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Response to comments 
We kindly thank the editor and the two reviewers for their helpful and constructive comments. The 
response is given in red, italics below each comment, the changes in the manuscript are indicated with 
bold letters. 5 

 
Comments from Executive editor of GMD, Astrid Kerkweg 

"The main paper must give the model name and version number (or other unique identifier) in the title." 
“If the model development relates to a single model then the model name and the version number must 
be included in the title of the paper. If the main intention of an article is to make a general (i.e. model 10 

independent) statement about the usefulness of a new development, but the usefulness is shown with the 
help of one specific model, the model name and version number must be stated in the title. The title 
could have a form such as, “Title outlining amazing generic advance: a case study with Model XXX 
(version Y)”.” 
OK, done in the revised version 15 
 
 
Comments from Anonymous Referee #1 

Dear Authors, this is an interesting study, but there are still a lot of issues in the presentation of the 
study as well as with analysis and discussion. The application of one model on an single test site is quite 20 

specific, which makes it more important to distribute between site and model specific result and general 
findings. Especially the later ones I would like to see worked out and highlighted more. Please find my 
more detailed comments in the supplement. 
Please also note the supplement to this comment: 
http://www.geosci-model-dev-discuss.net/gmd-2016-116/gmd-2016-116-RC1- 25 

supplement.pdf 
 
General comments:  

The manuscript “The importance of process interactions and parameter sensitivity for  modelling the 
carbon dynamics in a natural peatland” describes a calibration and  sensitivity analysis of the 30 

CoupModel, using several variables measured on an eddy  covariance test site in Sweden. Several 
variables, which describe carbon, energy  and water fluxes, are used for calibration and a sensitivity 
analysis. 
Overall the manuscript is not well written and difficult to follow. In wide parts corrections by a native 
speaker is required.  35 

English copy editing will be provided by the journal in a later state of the manuscript processing 

 

However, the study is interesting and contains relevant aspects. Unfortunately, the actual presentation of 
the study is not convincing. Several parts are too fuzzy and too general, while other parts are too 
detailed. The objective is not clear and the conclusion does not provide any new information despite 40 

general knowledge about  this field. I am really puzzled to rate this manuscript, as there are many 
concerns in almost all parts of the manuscript.  
However, as I see also the potential of the study, I rate it acceptable with  major  revisions, but I have to 
be clear, that only answering the comments below won’t be enough to get the publication  to an 
acceptable form. As there were too many issues,  it was not possible to comment all in detail, but I tried 45 

to explain my concerns on some parts in more detail. 
 
Overall comments: 

The objective is not really clear. Reading the paper it seems like that all variables are needed to improve 
the quality of calibration, several parameters are interacting and  more measurements are needed. I do 50 

not need a study to come to this conclusion. 
The main message of the study is that parameters are interlinked, not only within, but also between 

different modules. It implies that parameter ranges might not be transferrable between studies that use 
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different models or even same models with a different set of calibrated parameters or included 

processes. This hasn't been shown before, as previous C-cycle studies on peatlands usually calibrate 

only parameters of the Carbon module, or from few additional modules. Further, while multi-criteria 

constrain is widely used in e.g. hydrological modelling, this technique is still hardly found in C-cycle 

modelling studies, especially on peatlands. Instead, it is common practice that parameter values are 5 

transferred between studies and between models without questioning the covariance between 

parameters and dependence on the variable and criteria  used to reject not acceptable performance of 

the model. 

In the revised version, we reformulated the objectives to emphasize the understanding of the 

dependencies between parameter distributions and between parameters and model performance. In 10 

the results we added a sentence, telling that using several measurement variables helps to identify if a 

parameter range is not robust. Also in the discussion and conclusions we reformulated some parts to 

emphasize the importance of using many variables and criteria to constrain the model. 

 
I miss out more numbers, that rate the quality, and real values, like how much quality do I miss out, if I 15 

calibrate only on one variable rather than on all variables (for R2, ME and NSE).  
Calibrating using  only one observation variable and criteria will normally create the highest 

performance for that particular variable and the particular index. However, the result can easily be 

unique for only that particular variable and time period used and lead to worse performance in other 

variables or if other indices are used. The advantage of using several variables and indices is to be able 20 

to identify which of the resulting parameter ranges vary depending on the chosen criteria and which are 

robust in this respect (still, this doesn't include the robustness in respect to transferability between 

models and sites) but is difficult to quantify. Figure 4 and 5 show how much the performance in a 

certain variable is reduced, if criteria for another variable or performance index is set. It would be 

possible to create such figures for all combinations of multiple criteria, but this would be several pages 25 

of figures.  

If only some few parameters are calibrated, the same or similar goodness of fit might be achieved, 

depending on which parameters are chosen, but parameters will be constraint to a range, which may be 

misleading because of the tendency of equifinality. To identify the correlation structure between 

parameters we have to define a list of parameters that have the change to be both correlated to other 30 

parameters and sensitive to the criteria and data available.. Fig. 3 tells how many parameters can be 

constrained depending on which variables are used to constrain the model in the  calibration 

procedure.  

Out of 27 sensitive parameters, 15 could not be constrained to an unambiguous range. This means, that 

in more than 50% of the cases, a parameter range constrained by only one variable or index is not 35 

robust because it depends on the chosen criteria. The more variables and performance indices are used 

and the more parameters are calibrated, the more a statement is possible if the resulted parameter 

range is robust or not and to which factors it is connected to. This number was added to the results 

and the meaning added to the discussion. 

 40 

There is no discussion about transferability of the results and the robustness of the results. Which results 
can be used in general and which are related to the CoupModel. I do not see the list of other studies as a 
discussion of transferability. If the authors want to include these studies, there need to be an analysis of 
the differences for the different approaches used for the different processes.  
Interactions, also between different modules, certainly exist on other sites/ecosystems and with other 45 

models as well. The same applies to the problem of different resulting ranges depending on 

performance index, measurement variable and it's sub period used for calibration. 

But the specific results, i.e. which parameter interact in which way, the constrained parameter ranges, 

the rank of parameter uncertainty and therefore importance of additional needed measurement 

variables, and the parameters identified as most sensitive are probably to a large extend model, 50 

ecosystem and maybe site specific. As we tested only one model on one site, the only way to make a 

statement about transferability is to compare with other studies. We mention the model name and the 

ecosystem of these studies, but analyzing all differences between the studies would include differences 

between models (used equations, processes that are implemented or not, ...), between applied methods 
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(calibration procedure, selection of other parameters that are calibrated simultaneously, performance 

indices, calibration variable, tested value range of the parameter, ...) and between sites (ecosystem, 

climate zone, soil conditions, vegetation, ... ) - all of them might play an important role why this 

parameter was found to be most sensitive. A full list of the differences would just be too long, especially 

as this is not the main message of the study. All studies differ from ours in at least one point (e.g. 5 

ecosystem type, which is already mentioned in the manuscript), indicating that some results might be 

transferrable to some extent  

We added at several positions in the discussion the information about whether a certain result relates 

to CoupModel and site conditions or can be used more general.   

 10 

 
I am also not sure if the picked indicators describing the goodness of fit are well  picked. The mean 
error will compensate strong negative and positive disagreements  in the overall value, which do not 
reflect the quality of the model performance. I  would like to see the root mean square error used 
instead. Also R2 is not a good  value for model performance as it  might be sensitive to extreme values, 15 

if not all  parts of the data range are represented equally.   
It is true  that strong negative and positive disagreements are compensated in mean error, but they are 

reflected in  the R2. The root mean square error has the disadvantage that is doesn't tell if there is an 

over- or underestimation. There are many other performance indicators, some of them calculated on 

base of R2 or ME or the combination of both. We chose R2 and ME because they are simple and we 20 

think they are sufficient to show the main message. We agree that a single performance indicator should 

be easier. The reason for selection both R2 and ME was that we would like to distinguish errors related 

to the mean bias and the ability to reflect the variability in itself.  The ability to reflect the full range 

between high and low values and being sensitive to the magnitude of the range was part of conceptual 

thinking behind the criteria chosen. 25 

 
The state of the art method for calibration is Bayesian calibration, which is not  mentioned in this study. 
At least in the introduction and maybe in the discussion this needs to be mentioned and explained why 
the here used method is as good, better or worse than the Bayesian calibration and what are the 
advantages and  disadvantages. Using several variables for calibration of models or a sensitivity 30 

analysis the pareto optimization would be an appropriate multi-criteria approach to address the  
subjective judgement of the model performance. However, at least this technique  and/or other 
approaches for multi-criteria optimizations should be mentioned and  discussed.  
The Bayesian approach have a lot of advantages providing that we have a well defined error model and 

that the multiple variables can be combined into one single log-likelihood value. The high number of 35 

different variables and especially the risk for converting into posterior distribution without covering the 

full range of combinations for all  parameters was the main reason for not selection the Bayesian 

approach. The Bayesian approach does not show any substantial advantages when we have many 

different measurement variables and we would like to have an unbiased investigation of all parameter 

combination rather than searching for a singly highest probability of the entire model. 40 

We mention the Bayesian approach in the revised version in the introduction and the discussion. 

 

Specific comments:  

Comments on the title:  
First, the model used in this study is not mentioned in the  title.  45 

OK, done in the revised version 

 
Second, the title contains only the carbon dynamics, while most of the variables  that are considered in 
the analysis are energy and water fluxes. The title needs to be  reformulated and more precise.  
We reformulated the title to include also heat and water fluxes. 50 
 

Comments on the objective:  

- For point 1. the authors do not identify processes, but parameters and variables, which are most 
sensitive in the model to simulate  the target  variables.  
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Processes are described by equations, containing parameters. Parameters determine if an equation 

results in a high or low value. If the result of an equation doesn't matter for the fit of the model output to 

a variable, it means that the underlying process doesn't play an important role for the variable in the 

tested scenario. Therefore, identifying the most sensitive parameters means identifying the sensitive 

processes. An exception would be if several parameters of the same equation would be calibrated, but 5 

this was avoided in this study.  

We reformulated this objective to make it more clear and added the explanation to the discussion. 

 
-Point 2. is  not well formulated and it is difficult to understand the objective.  
Reformulated in the revised version. 10 
 
- I am not sure about point 4. Why do you test the usability of measurements?  The measured data are 
usable.  
Translation error. Should be usefulness or potential. Replaced in the revised version.  

 15 

Additional, it is not true that you can detect  the missing measurement variables. You can detect model 
sensitivity and  required data for the used version of CoupModel. Other models might need  other 
parameter sets and might show different sensitivities.  Also, the authors  work out improved model 
performance by adding more variables in the calibration process, it still rise the question, if additional 
measurements are  need, the model approach that simulates the process needs to be improved or  the 20 

calibration approach needs to be improved. 
We identify parameter that are highly sensitive and at the same time not constrainable with the 

available data. As we calibrate only one parameter per equation, it means that the process described by 

this equation plays an important role. If it is possible to measure a variable that describe this process, 

we found a "missing variable". E.g. the high concern of a parameter describing the soil water retention 25 

curve. This is used for calculation of the soil water content. So either having measured soil water 

retention, or soil water content, would improve the modeling. However the improvement is not in a 

better model performance, but in the possibility to constrain this and connected parameters to a more 

narrow range (and therefore improve predictions which might be performed with this model). Of course 

we tested it only for CoupModel, but it is probably also an important variable for other models that 30 

have some dependence of decomposition or plant growth from soil water content. Only for models that 

do not have this dependency it indicates that including such a dependency/adding corresponding 

processes might improve the model performance. 

A much larger limitation might be  the dependence on site conditions. E.g. we know from measurements 

and correlation analyses that water level does not play an important role at every peatland, which 35 

might indicate that also water content might not play an equally important role on all peatland sites - 

e.g. because the water content is not much fluctuating. However, for natural peatlands with 

hydrological regime related to climate there are strong reasons to believe that our results are general.  

We added "by identifying sensitive or interacting parameters that cannot be constrained by the 

available data" to this objective and incorporated the response to this comment in the discussion. 40 

 

- In the objectives it is not mentioned what the authors are actually doing. The  model is not mentioned 
and the four points are not linked to any land use,  model or analysis approach. 
We reformulated the objectives to be  more precise and added a sentence about what we are doing.  

 45 

- The sentences after point 4 do not contain any useful information about the  actual study, but only 
general information what you can do with an outcome  from a sensitivity analysis.  
It is right, that this information applies to sensitivity analyses in general, but this information might be 

still be valuable for readers, that are not very familiar with sensitivity analyses. 

We restricted the sentence after point 4 to Carbon models and peatlands. 50 

 

Comments on the  method section :  

Section 2.2: The gap - filling of the climate data is explained, but not the gap filling of  the EC data .  
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The EC data was not gap-filled, as mentioned in the last sentence of Section 2.2. Only measured data 

were used for calibrating the model.  

 
The model description is far too long, but leaves crucial aspects out at  the same time. There is also lack 
the scientific terminology.   5 

See response to specific comments below 

 
Page 4 line 20: EC is not defined. Please add this on line 15 the same page.     
OK 

 10 

Page 4 lne 28-29: C uptake by the ecosystem from the atmosphere  
OK 

 
 
Section 2.3.3 There is no need to give a general introduction into soil hydrology.  15 

This section describes how soil hydrology is realized in the CoupModel in the used setup. CoupModel 

provides many possibilities for the user to select between different sub models, different equations and 

different complexities of the used equations. E.g. ground water flow as well as evaporation can be 

included or discarded and there is no need for using the Richards equation or simulating soil water 

vapor in CoupModel. The number of hydrological soil horizons is flexible; instead of Brooks & Corey, 20 

the van Genuchten equation can be used for description of the water retention curve, etc. This is all 

configured by switches through the user - the text describes how these switches were set, which is 

relevant information that cannot be found in the manual.  

We added a sentence in Section 2.3. to make it clearer, that the following sections describe the 

applied, study specific configuration. 25 
 
Section 2.3.4 There is no need for a general introduction into phenological models, but provide the key 
information: used phenological model, the model is based on temperature sum and day length, 
parameters and settings. Also the description of allocation of carbon in the plant is too long and not well 
formulated. Especially, the labelling of parameters in the model do not contribute to a better 30 

understanding of the study.  
Also for vegetation, CoupModel provides a wide range of opportunities. Mosses as additional plant 

layer had never been simulated before with the CoupModel, which makes it necessary to describe how 

the existing C pool scheme in the model was applied to mosses, that do not have roots and a seasonality 

comparable to vascular plants. Also for vascular plants, the carbon pools were used in an 35 

unconventional way that allows considering stems as photosynthetically active and that allows 

senescence to be dependent on both, temperature sum and growth stage. These are also the reasons for 

the labeling, explaining how the model was configured and how to understand parameters and 

equations, that still use a labeling that was originally intended for vascular plants, in particular trees. 

This information is relevant for reproducing the study and of interest for other CoupModel users that 40 

would like to apply the model on a moss/sedge dominated site. But we agree, that this section is very 

long and therefore moved large parts to the supplementary material.  
 
Section 2.3.5 The section is too long, in some parts the scientific terminology is not used, the 
description of the processes is too casual and essential information is missing (e.g. turnover rates of the 45 

pools, decomposition follows first order kinetics). 
Turnover rates of pools were calibrated parameters. For a better readability we did not mention any 

values of fixed parameter as well as value ranges of calibrated ones in the text. Instead they can be 

found in tables S2 and S3 in the supplement as mentioned in section 2.3, last sentence. A quite large 

part of this section is occupied by the description of how peat growth was simulated. This functionality 50 

was newly developed for the site in this study and therefore not described anywhere else.  

We added the information about first order kinetics. 
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Based on the description I am not sure, if the model considers really different temperature sensitivities 
for fungi and bacteria (which would surprise me) and where the data about community size are coming 
from. I assume the authors mean that the SOC module contains a parameter that controls the impact of 
temperature on the decomposition rates and this factor was calibrated and tested for fungi and bacteria 
dominated soils. For the here presented study this doesn’t matter.  5 

There is no difference between bacteria and fungi in the used setup of the model. The bacteria and fungi 

in the text refers to the applicability of the Ratkowsky function that was used to describe the 

temperature dependence. This function was originally developed for bacteria, we mentioned the 

previous application to fungi by others, to justify why we applied it on a peatland, where fungal 

decomposition plays an important role. Other peatland models and previous CoupModel applications 10 

often use a more simple Q10 approach to describe temperature dependence. 

In the revised manuscript we reformulated this sentence and moved the description of the 

temperature dependence more to the top of the section.  

 
Section 2.4.3 A couple of problems with the NEE values could be sorted by using the correction 15 

approach by Papale et al., 2006 (Biogeosciences, 3, 571–583). This would enable to solve the problems 
with extreme day values and the peaks for the night periods.  
We did not apply a filter for friction velocity or any spike removal as suggested in Papale et al 2006 for 

following reasons: We did not see any effect of friction velocity on the fluxes which is likely due the EC 

measurements being conducted at 2m above an open mire surface. Furthermore, friction velocity 20 

filtering is only valid if the turbulent transport and biological sources of measured fluxes are coupled. 

During nighttime, however, biological activity might continue while the turbulent transport is absent 

leading to accumulation of e.g. CO2. The accumulated concentrations might be released and detected 

as ‘spikes’ in the morning when turbulent movement sets in. Removing these spikes would therefore 

introduce an error in the C budget (i.e. in the emission component). In addition, inherent noise in EC 25 

data leads to occasional spikes which are presumably randomly and evenly distributed around the 

mean. Selectively removing spikes might introduce artificial and subjective bias into the flux balance. 

We have clarified and rephrased the relevant text in section 2.4.2.    
 
 30 

I also wondering, if the gap filling tool, develop by Reichstein and Falge, is used to fill gaps for NEE?  
Although gapfilled data was available based on the Reichstein et al 2005 approach, this study only used 

the measured NEE, H and LE fluxes and omitted all gapfilled periods, as stated in section 2.2. The 

model should be calibrated with measured data, not with another model.  

 35 

 

Comments on the result section  
Page12 lines 11-14 I understand that the soil water content is an important variable, which is difficult to 
measure and to simulate. This is not new and as this is known, this should be a central part of a 
sensitivity analysis. I think it is not enough to ask for more measurements, which is always a good 40 

answer to all problems with simulations. First, I miss a discussion of the measurements of the soil water 
content, which is often done on a single spot rather than spatial distributed or in different depths. 
Second, there is no discussion of the footprint area of the EC measurements. If the footprint changes 
and the soil type or hydraulic properties differ on the test site, this might explain differences.  
 45 

The referee is correct in that continuous measurements of the water table depth is conducted at just one 

spot and spatially distributed measurements would give a measure of the variation. However, the mire 

surface within the entire footprint is totally (100%) covered by Sphagnum mosses. The most important 

functional trait separating Sphagnum mosses into different functional groups is the architecture of the 

plant determining both the capillary forces as well as the water holding capacity and thus at what 50 

distance to the water table the different Sphagnum species grow. The plant community distribution 

within the foot print areas (see below) is very homogenous and totally dominated by Sphagnum species 

(see below) reflecting a growing season average water table of ~5-15 cm below the moss surface. Thus, 

even if we have conducted continuous measurements of both water table at one spot and soil water 
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content at a few spots the dominating Sphagnum species composition within the footprint clearly 

reflects a spatially average water table equal to the measurement spot.    

The position of the EC tower is in the center of a mire unit totally dominated by lawns, i.e. the growing 

season average water table varies between  ~8-15 cm below the mire surface (see e.g. Sagerfors et al 

2008). The lawn plant communities have a close to 100% cover of Sphagnum mosses (Sphagnum 5 

balticum, Sphagnum majus and Sphagnum lindbergii) and a limited contribution of vascular plants, 

totally dominated by the sedges Eriophorum vaginatum and Trichophorum cespitosum and the dwarf 

shrubs Vaccinium oxycoccus and Andromeda polifolia.  

Both the day time and night time foot prints are well within this very homogenous lawn dominated unit 

of the mire (see Sagerfors et al 2008). The footprint areas are most narrow with daily average 90%-tile 10 

boundaries <<50m radius to the tower with most limited seasonal variation (seasonal footprint 

modelled by Kljun, unpublished). 

The need for measuring water content on several spots and in several depths is already mentioned in 

the manuscript: "Thereby, the horizontal and vertical variability in peat hydraulic properties needs to 

be accounted for (Baird et al., 2012, Waddington et al., 2015)." 15 

 

We added the footprint area problematic to the discussion: "measured NEE is not the CO2 exchange 

between biosphere and atmosphere at a certain point, but is a calculation based on turbulent vertical 

fluxes measured several meters above the ground and resulting from a diurnal and seasonally 

changing area that includes different soil conditions and vegetation." 20 
 
 
Third, as the authors make a sensitivity analysis, it is possible to detect the most sensitive soil property 
and give at least the advice, which soil property should be measured to get better results with the 
CoupModel.  25 

We advise to measure the water retention curve. This is mentioned in the text. As we calibrated only one 

parameter of this curve to avoid equifinalities within the same equation, the sensitivity to this parameter 

represents the sensitivity to the result of the equation. This was added in the revised version to the 

discussion section 4.5. 

 30 

3.1 Parameter sensitivity:  
I do not understand why the authors highlight the module dependency so strong. This analysis makes 
the study extremely model dependent. I think the authors should relate the sensitivity to processes. I 
assume that the modules represent separate processes, but this is not necessarily the case.  
Processes is an ambiguous term, as it can refer to a single equation, or a set of several equations. We 35 

used module when we were talking about a process described by a set of several equations. But this 

seems to be ambiguous as well. Therefore, we replaced it in the revised version by "category of 

processes" which we define in the beginning of the manuscript.  

 
 40 

Page13 lines 27-29 R2 and ME are contradicting in their goodness of fit: Is this an indication that these 
are not the best indicators to detect the quality of performance?  
They measure the performance in different ways: R2 measures the performance in the dynamics, 

whereas ME shows how well the magnitude was simulated. When they constrain a parameter to 

different value ranges, it means that there is no value that can produce a perfect fit in both, dynamics 45 

and magnitude. That's what we wanted to show: parameter ranges that are constrained by calibration 

might depend on the performance index that was chosen for calibration. R2 and ME are simple, but 

sufficient to show this. Of course we could compare the resulting parameter ranges with further other 

indices - and would get other resulting ranges. Taking only one index for calibration will give one 

resulting range, but does not tell the user, if there were shortcomings in either magnitude or dynamics, 50 

or something else. Reasons for the mismatching ranges is not a bad performance index but the 

limitation of the model to produce a perfect fit of the model output to the measured values 

simultaneously in both magnitude and dynamics in the certain variable. Models are always a 

simplification, not perfect and include parameters for which a perfect value is not existing. 
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The response to this comment is added in the revised version of the manuscript.  

 
Section 3.4 Usefullness might be not a good word to describe the measured variables.  
Translation error. Replaced by potential.  

 5 

Comments on the discussion:  
Wide parts of the discussion are not really a discussion, but do only compare qualitative findings of the 
study with other studies.  
 
4.1 Parameter sensitivity  10 

It is correct that the detection of sensitivity of parameters enable to concentrate the calibration on the 
main drivers, but how robust are the findings on this test site and how transferable are the results to 
other ecosystems or to other climate zones? Peatland in Northern Europe is a quite specific test site, so, 
is it possible to transfer the results to mineral soils? How transferable are the results to Central Europe 
or to the Mediterranean area? It is no problem, if the results are not transferable, but at least there need 15 

to be a discussion.  
We tested only one model on one site, therefore we cannot name which of the most sensitive parameters, 

parameter ranges, interactions, etc. might be transferrable and also not to what extent/to which other 

ecosystems or models. The only indication we have, is when comparing with other studies: as mentioned 

in the manuscript, some parameters that we identified as most sensitive that were also among the most 20 

sensitive in studies on other ecosystem, using other models.  

 
 
Page 19 lines 3-5: “While the existence of interactions between the processes and their parameters is 
supposed to be less dependent on site conditions and model structure, the exact shape of the connections 25 

as well as constraint parameter ranges might strongly depend on these factors. “ This might be correct 
as the sensitivity analysis only represents effects of the model structure. However, by applying the 
analysis on a specific test site, the relevance of processes depends on the climate zone, ecosystem, land 
use, soil type, etc. This also effects the limitations for the data range of the considered parameters and 
variables. The relation and interaction might be different outside this range. Therefore, I wouldn’t 30 

exclude the site conditions as relevant factors.  
We fully agree, but that's more or less what we are saying. We didn't mention the relevance, but added 

it in the revised version as site and model dependent finding.  
 
 35 

Page19 lines 14-16: It depends: Several models using the same approaches to describe processes. 
Therefore, the formulated hypothesis needs to be tested by compare the approaches used in the different 
models to be sure, that this correlations are really independent of the model structure.  
Models often use same or similar equations, but the combination of equations, which processes are 

simulated and which replaced by a constant value, the number and type of parameters calibrated 40 

together and used variables for calibration differ between the studies. A detail presentation of all 

differences is outside the scope of this study.  

 
Page 19 line 27 to page 20 line 2: I do not really understand how the implementation of open water 
bodies should explain the differences in the correlations. In the measurements H is more related to 45 

temperature and LE more to the water flows. Photosynthesis is the main driver for growth and 
photosynthesis is calculated by a light use efficiency function and, as written in this manuscript 
“….total plant growth is proportional to the net global radiation absorbed…..”. Is it possible that the 
correlation of H and NEE can be explained by the calculation of photosynthesis by radiation, which is 
also the main driver for H, while LE is calculated in more complex equations with less direct correlation 50 

to radiation and temperature?  
It is not H and NEE that correlate, but the parameter values that lead to a good fit in both. As we 

mention in ln 31 the same page, we tested only the effect of parameters, not the effect of input variables 

(like the sensitivity to radiation), which would be an interesting study as well.  
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Open water bodies is just an example for missing processes. The fit for LE is not good in spring, 

whereas this pattern cannot be seen in NEE. In the real world, there might be a lot of evaporation from 

open water bodies, so the model underestimates LE in spring - this could be compensated with 

parameters that lead to a higher plant transpiration (=> better fit in LE), but these parameters would 

also lead to an overestimation of NEE in spring (=> worse fit in NEE). We reformulated the sentence 5 

in the revised manuscript to make it more clear. 

 
Page 20 lines 3-5: No, not necessarily. If you try to understand the pattern of data in advance, the used 
indicator for the goodness of fit can be picked sensible. E.g. there are variables with several values (e.g. 
night values) at zero or around zero. These values will have a strong impact on the ME as the models, 10 

usually, simulate the zero values during night quite well. The R2 can cope with the clouds around zero, 
but it is sensitive to single extreme values.  
To reduce the effect of extreme values, we had additionally the R2 of accumulated values. As stated 

before, there are many more complex indices, and they would probably result in different parameter 

ranges - this only supports our statement: the choice of the index has an effect on the resulting range.  15 

Values around zero do not have a strong impact on ME, as the modeled values during this periods are 

also low. That's why we decided to add ME of winter values - values are low and if you only look to the 

whole year, parameters that influence winter fluxes have no/low sensitivity. In case of NEE (where we 

differentiate between day and night values), the night values are dominated by respiration, whereas 

during daytime photosynthesis plays an important role - therefore it is not surprising, that different 20 

parameter and parameter ranges lead to the best fit for either day or night. This cannot be solved by a 

more sophisticated performance index - the underlying problem is, that the model is not able to give 

simultaneously a very good fit in daytime, nighttime, as well as in magnitude and dynamics -  it remains 

a decision of the user to calibrate to NEE only, or separately to night and daytime values and to decide 

if a good model result in magnitude or in dynamics is more important. Same for the seasonality - if none 25 

of the runs shows the best fit in both spring and summer, it is not a question of another performance 

index - instead it hints to limitations in the model, e.g. a process that is not implemented or at least not 

included in the calibration. But models are never perfect, therefore a best value or value range is not 

existing for many parameters We added some discussion on this in section 4.2 in the revised version 

 30 

Bottom line the used indicator for goodness of fit influences the outcome of the analysis and if the 
indicator is well picked, there are subjective judgements. Controversial results of different indicators 
need to be analysed to understand the reasons for the contradiction. Unfortunately, this analysis is 
missing in this manuscript.  
The most pronounced controversial results are analysed in the subsections of 4.5., but a detailed  35 

analysis for each parameter and each variable would be extremely extensive and outside the scope of 

the manuscript.  

 

Possible reasons for controversial results, which we added now to section 4.2.: 

 - Most important: The model does not reflect the real world (e.g. decomposition rate coefficient is not a 40 

constant value, but depends on the activity of soil microbes which is influenced by many factors that 

vary in time, e.g. community structure, community size, stress factors, food availability and quality, etc). 

A parameter with very high discrepancy between performance indices is the aerodynamic resistance 

dependency on LAI ralai. For a good magnitude of temperature, this value has to be extraordinary high - 

much higher than a value that was actually measured at this site, see discussion to this in 4.5.3. 45 

- Measurements do not reflect the real world. Measurements have limitations, e.g. NEE is not the real 

exchange between Eddy fetch - not a point like the model, but instead an area, and the area changes 

during the day and during the year. Also, not the CO2 exchange between biosphere and atmosphere is 

measured, but  turbulent vertical fluxes at the sensor (several meters above the ground), which further 

include a lot of calculations to receive NEE.   50 

- Indicator not good (this is the case for snow - timing of snow melt is most important, but not well 

enough reflected in R2 and not at all in ME, see section 4.5.4) 
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Page 20 Lines 6 -15: Of course there are lot’s of correlation between LAI and other variables, because 
these parameters use LAI. However, an analysis and discussion of the cited publications is missing. 
This would be a chance to bring the here presented study in the context of other studies. Instead of only 
mention the correlation, the authors could explain the different dependencies. E.g. I assume that LAI 
correlates with soil water content, if it is a dry, water limited ecosystem.  5 

Also on peatlands, LAI correlates with water content due to transpiration. Such dependencies are nicely 

described in  Schulze 2006. How they are realised by the different equations that have LAI as parameter 

is described in the supplementary material and the CoupModel description. To all three references, we 

refer in the manuscript, page 20, ln 13-15: "These relationships can be explained by the many 

dependencies between LAI and e.g. photosynthesis, transpiration, heat insulation and water uptake 10 

(Schulze 2006), of which several are also implemented in the model (see model description and 

equations, Sect. 2.3, Table S2  in the supplement and Jansson and Karlberg, 2010)." 

 
Page 20 line 17 temporal or spatial resolution? What means high resolution mm, cm or m; seconds, 
hours, days?  15 

It refers to temporal, which we added in the manuscript. "High" depends on what one is interested in. 

We worked with hourly values, so that it is sufficient to measure a time series of hourly measurements in 

one layer  (for simulating the dynamics) plus - for  the magnitude - theoretically one single 

measurement in the upper and on in the lower layer.   

 20 

 
Page 23 Lines 10 – 15: I see the strong sensitivity of the soil hydraulic properties as relevant factor, but 
first, it is not that easy to measure these parameters and, second, I think the authors should provide an 
alternative method to derive better fits and quantify the reduction of quality by missing out soil 
hydraulic properties. An alternative method would be to calculate the soil hydraulic properties by pedo-25 

transfer-functions (as mentioned in the model description). If do so, the sensitivity of single parameters 
(soil type, bulk density, field capacity (by itself) etc.) can be tested and it might be possible to get better 
calibration using this information or detect the most sensitive of these parameters.  
 This doesn't work on peatlands, only on mineral soil.  

 30 

Comments on the references  
The publication of He et al. needs to be updated  
Done 

 

Comments on figures:  35 
- I would like to see a figure like Fig.5 also for actual values and not only for a prior and posterior 
comparison.  
Plotting the dependencies between different output variables would require many dimensions, as they 

are all connected between each other and also depend on the different parameter sets. There is an 

enormous amount of combinations, which makes it not visualisable.  40 

 
- The quality of the figures is not good  
Figures will be uploaded with higher resolution in the revised version.  

 
Comments on the supplement:  45 
Table S1 I think there is no need to present parameter name in the model.  
This information would be very helpful for other CoupModel users, as these are the names given in the 

user interface. 

 

I am even not sure if the module name provides any useful or needed information, but it might  50 

be better to group the parameters instead (e.g. soil, hydrology, snow, vegetation/growth).  
The parameters are sorted for the module which gives shortly in which calculation the parameter is 

used. Of course this could be also read from the equation number, but the text is easier to read.  
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Table S2 is really needed, if you develop a model and publish it, but I do not see the use for the actual 
study. Most of the equations are standard approaches that are already described in the text. 
As mentioned before, there are many possibilities to configure CoupModel. Therefore the used 

equations vary between studies, and in some cases also the terms within an equation are modified, 5 

deepening on switches and parameters that might set a term to zero. It further shows where the specific 

parameters are used in an equation  

 
Comments from Anonymous Referee #2 

Received and published: 5 August 2016  10 

Metzger et al present an interesting study addressing process interactions and parameter sensitivity for 
model carbon dynamics in a natural peatland. This is a “heavy” topic and the authors did a good job. 
Their findings are important and meaningful for both model users and model developer, the latter of 
whom they overlooked. There are some aspects needs substantial revision.  
a) There are too many small paragraphs with only one or two sentences. I would suggest the authors to 15 

combine them.  
OK 

 
b) The authors claimed “interactions between parameters” “limited transferability of parameter values 
between models and even between studies”. I am not quite understand the connections between the two 20 

topics. It could be great if the authors can elaborate more on this. 
If parameters interact, the value range resulting from a calibration depends on the values of other 

parameters. This demonstrate that parameters are not independent.  Therefore, one cannot transfer the 

information obtained from a single parameter without also considering the value of the correlated 

parameters. The correlation obtained may be a phenomena that is related to a possible coexistence for 25 

this particular ecosystem, But it can also be because of the problem to constrain the model by not 

enough of data.  Note that all parameters for the posterior distribution are uncertain and we do not 

expect to find a narrow range for single parameters since also the real world system is expected to have 

a range of parameters that represent the certain temporal and spatial variability of the system 

considered  30 

We reformulated this (in the first part of the discussion) to be more clear. 

  

c) The authors mentioned many times of “CO2 model(s)”, which seems improper because the 
CoupModel is more like a C cycling model, rather than CO2 model.  
We agree that the study is not with emphasize on CO2 instead it will try to understand the full carbon 35 

turnover at the specific site. However, the use of NEE from flux measurements is of course the major 

response to all the ongoing processes and fluxes of the ecosystem. 

We changed the title to include heat and water fluxes.  

 

d) This work is not only meaningful for model users, but also for model developers. Nowadays, for 40 

example, many researchers develop and use models to predict impacts of climate change on carbon 
cycling or hydrology, and others. However, many of these models are not integrated or balanced enough 
representing all aspects (processes/modules). Such model predictions lack of credit for me. I could 
suggest the authors also discuss this aspect in the discussion section. Overall, I think the paper is 
publishable after major revision. Some specific comments are:  45 

With "modellers" we mean not only model users but also model developers. We included them more 

explicitly at several points in the revised manuscript. 
 
1) Line 9-10: From my understanding, most previous models focused only one or few modules because 
their model emphasized only on these module(s) and simplified (overlook) others. Interestingly, this 50 

could highlights the importance of the present study. The authors may want to elaborate this point more.  
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Models are always a simplification, and even that we show the interactions between the different 

modules, we would not like to devalue simpler models - it always depends on how accurate the model 

prediction need to be. 

We included the importance of considering the different processes together in the last sentence of the 

revised abstract.  5 
 

2) Line 13: Please specify the modules to make the reader to easy understand.  
OK 

 

3) Line 20: This sentence is hard to understand. Please revise.  10 

OK 

 
4) The introduction contains too many paragraphs and they are not very well logically connected. Please 
consider to reduce them into 4-5 paragraphs. 
We reordered the paragraphs in the introduction in a more logical order and combined them, 15 

including some reformulations. 

 
5) Line 28: I think these findings will be of critical importance for model development as well.  
We added the model development at several places in the manuscript. 

 20 

6) Line 1 in Page 9: What do you mean of “uniform random distribution”?  
The values are randomly taken, whereas all values in the range have the same probability of being used 

- this is added in the revised version 

 

7) Line 9 in page 9: Has this definition of sensitivity been used by others?  25 

There are several possibilities to quantify sensitivity. Most common are measures of the difference 

between prior and posterior parameter distribution. As we use a simple uniform distribution, it is not 

necessary to use sophisticated methods like Kolmogorov D statistic or stepwise regression analysis. The 

simplest way is to just compare the range of posterior and prior distribution. This has certainly be done 

in one or another way by other studies as well. In contrast to the R2 value between parameter values 30 

and performance, this accounts also for parameters that have an optimum range around in the centre of 

the prior distribution. 

 

 

8) Line 21 in page 9: Please explain clearer how the equifinalities was quantified.  35 

Reformulated to: "Equifinalities were quantified by the R2 value of a simple linear regression 

through the values of the interacting parameter pair in the accepted runs." 

 
Figures quality/resolution are low. It is hard to read these figures  
Higher resolution will be provided in revised version. 40 
 
 

List of relevant changes 
In all parts of the manuscript we connected paragraphs to larger ones, replaced some translation errors 
and reformulated sentences that were misunderstood to make them more clear. The term "modules"  45 

was replaced by "process categories", which we defined with its first occurrence. Some important 
sentences that were overlooked by a referee were moved further to the top of a section. In several parts 
of the manuscript, we included model developers more explicitly. 
 

Title: The name and version of the model are added to the title and heat and water fluxes mentioned 50 

additionally to the carbon fluxes. 
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Abstract: We listed the different modules (now process categories), highlight the interactions across 
them and reformulated a misunderstood sentence.   
 

Introduction: We reordered the paragraphs more logically and connected them. We mention the 
Bayesian approach  5 

 

Objectives: We reformulated the objectives to make them more precise and to emphasize the 
understanding of the dependencies between parameter distributions and between parameters and model 
performance. We added the method that was applied to fulfill the objective and reformulated objective 2 
to make it clearer. 10 

 

Methods: The information was added that CoupModel offers many different configuration possibilities 
was added to the methods, to clarify that the model description is necessary to make the study 
reproducible. The model description for vegetation and decomposition was reformulated and shortened 
by moving parts to the supplementary material.  15 

Page 4 line 20: "EC" was added and Page 4 lne 28-29: C uptake by the ecosystem from the atmosphere 
was added. 
We clarified that input data was gap filled, whereas calibration data was not gap filled and spikes were 
not removed to avoid introducing a bias.  
 20 

Results:  

We highlighted the found dependencies across process categories. A sentence was added, telling that 
using several measurement variables helps to identify if a parameter range is not robust. The results 
about controversial parameter ranges were moved from the sensitivity section to the section about 
cofounding and supporting effects. 25 

  

Discussion: 

Also in the discussion we reformulated some parts to emphasize the importance of the identified 
dependencies across modules.  
We added a sentence to clarify that sensitivity to a parameter means sensitivity to a process, as only one 30 

parameter per equation was calibrated.  
We added at several positions in the discussion the information about whether a certain result relates to 
CoupModel and site conditions or can be used more general. We further mention that we tested only 
one model on one site, so that our statements about robustness refers only to robustness in respect to 
criteria selection, but not to site or model dependency.  35 

We added a more detailed discussion about the possible reasons for the contradicting parameter ranges 
to section 4.2 .  
We mentioned the Bayesian approach and added the EC footprint area problematic to the discussion.  
 

Conclusions: 40 
Also in the discussion and conclusions we reformulated some parts to emphasize the importance of 
using many variables and criteria to constrain the model. 
 
Figures: 

The figures are now provided in a higher resolution.  45 

 
References: 
Publication of He et al. was updated and references that belong to the sections of the model description 
that were moved to the supplement were removed.  
 50 
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Abstract. In contrast to previous peatland carbon dioxide (CO2) model sensitivity analyses, usually focusing on only one or 

few modulesprocesses, this study investigates interactions between various biotic and abiotic processes and their parameters 15 

by comparing CoupModel v5 results with multiple observation variables.  

Many interactions were found not only within, but also between the various model modulesprocess categories simulating  

plant growth, decomposition, radiation interception, soil temperature, aerodynamic resistance, transpiration, soil hydrology, 

and snow. Each measurement variable was sensitive to up to ten (out of 54) parameters, from up to seven different process 

es.categories. The constrained parameter ranges varied, depending on the variable and performance index chosen as criteria, 20 

and on other calibrated parameters (equifinalities).  

Therefore, transferring parameter ranges between models needs to be done with caution, especially if such ranges were 

achieved by considering only few processes. The identified interactions and constrained parameters will be of high interest to 

use for comparisons with model results and data from similar ecosystems. All of the available measurement variables (net 

ecosystem exchange, leaf area index, sensible and latent heat fluxes, net radiation, soil temperatures, water table depth and 25 

snow depth) improved model constraint. Additional measurements of soil hydraulic properties or water content would reduce 

equifinalities and constrain additional parameters that showed high range of uncertainty. If hydraulic properties or water 

content were measured, further parameters could be constrained, resolving several equifinalities and reducing model 

uncertainty.  

The presented results highlight the importance of considering biotic and abiotic processes together and can help modellers 30 

and experimentalists to design and calibrate models model calibrations andas well as to direct experimental setups in 

peatland ecosystems towards modelling needson peatlands..  

 

 

Keywords. Parameter uncertainty, equifinalities, net ecosystem exchange (NEE), carbon dioxide (CO2), boreal mire 35 

1 Introduction 

Understanding and quantification of interactions between different processes and between different parameters is required 

for reducing uncertainty in prognostic modelling in carbon (C) cycle research. Undisturbed peatlands act as carbon sink and 



15 
 

have accumulated at least 550 Gt of C, which is equivalent to twice the C stock in the forest biomass of the world (Gorham, 

1991; Parish, 2008). A more recent estimate for exclusively northern peatlands amounts to 436 Gt of C (Loisel et al., 2014). 

Management or climate change can cause this carbon to be released as CO2 emissions as has been shown from measurements 

(Maljanen et al., 2010; Drösler et al., 2013; Petrescu et al., 2015). Process oriented models are necessary to transfer the 

knowledge gained from measurements to different locations, management or future climate scenarios. Further, such models 5 

can help to understand the processes underlying the observations. But oOnly few of the parameters used in process models 

are known as site independent, unambiguous constants from laboratory experiments. All others need to be either assumed, or 

gained from calibration procedures (e.g. Kennedy and O'Hagan, 2001, Wang and Chen 2012). But not all parameters have a 

strong impact on model output and performance (i.e. fit between modelled and measured variables, whereas in this 

manuscript, variable always refers to a time series that is either the output of the model or the measurement to which the 10 

model output is compared to). Monte Carlo based sensitivity analysies are used to identify key parameters for both, the 

performance and the impact on various major model outputs (e.g. Verbeeck et al., 2006; Van Oijen et al., 2011; Santaren et 

al., 2014). 

Many studies investigated single processes and their parameters, while only few consider different biotic and abiotic 

processes and multiple calibration variables.: Several modelling studies have explored peatland hydrology (e.g. Dimitrov et 15 

al., 2010; Dettmann et al., 2014) and heat fluxes in peatlands (e.g. Granberg et al., 1999; Keller et al., 2004), while others 

concentrate on carbon fluxes and pools (e.g. Frolking et al., 2002; Verbeeck et al., 2006; Wu et al., 2013) where the focus is 

sometimes on heterotrophic respiration only (e.g. Abdalla et al., 2014). However, many processes are involved in the C-

cycle of peatlands: Net ecosystem exchange (NEE) is the balance of photosynthesis, and autotrophic respiration from plants 

as well as heterotrophic respiration from nd microbes. All three NEE component fluxess are strongly interconnected in 20 

several ways with the amount of plant biomass, temperature, radiation, nutrients and moisture availability (e.g. Clymo, 1984; 

Lindroth et al., 2007). Photosynthesis, soil temperature (Ts) and moisture depend among others on incoming radiation, 

transpiration and plant coverage. Heterotrophic respiration further depends on quality and quantity of plant litter (e.g. Yeloff 

and Mauquoy, 2006). In addition, phenological events such as the timing of snow melt are important for soil temperature 

dynamics, biologic activity and peatland CO2 fluxes (Aurela, 2004; Peichl et al., 2015). Different biotic and abiotic processes 25 

are realised in some modelling studies on peatlands, though, only the sensitivity to carbon fluxes or pools was tested (e.g. 

Yurova et al., 2007; St. Hilarire et al., 2010; Quillet et al., 2013; Webster et al., 2013; Wu and Blodau, 2013; Kim et al., 

2014). Also, models are continuously extended or coupled with other models (e.g. Wang et al., 2005; Prentice et al., 2007; 

Giltrap et al., 2009; Hidy et al., 2012; Jansson 2012; Tang et al., 2015), developing to more and more holistic models, 

accounting for plant and soil carbon processes, water and energy flows and biochemistry. However, often only parameters of 30 

the new module are tested (e.g. Belassen et al., 2010; Wania et al., 2010, Zhu et al., 2014; Tang et al., 2015), ignoring 

possible interactions between processes. 

 

 

Models are continuously extended or coupled with other models (e.g. Wang et al., 2005; Prentice et al., 2007; Giltrap et al., 35 

2009; Hidy et al., 2012; Jansson 2012; Tang et al., 2015), developing to more and more holistic models, accounting for plant 

and soil carbon processes, water and energy flows and biochemistry. However, often only parameters of the new module are 

tested (e.g. Belassen et al., 2010; Wania et al., 2010, Zhu et al., 2014; Tang et al., 2015), ignoring possible interactions 

between modules.  

Many peatland studies investigate only the sensitivity to carbon fluxes or pools, despite their models include different biotic 40 

and abiotic processes (e.g. Yurova et al., 2007; St. Hilarire et al., 2010; Quillet et al., 2013; Webster et al., 2013; Wu and 

Blodau, 2013; Kim et al., 2014). Though, the profit of using multiple constraints for model calibration and the importance of 
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interactions between parameters and across modules has been shown by e.g. sensitivity analyses on forest ecosystems 

(Carvalhais et al., 2010; Santaren et al., 2014; Tian et al., 2014). 

FurtherAnother limitation of previous peatland modelling studies is the use of, often only local sensitivity analyses,  are 

performed, changing only one parameter or one input variable driver at a time (e.g. Hilbert et al., 2000; Yu et al., 2001; 

Zhang et al., 2002;  Wania et al., 2009; Frolking et al., 2010; Tang et al., 2010; St-Hilaire et al., 2010). This approach does 5 

not account for possible interactions and non-linearity in equations (e.g. Saltelli et al., 2008; Quillet et al., 2013), but 

peatland processes are often non-linear and interact in many ways (Belyea, 2009). Therefore, we performed a global 

sensitivity analysis, calibrating parameter simultaneously and accounting for interactions. 

 Net ecosystem exchange is the balance of photosynthesis, and respiration from plants and microbes. All three NEE 

components are strongly interconnected in several ways with the amount of plant biomass, temperature, radiation, nutrients 10 

and moisture availability (e.g. Clymo, 1984; Lindroth et al., 2007). Photosynthesis, soil temperature (Ts) and moisture 

depend among others on incoming radiation, transpiration and plant coverage. Heterotrophic respiration further depends on 

quality and quantity of plant litter (e.g. Yeloff and Mauquoy, 2006). In addition, phenological events such as the timing of 

snow melt are important for soil temperature dynamics, biologic activity and peatland CO2 fluxes (Aurela, 2004; Peichl et 

al., 2015).  15 

Such processes interactions are realised in complex ecosystem models, but leadThis allows to inter-correlation between the 

different parameters and which complicates the parameter constraint to an unambiguous solution: several combinations of 

different parameter values can lead to a similar good fit of model output to measured variables, which is defined as 

equifinality (Beven and Freer, 2001). The model sensitivity to such parameters might be hidden if equifinalities are not 

considered. Constraining a model based on multiple observation variables can help to resolve or reduce equifinalities 20 

(Carvalhais et al., 2010). The profit of using multiple constraints for model calibration and the importance of interactions 

between parameters and across different processes has been shown by sensitivity analyses on e.g. forest ecosystems 

(Carvalhais et al., 2010; Santaren et al., 2014; Tian et al., 2014). Unlike previous peatland modelling studies on peatlands, 

we therefore investigate the sensitivity to parameters from several different modules simultaneously, in their effect on not 

only on NEE, but also on LE, sensible heat (H), net radiation (Rn), leaf area index (LAI), Ts, WT and snow, and identify 25 

parameter interactions. 

However, criteria based on multiple variables imply a subjective weighting of variables and performance indices. Fitting the 

model to a certain variable might improve or worsen the performance in another variable (Carvalhais et al., 2010) and might 

therefore have implications for the parameter range judged as valid (e.g. Schulz and Beven, 2003). In this study, the effects 

of selecting a certain criteria on the resulting parameter range will be investigated. We avoided to use a Bayesian approach, 30 

which was tested by Van Oijen et al, (2011) with several models including the CoupModel, using a data set of more than one 

variable. The single probability of the model as the summation of many different variables requires a detailed understanding 

of an error model that is typically not available in field measurements representing many different errors for each set of 

variables.  

We use theThe detailed ecosystem model CoupModel (Jansson and Karlberg, 2010) was used in this study for the following 35 

reasons: It is a well-established and widely used model (Jansson, 2012). Its model structure is flexible and allows simulation 

of different abiotic and biotic processes based on well-established physical equations, which can be selected by the user. The 

CoupModel includes all main components expected to have an impact on the carbon cycle: i) A detailed module for 

simulation of heat and water fluxes in the soil and at the interface to the atmosphere, ii) plant growth from photosynthesis, 

limited by water availability and temperature, iii) plant respiration and litter fall and iv) a module for soil organic carbon 40 

(SOC) decomposition. A user defined time step allows using the full information contained in measurements with high 

temporal resolution (i.e. hourly) on site scale.  
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1.1 Objectives 

The aim was to identify and explore the connections within and between biotic and abiotic processes and parameters which 

are relevant for modelling NEE in a natural open peatland. Therefore, 54 parameters of the CoupModel v5 from different 

plant, decomposition, energy and water flux processes were calibrated to , by investigating several different output variables 

and several different sets of criteria for selecting acceptable runs were tested. The specific objectives were: 5 

1. To identify which processes impact which measured variable, by testing the sensitivity of model performance to the 

parameters of the different processes 

2. To evaluate implications of different criteria selection choices on the dependence of model performance and resulting 

parameter ranges on the performance index, the measured variable and the time period of the variable, that are chosen as 

criteria 10 

3. To identify and describe equifinalities between parameters from different processes simulating carbon, energy and water 

fluxes 

4. To test the usability potential of all available observation data for model constrain and identify missing measurement 

variables by identifying sensitive or interacting parameters that cannot be constrained by the available data 

The answers to these questions will be crucial for future model development and future calibrations of carbon models on 15 

peatlandssimilar ecosystems: They will represent most valuable information for selecting processes that need to be taken into 

account, for selecting parameters and their value ranges and considering parameter connections, as well as selecting sites and 

observed variables. They further help experimentalists to decide on the measurement of variables to make their site suitable 

for modelling.  

2 Materials and methods 20 

2.1 Site description 

Degerö Stormyr (64.182016 N, 19.55663 E) is an oligotrophic, minerogenic, mire, located on a highland, 270 m.a.s.l, in the 

county of Västerbotten, Sweden. A detailed description of the site and the measurements can be found in Peichl et al. (2014) 

and references therein. “The mire catchment is predominantly drained by the small creek Vargstugbäcken towards north-

west. The depth of the peat is generally between 3–4 m, but depths up to 8 m have been measured. … The micro-topography 25 

is dominated by mainly carpets and lawns, with only sparse occurrences of hummocks” (Peichl et al., 2014). The plant 

community of the mire is dominated by cottongrass (Eriophorum vaginatum L), tufted bulrush (Trichophorum cespitosum L. 

Hartm.) and Sphagnum mosses (Nilsson et al., 2008; Laine et al., 2012). Total aboveground biomass (moss capitula and 

vascular plants) is 141 ± 45 g m–2 (Laine et al., 2012). Seasonal maximum leaf area index of vascular plants was estimated at 

0.8 m2 m−2 in 2012 (Peichl et al., 2015). 30 

The 30-year (1961–1990) mean annual precipitation and air temperature are 523 mm and +1.2°C, respectively, while the 

mean air temperatures in July and January are +14.7°C and −12.4°C, respectively (Alexandersson et al., 1991). The snow 

cover normally reaches a depth of up to 0.6 m and lasts for approximately 6 months (Peichl et al., 2014). The peatland was 

continuously a sink for atmospheric CO2 during twelve years of eEddy covariance (EC) measurements, with a 12-year 

average (± standard deviation) NEE of −58 ± 21 g C m−2 yr−1 (Peichl et al., 2014). 35 

 

2.2 Data used in this study  

Hourly values of global radiation, air temperature, relative humidity, precipitation and wind speed were used as 

meteorological input data (Table 1). They were measured at the same tower as to which the EC sensors were mounted. An 
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overview of the data used for calibration can be found in Table 2; a more detailed description in Peichl et al. (2014) and 

references therein. For gap filling (due to instrument failure) of the input data, as well as for the pre-evaluation period 1991-

2000, daily data from the nearby (13 km away) standard climate station at the Svartberget field station were obtained. In case 

of air temperature and relative humidity, seasonal regression relationships were applied to account for temperature and 

humidity differences between the site and the standard climate station. 5 

An overview of the data used for calibration can be found in Table 2, a more detailed description is provided by Peichl et al. 

(2014) and references therein. Measured carbon concentrations per soil layer were used for estimation of pool sizes as 

described in Sect. 2.3.5. The model was calibrated based on measured NEE, LE, H, WT, Rn, soil temperatures  in −2 cm 

(Ts1) and −42 cm (Ts2) depth, snow depth and LAI of vascular plants as listed in( Table 2). NEE, LE and H were measured 

using the eddy covariance technique and details for data processing were previously described in Peichl et al. (2014). In this 10 

study, only the measured values of NEE, LE and H were used for calibration (i.e. gapfilled values were omitted). , and 

described in Peichl et al. (2014), and references therein. Negative NEE values indicate net CO2 uptake by the ecosystem 

from the atmosphere while positive NEE values indicate emission from the ecosystem to the atmosphereof CO2. All 

calibration data were averaged to hourly values, except snow depth and LAI values and snow depth which had a daily and 

biweekly to monthly resolution. In this study, only measured values were used for calibration: gap-filled values during 15 

measurement gaps were omitted. 

 

 

2.3 Model description and application to Degerö Stormyr 

CoupModel v5 from 12th December 2014 was used for simulations. The current version can be downloaded from the 20 

CoupModel homepage (CoupModel, 2015). A detailed description can be found in Jansson and Karlberg (2010). The 

CoupModel allows the user to select between different sub models, different equations and different complexities of the used 

equations. The following sections describe the configuration as applied in this study. The model represents the ecosystem by 

a description of C and N fluxes in the soil and in the plants. It includes the main abiotic fluxes, such as soil heat and water 

fluxes that represent the major drivers for regulation of the biological components of the ecosystem. For application to 25 

Degerö Stormyr, the vegetation canopy was defined as two layers: vascular plants and mosses. The soil profile was divided 

into 16 layers with an increasing layer depth from 4 cm for the upper nine layers to 60 cm in the lowest layer, resulting in a 

total depth of 3.4 m. The model internal time step was half-hourly for abiotic processes and hourly for nitrogen and carbon 

related processes. The simulations were started ten years prior to the evaluation period, so the system could adapt to the site 

conditions and become more independent of initial values.  30 

The most important equations and the corresponding calibrated parameters can be found in Table S1 and S2 in the 

supplement. The major model assumptions relating to the model application to the peatland are described below. Detailed 

assumptions in respect to fixed parameter values can be found in Table S3 in the supplement. 

 

 35 

2.3.1 Radiation interception, evapotranspiration and snow 

An interception model for both, radiation and precipitation, a snow model and a surface pool model was used to provide 

boundary conditions at the soil surface. Cloud fraction was calculated from global radiation input and latitude. Incoming 

radiation was partitioned between one part, which was absorbed by the plant canopy and another part, which reached the soil 

according Beer’s law (cf. Impens and Lemeur, 1969). Radiation absorbed by the canopy was partitioned between the two 40 

plant layers (Fig. 1), depending on their height and surface cover, whereas it was assumed that leaves are uniformly 
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distributed within the total height of the canopy. Interception and plant evaporation depended on the simulated leaf area 

index of the vegetation as well as the degree of area coverage. Transpiration depended additionally on the simulated plant 

water uptake. Soil evaporation was derived from an iterative solution of the soil surface energy balance of the soil surface, 

using an empirical parameter for estimating the vapour pressure and temperature at the soil surface. Vapour pressure deficit 

was calculated from the relative humidity input. Snow fall was simulated from precipitation and air temperature, while snow 5 

melt was estimated from global radiation, air temperature and simulated soil heat flux.  

2.3.2 Soil temperatures and heat fluxes 

Surface temperature was simulated based on an energy balance approach, where the radiation reaching the soil equals the 

sum of sensible and latent heat flux to the air and heat flux to the soil. The same approach was used for the snow surface 

temperature. Heat flow between adjacent soil layers were calculated based on thermal conductivity functions accounting for 10 

the content of ice and water. The heat flow equation is based on a coupled equation also accounting for the freezing and 

thawing in the soil (Jansson and Halldin, 1979). Convection heat flows were not accounted for. The lower boundary 

temperature was calculated based on a sine variation including parameters for the annual mean temperature and amplitude at 

the site. 

 15 

2.3.3 Soil hydrology 

Soil water flows and water contents were calculated for each of the 16 soil layers. Soil water depended on infiltration to the 

soil, soil evaporation, water uptake by plants, and ground water flow. Soil moisture represented as liquid water content, wais 

calculated based on the water storage and temperature in the corresponding soil layer. Water flows between adjacent soil 

layers were calculated based on Richards’ equation (Richards, 1931), considering hydraulic conductivity, water potential 20 

gradient and vapour diffusion. Saturation conductivity was assigned depending on the mean measured dry bulk density 

values of the corresponding layers (cf.  Päivänen, 1973). 

In respect to hydrologic characteristics, the soil profile was divided in two horizons representing the acrotelm and the 

catotelm (cf. Ivanov, 1981), whereas the boundary between these horizons was positioned at −30 cm as suggested for Degerö 

Stormyr, based on visual differences in the soil profile and water table depth measurements (Granberg et al., 1999). The soil 25 

water characteristics were described by the Brooks & Corey equation (Brooks and Corey, 1964) and unsaturated 

conductivity by the Mualem function (Mualem, 1976). When the current simulated ground water table is above the assumed 

drainage level, outflow of saturated layers above that level was simulated, based on a linear model. 

Surface runoff was controlled by a surface pool of water that covers various fractions of the soil surface. During periods of a 

fully saturated soil profile the flow of water in the upper soil compartment could be directed up-wards, towards the surface 30 

pool. Surface runoff was calculated as a function of the amount of water in the surface pool. 

 

2.3.4 Vegetation 

Two plant layers were simulated, representing vascular plants and mosses. They differed in their parameters for size, shape, 

carbonC allocation, litter fall and temperature response for assimilation and respiration. A detailed description of the carbon 35 

pools of the two plant types and the partitioning of assimilates to the pools can be found in the supplement.  

Vascular plants consisted of three functional parts: roots, photosynthetically active biomass (i.e. green leaves and green 

stems that are labelled as leaves in equations and parameter names), and photosynthetically passive biomass (i.e. brown, 

senescent leaves and woody stems that are labelled as stems). Mosses were considered to consist of two parts: an upper, 

photosynthetically active part (labelled as leaves) and a lower, photosynthetically passive part (labelled as roots) representing 40 
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pale or brown, belowground leaves and stems that are still living. Each plant constitutes a biomass pool for each of its parts. 

Vascular plants had additionally a pool for mobile reserves, that was filled during litter fall. LAI was proportional to leaf 

biomass by using a constant specific leaf area as conversion factor. Vascular plants They were assumed to have a maximal 

height of 50 cm compared to 2 cm for mosses.  

Plant development was temperature sum and day length dependent. Senescence and litter fall for vascular plants depended 5 

on growth stage, temperature sum and day length. In case of mosses, litter fall was proportional to assimilation. Litter from 

above ground carbon pools went through a surface litter pool and then to the upper soil litter pool, litter from below ground 

to the corresponding soil layer. In case of mosses, litter fall occurred only in belowground parts.  

Plant development started every spring when the accumulated sum of air temperatures above a threshold value reached a 

certain value. The accumulation of temperatures started when the day length (geometric estimated time of sun above 10 

horizon) exceeded 10 hours. Snow cover hindered leafing-out by reducing the radiation supply to the plant, while low soil 

temperatures reduced plant water uptake. 

Senescence and litter fall differed between the two plant types. For vascular plants, beside a small amount of litter fall 

occurring during the whole plant growth period (cf. Fulkerson and Donaghy, 2001), senescence was assumed to start after 

the plant reached maturity and therefore depended on growth stage (cf. Thomas and Stoddart, 1980) and dormancy 15 

temperatures (cf. Davidson and Campbell, 1983). New assimilates were constantly allocated to the roots and to the 

photosynthetically active part. After maturity, existing green biomass was reallocated to the photosynthetically passive part. 

A third stage of litter fall was configured depending on a temperature threshold: Five consecutive days in the autumn with 

day lengths shorter than 10 hours and with temperatures below a threshold temperature parameter terminated the growing 

season; Increased litter fall took place and vascular plants went to dormancy. During vascular plant litter fall, part of the 20 

carbon was stored in the mobile pool, which could be then reused for leafing-out in the next year (cf. White, 1973; Wingler, 

2005). The litter from above ground biomass was inserted to a surface litter pool, while root litter was inserted to the 

corresponding litter pools of the soil layers in which the roots were located. The litter in the surface pool was inactive and 

transferred with a constant rate to the litter pool of the uppermost layer.  

A different approach for senescence and litter fall was applied for mosses, as they largely differ in these processes from 25 

vascular plants: Sphagnum mosses produce new leaves in the top (capitula), while litter fall occurs on the lower leaves, when 

they become shaded and die (cf. Clymo and Hayward, 1982). This leads to a permanent moss cover and a litter fall that is 

proportional to assimilation. In the model, this was realised by keeping the photosynthetically active part of mosses to a 

fixed static value. Any losses (i.e. respiration and litter fall) or gains (incorporation of assimilates) were restricted to the 

belowground moss parts. Moss litter was produced with a constant rate coefficient throughout the year and was directly 30 

inserted to the corresponding soil litter pools. The dormancy period for mosses was initiated in the same way as for vascular 

plants, but affected only assimilation. 

For both plant types, assimilation was simulated using the light use efficiency approach (cf. Monteith, 1972), at which total 

plant growth is proportional to the net of global radiation absorbed by the canopy but limited by unfavourable temperature 

and limited soil water. The response to soil water was defined from the ratio of actual to potential transpiration. Potential 35 

transpiration depended on vapour pressure, temperature, wind speed and aerodynamic resistance of the plant. Actual 

transpiration was assumed to equal water uptake from soil layers, depending on relative amount of roots, the specific 

response to soil water potential, and soil temperature of each layer. Both plant layers were assumed to be well adapted to wet 

conditions (cf. Keddy, 1992; Steed et al., 2002) and therefore experiencing water stress only due to too dry conditions, which 

was supported by pre-study modelling results. 40 

 Plant respiration was assumed to be proportional to assimilation (growth respiration) and to amount of biomass 

(maintenance respiration), whereas maintenance respiration depended also on temperature trough a  in active leaves and 

roots. In case of mosses, maintenance respiration took place only in belowground parts, therefore a higher range for the 
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parameter scaling growth respiration was calibrated (cf. Table S1 in the supplement). A simple Q10 approach. was used to 

simulate the response of plant maintenance respiration on temperature.    

 

2.3.5 SOC decomposition 

The organic substrate was represented by three C and N pools for each of the 16 soil layers: one representing more stable, 5 

partly decomposed material (SOMs), one representing fresh or little decomposed moss litter (SOMm) and one representing 

fresh or little decomposed litter from vascular plants (SOMv). Initial conditions were selected to fulfil the measured total 

carbon per layer and partitioned into the pools in the way that they were approximately in equilibrium for a certain parameter 

combination that produces a reasonable fit to NEE (prior calibration). Decomposition followed first order kinetics with pool 

specific rates which were reduced under unfavourable soil temperature and moisture conditions. Temperature dependence 10 

was described with a function which was developed by the Ratkowsky function, that was originally developed for bacteria 

(Ratkowsky et al. (1982) for bacteria, but has also been  has also been applied to fungal growth by (Bazin and Prosser, 

(1988). The response to Soil moisture response was assumed to be zero at moisture contents below the wilting point, rising 

to 100% between two threshold moisture contents and falling to a certain level under saturated conditions.  

Decomposition products from the SOMm and SOMv pools were partitioned into CO2 which that was released to the 15 

atmosphere and C which that is partly moved to the SOMs pools and partly returned to the SOMm and SOMv pools. 

Decomposition products from the SOMs pools were partly released as CO2 and partly returned to the SOMs pools. Under 

saturated conditions, carbon could leave the pools as methane (CH4), which was later oxidised to CO2 or transported to the 

atmosphere via plants or through ebullition. Nitrogen and methane related processes were considered by a model including 

the most important pathways and fluxes, but. However no emphasize on the calibration of these processes were made in this 20 

study. 

The rate at which carbon was transferred between pools and towards the atmosphere was pool specific and reduced under 

unfavourable soil temperature and moisture conditions. Temperature dependence was described with a function which was 

developed by Ratkowsky et al. (1982) for bacteria, but has also been applied to fungal growth (Bazin and Prosser, 1988). 

The response to moisture was assumed to be zero at moisture contents below the wilting point, rising to 100% between two 25 

threshold moisture contents and falling to a certain level under saturated conditions.  

Peat depth growth during the simulation period was considered by the following: The initial organic concentration was 

preserved for each layer but the lowest in the profile. Instead, the difference in the total amount of C in all pools in one layer 

between start and end of each year was moved to or from the layer below, to simulate growth or decrease of the peat depth. 

Thereby, carbon was taken from the different pools according to the relative abundance of each pool in the source layer and 30 

inserted to the corresponding pool in the target layer to allow dynamic changes in litter quality. The lowest layer (−2.8 to 

−3.4 m below the surface) represented the entire depth change of the whole profile, but was excluded from a constant 

concentration to avoid adjustments of the number of layers.  

Nitrogen and methane related processes were considered by a model including the most important pathways and fluxes. 

However no emphasize on the calibration of these processes were made in this study. 35 

 

2.4 Calibration procedure 

A Monte Carlo calibration including acceptance criteria was performed to identify process and parameter interactions. T and 

the resulting parameterisations were analysed for correlations between different parameters, between parameters and model 

performance and between performances in different variables, to identify process and parameter interactions. 50’000 runs 40 

were performed to calibrate 54 parameters from different processes. Parameter values were randomly assigned from, using  a 
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uniform random distribution within assumed prior ranges (i.e. all values had the same probability of being used). for 54 

selected parameters from different modules. The parameters were selected as candidates to demonstrate the role of various 

regulating processes, which we group into eight different process categories: processes that describe 1) plant growth, 2) 

decomposition, 3) radiation interception, 4) soil temperature, 5) aerodynamic resistance, 6) transpiration, 7) soil hydrology, 

and 8) snow. Many parameters were still considered with fixed single values (Table S3 in the supplement). Prior ranges for 5 

calibrated parameters were selected according to literature values or experiences from previous model runs, in most cases a 

certain range around the default values (Table S1 in the supplement). Many parameters were still considered with fixed 

single values (Table S3 in the supplement). Model outputs were compared with measured field data including many 

variables in high temporal resolution, spanning up to 12 years of observations (Table 2). Several combined criteria were 

defined to select runs (behavioural models) with an acceptable performance (see Sect. 2.4.2) in different variables. Resulting 10 

parameter value ranges of the accepted runs were then compared with the prior ranges and between the different criteria 

selections to examine the effect of criteria selection. Correlations between parameter values and model performance in the 

different measurement variables were analysed, as well as between accepted values of different parameters. Parameters were 

ranked in their effect on model performance, their correlation with other parameters and their constrain ability from the 

available data.    15 

 

2.4.1 Splitting of calibration variables into sub-periods 

Additional to the calibration data for the whole period we introduced further sub-variables for certain sub periods and times 

of the day. NEE was separated into night time values (22:30 – 02:30), representing ecosystem respiration, and day time 

values (09:30 – 15:30), representing the sum of the respiration component and the assimilation component. Additionally, 20 

spring time values were considered separately for NEE and snow depth, and spring and winter time values for Rn, Ts, H, and 

LE. This is justified as low values with little dynamic during winter and the critical transition of plant emerge and snow melt 

in spring might not be properly accounted for, if only the whole period was considered. WT was calibrated and analysed in 

the whole profile and additional in lower soil layers (one sub-variable for WT depths > −0.15 m and one for > −0.2 m). This 

was motivated, as WT in the upper soil layers showed high fluctuations in the modelled, and also partly the measured WT, 25 

while our interest was to achieve a good overall water table with good representations of dry summer periods.  

 

 

2.4.2 Performance indices 

Selection of runs and evaluation of model performance were based on three indices: coefficient                                                                                          30 

of determination (R2) asses how well the dynamics in the measurement derived values are represented by the model. Mean 

error (ME) is the difference between the average of the simulated compared to the average in the measured, i.e. it shows the 

error in the magnitude. Nash-Sutcliff efficiency (NSE) (Nash and Sutcliffe, 1970) accounts for both, deviation of dynamics 

and magnitude. It ranges from −∞ to 1, whereas 1 means the best fit of modelled to measured data. Values < 0 indicate that 

the mean measured value is a better predictor than the simulated value (Moriasi et al., 2007). As NSE may be understood as 35 

a combination of R2 and ME, it was only evaluated, if R2 and ME alone did not narrow the parameter range. 

The decoupling of turbulent transport and biological activity during night time may introduce spike-type fluxes in NEE, LE 

and H if accumulated concentrations during calm night-time conditions are released during the onset of turbulence in the 

morning hoursNEE showed a spiky record, especially during night time, probably caused by transport processes in the 

atmosphere, which were not represented in the model. To attenuate the effect of these spikes, the simulated and measured 40 
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values were transformed to cumulated total amounts, starting from the beginning of the observation period. An additional R2 

value was calculated for the cumulated values (AR2). 

2.4.3 Criteria for posterior selection 

Criteria were applied in two steps. In the first step, a basic set of 1285 behavioural models was selected. Out of these, several 

sets of 50 runs each were selected in the second step in two different ways: one for sensitivity analyses and parameter ranges 5 

which was based on single criteria and the other for identification of equifinalities, based on multiple criteria. 

 

Basic selection 

The basic selection was applied, as the lowest summer water levels and a reasonable representation of the plant was assumed 

to be crucial for most of the processes of interest. Criteria were on performance in WT and vascular plant LAI (Table 3). The 10 

criteria on water level below 0.2 m was chosen, as a correct representation of summer drought conditions was of higher 

interest in this study than a correct water level during e.g. frozen conditions in winter, causing water table drop downs to 

0.15 m. The criteria on LAI ME of ±0.2 m2 m−2 was a relatively wide range, as the mean of measured values was 0.4 m2 m−2, 

i.e. a underestimation of LAI by −0.2 m2 m−2 would result in a maximum LAI of 0.2–0.4, which was close to the minimum 

for being able to re-establish new biomass after a low productive year. A wide range of day-time NEE ME was additionally 15 

applied to exclude outliers due to numerical problems, which reached an ME in NEE up to 8∙1027 gCO2-C day−1 m−2 in the 

prior.  

 

Single criteria to identify parameter range 

For sensitivity analyses and to test if, and how, parameter ranges depend on the selected criteria, the best 50 behavioural 20 

models for each performance index of each variable were selected out of the basic selection. Thereby, best means highest in 

case of R2 and NSE, but closest to zero in case of ME. We defined posterior parameter range as the interval between the 5% 

and the 95% percentile of the distribution of parameter values of the runs selected. Posterior parameter ranges were 

compared with the ranges resulting from the basic selection.  If the upper or lower limit of a posterior parameter range of the 

final selections differed by ≥10% from the upper or lower limit of the posterior range of the basic selection, the parameter 25 

was assumed to be sensitive to the selected criteria and further analysed.  

The same was done for each best 200 behavioural models, but as the results were similar, they were only plotted in respect to 

parameter ranges. Further, all parameters were plotted against all performance indices of each variable and checked visually 

for discrepancies with the resulting ranges (results are not shown).  

 30 

Multiple criteria to identify parameter correlations 

For identification of equifinalities, a set of multiple criteria for each variable (Table 3) was applied to select sets of 50 

behavioural models each. Again, these selections were based on the basic selection. Parameter ensembles of these accepted 

behavioural models were then analysed to identify covariance between parameters. A pair of parameters was considered to 

interact, if their values correlated with an R2 of at least 0.1 in the basic selection, respectively 0.2 in the final selection. If a 35 

pair showed correlations in several criteria sets, the highest R2 value was reported in the results.   

2.4.4 Evaluation and measures 

To rank the parameters in their concern, several measures were used to quantify parameter sensitivities and constrain-

abilities, as well as equifinalities. The sensitivity (S) of a parameter to each performance index of each variable was 

quantified by the sum of the differences between posterior range and prior range (range reduction). If a parameter was 40 

sensitive to more than one period of each variable, the highest value for each variable was chosen for further analysis. To 
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identify trade-offs and supporting effects between different criteria, correlations of the performances between different 

variables and indices were plotted and visually analysed. Due to limited computer capacity, this was based on a random set 

of 3200 runs. Further, the parameter value ranges resulting from the different criteria were compared with each other and 

determined how well they were overlapping, i.e. how unambiguously they could be constraint. Overlap (O) for each 

parameter was defined as the difference between the minimum of the upper limits of the posterior ranges of the different 5 

criteria, minus the maximum of the lower limits of posterior ranges and therefore become negative, if ranges were not 

overlapping. Further it was compared how well overlapping ranges differed between performance indices within the same 

variable and between different variables. The overlapping range of each parameter was normalized by dividing it by the 

average of the posterior ranges of this parameter, so that a value of 1 would be reached if all posterior ranges of that 

parameter would be identical for all performance indices and variables. Equifinalities were quantified by the R2 value of a 10 

simple linear regression through the values of the interacting parameter pair in the accepted runs. of the correlation between 

each parameter pair. Parameter concern (P) was defined based on three components: the sensitivity of the parameter, how 

unambiguously it could be constraint and the sum of correlation coefficients of equifinalities with other parameters: 
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�
��×�����

�

��
                (1)  

Thereby, sensitivity was the sum of the range reduction for R2 and for ME, respectively NSE in case no sensitivity was 15 

detected for R2 and ME but NSE. The sensitivity was multiplied by the factor one minus the normalized overlapping range, 

so that the sensitivity of parameters which could be unambiguously constrained are down weighted, and such with high 

uncertainty due to different results for different performance indices or variables are up weighted. Equifinalities were 

considered by the sum of R2 values for each correlation of that parameter with another parameter, displayed in exponential 

form and weighted, so that strong correlations were emphasised and the contribution of equifinalities were in a comparable 20 

scale to the sensitivity measures. 

 

3 Results 

Processes as well as parameters were strongly interacting, which was reflected in sensitivities of each variable to several 

different modulesprocess categories, correlations between the performance in different variables, and in equifinalities 25 

between parameters of different modulesprocess categories.  

About half of the parameters were sensitive to model performance in one or more variables, but only very few had a distinct 

range (Sect. 3.1). Instead they affected several processes, causing trade-offs in model performance between the different 

measurement variables and between the different performance indices, but also several supporting effects could be identified 

(Sect. 3.2). A lot of equifinalities were identified between parameters. Parameters were correlated with up to seven other 30 

parameters, often from different modulesprocess categories. Therefore, a good performance often requires certain 

combinations of parameter values, rather than specific parameter values (Sect. 3.3).  

Each of the available measurement variables (NEE, LAI, sensible and latent heat fluxes, net radiation, soil temperatures, 

water table depth and snow depth) constrained several parameters from several different process categories, without any 

variable being redundant (Sect. 3.4). Nevertheless, large uncertainty remained in especially the unsaturated water distribution 35 

(ψa) in the soil (Fig. 2), which affected all considered processes and hindered further parameter constrain. This might be 

solved by additional measurements of i.e. soil hydraulic properties. Other important parameters that could not be 

constrained, define aerodynamic resistance, radiation interception (in particular moss albedo), timing of snow melt, and in 

case of NEE mostly the leaf litter fall rate of vascular plants during the growing season (Fig. 2).  

A detailed description of the key parameters for each process and the detected interactions can be found in Sect. 3.5. Results 40 

for model fits to the different variables can be found in Fig. S1 in the supplement. 
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3.1 Parameter sensitivity 

Model performance was sensitive to parameter across the different process categories: Most of theOut of 27 sensitive 

parameters were 21 that affected model performance in more than one variable. , but For 15 of the sensitive parameters, 

resulting value ranges differed strongly (less than 50% overlapping range), depending on both, the variable and the 

performance index (Fig. S2 in the supplement). Performance in Ts and WT was determined by 12 key parameters belonging 5 

to seven and six different modulprocess categories, respectively (Fig. 3). In contrast, snow depth and LAI depended mainly 

on parameters from their own modulprocess categories. Large differences in resulting accepted ranges depended on the 

selected performance index and the considered sub-period: On average, accepted value ranges overlapped with 35% between 

different performance indices and between different sub periods of the same variable and with 6% if additionally the 

differences between different variables were considered (Fig. 4). Radiation and LAI refer to the simplest processes in respect 10 

to number of connected parameters (Fig. 3). However, radiation was, together with snow depth, the variable with the 

strongest average disagreement in parameter value ranges between the different selection criteria (Fig. 4). 

 In case of eleven parameters, the accepted ranges did not overlap at all (Fig. S2 in the supplement). Four parameters were 

sensitive to at least half of the considered variables (Fig. 2): The parameter defining the water retention curve and 

unsaturated soil hydraulic conductivity (ψa) affected model performance in variables of all eight considered variables. Moss 15 

transpiration coefficient (gmax,moss), vascular plant respiration coefficient (kgresp,vasc) and litter fall rate (lLc1) were important 

parameters for not only LAI and NEE, but also H, LE and WT, gmax,moss and kgresp,vasc, additional for Ts.  

 The sensitivities of the single parameters are described in more detail in Sect. 3.5. The full table of the correlation 

coefficients between parameters and performance can be found in the supplement (Table S4). 

 20 

3.2 Confounding and supporting effects of interacting processes 

The performances of several variables were connected in supporting and cofounding ways (Fig 5 and 6). Especially ME of 

LE and WT were strongly connected, but also ME of LAI had an impact on the performance in many other variables. Trade-

offs existed not only between the performances of different variables, but also within a variable, depending on chosen 

performance index or seasonalitysub-period. This was also reflected in the lLarge differences in resulting accepted ranges 25 

depended on the selected performance index and the considered sub-period.: On average, accepted value ranges overlapped 

with 35% between different performance indices and between different sub periods of the same variable and with 6% if 

additionally the differences between different variables were considered (Fig. 4). In case of eleven parameters, the accepted 

ranges did not overlap at all (Fig. S2 in the supplement).  

Strong connections existed eEspecially between ME of LE and WT were strongly connected, but also ME of LAI had an 30 

impact on the performance in many other variables: . 

The magnitude of vascular plant LAI was strongly correlated with magnitude of LE, WT, H and NEE, especially if daytime 

and night time values were considered (Fig. 5). Thereby the lowest ME in day and night time NEE, as well as ME and 

dynamics of H, went along with a slight underestimation, and for LE and WT with a slight overestimation of vascular plant 

LAI. Best performance for WT dynamics was reached if the magnitude of vascular plant LAI was correct (Fig. 6). A 35 

noticeable existence of the vascular plants (LAI ME > −0.4) increased the fit in NEE R2 to at least 0.2, but this was not a 

necessary precondition for good NEE performance (Fig. 6). Highest performance in dynamics of WT, H and Ts in the upper 

layer coincided with a good fit in NEE magnitude (Fig. 6). This relationship was even stronger if these variables were 

compared to ME in NEE night time and NEE daytime.    
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A correct representation of WT dynamics and depth coincided with high performance in H dynamics and a correct or slightly 

underestimated H (Fig. 5 and 6). A small ME in H correlated with high performance in WT dynamics. Performances in soil 

temperatures of different layers were strongly correlated with each other in both, dynamics and magnitude.  

Underestimation of LE was connected to an overestimation of H, but also to better dynamics in H (Fig. 5). ME in Net 

radiation was positively correlated with ME in H. A good fit between modelled and observed snow depth did not correlate 5 

with the performance in any other variable. The only exception was a negative correlation between the dynamics in snow 

depth and H, if exclusively performance during spring time was considered (Fig. S3 in the supplement).  

Trade-offs existed not only between different variables but also between different performance indices of the same variable. 

Especially for snow, Rn, and in case of some parameters also for Ts, accepted ranges were contradictory depending on 

whether R2 or ME was chosen. In case of moss albedo (apve,moss) and aerodynamic resistance dependency on LAI (ralai), the 10 

ranges also strongly depended on the season during which the variable was considered. For two aerodynamic resistance and 

one soil parameter (z0M,snow, cH0,canopy, sk) ranges differed between R2 of actual values and R2 of accumulated values.  

Additional to the uncertainty from unambiguous parameter ranges, further uncertainty results from equifinalities between 

parameters. 

 15 

3.3 Equifinalities 

Parameters were strongly inter-correlated, often with several parameters, and often from across different modulprocess 

categories. Equifinalities can hinder the identification of sensitivities, which was especially true for the basic selection: 

Despite reducing the number of runs by 97.5%, posterior and prior ranges differed hardly (Table S5 in the supplement). 

Instead certain value triples for photosynthetic efficiency (εL,vasc) with the respiration coefficient (kgresp,vasc) and with the 20 

storage fraction for plant regrowth in spring (mretain) were crucial for the survival of the vascular plant layer. Certain value 

pairs for the moss transpiration coefficient (gmax,moss) with the shape parameter of soil water retention (ψa) were crucial for a 

reasonable water table depth. 

Equifinalities existed not only between parameters from the same modulprocess categories, but even more often between 

parameters from different modulprocess categories (Fig. 7). Parameters defining radiation interception, soil temperature, 25 

aerodynamic resistance, transpiration, and soil hydrology correlated with exclusively parameter from different modulprocess 

categories. Parameters defining radiation interception were mostly correlated with parameters defining aerodynamic 

resistance. Only in case of plant and SOC decomposition parameters, equifinalities existed mainly between parameters of the 

same modulprocess categoryes. 

Except ρsmin, all sensitive parameters and further other parameters were detected to correlate with up to five other parameters 30 

in the final selections, ψa correlated with even seven others (Fig. 2). Two parameters had very strong correlations (R2 ≥0.3) 

with two other parameters each, which belong to different modulprocess categories (ψa with cH0,canopy and gmax,moss and 

apve,moss with z0M,snow and ralai) (Table S6 in the supplement).  

 

 35 

3.4 Usefulness of measurement variables 

All available measured variables (NEE, LAI, LE, H, Rn, Ts, WT and snow depth) were helpful in constraining parameter 

ranges (Fig. 2). None of the supporting effects was strong enough, to make one variable fully replaceable by another. Even 

for the strongest correlation between soil temperatures of the different layers, the remaining uncertainty in one temperature 
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when knowing the other would be in the magnitude of 0.5°C, which corresponds to more than 25% of the total uncertainty 

resulting from the tested parameter ranges (Fig. 5).  

In case of 15 variables, the usage of several variables revealed that constrained ranges were not robust. Twelve13 parameters 

could be unambiguously constrained to a more narrow range, as their resulting ranges were had at least 50% well 

overlapping, or affected only one variable (Fig. S2 in the supplement). The performance on Eeach variable constrainedwas 5 

correlated with many parameters from several different processes process categories (Fig. 3). The highest number of 

correlations was detected for the performance in WT and Ts, which constrained 12 parameters from different modulprocess 

categories. Also the available data for LE, H, and NEE constrained many parameters.  

 Still, large uncertainty remained due to equifinalities and differences in accepted ranges: The largest uncertainty was caused 

by a parameter defining the shape of the water retention curve (air entry, ψa). As this was the only calibrated parameter of the 10 

water retention curve, it determined the unsaturated hydraulic conductivity of the soil. ψa was sensitive to all considered 

variables and had many strong interactions with other parameters, while it was not possible to constrain it to an unambiguous 

value range (Fig. S2 in the supplement). Therefore it would be of great value to be able to deduce such parameters from 

additional measurements. This applies also to following parameters, which could not be constrained unambiguously: Leaf 

litter fall rate of vascular plants during the growing season (lLc1) was the second most sensitive parameter, affecting the 15 

performance in NEE, H, LE and WT. Moss albedo (apve,moss), aerodynamic resistance dependency on LAI (ralai) and 

transpiration coefficients (gmax,vasc, gmax,moss, gmaxwin) had similar importanceconcern, due to their equifinalities to other 

parameters. Plant respiration (kgresp,vasc) had strong sensitivity, but could be constrained unambiguously by the available data.  

 

3.5 Detailed description of sensitivities and interactions per process 20 

Detected sensitivities, connections between performances, and equifinalities showed all strong interactions between the 

different processes and parameters of different modulprocess categories. Connections existed between all variables and 

modulprocess categories, but most strongly interlinked were LE with WT, Rn with H and Ts (Fig. 2). H, LE, WT were also 

linked to each other and to NEE. The impact of the plant is further reflected in the correlations between performances in LAI 

with performances in many other variables (Fig. 5). The implications on the performance for each considered variable will 25 

be described in the following sections.  

3.5.1 Water level depth and soil moisture conditions 

Performance in water level depth was determined by 12 key parameters (Table S4 in the supplement). It was most strongly 

connected to the shape of the soil water retention curve (ψa) as well as to the transpiration coefficients for mosses and winter 

transpiration (gmax,moss, gmaxwin). The transpiration coefficient from vascular plants played a smaller role due to the high 30 

sensitivities of parameters defining the growth and therefore magnitude of the vascular plant (i.e. kgresp,vasc, mretain, lLc1). 

Equifinalities existed between several of these parameters.  

ψa had strong effect on the performance of all variables and several strong equifinalities, in particular with parameters 

defining aerodynamic resistance and transpiration; On the other hand ψa could not be constrained to an unambiguous range 

and was therefore the parameter causing the largest overall uncertainty (Fig. 2).  35 

Performance in WT was further sensitive to parameters defining aerodynamic resistance, i.e.  ralai and cH0,canopy. Both 

parameters had equifinalities with ψa and moss albedo (apve,moss) as well as with timing of snow melt (mT) and thermal 

conductivity of snow (sk). Also the distance between drainage (dp), showed some sensitivity. 
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3.5.2 Transpiration and evaporation 

The nine most important parameters for WT performance were also key parameters for LE (ψa, gmax,vasc, gmax,moss, gmaxwin, 

kgresp,vasc, mretain, lLc1, ralai, cH0,canopy). This explains the strong correlation between the performance in WT and LE ME (Fig. 5) 

and shows the connections with plant, WT and H. Another parameter, sensitive to LE was the roughness length of snow 

(z0M,snow), belonging to the aerodynamic resistance modulprocess categorye and correlating with moss albedo, hinting to the 5 

connections between LE and R associated processes.  

Dynamics in WT and LE, but also magnitude of H was improved if the transpiration coefficient was on its lower range in 

case of mosses and on its upper range in case of vascular plants (Fig. S2 in the supplement). Despite the lower values for 

mosses, transpiration prior criteria selection was dominated by mosses, due to their higher LAI and coverage (Fig. S4 in the 

supplement). 10 

 Crucial for LE performance was also a parameter defining the aerodynamic resistance of the canopy under stabile conditions 

(cH0,canopy): a very small value improved the R2 of LE and spring LE, but downgraded R2 of accumulated LE and of winter 

radiation.   

Spring LE was overestimated in most of the runs (see Fig. S1 in the supplement). The strongest sensitivity on spring LE was 

by the coefficient for winter transpiration (gmaxwin): the higher the better R2 and ME. Together with (z0M,snow) this was also the 15 

most important parameter for winter LE.  

 

3.5.3 NEE & LAI 

Seven of the nine parameters which were common for LE and WT were also among the most effective parameters for NEE 

(ψa, gmax,moss, gmax,vasc,, kgresp,vasc, mretain, lLc1, ralai) and belong to four different modulprocess categories: plant, transpiration, 20 

soil hydrology and aerodynamic resistance (Table S4 in the supplement). However the most sensitive parameter for NEE 

was the rate coefficient for heterotrophic respiration (kl1), which was especially important for night time NEE. Further 

sensitive parameters for night time NEE were the growth respiration coefficient for mosses (kgresp,moss) and the temperature 

dependency coefficient for heterotrophic respiration (tmin).  

The rates of photosynthesis and its temperature dependence (εL,vasc, εLmoss, pmn,vasc) were key parameters for LAI, NEE 25 

magnitude or temporal NEE dynamics, respectively. Many strong interactions existed between plant parameters, which were 

especially visible in the basic selection (see Sect. 3.3).  

The rate of leaf litter fall during the growing season lLc1 was one of the parameters with the highest concern, due to its 

sensitivity on many different processes, its equifinalities and as it could not be constrained to an unambiguous solution (Fig. 

2). Resulting ranges for lLc1 differed especially between the different performance indices within NEE and within LAI, but 30 

also between NEE and LAI (Fig. S2 in the supplement).    

 

3.5.4 Sensible heat fluxes, soil temperatures and net radiation 

Many inter-connections existed between H, Ts and Rn, but all three were also linked with LE, WT, snow and NEE.  A snow 

parameter, determining the timing of snow melt (mT) was the most crucial parameter for heat fluxes, not only in spring time, 35 

but also for the whole year period. Further, mT was important for Ts in spring time (cf. Sect. 3.5.5). The shape of the soil 

water retention curve (ψa) was the second most sensitive parameter for both variables.  

The aerodynamic resistance dependency factor on LAI (ralai) was the most sensitive parameter for Ts, and affected also LE, 

WT and night time NEE, while it strongly correlated with moss albedo (apve,moss), the third most sensitive parameter for H 

and most sensitive parameter for Rn. Accepted ranged for ralai contradicted within the soil temperature variables, depending 40 

on the chosen performance index and considered season: high values were important for Ts ME and R2 during winter, but 
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low ones improved Ts R2 during spring and during the whole period. Therefore, ralai was the parameter causing the largest 

overall uncertainty after ψa. This was followed by apve,moss, which had low values for accepted ranges in case of H, Rn and Ts 

during the whole period, but high values in case of winter H and Rn. It further showed strong equifinialitesequifinalities with 

the roughness length of snow (z0M,snow), which was the second most sensitive parameter for Rn, but also affected H and LE. 

The coefficient for thermal conductivity of snow (sk) affected Rn and Ts, but not H.  5 

The thermal conductance coefficient of soil organic material (h2), the lower boundary mean temperature (Tamean), the snow 

melt dependency to radiation coefficient (mRmin) and the density of new and old snow (ρsmin, Sdw) affected only soil 

temperatures, the latter two also snow depth.   

Parameters defining moss and winter transpiration (gmax,moss, gmaxwin) and the growth respiration coefficient of vascular plants 

with its effect on vascular plant biomass and LAI (kgresp,vasc) were sensitive to Ts, gmax,moss and kgresp,vasc also to H. The most 10 

important parameter for LE, cH0,canopy was another key parameter for Rn and H. 

3.5.5 Snow 

The temperature coefficient in the snow melt function (mT) was the most important parameter for ME in snow and 

determined timing of snow melt. However, resulting parameter ranges did not overlap between the different performance 

indices within the snow depth variable and between different other variables. A longer lasting snow cover (low mT < 3) was 15 

crucial for spring H and reduced mean error in snow depth, but lowered R2 values in spring Ts and snow depth. mT interacted 

with another snow parameter (TRainL) as well as with parameters from the temperature and transpiration modulprocess 

categorye (Tamean, gmaxwin). The density coefficients for old (Sdw) and new snow (ρsmin) had medium effect on snow depth 

performance, and affected also spring and winter soil temperatures in all layers, but the latter could be unambiguously 

constrained by the available data.  20 

 

4 Discussion 

Unlike many previous sensitivity studies for carbonCO2 modelling that often focus on only one or few calibration variables 

and parameters of the associated modulprocess categorye, we considered many different abiotic and biotic measurements 

(NEE, LAI, Rn, Ts, H, LE, WT and snow depth) to investigate the interactions between various process categorieses (SOC 25 

decomposition, plant growth related processes, radiation interception, soil temperature, aerodynamic resistance, 

transpiration, soil hydrology and snow) in a peatland ecosystem.  

Similarly to results from a forest modelling study using the DRAINMOD-Forest model (Tian et al., 2014) and a N2O study 

using CoupModel on a drained peatland forest (He et al., 2016), we found that processes were sensitive to parameters from 

several different modulprocess categories. Together with the discovered supporting effects between model performances in 30 

different variables, this confirms the connections and dependencies between different processes as implemented in the model 

(cf. Model description and equations, Sect. 2.3, Table 2 in the supplement and Janson and Karlberg, 2010). The many 

interactions between parameters of both, between the same and alsoequifinalities within and between different modulprocess 

categories, reveal the dependency of constrained parameter ranges as well as parameter sensitivities to model structure, 

calibration setup and parameters with fixed values: a deviation in one of these factors leads to different optimal value ranges, 35 

whereas a non-sensitive parameter might become sensitive if an interacting parameter is set constant. This implies a limited 

transferability of parameter values between models in general and even between studies using the same model in a different 

configuration. Resulting parameter ranges were moreover affected by the applied criteria for selecting runs. Yet, it is quite 

common practice to adopt at least some parameter values from other modelling studies (e.g. Frolking et al., 2002, Yurova et 
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al., 2007; St. Hilaire et al., 2010; Wania et al., 2010; Gong et al., 2013; Kim et al., 2014; Kurnianto et al., 2014; Zhu et al., 

2014), which includes the usage of model default values that were estimated under a different model configuration. 

Further, Tthe strong interactions across different modulprocess categories also emphasize the importance of measurements 

of ancillary data additionally to the variable of interest and model input data (meteorological and SOC data). Measurements 

of NEE, LAI, LE, H, Rn, Ts, WT and snow were all found to be valuable for constraining parameters from several different 5 

modulprocess categories and can therefore reduce uncertainty in model predictions. Further constraint of the parameters in 

this study would be possible, if especially additional water content or soil hydraulic properties were measured.  

Beside parameter uncertainty, also uncertainty in model structure and in measured input and calibration data contribute to 

model uncertainty (Thorsen et al., 2001; Beven and Freer, 2001). This was tested for other peatland models (e.g. model 

structure: Tang et al., 2015; input drivers: Wania et al., 2009; St-Hilaire et al., 2010; Grant et al., 2011, Kim et al., 2014), but 10 

goes beyond the scope of this study. Here, only one model and one site was investigated. A previous study using CoupModel 

investigated the differences of parameter ranges between several different peatland sites (Metzger et al., 2015). 

4.1 Parameter sensitivity 

The sensitivity of variables to parameters from many different processes revealed the importance of process interactions.The 

gained knowledge on parameter sensitivities can help to simplify future calibrations (Saltelli et al., 2000), by focussing on 15 

the most striking parameters and narrowing the ranges for parameter which could be successfully constrained. Further it 

helped to identify process interactions. Especially abiotic processes were strongly inter-linked, but also biotic variables 

showed sensitivities to parameters from up to seven different modulprocess categories, suggesting that parameter 

sensitivities and model performance of a certain process depend on which other modulprocess categories are considered in 

the a model and in the a calibration. This is an important finding, as many studies investigate the sensitivity of often only few 20 

parameters from mainly the same modulprocess categorye as the output variable (e.g. Yu et al., 2001; Frolking et al., 2002; 

Belassen et al., 2010; Wania et al., 2010; Morris et al., 2012; Wu and Blodau, 2013; Zaho et al., 2013; Zhu et al., 2014), 

which might lead to sensitivities and resulting ranges that are not robust. The knowledge on these dependenciesidentified 

interactions can help modellers to develop or select an appropriate model including the parameters, processes and 

modulprocess categories which need to be considered together, depending on the variable of interest.  25 

The gained knowledge on pParameter sensitivity analysesies can also help to simplify future calibrations (Saltelli et al., 

2000), by focussing on the most striking parameters and narrowing the ranges for parameter which could be successfully 

constrained.  

Though, wWhile the existence of interactions between the processes and their parameters is supposed to be less dependent 

on site conditions and model structure, the exact shape of the connections, as well as constraint parameter ranges, as well as 30 

the relevance of the specific processes and the specific interactions might strongly depend on these factors.  

Still, oOne or more of the following parameters that we identified as  most influential, correspond to key parameters in other 

studies using other models and partly different ecosystems: The respiration rate coefficients, radiation use efficiency, 

transpiration coefficients or the soil water retention capacity were among the most sensitive parameters for NEE, its 

components, or yield, respectively, in e.g. the PCARS (Frolking et al., 2002) and the GUESS-ROMUL (Yurova et al., 2007) 35 

model on peatland, the SiB v2.5 model on a forest area including some wetlands (Prihodko et al., 2008), the LPJ-GUESS 

model on forest and herbaceous vegetation (Pappas et al., 2013), the EPIC model on cropland (Wang et al., 2005), the 

BIOME-BGC model for different tree species (Tatarinov and Cienciala, 2006), or the ACASA (Staudt et al., 2010), the 3-PG 

(Esprey et al., 2004; Xenakis et al., 2008), the FORUG (Verbeeck et al., 2006) or the DRAINMOD-FOREST (Tian et al., 

2014) model on forest. These sensitivities seem to be therefore quite independent of model structure, included processes and 40 

parameters used for calibration and apply to different types of ecosystems. The resulting value ranges of these parameters 
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should be compared between ecosystems and models to find out to what extent they can be related to site conditions and 

therefore used for predictions and upscaling.  

However, one has to bear in mind that resulting constrained rangesThey might be connected to the environmental scenario 

(Hidy et al., 2012; Ben Thouhami et al., 2013; Sulman et al., 2013) and the chosen prior distributions of the parameters (e.g. 

Tatarinov & Cienciala, 2006). Further, our results have shown that the parameter ranges depend on model structure, on the 5 

selection of parameters for calibration and on the selected acceptance criteria. Thereby, not only the selected variable, but 

also the selected sub-period was relevant, as has been shown by other studies as well (e.g. Prihodko et al., 2008; Van 

Huisteden et al., 2009; Safta et al., 2014). 

4.2 Confounding and supporting effects of interacting processes 

Criteria selection is a subjective choice of the modeller if multiple output variables are available. The identified supporting 10 

effects and trade-offs between the performances in different variables allow modellers to assess the implications of a certain 

criteria on model performance and parameter ranges and to choose criteria according to the processes of interest. , however 

some of them might be ecosystem or model specific. Trade-offs existed not only between different variables but also within 

the same variable, depending on whether ME, R2 of actual or R2 of accumulated values was chosen and which season was 

considered. This implies that the problems of a subjective criteria selection also exist if only one time series variable is 15 

considered. Even if a standardised multi-criteria optimization algorithm like Bayesian calibration or a more sophisticated 

performance index combining several performance measures is used, the choices and the corresponding weightings are 

moved to the developer of the algorithm or index, but still remain subjective.  

More than half of the sensitive parameters in this study could not be constrained to an unambiguous range. Constraining such 

a parameter by only one variable and one index would result in a range that is not robust. Using several measurement 20 

variables and several indices can therefore help to test the robustness of calibrated parameters. A parameter that is robust 

might better represent a physical constant, whereas controversial resulting ranges might hint to a not well represented 

system: There is no value for this parameter that leads to simultaneously the best performance for dynamics and magnitude 

in all variables and during all periods. Instead of a physical constant this parameter might correspond to a dynamic process. 

Beside model inadequacy, mismatching ranges could be caused in some cases by an inappropriate performance index (cf. 25 

discussion in Sect. 4.5.4) or measurements that do not truly represent the modelled variable. E.g. with the EC technique, 

NEE is not directly measured as the CO2 exchange between biosphere and atmosphere at a certain point, but rather results 

from calculations of the turbulent exchange of vertical fluxes measured several meters above the ground. Moreover, fluxes 

may originate from a footprint area that changes diurnally and seasonally and thus may include different soil conditions and 

vegetation.  30 

 

Usually, LE is assumed to be closely connected to NEE due to the coupling of transpiration and carbon assimilation in 

vascular plants (e.g. Schulze et al., 2006), but has also been shown to correlate for mosses (e.g.  Robroek et al., 2009). Our 

study reveals much stronger relations between parameters defining H and NEE, than between LE and NEE. Trade-offs 

between performance in LE and NEE were also found by Staudt et al. (2010) and Prihodko et al. (2008) in a forest and a 35 

forest complex including wetlands. However, only the effect of parameters, not the effect of model input (i.e. meteorological 

input data) variables on these processes were tested in both studies, as well as in ours. Such a confounding effect might also 

be the effect ofresult from a parameter value compensating for a process not implemented in the model. For example, 

parameter values that lead to an overestimation of NEE in spring result in higher transpiration and therefore better LE, 

whereas the reason for the underestimated LE during mid-April to mid-June (Fig. S1 in the supplement) might in fact be 40 

caused by .  
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evaporation from , like e.g. evaporation from open water bodies that form on the peatlanded during spring and early summer, 

a process not implemented in the applied version of CoupModel.  

, which might also explain the model data mismatch in LE during mid-April to mid-June (Fig. S1 in the supplement).  

Trade-offs existed not only between different variables but also within the same variable, depending on whether ME, R2 of 

actual or R2 of accumulated values was chosen and which season was considered. This implies that the problems of a 5 

subjective criteria selection also exist if only one time series variable is considered.  

Also severalThe detected supporting effects were detected, indicateing that some measurement variables can partly 

compensate absence or low resolution of a connected variable, even though they were not strong enough to make one 

variable fully redundant. For example, LAI measurements could reduce uncertainty in model predictions of the magnitudes 

of NEE, LE, H and WT on locations where these variables are not available. Tight relationships between plant and LAI, soil 10 

hydrology, C-fluxes and soil temperatures have been found by other model sensitivity studies as well (e.g. Ben Thouhami et 

al., 2013; Quillet 2013; Tian et al., 2014; Sándor et al., 2016) and strong correlations between LAI and NEE (Lund et al., 

2010), and NEE and water availability (Reichstein et al., 2007) have also been found by data syntheses of eddy covariance 

sites. These relationships can be explained by the many dependencies between LAI and e.g. photosynthesis, transpiration, 

heat insulation and water uptake (Schulze 2006), of which several are also implemented in the model (see model description 15 

and equations, Sect. 2.3, Table S2 in the supplement and Jansson and Karlberg, 2010).  

Other examples for detected supporting effects indicate that if H fluxes are available, the model is constrainable to produce 

improved WT dynamics, even if WT measurements were missing. High temporal resolution of soil temperature 

measurements in one layer are sufficient to model good temperatures if just the magnitude of soil temperature in an upper 

and a lower layer is known, e.g. due to short time or low resolution measurements.  20 

The knowledge on supporting effects helps modellers in their site selection and in uncertainty estimation of model 

predictions depending on available ancillary data. It further can help experimentalists in their decisions which variables 

should and which need to be measured if the site should be usable for model constraint.   

4.3 Equifinalities 

The fit of model output to measured data in complex models is often not driven by a particular parameter but instead by 25 

interactions among parameters (e.g. Beven and Freer, 2001), which was also the case for several parameters in our study, 

hindering the constraint of parameters to a more narrow range. Also other carbon modelling studies found, that parameter 

values and sensitivities depend on the values of other parameters (e.g. Tatarinov & Cienciala 2006; Verbeeck et al., 2006; 

Quillet et al., 2013). This implies that especially if only few parameters and processes are calibrated (as in e.g. Yu et al., 

2001; Wania et al., 2010, Zhu et al., 2014; Kim et al., 2014, Tang et al., 2015), resulting constrained ranges might not be 30 

comparable and transferable between models differing in their constant parameter values. Many equifinalities were 

identified, not only between parameters from the same modulprocess ecategory, but also from across different modulprocess 

categories. This means that the problem of limited transferability also applies, if parameters from only one modulprocess 

ecategory are calibrated (as e.g. in Wang et al., 2005, Belassen et al., 2010, Wania et al., 2010, Sándor et al., 2016), or if 

models differ in the structures and implementations of their modules.  35 

The knowledge on equifinalities is needed for a better parameter constraint in future calibrations as it allows calibration of 

the connected parameters in dependency of each other. Another way to respond to identified equifinalities is to calibrate only 

one of the connected parameters. However the resulting range will then not be transferable to other models using different 

values for connected, constant parameters.  

Some equifinalities included several parameters, making their visualisation impossible and simple regression an insufficient 40 

tool for fully detecting and describing them (cf. Saltelli et al., 2008). These equifinalities need to be further investigated in 

additional calibrations which incorporate those parameter interactions and constrained ranges which were unambiguous, to 
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achieve a higher number of acceptable runs. This is needed, because the numbers of accepted runs in the final selections (50) 

did not allow a much more detailed analysis in such a complex model, as was apparent in comparison with the basic 

selection: An R2 threshold value of 0.1 was sufficient to identify equifinalities in the basic selection of 1286 accepted runs, 

but with just 50 accepted runs in the final selections, this threshold value could easily be exceeded by a random distribution, 

even that a higher threshold value of 0.15 was used. A threshold of 0.15 was on the other hand already too high, to detect for 5 

example the strong relationships between the plant parameters which were only clearly visible in the basic selection. 

Nevertheless the six equifinalities with R2 of higher than 0.30 are unambiguous in this application of the CoupModel and 

those with lower values are still very useful to design future calibrations to further investigate and describe these 

equifinalities. 

4.4 Usefulness of measurement variables 10 

Models can be improved and their uncertainty reduced by calibrating their parameters to measurement data (e.g. Friend et 

al., 2007; Wang et al., 2009; Williams et al., 2009). We tested the usefulness potential of several measurement variables 

(NEE, LAI, LE, H, Rn, Ts, WT and snow depth) and found all contributing to a better parameter constraint.  

Thereby none of the variables could be fully replaced by another. Due to the strong interactions and as parameters of each 

modulprocess categorie were constrained by several different variables, ancillary variables are valuable even if only one 15 

certain process is of interest. In case of snow, our results suggest that data on snow cover might be sufficient, if snow depth 

is not available. 

 In a forest site simulation with the ORCHIDEE model, H and Rn were found to be redundant for constraining energy 

balance parameters if NEE and LE were available (Santaren et al., 2007). In contrast, some energy balance related 

parameters in our study were constrained by exclusively Rn and H, or additionally by LE but with different resulting ranges. 20 

This reveals the usefulness of Rn and H measurements for model constraints and shows that variables which might have 

been identified as redundant in one study could be of high importance on another ecosystem or for another model calibrating 

a different parameter selection.  

Several influential parameters could not be unambiguously constrained or showed equifinalities and need additional 

measurements to be further investigated. This includes soil water content or soil water retention properties, as well as canopy 25 

albedo and leaf litter fall during the growing season. Except for water retention properties these variables are needed as time 

series throughout the year. A more detailed discussion of the benefit of such measurements can be found in the following 

sections. 

4.5 Detailed discussion of sensitivities and interactions per process 

The parameters that were identified as most influential or that showed the strongest equifinalities were related to soil 30 

hydrology and water content, to a stable representation of the plant, to radiation, temperature and heat fluxes or to snow. As 

only one parameter per equation was calibrated, a high sensitivity to this parameter means a high sensitivity to the 

corresponding process. Some of such process sensitivities might be also be interesting for other models and similar 

ecosystems.  

The introduced index to measure parameter concern includes subjective choices like weighting factors, the choice of 35 

considered calibration variables and their sub periods as well as the chosen performance indices. However several tested 

variations in especially the weighting did not noticeable change the results: ψa was always the most important parameter, 

followed by the group of parameters with medium importance which differed slightly in their ranking among each other.  
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4.5.1 Unsaturated water distribution & soil moisture conditions 

Our results suggest that model uncertainty could be greatly reduced if data for either soil hydraulic properties, water content 

or plant transpiration characteristics were available: Despite available data of detailed WT and LE in our study, large 

uncertainty remained in simulated water content due to the combined uncertainty in estimates of soil hydraulic properties 

(ψa) and plant water uptake (gmax,vasc, gmax,moss, gmaxwin). Their sensitivity to many variables and the high number of 5 

equifinalities hindered the constraint of other parameters and therefore the uncertainty reduction in all involved processes. 

For example this might explain why the water response functions for neither plant assimilation nor soil respiration could be 

constrained.  

The shape parameter of the water retention curve (ψa) was among the top two most sensitive parameters for NEE, WT, LE, 

H, Ts, and the third and fifth most sensitive parameter in case of Rn and snow. That confirms the importance of the 10 

implemented interactions of soil moisture with water and heat fluxes, soil temperature, assimilation and respiration 

processes, as reported from empirical studies (Kim and Verma, 1996; Bridgham et al., 1999; Tezara et al., 1999; Kellner, 

2001; Flangan and Johnson 2005; Lafleur et al., 2005; Schulze, 2006; Belyea 2009). 

 Also, the transpiration coefficients (gmax,vasc, gmax,moss, gmaxwin) were among the top 10 ten most important and influential 

parameters. In case of vascular plants, they correspond to the stomatal conductance parameter in other models, which was 15 

shown to be crucial for modelling NEE, biomass, LE or H in other studies (Esprey et al., 2004 for forest stand volume, 

Tatarinov and Cienciala, 2006 for NEE and carbon pools; Staudt et al., 2010 for NEE, LE and H; Hidy et al., 2012 for 

carbon fluxes and LE; Bonan et al., 2011 and Tian et al., 2014 for LH and H). The control of stomatal conductance on 

transpiration and photosynthesis has also been emphaszised by several empiric studies (e.g. Jarvis & Morison 1981, Quick et 

al., 1992, Tezara et al., 1999, Yordanov et al., 2000).  20 

The strong sensitivity of ψa, gmax,vasc, gmax,moss, gmaxwin for many processes is especially remarkable as parameters and 

parameter combinations could only vary to such an extent that the water level fitted the measurements as restricted by the 

basic selection.  

The importance of water table on NEE fluxes has widely been mentioned (e.g. Silvola et al., 1996; Yurova et al., 2007, 

Kurbatova et al., 2009; Dušek et al., 2012) but our results point out that the knowledge on WT alone is not sufficient for 25 

model calibration and reliable predictions. In addition also measurements of soil hydraulic properties are crucial for model 

calibration. The usefulness of water retention properties for modelling carbon dynamics was also found by other sensitivity 

analyses on peatlands as well as on mineral soils (e.g. Wang et al., 2005; Pappas et al., 2013, Quillet et al., 2013). 

Nevertheless, many of the available peatland sites in current databases (e.g. European Fluxnet Database Cluster, 

http://gaia.agraria.unitus.it) still do not contain information on water retention properties or water content. 30 

 We therefore strongly recommend experimentalists to include water retention measurements in their experimental set up. 

Thereby, the horizontal and vertical variablityvariability in peat hydraulic properties needs to be accounted for (Baird et al., 

2012, Waddington et al., 2015). Such measurements might also help to resolve the strong equifinalities of ψa with 

transpiration coefficients and a parameter in the calculation of aerodynamic resistance of the plant canopy, defining the 

minimum exchange under stabile conditions (cH0,canopy).  35 

 

4.5.2 C balance of vascular plants 

A stable vascular plant that establishes a reasonable amount of biomass every year throughout the simulation period, could 

only be achieved by certain value combinations for the photosynthetic efficiency (εL,vasc), the respiration coefficient 

(kgresp,vasc) and the storage fraction for plant regrowth in spring (mretain). Despite their high impact in the basic selection, 40 

neither equifinalities, nor sensitivities of these parameters reached high measures in final selections, probably because 

several parameters were interacting simultaneously. This indicates the need for either calibrating these parameters in 
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dependency of each other or setting at least one of them to a constant value, as the available data was not sufficient to resolve 

these equifinalities. Many studies on other ecosystems have found NEE or biomass to be strongly sensitive to a parameter 

corresponding to photosynthetic efficiency (εL,vasc) (Esprey et al., 2004, Verbeeck et al., 2006; Prihodko et al., 2008; Staudt et 

al., 2010; Bonan et al., 2011; Pappas et al., 2013, Tian et al., 2014, Xenakis et al., 2008), but were performed without a 

simultaneous calibration of parameters related to plant respiration and storage for regrowth. Pappas et al. (2013) discussed a 5 

possible overestimation of model sensitivity to photosynthetic efficiency due to processes that are not implemented like the 

active simulation of plant growth including growth limitations. A strong negative correlation between two of the parameters 

(plant respiration and photosynthetic efficiency) was also found in a sensitivity analysis using the LPJ model (Zaehle et al., 

2005).  

Despite their effect on model performance, εL,vasc, kgresp,vasc and mretain had a low rank in parameter concern, as ranges for 10 

these parameters could be narrowed unambiguously due to well overlapping ranges between the different variables. 

Nevertheless, these parameters would be of high importance for predictions, if none of the constraining variables are 

available.  

Compared to a previous application of the CoupModel on five different open peatlands including different management 

intensities (Metzger et al., 2015), vascular plants had to have a much more effective C household to produce the measured 15 

leaf area given a limited amount of assimilates. This can be realised by low respiration and litter fall losses and a large 

storage pool for regrowth in spring. Even if respiration losses from vascular plants were 1/10 of the ones used at the sites in 

Metzger et al. (2015), the model tended to either underestimate vascular plant LAI, or overestimate CO2 uptake (Fig 2). A 

possible explanation for the differences in parameter value combination of vascular plants might lie in the vegetation 

communities. Despite Metzger et al. (2015) included several different types of treeless peatland vegetation communities, 20 

none of these sites had a similar vegetation community typical for nutrient poor habitats, consisting of mainly mosses and 

Eriophorum vaginatum, as at Degerö Stormyr. Eriophorum vaginatum is known to be much more effective in maintaining C 

compared to other sedges and having a highly efficient remobilization from senescing leaves (Shaver and Laundre, 1997; 

Jonasson and Chapin III, 1985). Uncertainties in measurements and the distribution of modelled respiration over the hours of 

the day might accelerate or diminish this effect. Explanations by differences in model structure can be excluded, as the same 25 

effect was observed when using exactly the same structure (unpublished data). To identify the difference between the sites, 

which causes the deviations in the combined parameter value ranges, the model need to be applied to further open peatland 

sites differing in vegetation community, nutrient status and plant productivity. This might allow finding trends in parameter 

ranges, which is a necessary precondition for estimation and reducing model uncertainty in predictions on other peatland 

sites.  30 

Another plant parameter which was important for a stable vascular plant layer and was ranked as one of the overall most 

important parameters was the rate coefficient for the leaf litter fall during the growing season (lLc1). Probably due to the high 

number of correlations with other parameters, these correlations did not exceed the threshold value. lLc1 is directly connected 

to the filling of the storage pool, but also for maintaining C in the leaves. The strong sensitivity of LAI to lLc1 affects 

transpiration and thereby water uptake which explains the strong sensitivity to WT depths below −0.2 m and the 35 

equifinalities with a transpiration parameter and a parameter describing the response of heterotrophic respiration to water. In 

Metzger et al. (2015), a value of lLc1 = 0.01 day−1 could be used site independent. This contradicts the much lower ranges of 

lLc1 in our study, necessary for acceptable performance in several variables, in particular R2 of LAI, WT depths below −0.2 m 

and ME of spring time NEE. However, species in nutrient-poor habitats are associated with longer-lived leaves than those of 

nutrient-rich habitats (Ryser 1996) and fast growing species (Reich et al., 1992), whereas Eriophorum vaginatum in 40 

particular is known for long-lived leaves and therefore have a very low litter fall rate (Jonassson & Chapin 1985). Less 

complex models as the GUESS-ROMUL model, which was also applied to this site, use annual accumulated NEE as 

estimate for litter fall (Yurova et al., 2007) which is therefore directly dependent on site productivity. Only one site in 
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Metzger et al. (2015) had lower annual NEE compared to Degerö Stormyr, but this is probably a result of the shorter 

vegetation period at that site, whereas a site with similar annual NEE was formerly drained, so that the soil respiration 

contribution to NEE is much larger, compensating the larger productivity. A high sensitivity of litter fall rate to plant 

biomass and soil carbon pools was also found by Xenakis et al. (2008) using the 3-PG model on forest. 

Further investigations including model applications to additional sites are needed to resolve the differences in resulting 5 

ranges and equifinalities with other parameters. Thereby, measurements of leaf litter fall throughout the year would be of 

high value.  

 

4.5.3 Sensible heat fluxes, soil temperatures and net radiation 

The large number of strong connections between H, Ts and Rn and the equifinalities between their determining parameters 10 

indicate the importance to consider, model and calibrate the related processes together. However the constraint of two of the 

most important parameters (aerodynamic resistance dependency on LAI, ralai and moss albedo, apve,moss), failed not due to 

different ranges between variables but due to the differences depending on which performance index and season was 

considered. This emphasises the importance of the subjective criteria choice, even if only one variable is considered.  

Accepted values for ralai were exceptionally high (200 s m−1 for Ts R2 and 550 to 800 s m−1 for Ts1 ME, whereas a ralai of 200 15 

multiplied with the moss LAI of 1.8 leads to an aerodynamic resistance of 360 s m−1). Mosses might form a well insulating 

layer, but still the values are much higher than the aerodynamic resistance estimates for this site (approximately 50 s m−1, 

Peichl et al., 2013) or of a bog in South-Sweden (60 s m−1, Kellner, 2001). Price (1991) reported very high resistance, when 

moss surface moisture is low, e.g. during dry periods, but these values were still lower than ours. A possible explanation 

might be an interaction with a non-calibrated, fixed parameter. A high aerodynamic resistance causes better temperature 20 

insulation leading to higher summer soil temperatures with lower diurnal oscillations. Further, it leads to strongly reduced 

soil evaporation and therefore reduced LE, even though this is partly compensated by slightly higher transpiration from 

mainly mosses, which profit from the higher water contents in upper soil layers. This explains the sensitivities to WT and LE 

which also supported a higher ralai value. The main cause for the much lower optimum range for dynamics in Ts compared to 

magnitude in Ts is probably an overestimation of the diurnal amplitude. A lower moss LAI can reduce this overestimation, 25 

but the corresponding parameter was not calibrated to avoid further equifinalities: ralai showed already strong interactions 

with apve,moss and z0M,snow. The correlations of the conductivity of organic material (h2) with plant, LE and WT parameters 

might be explained by the dependency of thermal conductivity from peat wetness (Kellner, 2001). 

Seasonal differences in moss albedo (apve,moss) could be expected as their radiation reflection properties vary with moss water 

content (Graham et al., 2006). However higher values would be expected in summer, when the moss surface is dry and 30 

lighter, but our calibration resulted in higher values during spring and winter. These values were much higher (>22%) 

compared to literature values (11–16.5%, Berglund and Mace, 1972; 16.4%, Zhao et al., 1997; 11%, Kellner, 2001) and 

therefore rather compensate for values of interacting parameters (in particular z0M,snow and ralai) or not implemented processes. 

Especially the effect on winter H and Rn might result from the strong interaction with z0M,snow, as the mosses in winter are 

covered with a thick snow cover, so that their albedo shouldn’t show any sensitivity in winter. Further, H in spring tended to 35 

be overestimated, which would be compensated by a high albedo during this time, but might be caused in the real world by 

open water over frozen soil, which was not realized in the model. Interestingly, albedo of vascular plants did not show any 

sensitivities, neither during vegetative stage (apve,vasc), nor after start of senescence (apgrain) when a higher value would have 

been expected due to leaf yellowing. Direct measurements of plant albedo were not available in this study. A time series 

observation of those would be very helpful for clarification, as this parameter is known to vary substantially within and 40 

between peatlands (Belyea et al., 2009).  
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4.5.4 Snow 

The model performance in simulating snow depth was not connected to performance in any other variable, except to 

performance in H if exclusively spring time values were considered. This was surprising, as the uncertainty for timing of 

snow melt ranged for about two weeks but determined the start of temperature rise, water table dropping and biotic activity. 

A possible explanation might be the poor ability of snow depth R2 and ME to assert a good fit in duration of snow cover. 5 

This is supported by the fact that the most important parameter for timing of snow melt (mT) strongly affected performance 

in dynamics of H, NEE and Ts during spring time. Parameters defining timing of snow depth might be better constrained if 

future calibrations include an additional variable with a stronger conclusiveness to the timing of snow melt, e.g. by a boolean 

time series indicating if snow cover is present or not. It needs to be tested if this could also help to solve the disagreements in 

value ranges between the performance indices in case of the density coefficient of old snow (Sdw) which caused in 10 

combination with mT the low average overlap within snow depth sensitive parameters.   

According to Jansson and Karlberg (2010), a high value for mT (4–6 kg °C−1 m−2 day−1) could be expected for open fields. A 

possible explanation for the low accepted values (<3 kg °C−1 m−2 day−1) of mT in case of criteria on H in contrast to the high 

values if criteria were on Ts, could be that high values compensate for overestimated spring time H (cf. Fig. S1 in the 

supplement). However, the overestimation of spring H might be connected to different reflection properties of mosses during 15 

spring time or to missing consideration of radiation reflection and evaporation from open water which might be formed 

during snow melt on still frozen soils. The latter is further supported by the underestimation of LE during April and May 

(Fig. S1 in the supplement), which cannot be connected to underestimated plant transpiration, as the model even tended to 

overestimate CO2 uptake during this period. 

5 Conclusions 20 

CO2 models are often commonly calibrated on NEE as only measurement variable. Here, wWe investigated the interactions 

between different abiotic and biotic processes and their parameters, as well as the implications and usefulness of data on not 

only NEE, but also LAI, sensible and latent heat fluxes, radiation, water table depth, soil temperatures and snow depth for 

model calibration on a boreal peatland. Different Pprocesses and their parameters as well as model performance between in 

the different observation variables were strongly interlinked across process categories. This means parameter ranges that 25 

result from calibration depend on model structure, included processes, other parameter values and calibration setup, and 

might therefore not be transferable between studies. It further implies that a study aiming to understand and interpret 

parameter values need to calibrate processes and parameters of many different process categories, using a wide range and 

multiple criteria on various observation variables.. This needs to be taken into account in model calibrations and when 

transferring calibrations results between models differing in their structure or in their constant parameters.  30 

The key parameters identified will help to simplify future model calibrations by selecting only the most influential 

parameters for the variable of interest and using a narrower range for the constrained parameters. This means a simpler 

calibration and faster computation and in turn, allows the inclusion of a more detailed investigation of a process of certain 

interest. Further, it helps model developers to include the most sensitive processes for simulating a certain variable. On the 

other hand, our results revealed the strong dependence of constrained parameter ranges to other parameters and to the chosen 35 

criteria. This means, that a study aiming to understand and interpret parameter values need to calibrate processes and 

parameters of many different modules, using a wide range and multiple criteria on various observation variables.  

Parameter interactions were found to be more important than parameter value ranges, revealing the need for accounting for 

equifinalities, also across different biotic and abiotic processes: Either by calibrating correlated parameters in dependence of 

each other or by calibrating only one of the correlated parameters. The latter will lead to a narrower constrained range, but 40 

this range might not be transferable to other sites and other models. 
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The gained knowledge on trade-offs will be useful to avoid modelling studies with too many purposes and helps model users 

assessing the implications of their criteria choice. The validity of calibrated models is always restricted and robustness of 

obtained parameter ranges should be questioned.  

The identified supporting effects between some variables indicated that some measurement variables can partly compensate 

absence or low resolution of the connected variable. This information tells experimentalists which measurement variables are 5 

helpful and which are obligatory if a certain process should be understood from the underlying regulating principles. It 

further helps modellers to decide if a site has enough available data for model calibration and to estimate uncertainties in 

model predictions depending on available ancillary data.   

All observed calibration variables (NEE, LAI, sensible and latent heat fluxes, net radiation, soil temperatures, water table 

depth and snow depth) helped for model constraint and interpretation. Ancillary variables are in particular important for 10 

evaluating the robustness of calibrated parameter ranges. They should therefore be measured on sites used for calibration of 

complex process oriented models. Additional measurements of, in particular, soil hydraulic properties or water content 

would largely reduce uncertainty and help for a better parameter constraint.  

Code and data availability 

The model and extensive documentation can be downloaded from the CoupModel homepage http://www.coupmodel.com/. 15 

The source code can be requested for non-commercial purposes from Per-Erik Janson (pej@kth.se). The simulation files 

including the model and calibration setup, the used parameterisation and corresponding input and validation files can be 

requested from Christine Metzger (cmetzger@kth.se). They cannot be made freely public available, as they include climate 

and site data that require authorisation from the data owners. 

The flux data and ancillary data are available from the European Flux Database Cluster (http://www.europe-fluxdata.eu/), 20 

site name: Degerö, Site code: SE-Deg, with open data access for the years 2001–2006, and restricted data access (the 

Principal Investigator of the site has to authorize the data request) for the years 2007–2015. 
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Tables 

 
Table 1. Measurement data used as model input 

Variable Period Resolution as used for model 

inputa  

Methodb Measurement 

height 

Global 
radiation 

1991–
2013 

Hourly; 1991-2000: hourly values 
calculated from daily values by 
assuming a sinusoidal distribution 
between 07:30 and 19:30. 

2001-2013: Li200sz sensor (LI-COR, Lincoln, NE, 
USA) 

3m 

Air 
temperature 

1991–
2013 

Hourly MP100 temperature and moisture sensor (Rotronic 
AG, Bassersdorf, Switzerland) equipped with a 
ventilated radiation shield 

3 m 

Relative 
humidity 

 Hourly; 1991-2000: hourly values 
calculated from daily values by 
assuming equally distribution during 
each day 

MP100 temperature and moisture sensor (Rotronic 
AG, Bassersdorf, Switzerland) equipped with a 
ventilated radiation shield 

3 m 

Precipitation 1991–

2013 

Hourly; 1991-2000 and November 
to April: the total daily precipitation 
was assumed to fell at 12:00 each 
day 
 

Rainfall tipping-bucket (ARG 100, Campbell 
Scientific, Logan, UT, USA).  
 

1 m 

Wind speed 1991–

2013 

Hourly; 1991-2000: hourly values 
calculated from daily values by 
assuming equally distribution during 
each day 

2001-2013:3-d wind anemometer (Gill Instruments 
Ltd., Hampshire, UK) 

1.8 m 

C content per 
soil layer 

1994 One time in 1994 Every 4 cm between 0 and -32 cm, and every 12 cm 
between -60 and -338 cm 

0 to -338 cm 

a: Measurement resolution was the same or higher, except where mentioned differently. 
b: The method description of meteorological input data applies to the climate station at the site. For gap-filling and for the pre-evaluation 5 

period, the data was obtained from the nearby standard climate station (Svartberget field station). 
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Table 2: Measurement data used for model calibration 

Variable Period Resolution as used for calibration Method Measurement 

height 

NEE 2001–
2012 

hourly EC system, consisting of a three-dimensional sonic 
anemometer (1012R3 Solent, Gill Instruments, UK; 
heated during winter months) and a closed path 
infrared gas analyzer (IRGA 6262, LI-COR, Lincoln, 
Nebraska USA). Fluxes were calculated by the 
EcoFlux software (In Situ Flux AB, Ockelbo, Sweden) 
according to the EUROFLUX methodology (Aubinet 
et al., 1999, Sagerfors et al., 2008, Nilsson et al., 2008) 

1.8 m 

LE & H 2001–
2009 

hourly Same EC system as above (Peichl et al., 2014) 1.8 m 

Water table 2001–
2009 

daily Float and counterweight system attached to a 
potentiometer (Roulet et al., 1991) 

 

Soil 
temperature 

2001–
2012 

hourly TO3R thermistors mounted in sealed, waterproof, 
stainless steel tubes (TOJO Skogsteknik, Djäkneboda, 
Sweden) in a lawn community 100 m northeast of the 
flux tower 

−2 cm, 
−42 cm 

Net radiation 2001–
2011 

 NR-Lite sensor (Kipp&Zonen, Delft, the Netherlands) 4 m 

Snow depth 2001–
2012 

daily Sr-50 ultrasonic sensor (Campbell Scientific, Logan, 
UT, USA) nearby the flux-tower 

 

LAI of 
vascular 
plants 

May–
Sept. 
2012 

biweekly Destructive sampling (Peichl et al., 2015)  

 
 
 
 5 
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Table 3: Different criteria sets for the selections of accepted runs 

Main component Variable R2 Mean error (ME) 

Basic selection (these criteria are applied 

additionally in all following criteria sets) 

WT < −0.2 m ≥0.40 ±0.02 m 

LAI vascular plants ≥0.40 ±0.02 m2 m−2 

Daytime NEE  ±2 gCO2-C m−2 d−1 

NEE Accumulated NEE ≥0.98   

Daytime NEE  ±0.02 gCO2-C m−2 d−1 

Night time NEE  ±0.07 gCO2-C m−2 d−1 

Sensible heat H  ±3∙105 J m−2 d−1 

Accumulated H ≥0.97  

Latent heat LE  ±1∙105 J m−2 d−1 

Accumulated LE ≥0.98  

Net radiation Net radiation ≥0.82 ±4∙104 J m−2 d−1 

Soil temperature Temperature −2 cm ≥0.95 ±0.22 °C 

Temperature −42 cm  ±0.22 °C 

Snow Snow depth ≥0.76  

Water table WT < −0.15 m ≥0.51  

 

 
 
 5 

Figures 

  

Figure 1. Energy flux partitioning and related soil water flows in the CoupModel as applied to a peatland using two plant canopies 

and root systems. Rn: Incoming radiation, LE: latent heat fluxes (sum of actual transpiration, interception evaporation and soil 

evaporation), H: sensible heat fluxes 10 
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Figure 2. Parameter concern is shown on the y axis as sum of equifinalities (hatched) and sensitivities that could not be constrained 

unambiguously (solid). The x-axis shows the parameters, which belong to the modulprocess ecategory of the background colour. 

 5 

 

  

Figure 3. Connections between processes and parameters of different modulprocess categories. The y-axis shows the count of 

parameters from the different modulprocess categories (colours) that are sensitive to model performance in the various variables 

(x-axis). 10 

 



 

Figure 4. Average overlap of accepted ranges per parameter within each process and between processes, i.e. how unambig

the parameters could be constrained. Negative values indicate the distanc

at all.  

 5 
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Figure 4. Average overlap of accepted ranges per parameter within each process and between processes, i.e. how unambig

the parameters could be constrained. Negative values indicate the distance between accepted ranges when ranges did not overlap 

Figure 4. Average overlap of accepted ranges per parameter within each process and between processes, i.e. how unambiguously 

e between accepted ranges when ranges did not overlap 
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Figure 5. Correlations between performance indices in the prior distribution (3200 random runs): R2 versus R2 (upper panel); 

mean error (ME) versus ME (lower panel). Each of the dots represents a parameter set. Grey lines indicate the axes through zero.  

 

 5 
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Figure 6. Correlations between performance indices in the prior distribution (3200 random runs): R2 (columns) versus mean error 

(ME) (rows). Each of the dots represents a parameter set. Grey lines indicate the axes through zero. 

 



 

Figure 7. ModulProcess ecategory belongings of parameters that correlated with parameters of a certain 
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belongings of parameters that correlated with parameters of a certain belongings of parameters that correlated with parameters of a certain moduleprocess category. 


