any point.   7 

For step 3, the model “H” corresponds to the composition of the land surface model with the 8 

transport model: H = T o S (see Kaminski et al. (2002) for details), with T representing the 9 

LMDz transport model. T is a linear operator for a non-reactive species: T(S(x)) = T . S(x), 10 

with T a matrix representation of the transport operator. It corresponds to the sensitivity of 11 

CO2 concentrations at each site and for each month to the daily surface flux of each model 12 

grid-cell. It is then combined with the ORCHIDEE surface fluxes (S(x)) through a matrix 13 

multiplication to derive H(x). T has been pre-calculated for all atmospheric stations in order 14 

to save computing time during the iterative optimization process (see §2.3.2). For simplicity 15 

we use monthly mean values for both the fluxes S(x) and the transport sensitivities (T) in the 16 

computation of the gradients dJ(x)/dx.  17 

For improved minimization efficiency, the inversion is preconditioned (following Chevallier 18 

et al., 2005), which means that L-BFGS-B is fed with the control variable 𝒙! = 𝐁!𝟏/𝟐 𝒙−19 

𝒙! , rather than with x, as this homogenizes the range of variation of the optimized 20 

parameters.  21 

2.4.3 Error estimation  22 

The posterior parameter error covariance matrix, A, can be approximated to the  inverse 23 

Hessian of the cost function, using the linearity assumption at the minimum of J(x). It can be 24 

derived with the Jacobian of the model at the end of the minimization (i.e. the last iteration), 25 

𝐇!, following Tarantola (1987): 26 

    𝐀 = 𝐇!! .𝐑!!.𝐇! + 𝐁!! !!
                      (4) 27 

Note that for step 3, 𝐇! = 𝐓. 𝐒!, where 𝐒! is the Jacobian of the ORCHIDEE model at the 28 

last iteration. The posterior parameter error covariance, A, can then be propagated into the 29 
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model state variable space (e.g. carbon fluxes and stocks), 𝐀𝐯𝐚𝐫, given the following matrix 1 

product (only used for the global fluxes in step 3): 2 

    𝐀𝐯𝐚𝐫 =  𝐒!.𝐀. 𝐒!!                                                               (5) 3 

The square root of the diagonal elements of 𝐀𝐯𝐚𝐫 corresponds to the standard deviation, σ, of 4 

carbon fluxes/stocks for each grid cell. In order to evaluate the knowledge improvement 5 

brought by the assimilation, the uncertainty reduction between the prior (σprior) and posterior 6 

(σpost) is determined as 1 – (σpost / σprior). 7 

2.4.4 Additional processing steps  8 

In order to analyze the fit to the atmospheric CO2 concentrations in terms of the trend and 9 

seasonal cycle, we decomposed the observed and modeled time series by fitting the monthly 10 

mean values with a function comprising a first order polynomial term and four harmonics, 11 

and then filtered the residuals of that function in frequency space using a low pass filter 12 

(cutoff frequency of 65 days), following Thoning et al. (1989). The polynomial term defines 13 

the trend while the seasonal cycle corresponds to the harmonics plus the filtered residuals. 14 

The amplitude of the seasonal cycle is then calculated as the difference between the monthly 15 

mean maximum and minimum for year 2003 (middle year of the optimization period). 16 

Finally, we define the Carbon Uptake Period (CUP) as the sum of the days when the values of 17 

the seasonal cycle extracted from the CO2 concentration time series are negative (a negative 18 

convention being for CO2 removed from the atmosphere).  19 

2.5  Prescribed emissions of carbon fluxes 20 

In this section we describe the other components of the carbon cycle (apart from the surface C 21 

exchange with terrestrial vegetation) that are imposed in step 3 of the optimization process as 22 

fixed fluxes. 23 

2.5.1 Ocean fluxes  24 

The ocean contributes to an uptake of about a quarter to a third of the anthropogenic 25 

emissions with significant year-to-year variations (Sabine et al., 2004). For this version of the 26 

ORCHIDAS, we developed a statistical model to estimate the spatial and temporal variations 27 

(monthly) of the ocean surface CO2 partial pressure (pCO2
SW), and from that the air-sea CO2 28 

fluxes, using satellite and in-situ ocean measurements and model outputs. The air-sea CO2 29 
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fluxes are primarily controlled by the ocean biogeochemistry, the horizontal transport and the 1 

vertical mixing in the ocean and the atmospheric forcing (CO2 partial pressure at the interface 2 

to the water (𝑃𝐶𝑂!!"#) and wind); they can be defined from the following equation: 3 

𝐹!"! =  𝐾!" × 𝑃𝐶𝑂!!" −  𝑃𝐶𝑂!!"#      (6)                                4 

where Kex stands for the exchange coefficient and FCO2 the CO2 flux from the sea surface 5 

water to the atmosphere.  6 

The computation of pCO2
SW is performed using feedforward artificial neural networks, i.e., a 7 

MultiLayer Perceptron (MLP; Rosenblatt 1958) that maps a set of spatio-temporal variables 8 

(input) onto observed pCO2
SW data. We use a two-step approach: the first step to derive a 9 

monthly mean pCO2SW climatology and the second step to correct for the year to year 10 

variations. The pCO2
SW observations come from the Global Surface pCO2 (Lamont-Doherty 11 

Earth Observatory, LDEO) Database (Takahashi et al., 2009). The inputs are a series of 12 

variables connected to the spatial and temporal evolution of pCO2
SW: i) sea surface 13 

temperature (SST), sea surface salinity (SSS) and mixed layer depth (MLD) as a proxy of the 14 

physical processes (these fields come from a re-analysis of the NEMO-OPA ocean model 15 

(Madec et al., 1998) with the assimilation of several satellite observations), ii) chlorophyll 16 

content from SeaWiFS, as a proxy of the biogeochemistry (CHL), iii) spatial and temporal 17 

coordinates (LAT, LON and MONTH) and the pCO2
SW at previous time step (recursive 18 

approach), i.e.: 19 

𝑃𝐶𝑂!!" ! = 𝑀𝐿𝑃 𝑆𝑆𝑇, 𝑆𝑆𝑆,𝑀𝐿𝐷,𝐶𝐻𝐿 (!!!,!!!,!), 𝑃𝐶𝑂!!" (!!!,!!!), 𝐿𝐴𝑇, 𝐿𝑂𝑁   (7) 20 

with m the monthly index. The available data (20685 points) is divided into two parts: 75% is 21 

used for the learning phase of the ANN and 25% for the validation phase. The overall 22 

performance of the neural network for extrapolating the spatial and seasonal distribution of 23 

pCO2
SW is relatively good, with a spatio-temporal correlation coefficient between the 24 

estimated pCO2
SW and the independent observations of 0.80. 25 

pCO2
ATM at the surface are taken from a global simulation of atmospheric CO2 concentrations 26 

with optimized fluxes (Chevallier et al. 2010). Kex is defined as the product of k, the gas 27 

transfer velocity, taken from the Wanninkhof (1992) formulation using winds from ERA-28 

Interim, and s, the solubility of CO2, taken from the Weiss formulation (Weiss, 1974). The 29 

system is further described in Roedenbeck et al. (2015). The global ocean sink is around 1.60 30 

PgC.yr-1 for the period 2002-2004 used in step 3. It is within the uncertainty range of the 31 
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Global Carbon Project estimates (Le Quéré et al., 2015) if we account for the pre-industrial 1 

ocean outgazing flux included in our “delta pCO2” approach. Its temporal evolution is 2 

depicted in Fig. A1 3 

2.5.2 Global fossil fuel and cement CO2 emissions 4 

We have used a recently developed CO2 fossil fuel and cement emission product (see 5 

http://www.carbones.eu/wcmqs/) that covers the period 1980 to 2009 at the spatial resolution 6 

of 1° x 1° and hourly resolution. It is based on EDGAR v4.2 spatially distributed annual 7 

emissions (Olivier et al., 2012) and time profiles developed by the University of Stuttgart 8 

(http://carbones.ier.uni-stuttgart.de/wms/impressum.html). It was assumed that EDGAR 9 

delivers the most up-to-date spatially distributed and sector specific emissions, based on 10 

national emission statistics. The IER (Institut für Energiewirtschaft und Rationelle 11 

Energieanwendung) further applied country and sector specific time profiles, taking into 12 

account monthly, daily, and hourly variations depending on the sector. The derivation of the 13 

time profiles relies on different data sets (e.g. Eurostat, ENSTO-E 14 

(https://www.entsoe.eu/about-entso-e/Pages/default.aspx), UN monthly bulletin) as well as 15 

correlations between recorded emissions and climate variables. Currently, the temporal 16 

profiles are derived mostly from data sets over Europe that were extrapolated using 17 

information on climate zone, average monthly temperature for the seasonal cycles and 18 

similarity in socio-economic parameters like population and Gross Domestic Product (GDP). 19 

The annual mean emission for the period 2002-2004 is 7.14 PgC.yr-1.  20 

2.5.3 Fire emissions: 21 

Fire emissions data from the Global Fire Data (GFEDv3 – 22 

http://www.globalfiredata.org/Data/index.html) are prescribed in the ORCHIDAS (except 23 

during the model spin-up). The GFEDv3 data are broken-down into 6 sectors (deforestation, 24 

peat fires, savanna fires, agriculture, forest fires, and woodland) that are further grouped into 25 

3 main types. We generated fluxes of CO2 relevant for typical "burning - regrowth" processes, 26 

as detailed in Appendix A2. The first type corresponds to deforestation and peat fires with 27 

carbon permanently lost to the atmosphere, the second to agriculture and savannah fires which 28 

are assumed to be compensated by a sink during the regrowth period (i.e. with zero annual net 29 

emission for each pixel) and the third to woodland and burnt forests which are assumed to be 30 

at steady state for a given region (10 sub-continental scale regions) over the period covered by 31 
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GFEDv2 (i.e. regrowth of nearby forest compensates for the burned forest derived in GFED). 1 

The sum of these three components leads to the global flux, with a gross emission around 2.1 2 

PgC.yr-1 and a net emission after regrowth of only 1.1 PgC.yr-1 (Fig. A2 in Appendix) that is 3 

prescribed to the ORCHIDAS over the period 2002-2004. 4 

 5 

3 Results 6 

3.1 Model fit to the data 7 

3.1.1 Step 1: assimilation of MODIS NDVI data 8 

The optimization in Step 1 resulted in an improved fit to the MODIS NDVI observations for 9 

the four PFTs considered (TeBD, BoND, BoBD, NC3, see §2.4) as seen in Fig. 4, which 10 

shows the mean seasonal cycle across the 2000-2008 period for all sites for each PFT. The 11 

most prominent change after the optimization was a substantially shorter growing season for 12 

all PFTs due to an earlier start of leaf senescence. This was caused by both a lower critical 13 

leaf age (Lagecrit) and a higher temperature threshold for senescence (CTsenes) (see Fig. 9). The 14 

impact on the start of leaf growth was less dramatic but important nonetheless, with a shift to 15 

a later start of leaf growth as a result of an increase in the Kpheno,crit parameter which acts as a 16 

scalar on the threshold of Growing Degree Days (GDD) used to trigger leaf onset (see 17 

Appendix A in MacBean et al., 2015). Overall, a mean reduction in RMSE of 23, 17, 58 and 18 

19% was achieved for TeBD, BoBD, BoND trees and NC3 grasses respectively, with the 19 

greatest improvement for BoND trees. The mean correlation between the normalized MODIS-20 

NDVI and modeled FAPAR time series over the 2000 – 2008 period increased for TeBD and 21 

BoND trees and NC3 grasses (prior and posterior of 0.9 to 0.93, 0.42 to 0.91 and 0.6 to 0.66, 22 

respectively). The prior correlation of 0.55 remained similar after the assimilation for BoBD 23 

trees. 24 

Following the improvement at the sites selected for the optimization, we evaluated the impact 25 

for each PFT at the global scale using the global median correlation between the MODIS-26 

NDVI and the model FAPAR time series (from all pixels where the fraction of a given PFT is 27 

above 60%, see Maignan et al. 2011). The global correlation increased for BoND trees and 28 

NC3 grasses from 0.36 to 0.91 and 0.53 to 0.59 (prior to posterior), respectively. It remains 29 

stable for BoBD (0.54) or slightly increased for TeBD (0.88 to 0.89).  30 
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3.1.2 Step 2: assimilation of FLUXNET data  1 

The optimization in Step 2 brings an improvement to the simulated NEE and LE for all seven 2 

PFTs considered, with Fig. 5 showing the corresponding PFT-averaged mean NEE seasonal 3 

cycles (mean across all sites/years). NEE is overestimated by the prior model for all PFTs on 4 

average. This is partly due to the model spin-up procedure, which brings each simulated site 5 

to a near equilibrium state with a mean NEE close to zero (i.e. no net carbon sink, see §2.1.1). 6 

This bias is significantly corrected by the optimization to match the observed carbon uptake at 7 

most sites, notably via the scaling of the initial soil carbon pool content at each site 8 

(parameters KsoilC,site; Table 1) which thus significantly reduces the ecosystem respiration 9 

(Kuppel et al., 2014). Overall, the largest reductions of model-data RMSE are found in 10 

temperate forests (TeNE, TeBE and TeBD), where the RMSE decreased by more than 25% 11 

compared with the prior model. The improvements are less significant for the other PFTs, 12 

with RMSE reductions between 10 and 18%.  13 

In addition, the optimization increases the NEE seasonal amplitude in temperate evergreen 14 

forests (TeNE and TeBE) and temperate broadleaf deciduous forests (TeBD), and reduces the 15 

amplitude for boreal needle leaf forest (BoNE) and natural C3 grasses (NC3), in agreement 16 

with the observations (except for BoNE where the amplitude decrease is too large). Despite 17 

the better model-data agreement for evergreen broadleaf forests (TrBE and TeBE), the 18 

optimized model still fails to catch some seasonal features such as a persistent carbon uptake 19 

(i.e. negative NEE) in the dry season for the tropical regions (TrBE) and nearly-null carbon 20 

exchange in the first months of the year for temperate regions (TeBE). These results are 21 

discussed further in Kuppel et al. (2014), who used a similar optimization set-up with a 22 

slightly different parameter set – see §2.3.3. Similar improvements, although of smaller 23 

amplitude, occur for the latent heat fluxes (not shown).  24 

3.1.3 Step 3: assimilation of atmospheric CO2 data 25 

The final optimization step with the atmospheric CO2 concentrations provides a large 26 

improvement of the fit to the observed concentrations at most stations. The cost function J 27 

was reduced through the minimization by a factor of 5.7 within 37 iterations.  28 

Figure 6 illustrates the simulated concentrations for four stations (representative of different 29 

conditions) with the standard prior parameter vector (used in step 1), the posterior vector from 30 

step 2 (used as prior in step 3) and the posterior vector from this last step. The improvement 31 
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in the fit to the observations can be quantified with the reduction in RMSE (from the prior to 1 

the posterior of step 3) - the largest reduction is at the South Pole station (73%) and is on 2 

average around 25% across all sites. Note that for a few stations the fit is slightly degraded 3 

(up to 10%) except for one Pacific site (regular ship measurements around the equator, 4 

POCN00) for which there is a 40% degradation, possibly due to small biases in the simulation 5 

of the ITCZ position in LMDz. When calculated with respect to the standard prior (used in 6 

step 1) the RMSE decrease is slightly larger on average, especially for the northern mid to 7 

high latitude stations. For these stations the optimization performed in step 2 with FLUXNET 8 

data led to a significant improvement of the mean seasonal cycle amplitude of the 9 

atmospheric CO2 data, as discussed in Kuppel et al. (2014). 10 

We then investigated the fit to the observed CO2 concentrations in terms of the mean seasonal 11 

cycle and trend (see section 2.4.4). With only three years of data the mean trend is more 12 

difficult to define as it varies between stations; however, the optimization in step 3 increases 13 

the net land carbon sink in order to match the observed trend at most stations (as expected). If 14 

we take the Mauna Loa and South Pole stations that are representative of an integration of the 15 

fluxes at hemispheric scales, the prior CO2 trend of 2.8 and 2.9 ppm.yr-1 respectively, is 16 

reduced to 2.1 and 2.2 ppm.yr-1 close to the observations (2.1 ppm.yr-1 for both). The left 17 

panel of Fig. 7 illustrates changes in the amplitude of the simulated seasonal cycle at each 18 

station (see definition in §2.4.4). The values correspond to relative changes between the prior 19 

(of step 3) and posterior of the absolute difference between observed and modeled amplitude 20 

( ∆𝐴!"#$% −  ∆𝐴!"#$" / ∆𝐴!"#$" ). They reveal an improvement in the seasonal cycle 21 

amplitude at nearly all stations of the southern hemisphere (≈ 40% improvement) and at the 22 

majority of the northern hemisphere stations (≈ 15%). A few stations in north East Asia (3) 23 

and northwest America (4) show a small degradation of the amplitude (≈ 15%). The right 24 

panel of Fig. 7 displays the changes of the Carbon Uptake Period (CUP, see §2.4.4) expressed 25 

in terms of relative changes between prior and posterior of the absolute values of model-data 26 

differences, as for the amplitude. Most stations reveal an improvement of the CUP of around 27 

20%, which is slightly lower than the improvement for the seasonal cycle amplitude.  28 

Finally, we verified that the improvement is not only valid at the optimization sites but also at 29 
independent atmospheric CO2 stations (see section 2.2.3). On average the mean RMSE for the 24 30 
additional sites is 10.5 ppm for the prior of step 1 (prior of ORCHIDEE), 2.8 ppm for the prior or step 31 
3 (i.e. posterior of step 2) and 2.1 ppm for the posterior of step 3. The corresponding values for the 53 32 
sites used for the optimization are 10.5, 2.45 and 1.8 ppm, respectively. The error reduction during 33 
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step 3 is thus similar for both the assimilated and the validation data sets, further confirming that the 1 
optimization provides a global improvement of the simulated carbon fluxes. 2 

3.2  Consistency of the step-wise optimization  3 

The main issue with a step-wise data assimilation system (versus a simultaneous approach) 4 

concerns the potential degradation of the model – data fit for the different data streams that 5 

are assimilated in previous steps. We noted that CO2 concentrations were already improved 6 

when NDVI and FLUXNET data are assimilated (see §3.1.3), but we need to check if the 7 

final parameter set from step 3 leads to a degradation of the fit to MODIS-NDVI (step 1) and 8 

to FLUXNET (step 2) data compared to the fit achieved during the respective steps and, in the 9 

case of a significant degradation, if we still have an improvement for these data streams 10 

compared to the initial a priori fit.  11 

Figure 8 summarizes the performance of the model data fit for MODIS-NDVI and 12 

FLUXNET-NEE data streams for the prior and posterior of each step by evaluating the 13 

median RMSE between the model and the observations across all sites. The values are 14 

calculated for each PFT separately. In this section, we keep in mind the fact that we do not 15 

optimize the same PFTs with FLUXNET data and with MODIS-NDVI. 16 

Consistency for MODIS-NDVI 17 

First, we notice again the significant RMSE reduction between the prior and step 1, as 18 

discussed in section 3.1. The fit to MODIS-NDVI (normalized data) for step 2 and step 3 19 

shows only a significant degradation (increased RMSE) for temperate broadleaf deciduous 20 

forest (TeBD), which decreases the improvement achieved in step 1 (compared to the prior) 21 

by a factor of two. A marginal degradation for natural C3 grassland (NC3) is obtained after 22 

step 3: the RMSE increases slightly from 0.24 to 0.26, but is still lower than the prior value of 23 

0.3. There is no degradation for boreal needleleaf deciduous trees (BoND), but a surprising 24 

small decrease of the RMSE (i.e. improvement in the model-data fit) for boreal broadleaf 25 

deciduous forests (BoBD; from 0.26 to 0.23). In this latter case, the use of additional 26 

parameters in steps 2 and 3 (see §2.4) allows further improvement of the fit between the 27 

normalized FAPAR and NDVI time series. On average the degradation of the fit to NDVI is 28 

thus very limited in step 2 and step 3, and in no case is the RMSE worse than the prior.  29 
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Consistency for FLUXNET data  1 

Figure 8 again reveals the significant reduction of the RMSEs for NEE in step 2 compared to 2 

the standard prior or to the posterior of step 1 for most PFTs, except BoNE. We see only 3 

small degradations (increases) in RMSE between step 2 and step 3 for temperate needle leaf 4 

evergreen forests (TeNE: from 1.06 to 1.13 gC.m2.d-1), temperate broadleaf evergreen forests 5 

(TeBE: from 1.06 to 1.09 gC.m2.d-1), temperate broadleaf deciduous forests (TeBD: from 1.06 6 

to 1.13 gC.m2.d-1) and boreal needle leaf evergreen forests (BoNE: from 0.59 to 0.60 gC.m2.d-7 
1). An interesting feature to notice is that the NEE RMSE increases from the prior to the 8 

posterior of step 1 (i.e. before NEE has been used in the optimization in step 2). Using remote 9 

sensing products of vegetation activity or “greenness” (e.g. NDVI) to calibrate the phenology 10 

of ORCHIDEE thus does not always improve the simulated NEE, as they only provide a 11 

strong constraint on the timing of the GPP and a weak constraint on the maximum GPP but no 12 

constraint on the respiration fluxes. These reasons were discussed in Bacour et al. (2015) who 13 

used the same LSM and assimilation system. Overall, the reduction of the improvement of the 14 

model data fit to the NEE (step 3 versus step 2) is marginal (limited to a few percent), thus 15 

further suggesting the consistency of our step-wise approach. Similar results are also obtained 16 

for the latent heat flux (LE) (not shown). 17 

3.3 Estimated parameter values 18 

We now discuss the parameter values, focusing on the changes obtained though the 19 

successive steps. Figure 9 presents the prior and posterior values for each parameter together 20 

with their associated uncertainties (estimated through Eq. (4)) and the allowed range of 21 

variation. Note that nine parameters are PFT-dependent while four are global (non PFT-22 

dependent). For the global non PFT-dependent parameters included in the step 2 optimization, 23 

we took the mean value and error-variance (see §2.4) as the prior for step 3. Note finally that 24 

the parameters linked to the initial soil carbon pools (KsoilC,site, KsoilC,reg) are not shown in Fig. 25 

9 as they are too numerous (though see Fig. A2 for the regional values). 26 

If we first consider the phenology parameters optimized in step 1 (Klai,happy, Kpheno,crit, Lage_crit, 27 

CT,senes; see Table 1) we see that for most PFTs they do not change significantly between step 28 

1 and step 3, although they differ significantly from the prior. There are few exceptions, 29 

including Kpheno,crit (the threshold for the start of the growing season) for Boreal Needleleaf 30 

deciduous forests and Klai,happy (level of carbohydrate use) for temperate and boreal broadleaf 31 
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deciduous forests (TeBD, BoBD). Note that a few phenology parameters hit one of the 1 

physical bounds, which may indicate model structural errors or model parameter equifinality. 2 

For most phenology parameters, the uncertainties are strongly reduced during their first 3 

optimization (step 1), except for a few cases like CT,senes for C3 grassland. Note finally that a 4 

more in depth spatio-temporal validation demonstrated the generality of the optimized 5 

phenology parameters across multiple sites (for further details see MacBean et al., 2015).  6 

For the photosynthesis parameters (Vcmax, Gs,slope, CTopt, SLA, fstress; see Table 1), we find a 7 

similar result with little changes between step 2 and step 3, but still a significant departure 8 

from the prior values. Most parameters are well constrained by the inversion, with posterior 9 

uncertainties that are greatly reduced compared to the prior, except for Tropical broadleaf 10 

rain-green forest (TrBR) and Boreal needle-leaf deciduous forest (BoND) for which there is 11 

nearly no constraint on Gs,slope, and fstress (see Table 1).  12 

The non-PFT dependent respiration-related parameters (HRH,c, Q10, MRb) mostly change in 13 

step 2 and only slightly in step 3 (with an additional reduction of the error) in order to fit the 14 

large-scale constraint provided by the atmospheric observations. The values of the scalar of 15 

the initial soil carbon pools size for the FLUXNET site optimizations (KsoilC,site, one parameter 16 

per site, not shown) were largely reduced on average, in order to decrease the heterotrophic 17 

respiration (see Kuppel et al. (2014) for additional discussion). In step 3 the same scalars that 18 

were defined for an ensemble of large regions (KsoilC,reg) have decreased in the southern 19 

hemisphere (less than 10%; see Fig. A2 in Appendix A3) and slightly increased in the 20 

northern hemisphere (around 1%), to achieve a better match to the atmospheric CO2 growth 21 

rate and north-south gradient. Importantly, we notice that for step 3, the fit to the atmospheric 22 

CO2 concentrations (especially to the trend) is achieved mainly by small changes in KsoilC,reg 23 

and in few other respiration-related parameters. Note finally that the parameter controlling the 24 

albedo (Kalbedo,veg), modified with the FLUXNET observations only (see §2.4), is not well 25 

constrained by the optimization (only a small reduction in uncertainty). Overall, most 26 

parameters appear to be well constrained when first optimized, with only small changes in the 27 

following steps. This suggests that the targeting of different parameter subspaces in the 28 

various optimisation steps was well-chosen. 29 
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3.4  Estimated carbon fluxes and uncertainties     1 

The main objective of a carbon cycle data assimilation procedure is to improve the simulated 2 

land surface net and gross carbon fluxes as well as the simulated carbon stocks for both 3 

present and future conditions. Given the focus of the paper, i.e. to describe the potential of a 4 

step-wise global carbon cycle data assimilation system, we only discuss a few large-scale 5 

features of the optimized annual net and gross carbon fluxes, as well as one of the carbon 6 

stock variables (forest above-ground biomass). We thus do not discuss the inter-annual flux 7 

variability.  8 

Large-scale annual mean net fluxes 9 

The mean annual carbon fluxes (NEE) for the globe, northern extra tropics, tropics, and 10 

southern extra tropics are reported in Fig. 10 for the 2000-2009 decade for the prior and 11 

posterior model simulations for all steps together with one other estimate of the land surface 12 

residual from the Global Carbon Project (GCP, Le Quéré et al, 2015) over the same decade. 13 

The prior NEE indicates a total sink of 0.5 PgC.yr-1 over this period, from both the northern 14 

and tropical regions. Such a prior sink is due to the increase of atmospheric CO2 during the 15 

transient simulation following the spin-up (1990-2009, see section 2.3.1) and climate 16 

variability. Changes from the prior are rather small in step 1 (assimilation of MODIS NDVI)) 17 

with an increase of the northern sink by 0.12 PgC.yr-1 and a decrease of the tropical sink by 18 

0.05 PgC.yr-1 (Fig. 10). Step 2 (assimilation of FLUXNET data) does not significantly change 19 

the net C sink from step 1, with only a small increase in the tropical sink by 0.1 PgC.yr-1. The 20 

assimilation of atmospheric CO2 data in step 3 provides a large-scale constraint, as already 21 

discussed, and increases the total land sink to 2.2 PgC.yr-1, a value in much closer agreement 22 

with the estimate by the GCP. A larger tropical NEE uptake is responsible for the large 23 

increase of the terrestrial biosphere C sink (from 0.3 PgC.yr-1 in step 2 to 1.7 PgC.yr-1) while 24 

the sink in the north increases by less than 0.1 PgC.yr-1. The comparison with the GCP 25 

number should be taken with caution. The ORCHIDAS estimated sink include all effects 26 

(natural and anthropogenic), since that we used atmospheric CO2 as a global constraint. Thus 27 

the optimized parameters must account for any missing processes like nitrogen limitation or a 28 

proper description of agricultural processes and management. However, the GCP number is 29 

only for the anthropogenic uptake, excluding the pre-industrial sink due for instance to river 30 

export of carbon (around 0.45 PgC.yr-1; Regnier et al. 2013).  31 
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Spatial distribution of the annual mean net flux 1 

Figure 11 shows the spatial distribution of NEE averaged over 2002-2004 for the standard 2 

prior and posterior after step 3. The large tropical net land carbon sink that is inferred in step 3 

3 is mainly explained by an increase of the carbon uptake for the tropical forests of the 4 

Amazon basin and equatorial Africa, as well as a decrease of the carbon release on the 5 

southern edge of the Amazon basin (tropical rain-green forests and grasses). In the northern 6 

mid-high latitudes only smaller regional changes from the prior occur. For Europe, most of 7 

north Asia and Canada, the strength of the C sink slightly decreased from the prior (up to 30 8 

gC.m2.yr-1), while for central USA the strength of C source slightly decreased. If we now 9 

consider the uncertainties on the net annual carbon flux that arise from the parameter 10 

uncertainty (second row of Fig. 10; Eq. (5)) we observe a very large reduction (compared to 11 

the prior) in the monthly flux uncertainty (averaged over the three years used in step 3) over 12 

tropical forests. It is reduced by a factor four with initial values around 150 gC.m2.y-1 and 13 

posterior values between 22 and 66 gC.m2.y-1. For mid-to-high latitude boreal ecosystems, the 14 

uncertainty reduction is smaller, but the posterior errors are slightly lower than over the 15 

tropics, between 18 and 55 gC.m2.y-1.  16 

Large-scale annual mean Gross Primary Production (GPP) 17 

For the GPP the relative changes from the prior are smaller than for the NEE (Fig. 10b). The 18 

mean annual total GPP is 172, 155, 156 and 157 PgC.yr-1 for the prior and posterior of step 1, 19 

2 and 3, respectively. The small overall decrease (9%) brings the GPP slightly closer to the 20 

estimate by Jung et al. (2011), around 120 PgC.yr-1, based on a statistical Model Tree 21 

Ensemble (MTE) that upscaled the in-situ flux measurements (resulting from the partition of 22 

measured NEE into GPP and total ecosystem respiration). The decrease in GPP occurs mainly 23 

in the northern hemisphere after step 1 (-10 PgC.yr-1) following the decrease in Vcmax (Fig. 9) 24 

while it remains relatively stable over the tropics across all steps. Note that i) the study of 25 

Welp et al. (2011) suggests a GPP around 150 PgC.yr-1, similar to our estimate, based on 26 

measurements of 18O/16O ratio in atmospheric CO2 and ii) Koffi et al. (2012) found optimized 27 

GPP of 146 PgC.yr-1 from a CCDAS using the BETHY model. 28 

Above-ground forest biomass 29 

We analyze the impact of the optimization on the forest above-ground biomass at equilibrium 30 

(i.e. after spin-up; see Fig. 12) as an example of the impact on model C stocks, and compare 31 
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the simulated values, for the same three latitude bands than above, to the estimate based on 1 

field observations and remote sensing data. This product, which was produced in the 2 

GEOCARBON project (and thus is referred to by the same name), integrates a pan-tropical 3 

biomass map (Avitabile et al., 2015) with a boreal forest biomass product (Santoro et al., 4 

2015).  5 

For the northern extra tropics, the prior above-ground C stock (~180 PgC) is reduced by the 6 

optimization to 140 PgC, mainly through the decrease of the growing season length in step 1 7 

with the assimilation of MODIS-NDVI. The significant decrease in GPP during step 1 (18 %) 8 

led indeed to a similar decrease of the forest biomass (16%). Parameter changes through the 9 

assimilation of FLUXNET and CO2 data have a smaller impact (a change of less than 5 PgC). 10 

These changes in the northern extra tropics bring the estimates by the ORCHIDEE model 11 

closer to the satellite-based GEOCARBON product (~ 120 PgC).  12 

For the tropics, while there is nearly no change with the assimilation of MODIS-NDVI in step 13 

1, the use of FLUXNET data leads to a significant increase of the forest above ground 14 

biomass (close to 25%). Such an increase does not correspond to an increase of the GPP (Fig. 15 

10) but to changes in the autotrophic respiration parameter (MRb) that lead to a decrease of 16 

autotrophic respiration and an increase of NPP. The value does not change through step 3 and 17 

remains significantly higher than the data-driven estimate. Note however that the lower value 18 

in the GEOCARBON product could be partly due to the fact that we did not yet account for 19 

land use effects in the CCDAS, such as deforestation in the Amazon.  20 

 21 

4 Discussion and conclusions 22 

In this paper we have described a first global Carbon Cycle Data Assimilation System that 23 

assimilates three major carbon-cycle related data streams, namely MODIS-NDVI 24 

observations of vegetation activity at 60 sites, FLUXNET NEE and LE measurements at more 25 

than 70 sites, and atmospheric CO2 concentrations at 53 surface stations over three years in 26 

order to optimize the C cycle parameters of the ORCHIDEE process-based LSM 27 

(ORCHIDEE-CCDAS). The study details the concept, the implementation and the main 28 

results of a stepwise assimilation approach where the data streams have been assimilated in 29 

three successive steps (including a propagation of the retrieved posterior parameter 30 

distributions from one step to the next).  31 



 28 

The assimilation of MODIS-NDVI (60 grid cell points, step 1) improved the phenology of 1 

ORCHIDEE with a significant reduction of the growing season length and thus a direct 2 

impact on the GPP. The results are similar to those presented in MacBean et al. (2015) who 3 

describe the impact of such optimization on the global FAPAR simulations and the 4 

improvement in the bias of the calculated leaf onset and senescence dates in more detail. The 5 

optimization with FLUXNET data (78 sites, step 2) led to large improvements in the seasonal 6 

cycle of the NEE and LE fluxes, constraining primarily the photosynthetic processes. Some 7 

discrepancies remain due to site heterogeneity (i.e. different species and edaphic conditions) 8 

that the model does not fully capture, and due to missing processes in the model (see Kuppel 9 

et al. (2014) for a more thorough discussion). However, without the assimilation of 10 

atmospheric CO2 concentrations, the global (and continental) net carbon balance after step 2 11 

was still clearly outside the admitted range (as reported by the GCP in Le Quéré et al. (2015), 12 

which highlights the importance of assimilating a data stream such as this that provides 13 

information at larger scales (constraining large scale respiration fluxes). The use of 14 

atmospheric CO2 concentration as an overall constraint in step 3 was technically challenging 15 

as it required the coupling of ORCHIDEE with an atmospheric transport model in forward 16 

and reverse mode (i.e. to compute the cost function and its gradients at each step of the 17 

minimization process). As a result of the final step, we were able to fit the atmospheric CO2 18 

growth rate and thus to derive a land C sink compatible with current best estimates from the 19 

GCP. The assimilation of CO2 data also slightly changed the seasonality of the NEE, which 20 

improved the fit to the atmospheric CO2 seasonal cycle. Note that assimilating only CO2 data 21 

would lead to a similar global land C sink but with a different model parameter set not 22 

compatible with the information provided by MODIS-NDVI and FLUXNET data. 23 

The consistency of the stepwise approach has been evaluated with back-compatibility checks 24 

after the final step (step 3: assimilation of atmospheric CO2 concentration). The optimized 25 

model with the final set of parameters does not degrade the fit to MODIS-NDVI and 26 

FLUXNET data that were assimilated in the first two steps (only minor changes of the 27 

RMSEs occur; see Fig. 8). This result has two important consequences. Most importantly it 28 

suggests that current state of the art LSMs (at least ORCHIDEE) have reached a level of 29 

development where consistent assimilation of multiple data streams is finally possible. This 30 

overcomes the most important limitation noted by Rayner (2010) to the widespread use of 31 

CCDAS systems. At a more technical level it suggests that stepwise assimilation is a valid 32 

and feasible approach. Although we only carried the estimated parameter uncertainties from 33 



 29 

one step to the next (as a first more simple approach), and not the full error variance-1 

covariance matrix, we were able to propagate enough information to maintain an optimal 2 

model-data fit after the last step for the three data streams, as confirmed with the back-3 

compatibility checks. MacBean et al. (2016) provide a more specific analysis of this issue. 4 

However, not propagating the covariance terms may have a larger impact for the reduction of 5 

the inferred parameter uncertainties (see for instance the large parameter / flux error reduction 6 

in Fig. 9 / Fig. 11). The order of the different steps was dictated by the number of parameters 7 

we choose to expose to each data stream, from only a few phenology parameters for NDVI up 8 

to the largest set for atmospheric CO2. Recall that under the fundamental theory the order of 9 

assimilation is unimportant. Testing whether our system meets this criterion is an important 10 

check on the robustness of the method but is not technically feasible with the full-blown 11 

system; it is currently being tested with some smaller models.  12 

Most of the optimized parameter values have significantly changed compared to their prior 13 

values, with a large error reduction for most (Fig. 9) that results in a strong constraint on the 14 

simulated fluxes (Fig. 11). In the last step, the assimilation of atmospheric CO2 data mainly 15 

led to the optimization of respiration-related parameters, especially the regional soil carbon 16 

multipliers (KsoilC,reg). Note that this was also the case for the BETHY-CCDAS, as described 17 

in Rayner et al. (2005) (see their Table 2). This is linked to the difficult issue of representing 18 

the effects of historical changes in land cover and land management as well as soil texture 19 

effects on soil carbon dynamics, and the necessary choice of a standard spin-up procedure to 20 

account for these effects. Ideally one would need to perform the optimization of the model 21 

over a long historical period with LULCC and land management practices included and the 22 

optimization of related parameters. However, this is not currently feasible at global scale and 23 

uncertainties in the forcing would introduce as much difficulty as uncertainties in the initial 24 

condition. The adjustment of the initial C pool contents is thus a logical compromise and 25 

further investigations into the impact of the selected set-up (number of regions for KsoilC,reg, 26 

their associated uncertainties) on the C fluxes simulated in the future are needed. Note that a 27 

first improvement would be to include LULCC in the transient simulation (to define the initial 28 

state) before the assimilation period. 29 

Nonetheless, several limitations, inherent to the optimization of model parameters in a 30 

CCDAS, need to be called to mind when evaluating these results (see also Rayner et al., 31 

2010). First, the structure of the land surface model (i.e. how biogeochemical processes are 32 
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 30 

represented) is critical. Any missing/misrepresented processes may have a direct impact and 1 

thus lead to biases in the selected parameters. Note that this limitation could be even more 2 

severe when using atmospheric CO2 measurements, as these data provide a direct constraint 3 

on the overall net C exchange between the atmosphere and the vegetation, thus including all 4 

processes. As an example, the model sensitivity to atmospheric CO2 increase (e.g. through the 5 

parameters Vcmax and Gs,slope) could be non optimal as the current model version does not 6 

include explicit nitrogen and phosphorus limitations on photosynthesis. Second, the chosen 7 

set of observations does not provide specific constraints on long term C processes such as tree 8 

mortality, disturbance effects, or C allocation within a plant. For instance Fig. 12 illustrates 9 

that the optimized model may still significantly overestimate tropical forest biomass. The 10 

assimilation of above-ground biomass or soil carbon stock observations (i.e. site-level 11 

measurements or regional estimates) should thus provide critical complementary information 12 

(see Bloom et al., 2016 and Thum et al., in revision for AFM). Additionally, uncertainties on 13 

the other components of the carbon cycle, such as fossil fuel and biomass burning emissions 14 

and ocean fluxes, can be also critical when using atmospheric CO2 as a constraint. Finally, 15 

one can mention new approaches based on remote sensing data to account for site level 16 

differences in productivity potential due to edaphic variability (soil quality and 17 

slope/drainage) within the same vegetation type (Ise an Sato, 2008). 18 

To conclude, this work is a step forward in terms of multiple data streams assimilation that 19 

opens new perspectives for a better understanding of the carbon cycle and better predictions 20 

of the fate of the land carbon sink in the 21st century as a consequence of anthropogenic 21 

changes. As ORCHIDEE is part of the IPSL earth system model the impact of the 22 

optimization on future climate change predictions will be assessed in a future study. However, 23 

we first need to run the ORCHIDAS with a longer atmospheric CO2 record (i.e. several 24 

decades) in order to provide stronger constraints on parameters controlling the impact of 25 

climate extremes on the net carbon fluxes at continental to global scales, and the sensitivity of 26 

photosynthesis to increasing CO2 concentration. The optimized model will allow a more in-27 

depth investigation of the trend and inter-annual variations of land surface C fluxes at 28 

continental to regional scales, as well as their driving mechanisms. It will offer a more 29 

reliable and robust process-based diagnostic of the land C cycle that is compatible with 30 

current major data streams. Overall, we have illustrated the benefit of combining multiple 31 

data streams in a process-based model to optimize different processes of the model, related to 32 

different temporal and spatial scales. The optimization will be updated regularly as new 33 
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processes are integrated into the ORCHIDEE model, such as for instance land management 1 

(Naudts et al., 2015). 2 

 3 

Code availability 4 

The ORCHIDEE model code and the run environment are open source 5 

(http://forge.ipsl.jussieu.fr/orchidee) and the associated documentation can be found at 6 

https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. Note that the tangent linear version 7 

of the ORCHIDEE model has been generated using commercial software (TAF; 8 

http://www.fastopt.com/products/taf/taf.shtml). For this reason, only the “forward” version of 9 

the ORCHIDEE model is available for sharing. The optimization scheme (in Python) is 10 

available through a dedicated web site for data assimilation with ORCHIDEE 11 

(http://orchidas.lsce.ipsl.fr/). Nevertheless readers interested in running ORCHIDEE are 12 

encouraged to contact the corresponding author for full details and latest bug fixes. Finally, 13 

the source code of the LMDZ atmospheric transport model can be found at 14 

http://web.lmd.jussieu.fr/trac. 15 

 16 

Appendix 17 

A1. Ocean fluxes 18 

Figure A1 displays the air-sea fluxes from the statistical model. 19 

A2. Fire fluxes 20 

In order to account for fundamental differences between six fire flux categories provided by 21 

the GFED product, we grouped these emissions into 3 types with specific treatments. The first 22 

group includes C emissions from deforestation and peat fires, which are considered to be 23 

permanent carbon lost to the atmosphere, at least over the considered time scales. These 24 

fluxes are rescaled to an annual emission of 1.1 PgC.yr-1 globally following typical values 25 

reported in the literature for deforestation (Houghton R., 2003). The second group consists of 26 

C emissions from agriculture and savannah fires, which are compensated by a C sink during 27 

the regrowth of these biomes (i.e., savannah and some type of plants on the farmland). These 28 

effects are not completely accounted for in ORCHIDEE as the model does not simulate 29 
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savannah and agriculture fire. Hence, the emissions over the whole period and for each pixel 1 

become zero, but their seasonal variations are used. The final group includes emissions from 2 

woodland and burnt forests. We considered that at steady state and for a given region certain 3 

forests burn but that nearby forests are re-growing following older fires. We thus imposed 4 

regrowth at the region scale given that the ORCHIDEE model version that we use does not 5 

account for such regrowth. The main assumption is that over century time scale the 6 

forest/woodland system is at steady state over a given region (few thousand square km), i.e. 7 

there is no net deforestation. We selected an ensemble of small regions over which we 8 

calculated the regrowth of these biomes. The derived emissions over the whole period and for 9 

each region thus become zero; though we include their spatial and temporal variations. The 10 

overall biomass burning flux considered in the CCDAS for the optimization process is the 11 

sum of the three fluxes as described above. 12 

A3. Multipliers of the soil initial carbon pools 13 

Figure A2 provides the optimized values of the KsoilC,reg parameters that optimize the initial 14 

soil carbon pool sizes. 15 
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Tables  1 

Table 1. Parameters description, generality (PFT dependent, global, specific to FLUXNET 2 

sites or for a set of regions) and data stream(s) that were used to constrain them. 3 

Parameter Description Dependent Constraint 

Vcmax Maximum carboxylation rate (µmol·m–2·s–1) PFT Flux, CO2 

Gs,slope Ball-Berry slope PFT Flux, CO2 

cT,opt Optimal photosynthesis temperature (°C) PFT Flux, CO2 

SLA Specific leaf area (m2·g–1) PFT Flux, CO2 

KLAI,happy 
LAI threshold to stop using carbohydrate 
reserves PFT Sat, Flux, CO2 

Kpheno,crit 
Multiplicative parameter of the threshold that 
determines the start of the growing season PFT Sat, Flux, CO2 

Lage,crit Average critical age of leaves (days) PFT Sat, Flux, CO2 

CT,sen Temperature threshold for senescence (°C) PFT Sat, Flux, CO2 

Fstress,h 
Parameter reducing the hydric limitation of 
photosynthesis PFT Flux, CO2 

MRoffset 
Offset of the temperature dependence of 
maintenance respiration Global Flux, CO2 

Q10 Temperature dependency of heterotrophic 
respiration Global Flux, CO2 

HRHc Offset of the soil/litter moisture control function Global Flux, CO2 

KsoilC,site Multiplicative factor of the initial soil carbon 
pools 

per Site Flux 

KsoilC,reg 30 regions CO2 

Kalbedo Multiplicative factor of the vegetation albedo Global Flux, CO2 
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Table 2. Prior information for all parameters except initial soil C pool multipliers: prior value, 1 

uncertainty and range of variation for the different plant functional types (Tropical Broadleaf 2 

Evergreen/Raingreen forests (TrBE / TrBR), Temperate Needle leaf / Broadleaf Evergreen 3 

forests (TeNE, TeBE), Temperate Broadleaf Deciduous forest (TeBD), Boreal Needle leaf 4 

Evergreen forests (BoNE), Boreal Broadleaf / Needle leaf Deciduous forests (BoBD / BoND) 5 

and C3 grassland.  6 

Parameter 
Plant functional type 

TrBE TrBR TeNE TeBE TeBD BoNE BoBD BoND NC3 

Vcmax 
65 ± 24 

[35; 95] 

65 ± 24 

[35; 95] 

35 ± 12.8 

[19; 51] 

45 ± 16 

[25; 65] 

55 ± 20 

[30; 80] 

35 ± 12.8 

[19; 51] 

45 ± 16 

[25; 65] 

35 ± 12.8 

[19; 51] 

70 ± 25.6 

[38; 102] 

Gs,slope 
6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

6.0 ± 2.4 

[6; 12] 

cT,opt 
37 ± 6.4 

[29; 45] 

37 ± 6.4 

[29; 45] 

25 ± 6.4 

[17; 33] 

32 ± 6.4 

[24; 40] 

26 ± 6.4 

[18; 34] 

25 ± 6.4 

[17; 33] 

25 ± 6.4 

[17; 33] 

25 ± 6.4 

[17; 33] 

27.25 ± 6.4 

[19.25; 35.25] 

SLA 
0.015 ± 

0.0092 

[0.007; 0.03] 

0.026 ± 

0.0148 

[0.013; 0.05] 

0.009 ± 

0.0064 

[0.004; 0.02] 

0.02 ± 

0.012 

[0.01; 0.04] 

0.026 ± 

0.0148 

[0.013; 0.05] 

0.009 ± 

0.0064 

[0.004; 0.02] 

0.026 ± 

0.0148 

[0.013; 0.05] 

0.009 ± 

0.0064 

[0.004; 0.02] 

0.026 ± 0.0148 

[0.013; 0.05] 

KLAI,happy 
0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

0.50 ± 0.14 

[0.35; 0.70] 

Kpheno,crit — 
1.0 ± 0.44 

[0.7; 1.8] 
— — 

1.0 ± 0.44 

[0.7; 1.8] 
— 

1.0 ± 0.44 

[0.7; 1.8] 

1.0 ± 0.44 

[0.7; 1.8] 

1.0 ± 0.44 

[0.7; 1.8] 

Lage,crit 
730 ± 192 

[490; 970] 

180 ± 48 

[120; 240] 

910 ± 240 

[610; 1210] 

730 ± 192 

[490; 970] 

180 ± 48 

[120; 240] 

910 ± 240 

[610; 1210] 

180 ± 48 

[120; 240] 

180 ± 48 

[120; 240] 

120 ± 60 

[30; 180] 

CT,sen — — — — 
12 ± 8 

[2; 22] 
— 

7 ± 8 

[–3; 17] 

2 ± 8 

[–8; 12] 

–1.375 ± 8 

[–11.375; 9.375] 

Fstress,h 
6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

6.0 ± 3.2 

[2; 10] 

MRoffset 
1.0 ± 0.6 

[0.5; 2.0] 

Q10 
1.99372 ± 0.8 

[1.0; 3.0] 

HRHc 
–0.29 ± 0.24 

[–0.59; 0.01] 

Kalbedo 
1.0 ± 0.16 

[0.8; 1.2] 



 45 

Main Figures 1 

 2 

 3 

 4 

 5 

Figure 1. Schematic of the ORCHIDEE Carbon Cycle Data Assimilation System 6 
(ORCHIDAS). 7 
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 1 

Figure 2. Illustration of the step-wise data assimilation approach used for the assimilation of 2 
multiple data streams in the ORCHIDEE-CCDAS. The list of parameters for each step is 3 
summarized in Table 1.  4 

 5 

 6 

 7 

 8 

Figure 3: Location of the different observations used for each data stream assimilated in the 9 
system: MODIS-NDVI measurements, FLUXNET sites with NEE and LE measurements and 10 
atmospheric CO2 stations (both the sites that aer assimilated and the sites used for the 11 
validation). 12 
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 1 

Figure 4. Mean seasonal cycle (2000-2008) of the normalised modelled FAPAR before and 2 
after optimisation, compared to that of the MODIS NDVI data, for the temperate and boreal 3 
deciduous PFTs (TeBD, BoBD, BoND and NatC3). Black = MODIS NDVI data; Grey = 4 
prior simulation (default ORCHIDEE parameters); Green = posterior multi-site optimisation. 5 

 6 

 7 

 8 

Figure 5: Mean seasonal cycle of the Net Carbon Ecosystem Exchange (NEE) for the 9 
different plant functional type optimized in Step 2 of the assimilation. The mean across all 10 
sites for a given PFT is provided for the observations (black), the posterior of step 1 (green) 11 
and the posterior of step 2 (blue). 12 
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 1 

Figure 6: Monthly mean atmospheric CO2 concentrations after step 3 of the optimization, for 2 
several stations over the period 2002-2004 of the optimization. The observations (black), the 3 
prior model (grey) and the posterior model after step 2 (blue) and step 3 (red) are displayed. 4 
Numbers in parenthesis correspond to RMSEs.  5 

 6 

 7 

 8 
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Figure 7: Changes in the mean seasonal cycle of the atmospheric CO2 concentrations after 1 
step 3 of the optimization at all atmospheric stations. Left: Relative changes (in percentage) 2 
between the prior of step 3 and posterior absolute model-data differences for the amplitude of 3 
the seasonal cycle. Right: Same metric but for the length of the Carbon Uptake Period (CUP), 4 
measured as the sum of the days when the de-trended concentrations are negative (see text).  5 

 6 

 7 

 8 

 9 

Figure 8: RMSE between model outputs and observations for two types of observations: 10 
MODIS-NDVI on the left and FluxNet-NEE on the right, for different Plant Functional Types 11 
(PFT: TrBE, TeNE, TeBE, TeBD, BoBD, BoND, NC3) and for the prior model simulation 12 
and the posterior of each step of the assimilation framework. Missing bars correspond to the 13 
fact that no data were available to constrain a given PFT.  14 

 15 
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1 
Figure 9: Prior and posterior parameter values and uncertainties for a set of optimized 2 
parameters (9 PFT dependent and 4 non-PFT dependent). The prior value corresponds to the 3 
horizontal black line and the physical allowed range of variation to the “y” range (i.e. the 4 
white zone). For PFT-dependent parameters, there are 9 sub-plots corresponding to PFTs that 5 
were optimized (except for Kpheno_crit with only 5 PFTs). For each parameter, there are 3 6 
estimated values for the three successive steps: step1: assimilation of MODIS-NDVI data 7 
(green symbol); step2: adding FLUXNET data (blue symbol); step3: adding atmospheric CO2 8 
data (red symbol). The parameter values are depicted with the symbols and the estimated 9 
uncertainties with the vertical line (± sigma).   10 

 11 
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 13 
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 18 
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 1 

Figure 10: Left: Net Ecosystem Exchange (NEE) for three regions (North of 35°N, Tropics, 2 
South of 35°S) for the prior model, and after each step of the optimizations (mean over 2002-3 
2004). The total NEE is indicated with the vertical brown bar and compared to the Global 4 
Carbon Project (GCP) estimate for the same period (Le Quéré et al. 2015). Right: same but 5 
for Gross Primary Production where the data driven estimate (MTE product using FluxNet 6 
data; Jung et al., 2009) is provided for comparison. 7 

 8 

  9 
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 1 

 2 

Figure 11:  Simulated annual net carbon exchange (NEE) for the land ecosystems prior to any 3 
optimization (left column) and after step 3 of the optimization process (right column). Upper 4 
figures correspond to the mean NEE (in gC.m-2.y-1) over the assimilation period (2001-2003) 5 
and lower figures to the associated monthly flux uncertainties (averaged over the whole 6 
period and expressed in gC.m-2.y-1) due to the parameter uncertainties (see text). 7 
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 1 

Figure 12: Above ground forest biomass data for the prior ORCHIDEE model and after step 2 
1, step 2 and step 3 of the optimization process. Estimates from satellite observations (Santoro 3 
et al., 2015) and referred as “GEOCARBON” (following the EU-GEOCARBON project) are 4 
provided for comparison. 5 

 6 

Appendix figures 7 

 8 

 9 

Figure A1: CO2 air-sea fluxes including the natural ocean out-gazing, used as input to the 10 
ORCHIDEE-CCDAS and estimated from a neural network approach using observed pCO2 11 
data (see main text, section 2.5.1). The Northern, Tropical and Southern ocean contributions 12 
to the global ocean flux (blue curve) are also provided. 13 
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 1 

 2 

Figure A2: Map of the posterior values of the coefficient scaling the initial carbon pool sizes 3 
per regions. 4 
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