1 Supplementary tables

2 Table S1. Calibrated parameters

Symbol	Parameter Name	Unit	Equation (cf. Table S2)	Module	Definition	Min	Max	Literature or default value
Δz_{cov}	CritDepthSn owCover	m	4.7	Snow coverage	The thickness of mean snow	1·10 ⁻ 3	0.02	0.01 (default value)
m _{Rmin}	MeltCoefGl obRad	$kg J^{-1}$	4.10	Snow melt dependency on	complete cover of the soil. Coefficient in the global radiation response of the	2.3·1 0 ⁻⁷	3.10-7	1.5·10-7 (default value)
f_{qh}	MeltCoefSo ilHeatF		4.8	Snow melt dependency on soil heat	Scaling coefficient for the contribution of heat flow from ground on the melting of the snow in the empirical snow melt function.	0.3	0.7	0.5 (default value)
S_{dw}	DensityCoef Mass	m^{-1}	4.5	Snow: density coefficient of old snow	Mass coefficient in the calculation of snow density as a function of liquid and ice content in the "old" snow pack.	0.6	1	0.5 (default value)
S _{dl}	DensityCoef Water	kg m ⁻³	4.5	Snow: density dependence on liquid an ice content	Liquid water coefficient in the calculation of snow density as a function of liquid and ice content. The snow density increase with this value when the liquid water content in the snow pack becomes equal to the total retention capacity	160	210	200 (default value)
$ ho_{smin}$	DensityOfN ewSnow	kg m ⁻³	4.3	Snow: density	Density of new snow.	90	120	100 (default value)
m _T	MeltCoefAi rTemp	$\frac{\text{kg}}{^{\circ}\text{C}^{-1}}$ $\frac{\text{m}^{-2}}{\text{day}^{-1}}$	4.9	Snow: melting dependency to temperature	Coefficient for temperature dependance in the empirical snow melt function.	2.5	4	A value of 2 is normal for forests. Similar as for MeltCoefGlobRad a two or three fold increase is expected if adaptation to an open filed is to be done (Jansson and Karlberg 2010).
T _{RainL}	OnlyRainPr ecTemp		4.4	Snow: temperature treshold for	Above this temperature all precipitation is rain.	1.7	2.2	2 (default value)
h_{com}	Common value	mm day ⁻ 1	6.11	Soil hydraulic conductivity under saturated conditions	Unsaturated matrix conductivity dependency on total saturated conductivity	0.01	100	10 (default value)
Ψa	Air Entry(1)	cm	6.8	Soil hydraulic properties: shape of water retention in the upper horizon	Air-entry tension. As this was the only calibrated parameter defining the shape pF-curve, it determines unsaturated water distribution in the soil including capillary rise.	1 (3)	8 (10)	Range received by comparing resulting pF curves with curves measured in peatlands (Kellner and Lundin, 2001); Values in bracket were used for soil horizons < -30 cm
d_p	DrainSpacin g	m	6.12	Soil hydrology: drainage distance	Characteristic distance between drainage pipes, denominator when estimating the gradient necessary for the calculation of the horizontal water flow to drainage pipe	30	330	site specific estimation

Symbol	Parameter Name	Unit	Equation (cf. Table S2)	Module	Definition	Min	Max	Literature or default value
gmax, vasc	Conduct Max(1)	$\frac{m^2}{s^{-1}}$	2.10	Transpiration efficiency	Transpiration coefficient for vascular plants: the maximal conductance of fully open stomata in the Lohammar equation (Lohammar et al., 1980) for calculating leaf conductance and surface resistance	0.02	0.1	Results from a pre-study calibration with the site data
g max, moss	Conduct Max(2)	${\displaystyle m^{2} \atop {\displaystyle s^{-1}}}$	2.10	Transpiration efficiency	Transpiration coefficient for mosses: the maximal conductance of fully open stomata in the Lohammar equation (Lohammar et al., 1980) for calculating leaf conductance and surface resistance.	0.01 7	0.03	Results from a pre-study calibration with the site data
g maxwin	CondMaxW inter	$m s^{-1}$	2.10	Transpiration efficiency outside the growing	Maximal conductance of fully open stomata to calculate the potential transpiration of plants during winter	0.00 1	0.03	Results from a pre-study calibration with the site data
t _{WA}	TempCoefA	-	2.13	Transpiration stress due to limited water availability under low temperatures	Temperature coefficient in the temperature response function.	0.8	10	Results from a pre-study calibration with the site data
Ψc	CritThresho ldDry	cm wat er	2.12	Transpiration stress due to too low water content	Critical pressure head for reduction of potential water uptake. A wide range (100- 3000 cm water) of values has been reported in the literature. Lower values are expected for sandy soils with low root densities and higher values are expected for clayey soils with high root densities	1	330	Results from a pre-study calibration with the site data
<i>p</i> ₁	DemandRel Coef	day ⁻	2.12	Transpiration stress due to too low water content	Coefficient for the dependence of potential water uptake in the reduction function. The dependence of the potential uptake rate has frequently been reported as an important phenomenon for reduction of water untake	0.3	2	0.3 (default value)
ψ_{eg}	EquilAdjust Psi	-	3.7	Vapour pressure at the soil surface	Factor to account for differences between water tension in the middle of top layer and actual vapour pressure at soil surface	0	2	1 (default value)
С _{Н0,} сапору	WindLessE xchangeCan opy	m s ⁻¹	2.6	Aerodynamic resistance of canopy: minimum exchange under stabile conditions	Roughness length used in the calculation of r_a for each plant, corresponds to z_0 in Equation 2.6.	1·10 ⁻	0.1	0.001 (default value)
r _{a,max,s} now-1	WindlessEx ChangeSno w	s ⁻¹		Aerodynamic resistance of snow: minimum exchange under stabile conditions	Minimum turbulent exchange coefficient (inverse of maximum allowed aerodynamic resistance) over snow. Avoids exaggerated surface cooling in windless conditions or extreme stable stratification.	0	1.10.4	Results from a pre-study calibration with the site data

Symbol	Parameter Name	Unit	Equation (cf. Table S2)	Module	Definition	Min	Max	Literature or default value
r _{alai}	RaIncrease WithLAI	s m ⁻¹	3.5	Aerodynamic resistance: contribution of LAI	The contribution of LAI to the total aerodynamic resistance from measurement height (reference level) to the soil surface.	100	800	Results from a pre-study calibration with the site data
Z0M,sno w	RoughLMo mSnow	m	2.7, 2.8	Aerodynamic resistance: roughness length of snow	Roughness length for momentum above snow.	1·10 ⁻ 5	0.001	Results from a pre-study calibration with the site data
Sk	SThermalC ondCoef	$W m^5 C^{-1} kg^{-2}$	4.1	Soil temperature: thermal conductivity of snow	Thermal conductivity coefficient for snow.	1.2·1 0 ⁻⁶	2.86·1 0 ⁻⁶	Results from a pre-study calibration with the site data
h_2	OrganicC2	-	6.3	Soil temperature – thermal conductivity	Empirical constant in the heat conductivity of the organic material at the surface	0.00 45	0.0075	0.005 (default value)
Tamean	TempAirMe an	°C	6.5	Soil temperature – lower boundary	Assumed value of mean air temperature for the lower boundary condition for heat conduction.	5.5	8	Based on results from a pre-study calibration with the site data. Should be 1.5- 5°C higher than annual mean temperature (Metzger et al. 2015) which was 2.3 °C at Degerö during the simulation period
l _{pgrain}	AlbedoGrai nStage(1)	%	2.1	Radiation interception: plant albedo	Plant albedo during grain stage	20	31	Dry grass and straw up to 29 and 33, respectively (Kondratiev et al., 1964)
A _{pve,} vasc	AlbedoVeg Stage(1)	%	2.1	Radiation interception: vascular plant albedo	Plant albedo of vascular plants during vegetative stage	10	25	12-22 for <i>Carex</i> ; 12.5 for bog, raised edge; 17.8 for bog, depression (Petzold and Rencz, 1975)
A _{pve,} moss	AlbedoVeg Stage(2)	%	2.1	Radiation interception: moss albedo	Plant albedo of vascular plants during vegetative stage	10	30	11-16% in a <i>Sphagnum</i> - sedge bog (Berglund and Mace, 1972), 16.4 for <i>Sphagnum</i> , 17.5 for <i>Carex</i> , 17.9 for <i>Pragmites</i> (Zhao et al., 1997)
£L, vasc	RadEfficien cy(1)	gD w MJ ⁻	1.1	Plant assimilation efficiency	Radiation use efficiency of vascular plants for photosynthesis under optimum temperature, moisture and nutrients conditions	1.05	1.31	Based on results from a pre-study calibration with the site data. Ranges were selected in that way, that mosses and vascular plants can contribute approximately similar to photosynthesis during summer (Vermeij, 2013). Actual values differ due to the different plant coverage.
EL, moss	RadEfficien cy(2)	gD w MJ ⁻	1.1	Plant assimilation efficiency	Radiation use efficiency of mosses for photosynthesis under optimum temperature, moisture and nutrients conditions	0.1	0.2	Based on results from a pre-study calibration with the site data. Ranges were selected in that way, that mosses and vascular plants can contribute approximately similar to photosynthesis during summer (Vermeij, 2013). Actual values differ due to the different plant coverage.
p _{mn,} ^{vasc}	T LMin(1)	°C	1.2	Plant assimilation:	Minimum mean air temperature for	-6	5	-6 reported for some alpine plants (Körner,

ol	neter Name		iion (cf. S2)	lle	ti i			iture or It value
Symb	Paran	Unit	Equal Table	Μοdι	Defi	Min	Max	Litera defau
p _{mn,} moss	T LMin(2)	°C	1.2	temperature response Plant assimilation: temperature	photosynthesis for vascular plants Minimum mean air temperature for photosynthesis for mosses	-6	5	1999), 5 (default value) -6 reported for some alpine plants (Körner, 1999), 5 (default and an
Pol, vasc	T LOpt1(1)	°C	1.2	Plant assimilation: temperature response	Lower limit mean air temperature for optimum photosynthesis for vascular plants	8	14	Need to be higher than T LMin, but lower T LOpt2
р _{о2,} vasc	T LOpt2(1)	°C	1.2	Plant assimilation: temperature response	Upper limit mean air temperature for optimum photosynthesis for vascular plants	20	32	23-32° C for different <i>Poacea</i> -species (Wohlfahrt et al., 1999); 12-22 °C for <i>Carex</i> and <i>Eriophorum</i> (Kummerow and Ellis, 1984)
p _{ol,} moss	T LOpt1(2)	°C	1.2	Plant assimilation: temperature response	Lower limit mean air temperature for optimum photosynthesis for mosses	5	14	Need to be higher than T LMin, but lower T LOpt2
р _{о2,} moss	T LOpt2(2)	°C	1.2	Plant assimilation: temperature response	Upper limit mean air temperature for optimum photosynthesis for mosses	18	32	Sphagnum: 18 °C (Clymo and Hayward, 1982); depending on water content, at least 27 °C (Grace, 1973)
f _{SnowRe} duceLAI	SnowReduc eLAIThresh old			Plant LAI reduction due to snow cover	Minimum fraction of canopy above snow surface to allow transpiration or intercention evanoration	$1 \cdot 10^{-3}$	0.01	Results from a pre-study calibration with the site data
l_{Lc1}	LeafRate1(1)	day ⁻	1.10, 1.12	Plant litter fall: leaf litter fall rate during the	Rate coefficient for the leaf litter fall before the first threshold temperature sum t_{L1} is reached	2.5·1 0 ⁻⁴	0.01	Results from a pre-study calibration with the site data
l _{LS}	C Leaf to Stem(1)	-	1.8,	Plant litter fall: rate for leaf yellowing at the end of the vegetation period	Scaling factor for reallocation of C from the photosynthetically active to the passive pool after the plant reached maturity growth state	0.02	0.03	Results from a pre-study calibration with the site data
l _{Rc1,} moss	RootRate1(2)		1.12	Plant litter fall	suite	2.5·1 0 ⁻⁴	0.0025	Results from a pre-study calibration with the site data
l _{Rc2,}	RootRate2(2)		1.12	Plant litter fall		$2.5 \cdot 1$ 0^{-4}	0.0025	Calibrated relative to l_{Rc1}
T _{Mature} Sum	Mature Tsum(1)	°C		Plant phenology: start of senescense	Temperature sum beginning from grain filling stage for plant reaching maturity stage	g 320	330	Metzger et al., 2015 found best values leading to grain filling start around mid to end of July, which corresponds to 320-330 at this site
k _{gresp,} moss	GrowthCoef (2)		1.6	Plant respiration		0.2	0.6	A wider range was selected for mosses compared to vascular plants, as due to the selected conceptual model, moss respiration was only growth depending, while there is an additional LAI depending component for vascular plants. Fraction of assimilates, lost by respiration according to Rice et al. 2008 for different Sphagnum species: 33-62%

	Name		cf.					ue or
loc	neter		tion (s S2)	ale	lition			ature llt val
Symb	Parar	Unit	Equa Table	Modı	Defir	Min	Max	Litera defau
k _{gresp,} vasc	GrowthCoef (1)	day ⁻	1.6	Plant respiration	Rate coefficient for growth respiration of the plant (respiration relative to	0.14	0.4	Results from a pre-study calibration with the site data
<i>t</i> _{Q10}	RespTemQ1 0	-	1.7	Plant respiration: temperature	amount of assimilates) response to a 10 °C soil temperature change on plant maintenance respiration	1.8	3	Dark respiration in <i>Eriophorum</i> : 1.1-3.7 (van de Weg et al., 2013)
Pzroot, vasc	Root LowestDept h(1)	m	1.13	Plant rooting depth – important for water uptake and root litter input within the soil profile	Maximum root depth in the function for calculating the actual root depth	-0.5	-0.14	Estimated maximum rooting depth for this site is 30-45cm (Peichl, 2015, personal communication).
Pzroot, moss	Root LowestDept h(2)		1.13	Plant rooting depth – important for water uptake and root litter input within the soil profile	Maximum root depth in the function for calculating the actual root depth	-0.1	-0.01	Estimation
<i>M_{retain}</i>	Mobile Allo Coef(1)	-	1.14	Plant storage pool for regrowth in spring	Coefficient for determining ratio of leaf carbon, allocated to the mobile storage pool during leaf litter fall	0.2	0.6	0.01-0.4 was found in Metzger et al., 2015 for several peatland sites, however pre-study results suggested higher values for this site
<i>k</i> 11	RateCoefLit ter1	a ⁻¹	5.1	SOC decomposition	Rate coefficient for the decay of SOC in the plant litter pools for mosses	2·10 ⁻ 4	0.02	1.10-5 to 0.03 by calibration (Metzger et al., 2015)
k_h	RateCoefHu mus	day ⁻	3.8	SOC decomposition	rate coefficient for the decay of C in the slow SOC pools	1·10 ⁻ 9	2.10-5	1.10^{-5} (default value)
t _{min}	TempMin	°C	5.3	SOC decomposition – temperature response	The temperature in the Ratkowsky function at which microbial activity is 0%.	-10	0	-8 (default value)
t _{max}	TempMax	°C	5.3	SOC decomposition – temperature response	The temperature in the Ratkowsky function at which the response on microbial activity is 100%.	20	30	20 (default value)
$p_{ heta Satact}$	SaturationA ctivity	vol %	5.4	SOC decomposition – water response	Parameter in the soil moisture response function defining the microbial activity under saturated conditions	1.10 ⁻ 6	0.01	A very low value was chosen to get a strong response to drougths.
PθLow	ThetaLower Range	vol %	5.4	SOC decomposition – water response	Water content interval in the soil moisture response function for microbial activity, mineralisation–immobilisatio n, nitrification and denitrification.	3	20	13 (default value)
$p_{ heta Upp}$	ThetaUpper Range	vol %	5.4	SOC decomposition – water response	Water content interval in the soil moisture response function for microbial activity	6	10	8 (default value)
<i>k</i> ₁₂	RateCoefLit ter2	a ⁻¹	5.1	SOC decomposition	Rate coefficient for the decay of SOC in the plant litter pools for vascular plants	2·10 ⁻ 5	0.002	Calibrated relative to k_{ll}

Equation	No.	Definition
Plant biotic processes		
$C_{Atm \to a} = \varepsilon_L \cdot \eta \cdot f(T_l) \cdot f(E_{ta} / E_{tp}) \cdot R_{s, pl}$	(1.1)	Rate of photosynthesis (g C $m^{-2} day^{-1}$)
where \mathcal{E}_L is the radiation use efficiency and η is the conversion factor		
from biomass to carbon. $R_{s,pl}$ is the global radiation absorbed by		
canopy and $f(T_l)$, and $f(E_{ta} / E_{tp})$ limitations due to unfavourable temperature, nitrogen, and water conditions.		
0 $T_l < p_{mn}$	(1.2)	Temperature response function for
$(T_l - p_{mn}) / (p_{o1} - p_{mn}) \qquad p_{mn} \le T_l \le p_{o1}$		photosynthesis
$f(T_l) = 1$ $p_{o1} < T_l < p_{o2}$		
$1 - (T_l - p_{o2}) / (p_{mx} - p_{o2}) \qquad p_{o2} \le T_l \le p_{mx}$		
$0 T_l > p_{mx}$		
where p_{mn} , p_{ol} , p_{o2} and p_{mx} are parameters and T_l the leaf temperature.		
$f(E_{ta}/E_{ta}) = \frac{E_{ta}}{E_{ta}}$	(1.3)	Response function for transpiration
E_{tp}		
where E_{ta} (Eq. 29) and E_{tp} (Eq. 23) are actual and potential transpiration.		
$C_{a \to Leaf} = l_{cl} \cdot C_a$	(1.4)	Allocation of new assimilates to the leaves
where l_{cb} is a parameter and C_a the new assimilated carbon.		
$C_{a \to Root} = (1 - l_{cl}) \cdot C_a$	(1.5)	Allocation of new assimilates to the roots, respectively to below ground parts in case of mosses
where l_{cb} is a parameter and C_a the new assimilated carbon.		
$C_{respleaf} = k_{mrespleaf} \cdot f(T) \cdot C_{leaf} + k_{gresp} \cdot C_{a \rightarrow Leaf}$	(1.6)	Plant growth and maintenance respiration (g C $m^{-2} \mbox{ day}^{-1})$
where $k_{mrespleaf}$ is the maintenance respiration coefficient for leaves, k_{gresp} is the growth respiration coefficient, and $f(T_a)$ is the temperature. The equation calculates respiration from stem, roots, and grains by exchanging $k_{mrespleaf}$ to $k_{mrespstem}$, $k_{mresproot}$, $k_{mrespgrain}$, and using the corresponding storage pools. Respiration from the old carbon pools is estimated with the same maintenance respiration coefficients as for respiration from new carbon pools.		
$f(T) = t_{Q10}^{(T-t_{Q10bas})/10}$	(1.7)	Temperature response function for maintenance respiration (–)
where t_{Q10} and t_{Q10bas} are parameters.		-
$C_{Leaf \to Stem} = l_{LS} \cdot C_{Leaf}$	(1.8)	Reallocation of C from leaf pool to stem pool – here used as pool for senescent
where l_{LS} is a parameter and C_{Leaf} the carbon in the leaf pool.		leaves.
$C_{\textit{Leaf} \rightarrow \textit{LitterSurface}} = f(T_{\textit{Sum}}) \cdot f(A_l) \cdot s_{\textit{newleaf}} \cdot C_{\textit{Leaf}}$	(1.9)	Leaf C entering the surface litter pool is depending on the temperature sum and leaf
where $s_{newleaf}$ is a scaling factor. Stem C is calculated analogously with $s_{newstem}$.		area index.
$f(l_{Lc}) = l_{Lcl} + (l_{Lc2} - l_{Lcl}) \cdot \min\left(1, \frac{\max(0, T_{Sum} - t_{L1})}{\max(1, t_{L2} - t_{L1})}\right)$	(1.10)	Leaf litter fall dependence of temperature sum
		6

where t_{L1} , t_{L2} , l_{Lc1} and l_{Lc2} are parameters and T_{Sum} is the so called "dorming" temperature sum, $T_{DormSum}$. $T_{DormSum}$ is calculated at the end to the growing season when the air temperature is below the threshold temperature $T_{DormTth}$, as the accumulated difference between $T_{DormTth}$ and Ta. $T_{DormTth}$ is a parameter.

The stem litter rate is calculated analogously with the parameters t_{SI} , t_{S2} , l_{Sc1} and l_{Sc2} , the root litter rate with the parameters l_{Lc2} to t_{RI} , t_{R2} , l_{RcI} and l_{Rc2} .

$$f(A_l) = e^{l_{LaiEnh} \cdot A_l}$$

where l_{LaiEnh} is a parameter and A_l the leaf area index

$$C_{\text{Root} \to \text{Litter}} = f(l_{\text{Rc}}) \cdot C_{\text{Root}} \cdot s_{\text{newroot}}$$

where $s_{newroot}$ is a scaling factor. The root litter rate function, $f(l_{Rc})$, can be calculated with Eq. (10) by exchanging the parameters t_{L1} , t_{L2} , l_{Lc1} and l_{Lc2} to t_{R1} , t_{R2} , l_{Rc1} and l_{Rc2} .

$$z_r = p_{zroot} \left(\frac{B_r}{B_r + \frac{p_{zroot}}{p_{incroot}}} \right)$$

where p_{zroot} and $p_{incroot}$ are parameters and B_r is the mass of roots (i.e. the carbon content in the roots, $C_{Roots} + C_{OldRoots}$).

 $C_{Mobile} = (C_{Leaf \rightarrow LitterSurface} + C_{OldLeaf \rightarrow LitterSurface}) \cdot m_{retain}$

where
$$m_{retain}$$
 is an allocation coefficient.

$$C_{RemainLeaf} = C_{OldLeaf} \left(1 - \frac{1}{l_{life} - 1}\right)$$

where l_{life} is a parameter

$$C_{Mobile \to Leaf} = C_{Mobile} \cdot m_{shoot}$$

where m_{shoot} is an allocation coefficient and C_{Mobile} the carbon in the mobile pool.

Plant abiotic processes

$$R_{s,pl} = (1 - e^{-k_{m} \frac{A_{l}}{f_{cc}}}) \cdot f_{cc} (1 - a_{pl}) R_{is}$$

where k_m is the light use extinction coefficient given as a single parameter common for all plants, f_{cc} is the surface canopy cover, a_{pl} is the plant albedo and R_{is} , is the global qion.

The plant albedo is calculated from the parameters: albedo vegetative stage, *apveg*, and/or albedo grain stage, *apgrain*, depending on plant development.

 $f_{cc} = p_{c \max} (1 - e^{-p_{ck}A_l})$ (2) Where p_{cmax} is a parameter that determines the maximum surface cover and p_{ck} is a parameter that governs the speed at which the maximum surface cover is reached. A_l is the leaf area index of the plant.

(1.11) Litter fall dependency of LAI

(1.12) Root C entering the soil litter pool of the corresponding layer

(1.13) Root depth

- (1.14) Allocation to the mobile C pool for developing new leaves during litter fall
- (1.15) Fraction of the whole $C_{OldLeaf}$ pool that will be excluded from the calculation of the litterfall from the old leaves
- (1.16) Allocation from the mobile C pool at leafing (between GSI 1 and 2) as an additional supply. This process goes on as long as there is carbon left in the mobile pool.

(2.1) Plant interception of global radiation (MJ $m^{-2} day^{-1}$)

(2.2) Surface canopy cover $(m^2 m^{-2})$

$$A_l = \frac{B_l}{p_{l,sp}}$$

Where $p_{l,sp}$ is a parameter and B_l is the total mass of leaf.

$$L_{v}E_{tp} = \frac{\Delta R_{n} + \rho_{a}c_{p} \frac{(e_{s} - e_{a})}{r_{a}}}{\Delta + \gamma \left(1 + \frac{r_{s}}{r_{a}}\right)}$$

where R_n is net radiation available for transpiration, e_s is the vapour pressure at saturation, e_a is the actual vapour pressure, ρ_a is air density, c_p is the specific heat of air at constant pressure, L_v is the latent heat of vaporisation, Δ is the slope of saturated vapour pressure versus temperature curve, γ is the psychrometer 'constant', r_s is 'effective' surface resistance and r_a is the aerodynamic resistance.

$$r_a^* = \frac{\ln^2\left(\frac{z_{ref} - d}{z_0}\right)}{k^2 u} + \Delta z_{snow}$$

where the wind speed, u, is given at the reference height, z_{ref} , k is von Karman's constant, d is the displacement height and z_o is the roughness length.

$$z_0 = z_{0max}$$

$$z_0 > z_{0max}$$

$$z_0 = (H_p - \Delta z_{snow} \min(f_1, f_2)) + \Delta z_{snow}$$

$$z_0 = z_{0min}$$

$$z_0 < z_{0min}$$

where z_{0max} and z_{0min} are parameters, f_1 and f_2 are functions describing the dependency on leaf area index and canopy density, Δz_{snow} is the snow depth and H_p is the canopy height.

$$d = \min \begin{pmatrix} z_{ref} - 0.5 \\ (0.80 + 0.11p_{densm}) - \\ (0.46 - 0.09p_{densm})e^{-(0.16 + 0.28p_{densm})^{PAI}} \end{pmatrix} (H_p - \Delta z_{snow}) + \Delta z_s$$
(2.8)

 p_{densm} is density maximum of canopy in relation to the canopy height, Δz_{snow} is the snow depth. *PAI* is the plant area index, H_p is the canopy height.

$$r_s = \frac{1}{\max(A_i g_1, 0.001)}$$

where g_l is the leaf conductance and A_l the leaf area index.

$$g_{l} = \frac{R_{is}}{R_{is} + g_{ris}} \frac{g_{max}}{1 + (e_{s} - e_{a})}$$

where g_{ris} , g_{max} and g_{vpd} are parameter values, g_{maxwin} corresponds to g_{vpd} in winter. R_{is} , is the global radiation and $(e_s - e_a)$ the vapour pressure deficit.

$$E_{ta} = E_{tp}^* \int_{z_r}^0 f\left(\psi(z)\right) \left(T(z)\right) r\left(z\right)$$

- (2.3) Leaf area index (m² m⁻²) as function of leaf mass
- (2.5) Potential transpiration E_{tp} (mm day⁻¹)

- (2.6) The aerodynamic resistance r_a as calculated without stability correction
- (2.7) The roughness length, z_0 , is calculated according to the function derived from Shaw and Pereira (1982)
 - Displacement height d, as calculated by the Shaw and Pereira function

(2.9) Stomatal resistance (s m^{-1})

- (2.10) Stomatal conductance per leaf area $(m s^{-1})$
- (2.11) Actual transpiration without flexibility of water transportation within the root system.

 z_r is root depth (Eq. 16), $f(\psi(z))$ and f(T(z)) are response functions for soil water potential, and soil temperature and r(z) is the relative root density distribution which is exponentially decreasing from soil surface to the root depth.

$$f\left(\psi(z)\right) = \left(\frac{\psi_c}{\psi(z)}\right)^{p_1 E_{tp} + p_2}$$

where p_1 , p_2 and ψ_c are parameters. If the soil water potential is reaching the wilting point, ψ_{wilt} , the uptake is assigned to be zero from that horizon.

$$f(T(z)) = 1 - e^{-t_{WA} \max(0, T(z) - T_{trig})^{t_{WB}}}$$

where t_{WA} and t_{WB} and the trigging temperature T_{trig} are parameters.

Surface Energy balance

$$R_{ns} = L_v E_s + H_s + q_\mu$$

$$H_s = \rho_a c_p \frac{(T_s - T_a)}{r_{as}}$$

where air density, ρ_a and the specific heat of air at constant pressure, c_p are considered as physical constants, r_{as} is the aerodynamic resistance calculated as a function of wind and temperature gradients

$$r_{as} = r_{aa} + r_{ab}$$

where r_{aa} is a function of wind speed and temperature gradients, which is corrected for atmospheric stability, and r_{ab} is an additional resistance representing the influence of the crop cover,

$$\frac{r_{aa} = \frac{1}{k^2 u} \left\{ \ln\left(\frac{z_{ref} - d}{z_{0M}}\right) - \psi_{\rm M}\left(\frac{z_{ref} - d}{L_o}\right) + \psi_{\rm M}\left(\frac{z_{0M}}{L_0}\right) \right\} \times \left\{ \ln\left(\frac{z_{ref} - d}{z_{0H}}\right) - \psi_{\rm H}\left(\frac{z_{ref} - d}{L_o}\right) + \psi_{\rm H}\left(\frac{z_{0H}}{L_0}\right) \right\}$$

where *u* is the wind speed at the reference height, z_{ref} , *d* is the zero level displacement height (c.f. potential transpiration of plant), *k* is the von Karmans constant and z_{0M} and z_{0H} are the surface roughness lengths for momentum and heat respectively. If z_{0M} is exchanged to $z_{0M,snow}$ the equation can be used for snow surfaces. L_0 is the Obukhov length and ψ_M and ψ_H are empirical stability functions for momentum and heat respectively.

(2.12) Transpiration response to water stress

- (2.13) Transpiration response to temperature as proposed by Axelsson and Ågren (1976)
- (3.1) The physically based approach, for calculating soil evaporation, originates from the idea of solving an energy balance equation for the soil surface. According to the law of conservation of energy the net radiation at the soil surface, R_{ns} , is assumed to be equal to the sum of latent heat flux, $L_{\nu}E_{s}$, sensible heat flux, H_{s} and heat flux to the soil, q_{h} . The three different heat fluxes are estimated by an iterative procedure where the soil surface temperature, T_{s} , is varied according to a given scheme until the equation is balanced
- (3.2) sensible heat flux, H_s
- (3.3) Aerodynamic resistance above the soil surface, r_{as} , is calculated as a sum of two components
- (3.4) Stability function for aerodynamic resistance at neutral conditions

Furthermore, an upper limit of the aerodynamic resistance in extreme stable conditions is set by the "windless exchange" coefficient, $r_{a,soil,max}$

$$r_{ab} = r_{aLai}A_{l}$$

where r_{alai} is an empirical parameter

$$L_{v}E_{s} = \frac{\rho_{a}c_{p}(e_{surf} - e_{a})}{\gamma \cdot r_{as}}$$

Where e_{surf} is the vapour pressure at the soil surface and e_a is the actual vapour pressure in the air.

$$e_{surf} = e_s(T_s)e^{\left(\frac{-\psi_J M_{water} g \cdot e_{corr}}{R(T_s + T_{abszero})}\right)}$$

where *R* is the gas constant, M_{water} is the molar mass of water, *g* is the gravity constant and e_s is the vapour pressure at saturation.

The empirical correction factor, e_{corr} , depends on an empirical parameter ψ_{eg} and a calculated mass balance at the soil surface, δ_{surf} , which is allowed to vary between the parameters s_{def} and s_{excess} given in mm of water.

$$q_{h} = k_{h} \frac{(T_{s} - T_{1})}{\frac{\Delta z_{1}}{2}} + Lq_{v,s}$$

where k_h is the thermal conductivity of the top soil layer, Lv, as well as the psychrometer constant, γ , are considered as physical constants; $q_{\nu,s}$, is the vapor flow from the soil surface to the central point of the uppermost compartment

$$q_{v,s} = -d_{vapd} f_a D_0(T) \frac{c_{vl} - c_{vs}}{\frac{\Delta z}{2}}$$
(3)

where d_{vapb} is the tortuosity given as an empirical parameter, D_0 is the diffusion coefficient for a given temperature, f_a is the fraction of air filled pores ($\theta_s - \theta_s$) and c_{vs} and c_{vl} are the concentrations of water vapour at the soil surface and at the middle of the uppermost compartment respectively.

Snow

$$k_{snow} = s_k \rho_{snow}^2$$

where s_k is an empirical parameter.

$$\rho_{snow} = \frac{\rho_{prec} \Delta z_{prec} + \rho_{old} \Delta z_{old}}{\Delta z_{snow}}$$

$$\rho_{prec} = \rho_{smin} + 181 \frac{(1-Q_p)}{f_{liqmax}}$$

where ρ_{smin} is the density of new snow, Q_p is the thermal quality of precipitation and f_{liqmax} is a parameter that defines the maximum liquid water content of falling snow that is automatically put to 0.5.

- (3.5) Additional aerodynamic resistance representing the influence of the crop cover
- (3.6) Sum of latent heat flux, $L_{\nu}E_{s}$
- (3.7) Vapour pressure at the soil surface

(3.8) Heat flux to the soil, q_h .

(3.9) Vapor flow from the soil surface to the central point of the uppermost compartment

- (4.1) Thermal conductivity of snow
- (4.2) Density of snow is a weighted average of the old snow pack (i.e. the density of snow remaining from the previous day ρ_{old}) and precipitation density, ρ_{prec}
- (4.3) Density of new-fallen snow as a function of air temperature, T_a

$$Q_{P} = \begin{cases} \min\left(1, \left(1 - f_{liqmax}\right) + f_{liqmax} \frac{T_{a} - T_{RainL}}{T_{SnowL} - T_{RainL}}\right) & T_{a} \leq T_{RainL} \\ 0 & T_{a} > T_{RainL} \end{cases}$$

where f_{liqmax} is a parameter that defines the maximum liquid water content of falling snow and is automatically put to 0.5. T_{RainL} and T_{SnowL} are the temperature range where precipitation is regarded as a mixture of ice and liquid water.

$$\rho_{old} = \rho_{smin} + s_{dl} \frac{S_{wl}}{S_{wlmax}} + s_{dw} S_{res}$$

where s_{dl} and s_{dw} are parameters, S_{wlmax} is the retention capacity and S_{res} is the water equivalent of the snow.

$$\Delta z_{old} = \frac{S_{res}}{\rho_{old}}$$

$$f_{bare} = \begin{cases} \frac{\Delta z_{snow}}{\Delta z_{cov}} & \Delta z_{snow} < \Delta z_{cov} \\ 0 & \Delta z_{snow} \ge \Delta z_{cov} \end{cases}$$

where Δz_{cov} is a threshold parameter.

$$M = M_T T_a + M_R R_{is} + \frac{f_{qh} q_h(0)}{L_f}$$

where T_a is air temperature, R_{is} is global radiation, f_{qh} is a scaling coefficient and L_f is the latent heat of freezing. Melting will affect the whole snow pack, whereas refreezing will only affect a limited surface layer.

$$M_{T} = \begin{cases} m_{T} & T_{a} \ge 0 \\ \\ \frac{m_{T}}{\Delta z_{snow}} m_{f} & T_{a} < 0 \end{cases}$$

where T_a is air temperature and mT And m_f are parameters.

$$M_{R} = m_{R\min} \left(1 + s_{1} \left(1 - e^{-s_{2}s_{age}}\right)\right)$$

where *m_{R\min}*, *s1* and *s2* are parameters.

Age of surface snow, s_{age} , is determined by the number of days since the last snowfall. To reduce the influence of mixed precipitation and minor showers, snowfall is counted in this context only for snow spells larger than a critical value, p_{samin} , and for precipitation with thermal quality, Q_p , above a threshold value

Soil carbon and nitrogen processes

$$D_{ecompL} = k_l \cdot f(T) \cdot f(\theta) \cdot C_{Litter}$$
(5.1) Decomposition of the SOC pools for plant litter (g C m⁻² day⁻¹)

- (4.4) Thermal quality of precipitation (its fractional frozen water content)
- (4.5) Density of the old snow pack increases with the relative amount of free water in the pack and with overburden pressure, i.e., with increasing water equivalent. Density also generally increases with age. The age dependency is accounted for by updating density as the maximum density of the previous time step
- (4.6) Depth of old snow pack
- (4.7) The fraction of snow free ground is used the estimate the average soil surface temperature, and the average surface albedo, during conditions of "patchy" snow cover.
- (4.8) The fundamental part of the empirically based snow model is the melting- freezing function, which combines the mass and heat budgets. The amount of snow melt, M, is made up by a temperature function, MT, a function accounting for influence of solar radiation, MR, and the soil surface heat flow, qh(0):
- (4.9) Refreezing efficiency is, inversely proportional to snow depth, \Box_{snow} :
- (4.10) Global radiation dependence of snow melt

С

Where k_l is a parameter and f(T) and $f(\theta)$ are response functions for soil temperature and moisture in the certain layer.

$$C_{DecompH} = k_h \cdot f(T) \cdot f(\theta) \cdot C_{Humus}$$

Where k_h is a parameter and f(T) and $f(\theta)$ are response functions for soil temperature and moisture in the certain layer.

$$f(\mathbf{T}) = 1 \qquad T > t_{\max}$$

$$f(\mathbf{T}) = \left(\frac{T - t_{\min}}{t_{\max} - t_{\min}}\right)^2 \qquad t_{\min} < T < t_{\max}$$

$$f(\mathbf{T}) = 0 \qquad T < t_{\min}$$

Where t_{min} and t_{max} are parameters and T the soil temperature in the certain layer.

where $p_{\theta Upp}$, $p_{\theta Low}$, $p_{\theta Satact}$, and $p_{\theta p}$ are parameters and the variables, θ_s , θ_{wilt} , and θ , are the soil moisture content at saturation, the soil moisture content at the wilting point, and the actual soil moisture content, respectively.

$$C_{LitterSurface \to LitterI} = l_{11} \cdot C_{LitterSurface}$$
(5.5)

where l_{ll} is a parameter and $C_{LitterSurface}$ the carbon in the surface litter pool.

$$C_{Litter \to CO_2} = (1 - f_{e,l}) \cdot C_{DecompL}$$

where $f_{e,l}$ is a parameter

$$C_{\textit{Litter} -> \textit{Humus}} = f_{e,l} \cdot f_{h,l} \cdot C_{\textit{DecompL}}$$

where $f_{e,l}$ and $f_{h,l}$ are parameters

$$C_{\textit{Litter} \rightarrow \textit{Litter}} = f_{e,l}(1 - f_{h,l}) \cdot C_{\textit{DecompL}}$$

where $f_{e,l}$ and $f_{h,l}$ are parameters

$$C_{\textit{Humus} \rightarrow \textit{CO}_2} = f_{e,h} \cdot C_{\textit{DecompL}}$$

where $f_{e,h}$ is a parameter

Soil heat processes

$$q_h = -k_h \frac{\partial T}{\partial z}$$

where k_h is the conductivity, T is the soil temperature and z is depth.

$$q_{h}(0) = k_{ho} \frac{(T_{s} - T_{1})}{\Delta z / 2} + C_{w} (T_{s}) q_{in} + L_{v} q_{vo}$$

- (5.2) Decomposition of the SOC pools for more stable material (g C $m^{-2} day^{-1}$)
- (5.3) Response function for soil temperature according Ratkowsky.

(-)

(5.4) Response function for soil moisture (–)

- (5.5) Litter from inactive surface litter pool, entering the fast SOC pool at a continuous rate.
- (5.6) Amount of decomposition products from the fast SOC pools being released as CO₂
- (5.7) Amount of decomposition products from the fast SOC pools entering the slow decomposition pools
- (5.8) Amount of decomposition products from the fast SOC pools being returned to the fast decomposition pools
- (5.9) Amount of decomposition products from the slow SOC pools being released as CO₂
- (6.1) Soil heat flux $(J m^{-2} day^{-1})$
- (6.2) Upper boundary condition for soil heat flow $(J m^{-2} day^{-1})$

where k_{ho} is the conductivity of the organic material at the surface, T_s is the surface temperature, T_I is the temperature in the uppermost soil layer, q_{in} , is the water infiltration rate, q_{vo} is the water vapour flow, and L_v is the latent heat.

$$k_{ho} = h_1 + h_2 \theta$$

where h_1 and h_2 are empirical constants

$$T_{ss} = \frac{T_1 + aT_a}{1 + a} \tag{6}$$

where the index 1 means the top soil layer, and the snow surface temperature is assumed to be equal to air temperature. a is a weighting factor depending on snow thickness and conductivity in the snow pack and in the uppermost soil layer.

$$T_{LowB} = T_{amean} - T_{aamp} e^{-\frac{z}{d_a}} \cos\left(\left(t - t_{ph}\right)\omega - \frac{z}{d_a}\right)$$

where T_{amean} and T_{aamp} are parameters, *t* is the time, t_{ph} is the phase shift, ω is the frequency of the cycle and d_a is the damping depth.

Soil water processes

$$q_{w} = -k_{w} \left(\frac{\partial \psi}{\partial z} - 1 \right) - D_{v} \frac{\partial c_{v}}{\partial z}$$

where k_w is the unsaturated hydraulic conductivity, ψ is the water tension, z is depth, c_v is the concentration of vapour in soil air and D_v is the diffusion coefficient for vapour in the soil

$$\frac{\partial \theta}{\partial t} = -\frac{\partial q_w}{\partial z} + s_w$$

where θ is the soil water content and s_w is a source/sink term for e.g. horizontal in and outflow or root water uptake.

$$S_e = \left(\frac{\psi}{\psi_a}\right)^{-\lambda}$$

where ψ_a is the air-entry tension, λ is the pore size distribution index and S_e the effective saturation.

$$S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}$$

where θ_s is the porosity, θ_r is porosity content and θ is the actual water content.

$$k_{w}^{*} = k_{mat} \left(\frac{\Psi_{a}}{\Psi}\right)^{2 + (2+n)\lambda}$$

Where the matrix conductivity k_{mat} is a function of the total conductivity, *n* is a parameter accounting for pore correlation and flow path tortuosity and λ is the pore size distribution index.

$$k_{mat} = 10^{(\log k_{sat} - \log h_{com})h_{sens} + \log k_{sat}}$$

where h_{com} and h_{sens} are parameters and k_{sat} is the total saturated conductivity.

- (6.3) Heat conductivity of the organic material at the surface
- (6.4) Soil surface temperature under the snow pack, during periods with snow cover (°C)
- (6.5) Temperature at the lower boundary for heat conduction (°C)
- (6.6) The total water flow, q_w , is the sum of the matrix flow, q_{mat} and the vapour flow, q_v , (mm day⁻¹)
- (6.7) The general equation for unsaturated water flow follows from the law of mass conservation and eq. (30)
- (6.8) Water tension ψ according to Brooks and Corey (1965), between the threshold values ψ_x and $\psi_{mat.}$
- (6.9) Effective saturation S_{e_i} between the threshold values ψ_x and ψ_{mat} .
- (6.10) Unsaturated hydraulic conductivity k_w^* (mm day⁻¹) according Brooks and Corey.
- (6.11) Matrix conductivity as function of total conductivity

$$q_{wp} = \int_{z_p}^{z_{sat}} k_s \frac{\left(z_{sat} - z_p\right)}{d_u d_p} dz$$

where d_u is the unit length of the horizontal element i.e. 1 m, z_p is the lower depth of the drainage pipe i.e. the drainage level, z_{sat} is the simulated depth of the ground water table and d_p is a characteristic distance between drainage pipes. Note that this is a simplification where the actual flow paths and the actual gradients are not represented. Only flows above the drain level z_p are considered

$$k_w^* = 10^{\left(\log(k_w^*(\theta_s - \theta_m)) + \frac{\theta + \theta_s + \theta_m}{\theta_m} \log\left(\frac{k_{sat}}{k_w(\theta_s - \theta_m)}\right)\right)}$$

where k_{sat} is the saturated total conductivity, which includes the macro pores, and $k_w^*(\theta_s - \theta_m)$ is the hydraulic conductivity below $\theta_s - \theta_m$ (i.e. at ψ_{mat}) calculated from Eq. (51)

$$k_{w} = (r_{AOT} + r_{A1T}T_{s})\max(k_{w}^{*}, k_{minuc})$$

where r_{AOT} , r_{AIT} and k_{minuc} are parameter values. k_w^* is the conductivity according to eqs (51) and (52)

1

2

(6.12) The horizontal flow rate, q_{wp} , is assumed to be proportional to the hydraulic gradient and to the thickness and saturated hydraulic conductivity of each soil layer

- (6.13) Total conductivity close to saturation (above the threshold ψ_x), to account for the conductivity in the macro pores.
- (6.14) Actual unsaturated hydralic conductivity after temperature corrections

Symbol	Parameter Name	Unit	Eq.	Module	Definition	Value	Literature or default value
η	Biomass to carbon	mol C	1.1	Plant biomass:C	Conversion factor from biomass	0.45	Default value
<i>p</i> _{mx}	PhoTempResMax	°C	1.2	Plant assimilation: temperature response	Maximum mean air temperature for photosynthesis	45	Based on results from a pre-study calibration with the site data.
l_{cl}	Leaf c1(1)	$g C^{-1}$	1.4, 1.5	Plant allocation of assimilates to the leaves	Fraction of new assimilates which is allocated to the leaves	0.545	Metzger et al., 2015
k _{mrespleaf,} vasc	MCoefLeaf(1)	day ⁻¹	1.6	Plant respiration	Rate coefficient for maintenance respiration of vascular plant leaves (respiration relative to leaf biomass)	0.002 5	Based on results from a pre-study calibration with the site data.
k _{mresproot,} vasc	MCoefRoot(1)	day ⁻¹	1.6	Plant respiration	Maintenance respiration coefficient for vascular plant root (respiration relative to root biomass)	0.002 5	Metzger et al., 2015
k _{mrespstem,} moss	MCoefStem(1)	day ⁻¹	1.6	Plant respiration	Maintenance respiration coefficient for vascular plant stem = photosynthetically inactive biomass like e.g. senescent leaves that are still attached to the plant (respiration relative to stem biomass)	0	No respiration, as this represents brown, senescent biomass
k _{mrespleaf,} moss	MCoefLeaf(2)	day ⁻¹	1.6	Plant respiration	Rate coefficient for maintenance respiration of moss leaves (respiration relative to leaf biomass)	0	No leaf respiration for mosses to allow a fixed moss capita
k _{mresproot,} moss	MCoefRoot(2)	day ⁻¹	1.6	Plant respiration	Maintenance respiration coefficient for moss "root" = leaves and stem below the capita (respiration relative to root biomass)	0.002 5	Based on results from a pre-study calibration with the site data.
t _{Q10bas}	TemQ10Bas	°C	1.7	Plant respiration: Temperature response	Base temperature for the temperature response of plant respriation, at which the response is 1	20	Default value
Snewstem	New Stem(1)	-		Plant litter fall	Scaling factor for litter fall from new stems	1	Full litterfall rate
l _{ScI}	StemRate1(1)	day ⁻¹	1.10	Plant litter fall	Rate coefficient for the litter fall from stems before the first threshold temperature sum t_{SI} is reached	0.05	Based on results from a pre-study calibration with the site data.
l _{Sc2}	StemRate2(1)	day ⁻¹	1.10	Plant litter fall	Rate coefficient for the litter fall from stems after the second threshold temperature sum t_{S2} is reached	0.5	Based on results from a pre-study calibration with the site data.
Snewleaf	New Leaf	-		Plant litter fall	Scaling factor for litter fall from new leaves	1	Full litterfall rate applies, no scaling
l_{Lc2}	LeafRate2(1)	day ⁻¹	1.10	Plant litter fall: leaf litter fall rate at the end of the	Rate coefficient for the leaf litter fall after the second threshold temperature sum t_{L2} is reached	0.5	Based on results from a pre-study calibration with the site data.
t _{LI}	LeafTsum1(1)	day°C	1.10	Plant litter fall	Threshold temperature sum after reaching dormancy state for the lower leaf litter rate. When it is reached, l_{LcI} starts to change towards the increased litter fall rate l_{Lc}	2	Based on results from a pre-study calibration with the site data.
t ₁₂	LeafTsum2(1)	day°C	1.10	Plant litter fall	Threshold temperature sum after reaching dormancy state for the higher leaf litter rate. When it is reached, the full high litter rate is applied.	14	Based on results from a pre-study calibration with the site data.
t _{S1}	StemTsum1(1)	day°C	1.10	Plant litter fall	Threshold temperature sum after reaching dormancy state for the lower stem litter rate. When it is reached, t_{ScI} starts to change	2	Based on results from a pre-study calibration with the site data.

1 Table S3. Fixed parameters used in the main equations.

Symbol	Parameter Name	Unit	Eq.	Module	Definition	Value	Literature or default value
					towards the increased litter fall rate		_
<i>t</i> _{L2}	StemTsum2(1)	day°C	1.10	Plant litter fall	¹ Se2 Threshold temperature sum after reaching dormancy state for the higher stem litter rate. When it is reached, the full high litter rate is combined	14	Based on results from a pre-study calibration with the site data.
T _{Dorm} Tih	Dormancy Tth	°C	1.10	Plant litter fall	appned. Threshold temperature for plant dormancy – if the temperature falls below this value for five consecutive days, the dormancy temperature sum starts to be calculated	0.7	Based on results from a pre-study calibration with the site data.
l _{LaiEnh}	LAI Enh Coef(1)	-	1.11	Plant litter fall	Scaling factor for enhanced leaf litter fall rates when higher LAI values are reached	0.56	Metzger et al., 2015
t_{RI}	RootTsum1(1)	day°C	1.10	Plant litter fall	Threshold temperature sum after	2	Based on results from a
			, 1.12		reaching dormancy state for the lower root litter rate. When it is reached, t_{RcI} starts to change towards the increased litter fall rate to a		pre-study calibration with the site data.
<i>t</i> _{<i>R</i>2}	RootTsum2(1)	day°C	1.10 , 1.12	Plant litter fall	Threshold temperature sum after reaching dormancy state for the higher root litter rate. When it is reached, the full high litter rate is applied	14	Based on results from a pre-study calibration with the site data.
S _{newroots}	New Roots	-		Plant litter fall	Scaling factor for litter fall from	1	Full litterfall rate
l _{Rc1, vasc}	RootRate1(1)	day ⁻¹	1.12	Plant litter fall	Rate coefficient for the litter fall from roots before the first threshold temperature sum t_{RI} is reached	0.001 25	Based on results from a pre-study calibration with the site data.
$l_{Rc2, vasc}$	RootRate2(1)	day ⁻¹	1.12	Plant litter fall	Rate coefficient for the litter fall from roots after the second threshold temperature sum t_{R2} is reached	0.005	Based on results from a pre-study calibration with the site data.
l _{Rc1, moss}	RootRate1(2)	day ⁻¹	1.12	Plant litter fall	Rate coefficient for the litter fall from moss "roots" (=belowground leaves & stems) before the first threshold temperature sum t_{RI} is reached	0.000 5	Based on results from a pre-study calibration with the site data.
l _{Rc2, moss}	RootRate2(2)	day ⁻¹	1.12	Plant litter fall	Rate coefficient for the litter fall from moss "roots" after the second threshold temperature sum t_{R2} is reached	0.000 5	Based on results from a pre-study calibration with the site data.
$l_{\it life, vasc}$	Max Leaf Lifetime	a	1.15	Plant litter fall	Maximum leaf lifetime vascular plant	1	Vascular plant leaves were assumed to be renewed after one year
$l_{\it life, vasc}$	Max Leaf Lifetime	a	1.15	Plant litter fall	Maximum leaf lifetime mosses	300	Moss capita was assumed to be constant
	I C Leaf(1)	$g m^{-2}$			Initial N content of vascular plant leaves; defines C and therefore biomass by defined C N ratio	32.5	and therefore never dies Based on results from a pre-study calibration with the site data
	I C Leaf(2)	$\mathrm{g}~\mathrm{m}^{-2}$			Initial N content of moss leaves; defines C and therefore biomass by	95	Based on results from a pre-study calibration with
	I C Roots(1)	$g m^{-2}$			Initial N content of vascular plant roots defines C and therefore highmass by defined C:N ratio	100	Based on results from a pre-study calibration with
	I C Roots(2)	g m ⁻²			Initial N content of belowground moss parts ("roots") defines C and therefore biomass by defined C:N ratio	95	Based on results from a pre-study calibration with the site data.
<i>P</i> incroot	Root IncDepth	-	1.13	Plants: shape of root distribution – important for water uptake and root litter input within the soil	Distribution parameter in the function for calculating the actual root depth	-1	Default value

Symbol	Parameter Name	Unit	Eq.	Module	Definition	Value	Literature or default value
				profile			
<i>m</i> _{shoot}	Shoot Coef	-	1.16	Plant storage pool for regrowth	Coefficient for the rate at which C is reallocated from the mobile	0.07	Based on results from a pre-study calibration with
k _m	RntLAI	-	2.1	in spring Plant radiation interception: partitioning between plants	pool to the leaf at leafing Extinction coefficient in the Beer's law used to calculate the partitioning of net radiation between canopy and soil surface	0.8	the site data. Based on results from a pre-study calibration with the site data.
$p_{cmax, vasc}$	Maximal Cover(1)	${\displaystyle m^{2} \atop {\displaystyle m^{-2}}}$	2.2	Radiation interception: Plant coverage	Maximum surface cover of vascular plants	0.6	Visually estimated plant coverage at the site
$p_{cmax, moss}$	Maximal Cover(2)	${m^2 \over m^{-2}}$	2.2	Radiation interception: Plant coverage	Maximum surface cover of mosses	1	Visually estimated plant coverage at the site
p_{ck}	Area kExp(1)	-	2.2	Radiation interception: Plant coverage	Speed at which the maximum surface cover of the plant canopy is reached	1	Based on results from a pre-study calibration with the site data.
<i>P</i> _{l,sp}	Specific LeafArea	g C m ⁻²	2.3	Plant LAI:phytomass ratio	Factor for calculating LAI from leaf biomass, which is actually the inverse of specific leaf area, i.e. leaf mass per unit leaf	47.5	Metzger et al., 2015
$T_{EmergeTh}$	TempSumCrit	°C		Plant phenology: start of growing	Critical air temperature that must be exceeded for temperature sum	5	Default value
T _{Emerge} Su m	TempSumStart	°C		Plant phenology: start of growing season	Air temperature sum which is the threshold for start of plant development	50	Default value
$p_{\mathit{densm}, \mathit{vasc}}$	Canopy DensMax(1)	-	2.8	Plant: density of vascular plant	The density maximum of canopy in relation to the canopy height	0.7	Default value
$p_{densm,}$	Canopy	-	2.8	Plant: density of	The density maximum of canopy	0.9	Estimation for the site
moss gris	CondRis	$J m^{-2} day^{-1}$	2.10	Plant assimilation: radiation saturation	Global radiation intensity that represents half-light saturation in the light response	5·10 ⁶	Default value
CH0, canopy	WindLessExchange Canopy	m s ⁻¹	2.6	Aerodynamic resistance of canopy: minimum exchange under stabile conditions	Roughness length used in the calculation of ra for each plant, corresponds to $z0$ in eq. 2.6.	0.001	Default value
Z _{ref}	ReferenceHeight	m	2.6	Aerodynamic resistance of canopy: minimum exchange under stabile conditions	Height above ground which represent the level for measured air temperature, air humidity and wind speed.	2	Default value
Z _{0max}	Roughness Max	m	2.7	Aerodynamic resistance: roughness length of plants	The maximum roughness length used when estimating roughness length of different canopies (see "Aarodynamic resistance")	3	Default value
Z0min	Roughness Min	m	2.7	Aerodynamic resistance: roughness length of plants	The minimum roughness length used when estimating roughness length of different canopies	0.01	Default value
g_{vpd}	CondVPD	Ра	2.10	Transpiration stress due to low air humidity	Vapour pressure deficit that corresponds to a 51 % reduction of stomata conductance	100	Default value
<i>p</i> ₂	NonDemandRelCo ef	kg m ⁻² day ⁻¹	27	Transpiration stress due to too low water content	Coefficient in moisture reduction function. The degree of reduction when the actual pressure head exceeds the critical threshold, ψ_c , is controlled by this coefficient together with $p1$ and the potential transpiration rate, <i>Etp</i> .	0.1	Default value
p_{ox}	AirRedCoef	-	28	Transpiration and assimilation stress due to high	A rate coefficient that governs how rapidly the plant resistance will increase because of the lack of	0	The plants are assumed to be well adapted to wet conditions and therefore

Symbol	Parameter Name	Unit	Eq.	Module	Definition	Value	Literature or default value
$ heta_{Amin}$	AirMinContent	vol %	29	water content Transpiration and assimilation stress due to high water content	oxygen when the water content of the soil exceeds the value give by the actual soil moisture content, θ The minimum amount of air that is necessary to prevent any reduced uptake of water from the soil	0	do not suffer from water stress due to too wet conditions The plants are assumed to be well adapted to wet conditions and therefore do not suffer from water stress due to too wet
t _{WB}	TempCoefB	-	2.13	Transpiration stress due to limited water availability under	Temperature coefficient in the temperature response function.	0.4	conditions Default value
t _{WC}	TempCoefC	-		low temperatures Transpiration stress due to limited water availability under low temperatures	Temperature coefficient governing the trigging temperature.	0	Default value
r _{a,soil,max} -1	WindLessExchange Soil	-	3.4	Aerodynamic resistance: upper limit under windless conditions	Minimum turbulent exchange coefficient (inverse of maximum allowed aerodynamic resistance) over bare soil. Avoids exaggerated surface cooling in windless conditions or extreme stable stratification.	0.001	Default value
Z0M	RoughLBareSoilM om	m	3.4	Aerodynamic resistance: roughness length of bare soil	Surface roughness length for momentum above bare soil.	0.001	Default value
S _{excess}	MaxSurfExcess	mm	3.7	Vapour pressure at the soil surface	The highest value allowed for the δ_{surf} variable, which is used in the calculations of soil surface resistance and vapour pressure at the soil surface.	1	Default value
S _{def}	MaxSurfDeficit	mm	3.7	Vapour pressure at the soil surface	The lowest value allowed for the δ_{surf} variable, which is used in the calculations of soil surface resistance and vapour pressure at the soil surface	-2	Default value
d_{vapb}	DVapTortuosity	-	3.9		Correction factor because of non-	0.66	Default value
k _{mat} -	Matrix Conductivity	mm day ⁻¹	6.10	Soil hydraulic conductivity: temperature dependence	Saturated matrix conductivity	100	Default value
$ heta_s$	Saturation	vol %	5.4, 6.9	Soil hydraulic properties: shape of water retention	Water content at saturation	98 (95)	Received by comparing resulting pF curves with curves measured in peatlands (Kellner and Lundin, 2001) under consideration of the range for the calibrated parameter AirEntry; the value in brackets is used for layers below -30cm
$ heta_{wilt}$	Wilting Point	vol %	5.4	Soil hydraulic properties: shape of water retention	Water content at wilting point	30 (30)	Received by comparing resulting pF curves with curves measured in peatlands (Kellner and Lundin 2001) under consideration of the range for the calibrated parameter AirEntry; the value in brackets is used for layers below -30cm
ψ_x	Upper Boundary	cm	6.8, 6.9, 6.13	Soil hydraulic properties: shape of water retention	Soil water tension at the upper boundary of Brooks and Corey's expression	8000	Default value

Symbol	Parameter Name	Unit	Eq.	Module	Definition	Value	Literature or default value
λ	Lambda	-	6.8, 6.10	Soil hydraulic properties: shape of water retention	Pore size distribution index	0.3 (0.2)	Received by comparing resulting pF curves with curves measured in peatlands (Kellner and Lundin 2001) under consideration of the range for the calibrated parameter AirEntry; the value in brackets is used for lavers below -30cm
Ζ	LowerDepth	m		Soil hydraulic properties: Border between horizons	Depth of the border between the upper and lower horizon in respect to hydrological properties	0.3	Boundary between acrotelm and catotelm, based on visual differences in the soil profile and water table depth measurements (Granberg et al., 1999).
h_1	OrganicC1	-	6.3	Soil temperature – thermal conductivity	Empirical constant in the heat conductivity of the organic material at the surface	0.06	Default value
T _{aamp}	TempAirAmpl	°C	6.5	Soil temperature – lower boundary	Assumed value of the amplitude of the sine curve, representing the lower boundary condition for heat conduction	10	Default value
⊿Zhumus	OrganicLayerThick	m		Soil thermal properties	Thickness of the humus layer as used as a thermal property	3	Site specific value for peat depth. Measurements at the site indicate a peat depth of 3-4m
θ_r	Residual Water	vol %	6.9	Soil hydraulic properties: shape of water retention	Residual soil water content	1 (1)	Received by comparing resulting pF curves with curves measured in peatlands (Kellner and Lundin 2001) under consideration of the range for the calibrated parameter AirEntry; The value in brackets is used for layers below -30cm
n	n Tortuosity	-	6.10	Unsaturated soil hydraulic conductivity of soil	Parameter for pore correlation and flow path tortuosity in the function for unsaturated hydraulic conductivity	1 (1)	Based on results from a pre-study calibration with the site data. The value in brackets is used for layers below -30cm
Z_p	DrainLevel	m	6.12	Soil water: drainage depth	Lower depth of the drainage	-0.12	Measured water level during wet periods at the site
	DrainLevelMin	m		Soil water: minimum drain level	Lowest possible water level	-0.6	Well below the lowest measured water table at that site (0.4).
$ heta_m$	Macro Pore	vol %	6.13	Soil hydraulic properties: shape of water retention	Macro pore volume	4 (4)	Received by comparing resulting pF curves with curves measured in peatlands (Kellner and Lundin 2001) under consideration of the range for the calibrated parameter AirEntry; the value in brackets is used for layers below -30cm
k _{sat}	Total Conductivity	mm day ⁻¹	6.11 , 6.13	Saturated soil hydraulic conductivity of soil	Total conductivity under saturated conditions	1610 (800)	From measured dry bulk density according Päivänen, 1973
r _{AIT}	TempFacLinIncreas e	$^{\circ}C^{-1}$	6.14	Soil hydraulic conductivity: temperature dependence	The slope coefficient in a linear temperature dependence function for the hydraulic conductivity	0.023	Default value
r _{AOT}	TempFacAtZero	-	6.14	Soil hydraulic conductivity: temperature dependence	Relative hydraulic conductivity at 0°C compared with a reference temperature of 20°C.	0.55	Default value
19							

Symbol	Parameter Name	Unit	Eq.	Module	Definition	Value	Literature or default value
k _{minuc}	MinimumCondVal ue	mm day ⁻¹	6.14	Soil hydraulic conductivity	The minimum hydraulic conductivity in the hydraulic conductivity function.	1.10-5	Default value
$\mathbf{f}_{e,l}$	Eff Litter1&2	day ⁻¹	5.6, 5.7, 5.8	SOC decomposition	Fraction of decomposition products from the fast SOC pools being released as CO ₂	0.5	Default value
$\mathbf{f}_{h,l}$	HumFracLitter1&2	day ⁻¹	5.6, 5.7, 5.8	SOC decomposition	Fraction of decomposition products from the fast SOC pools that will enter the slow decomposition pools	0.2	Default value
$p_{\theta p}$	ThetaPowerCoef	vol %	5.4	SOC decomposition – water response	Power coefficient in the response function of microbial activity in dependency of soil moisture	1	Default value
1 ₁₁	RateCoefSurf L1&2	day ⁻¹	5.5	SOC decomposition	Fraction of the above ground residues that enter the pool for fast decomposition of the uppermost soil layer	0.005	Default value
$\mathbf{f}_{e,h}$	Eff Humus	day ⁻¹	5.9	SOC decomposition	Fraction of decomposition products from the slow SOC pools being released as CO ₂	0.5	Default value
cn _m	CN Ratio Microbe	-		SOC decomposition	Litter quality at which decomposers shift from immobilisation of mineral N to net mineralisation	30	Based on results from a pre-study calibration with the site data.
	Latitude	-			Geographic position; used for the calculation of cloudiness	65.18	Location of the site

1 Table S4. Correlation coefficients between parameters and performance. The maximum value

2 is shown if a parameter correlated with several performance indices or several sub periods of

- 3 the same variable. The first two digits after decimal point are displayed. Values < 0.14 are not
- 4 shown.

Module	Symbol	NEE night dynamics	NEE night ME	LAI dynamics	LAI ME	NEE day dynamics	NEE day ME	NEE dynamics	NEE ME	Rad dynamics	Rad ME	Ts ₁ dynamics	$T_{S_1} ME$	Ts_2 dynamics	$\mathrm{Ts}_2\mathrm{ME}$	H dynamics	H ME	LE dynamics	LE ME	WT dynamics	WT ME	Snow dynamics	Snow ME
SOC decomposition	POUpp POLow POSatact Imax Imin Kh K ₁₁	23 33	31			30	30	70	32 33														
	m _{retain} Pzroot, moss Pzroot, vasc t _{Q10} k _{gresp, vasc} k _{gresp, moss}	52 31	30	60		55	28	30 30	23					28			21	32	30 31	31 45		21	
Plant	T MatureSum l _{RC1} , moss l _{LS} l _{LC1} f SnowReduceLA1 Po2, moss Po2, vasc	30		86	33	32	49	44	30							32	29	50	28	68	13		
	Pol, vasc Pmn, moss Pmn, vasc Pol, moss EL, moss EL, vasc a			51			70	33	32														
Rn interc eptin	a _{pve, vasc} a _{pve, vasc} a _{nerain}									77	76		52			63	62						
Soil tempe rature	T_{amean} h_2 s_k					20				31		31 64	30 54	78 62	59 57 18					25			
erodyna mic sistance	Z0M,snow Falai Fa max snow-1	32								31	67	75	77	83	51	54	58	72 30	28	33	25		
iration A	$C_{H0, canopy}$ ψ_{eg} p_1 ψ_c									32						56		86		20			
Transp	RWA gmaxwin gmax, moss gmax, vasc	32						28				13				17 45	61 29	72 67 49	75 59 27	51 65 44	32 32 27		
Soil hydrol goy	d_p ψ_a h_{com}	66	44		47	52	45	56		50		67		65		64	62	66	77	13 76	22 65	30	
Snow	T_{RainL} m_T $ ho_{smin}$ S_{dl} S_{dv}											47 30 21	17 32	23		23 86				25		19 78 47 62 61	66 58
	f_{qh} m_{Rmin} ΔZ_{cov}											21	21									01	50

- 1 Table S5. Prior and posterior parameter ranges of the basic selection. Deviations of parameter
- 2 ranges from the prior, after applying the basic criteria. Only parameters with a deviation are
- 3 shown. The deviation is given in percentage of the prior range.

	Max	ψ_a	k _{gresp,vasc}	<i>m</i> _{retain}	$\mathcal{E}_{L,vasc}$	g _{max,moss}	l_{Lc1}	l_{LS}
Min Range deviation	3%	3%	0%	0%	0%	0%	0%	0%
Max Range deviation	1%	1%	0%	0%	0%	0%	0%	0%
Mean Range deviation	13%	8%	13%	8%	10%	8%	9%	7%
St.D range deviation	11%	11%	5%	4%	2%	2%	5%	1%
5 Percentile range deviation	11%	11%	2%	10%	4%	1%	0%	2%
51 Percentile range deviation	17%	10%	17%	10%	12%	10%	9%	10%
95 Percentile range deviation	19%	19%	14%	1%	1%	4%	13%	2%

5

6

	k_{h}	$p_{\theta Satact}$	t _{max}	t_{min}	$b_{\theta T^{ow}}$	D 0Upp	k_{II}	p zroot, vasc	$T_{MatureSum}$	$k_{\it gresp, \it vasc}$	p _{mn, vasc}	$p_{ol, vasc}$	D 02, vasc	<i>m_{retain}</i>	${\cal E}_{L_{\rm vasc}}$	$\varepsilon_{L,moss}$	p _{mn, noss}	pol, moss	p 02, moss	$k_{gresp, moss}$	D zroot, moss	IRc1, moss JSnowReduce	LAI	t_{QI0}	l_{Lc1}	l _{LS}	$a_{pve, vasc}$
Ρ θUpp Ρ θLow Ρ θSatact t max									18									16	21	16		16		18	21		
t_{min} k_h k_{11}										20					10					19				17			19
Mretain Pzroot, moss Pzroot, vasc t _{Q10}			18							20				17	19 19		26					19		17			
k _{gresp, vasc} k _{gresp, moss} T _{Mature} Sum		16	18			16	19							20	25									19			
I _{LS} I _{LCI} f _{SnowReduceLAI}					21	10						19				16								15			
Po2, moss Po2, vasc Po1, vasc Pmn, moss			21													19							19	26			
$p_{mn, vasc}$ $p_{o1, moss}$ $\varepsilon_{L, moss}$ $\varepsilon_{L, vasc}$					16					25	24			19		24			19		19					16	
apve, vasc apve, vasc apgrain	14			19																							
h_2 S_k $Z_{OM,snow}$									20														23				
r _{alai} r _{a,max,snow-1} C _{H0, canopy} ψ _{eg}						16			16	19										16							
ρ ₁ ψ _c t _{WA} g _{maxwin}												19	17											16	20		
gmax, moss gmax, vasc dp		16							21 23		18										20					22	
φ _a h _{com} T _{RainL} m _T		1/																								14	
$ ho_{smin}$ S_{dl} S_{dw} f_{qh}	16				14		20				17						28	17									
m _{Rmin} Δz _{cov} Count	2	3	3	1	3	2	2	0	5	3	3	2	1	3	3	3	2	2	2	3	2	2	2	5	2	3	1

1 Table S6. Correlation coefficients of the detected equifinalities. The first two digits after

2 decimal point are displayed. Values < 0.14 are not shown.

1 Table S6 continued.

	a_{pgrain}	a _{pve, vasc}	h_2	Sk	Z0M, snow	r_{alai}	T _{amean} 1 a,max, snow	ı	CH0, canop)	g _{max, vasc}	$\boldsymbol{\phi}_{c}$	μ	g _{max, moss}	ψ_{eg}	gmaxwin	t_{WA}	ψ_a	d_p	h_{com}	m_T	\mathcal{T}_{RainL}	m_{Rmin}	f_{qh}	Δz_{cov}	ρ_{smin}	Sal	S_{dw}
р _{өUpp} Паган								16																	14		
DeSatact																	17	16							14		
max																											
nin							14																16				
n 11							14																10				20
retain																											
root, moss													20														
zroot, vasc												16															
gresp, vasc									19																		
eresp, moss									16																		
MatureSum			20						16				21					23									
c1, moss S										22										14							
c1															20												
nowReduceLAI				23																							
o2, moss															17												
o2, vasc												19			17												
mn, moss																							28				
mn, vasc																		18									17
o1, moss																							17				
L, moss																											
L, vasc pve, vasc																											
pve, vasc					32	30			18																		
pgrain																		16								24	
amean													19				20									21	
k											19		15				20										
0M, snow		32																									
alai		30															18										
a,max,snow-1		18															30										
H0, canopy		10															50										
2																											
D_c				19															47								
WA .																	14		17	1/						22	
maxwin max. moss			19														45			14			17			22	
max, vasc																	23										
p	16		20			40			20				45														
<i>a</i>			20			18			30	23			45		14	17											
com RainI																17				20							
n _T															14						20						
smin																											
dl							21								22												
													17														
dw																											
dw qh N _{Rmin}																											
d_{dw} q_h m_{Rmin} ΔZ_{cov}							•	1	5	2	1	2	5	0	5	1	7	4	1	3	1	0	4	٥	1	2	2
S_{dw} f_{qh} m_{Rmin} Δz_{cov}	1	2	,	2	1	2					- 1	~ ~		U	5	1		4	- T		-	U	- 4				

Figure S1. Model fit to observations. Left column: simulated and measured mean of all years.
Right column: cumulated values for each year.

3 Figure S1 continued: Model fit to observations. Left column: simulated and measured mean

4 of all years. Right column: cumulated values for each year

Figure S2. Accepted parameter ranges. The last bar in each bar chart shows the overlappingrange. If empty, ranges are not overlapping

Figure S3. Correlations between performance indices in the prior distribution during spring
time only. Upper panel: R2, lower panel: ME. Each of the dots represents a parameter set.
Grey lines indicate the axes through zero.

Figure S4. 12 year mean of transpiration from mosses and vascular plants. The hatched area
shows the range of the 51 runs with selected performance in NEE, the solid line its mean.

1 3 References

- 2 Axelsson, B. and Ågren, G.: Tree growth model (PT 1) - a development paper. Swedish 3 Coniferous Forest Project. Swedish University of Agricultural Sciences, Department of Ecology and Environmental Research, Uppsala. Sweden, Internal Report 41, 79pp, 1976. 4 5 Berglund, E. R. and Mace, A. C.: Seasonal Albedo Variation of Black Srpuce and Sphagnum-6 Sedge Bog Cover Types, Journal of applied meteorology, 806–812, 1972. 7 Brooks, R. H. and Corey, A. T.: Hydraulic Properties of Porous Media, Hydrology Paper No. 8 3, Colorado State University, Fort Collins, Colorado, US, 27pp, 1964. 9 Clymo, R. S. and Hayward, P. M.: The Ecology of Sphagnum, in: Bryophyte Ecology, Smith, A. J. E. (Ed.), Springer Netherlands, 229–289, 1982. 10 11 Grace, J.: The Growth-Physiology of Moorland Plants in relation to their Aerial Environment. 12 Ph.D. thesis, Univ. Sheffield, Sheffield, UK, 1973. Granberg, G., Grip, H., Löfvenius, M. O., Sundh, I., Svensson, B. H., and Nilsson, M.: A 13 14 simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires, Water Resour. Res., 31, 3371-3382, doi:10.1029/1999WR900216, 1999. 15 16 Jansson, P.-E., Karlberg, L.: Coupled heat and mass transfer model for soil-plant-atmosphere 17 systems, Royal Institute of Technology, Stockholm, 484 pp., accessed: 17 November 2015 18 https://drive.google.com/file/d/0B0-WJKp0fmYCZ0JVeVgzRWFIbUk/view?pli=1, 2010. 19 Kellner, E.: Surface energy fluxes and control of evapotranspiration from a Swedish 20 Sphagnum mire, Agricultural and Forest Meteorology, 110, 101-123, doi:10.1016/S0168-21 1923(01)00283-0, 2001. Kellner, E. and Lundin, L.-C.: Calibration of time domain reflectometry for water content in 22 23 peat soil, Nordic Hydrology, 32, 315–332, 2001. Kondratiev, K. Y., Mironova, Z. F., and Otto, A. N.: Spectral albedo of natural surfaces, pure 24 25 and applied geophysics, 59, 207–216, 1964. 26 Körner, C.: Alpine plant life: Functional plant ecology of high mountain ecosystems, 27 Springer, Berlin, New York, 338pp, 1999. 28 Kummerow, J. and Ellis, B. A.: Temperature effect on biomass production and root/shoot 29 biomass ratios in two arctic sedges under controlled environmental conditions, Bot., 62, 30 2150-2153, doi:10.1139/b84-294, 1984. 31 Metzger, C., Jansson, P.-E., Lohila, A., Aurela, M., Eickenscheidt, T., Belelli-Marchesini, L., 32 Dinsmore, K. J., Drewer, J., van Huissteden, J., and Drösler, M.: CO₂ fluxes and 33 ecosystem dynamics at five European treeless peatlands – merging data and process 34 oriented modeling, Biogeosciences, 12, 125-146, doi:10.5194/bg-12-125-2015, 2015. 35 Päivänen, J.: Hydraulic conductivity and water retention in peat soils, Acta Forestalia 36 Fennica, 129, 1973. 37 Petzold, D. E. and Rencz, A. N.: The albedo of selected subarctic surfaces, Arctic and Alpine 38 Research, 393–398, 1975. Ratkowsky, D. A., Olley, J., McMeekin, T. A., and Ball, A.: Relationship between 39 40 temperature and growth rate of bacterial cultures, Journal of Bacteriology, 149, 1–5, 1982. 41 Rice, S. K., Aclander, L., and Hanson, D. T.: Do bryophyte shoot systems function like
- 42 vascular plant leaves or canopies?: Functional trait relationships in Sphagnum mosses
 43 (Sphagnaceae): Functional trait relationships in Sphagnum mosses (Sphagnaceae),
- 44 American journal of botany, 95, 1326–1330, doi:10.3332/ajb.0800019, 2008.
- Shaw R.H. and Pereira, A.R.: Aerodynamic roughness of a plant canopy: a numerical
 experiment. Agricultural Forest Meteorology, 26: 51-65, 1982.
- 47 van de Weg, M. J., Fetcher, N., and Shaver, G.: Response of dark respiration to temperature
- 48 in Eriophorum vaginatum from a 30-year-old transplant experiment in Alaska, Plant
- 49 Ecology & Diversity, 6, 337–301, doi:10.1080/17560874.2012.729628, 2013.

- Vermeij, I.: Relating phenology to the gross primary production in a boreal peatland, using
 the greenness index, MSc thesis Biology, Wageningen University, Wageningen, 2013.
- 3 Wohlfahrt, G., Bahn, M., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., Tappeiner, U.,
- 4 and Cernusca, A.: Inter-specific variation of the biochemical limitation to photosynthesis
- 5 and related leaf traits of 30 species from mountain grassland ecosystems under different
- 6 land use, Plant, Cell and Environment, 22, 1281–1296, 1999.
- 7 Zhao, W., Hidenori, T., and Zhao, H.: Estimation of vegetative surface albedo in the Kushiro
- 8 Mire with Landsat TM data, Chin. Geograph.Sc., 7, 278-288, doi:10.1007/s11769-997-
- 9 0056-4, 1997.