
Dear Editor, 
 
We would like to thank the anonymous referees for their detailed and constructive comments on our 
manuscript, gmd-2016-111: “Optimal numerical solvers for transient simulations of ice flow using the Ice 
Sheet System Model (ISSM versions 4.2.5 and 4.11).”  Kindly refer to our responses to the comments 
provided by the referees, attached below, which we greatly appreciate.  Based on the comments and 
questions raised by both referees, we performed another series of tests (2652 simulations) using a 
different benchmark example that includes a nonlinear viscosity model for ice.  Results from these new 
simulations both support and add additional insight to the initial results.  Below our responses, we have 
attached an updated copy of the manuscript that includes these new results and addresses the additional 
comments raised by the reviewers. We believe that these modifications have substantially improved the 
manuscript. 
 
Best regards, 
 
Feras Habbal and co-authors 
 
 
 
Response to RC1: 
 
In this work, the authors compare the performances of several different direct and iterative solvers, 
provided by MUMPS and PETSc libraries respectively, for solving the transient ice flow model 
using ISSM. Specifically, the authors target a well known transient benchmark problem (ISMIP-
HOM, test F), in the case of a frozen bed or sliding bed. The flow model is constituted by the ice 
velocity part (Blatter-Pattyn model with constant viscosity), a part for reconstructing vertical 
velocities, and the mass transport part. The authors highlight some of the solvers that perform 
better on different mesh resolutions, for both frozen or sliding bed.  
The detailed comparison of the solvers available in ISSM is certainly useful for the several ISSM 
users. 
However, I have a few reservations about the impact that this work can have on a broader 
community. 
 
- The benchmark problem addressed in this work has several simplifications that makes it not very 
representative of real problems, most notably: 1. Geometry is very simple (in constrast with 
complex margins or bed roughness encountered in real ice sheets). 2. Viscosity is constant, making 
the model linear. In real problems viscosity strongly depends on velocity and temperature, which 
makes the problem much harder to be solved numerically. 3. A relatively high basal friction 
coefficient is considered, which is not representative of what can be found in ice streams and ice 
shelves. 
 
Thank you for your comments and review. We chose to test a suite of solvers using a commonly used 
transient ice flow benchmark test (ISMIP-HOM experiment F), which makes the simplifications that you 
list, so that other researchers could reproduce the results as well as conduct their own tests using different, 
potentially customized, solvers or other ice sheet codes with a common and well-known model setup. In 
addition to updating the manuscript to highlight the limitations of our initial benchmark tests relative to 
real-world problems, we are including results from applying solvers to another benchmark test (ISMIP-
HOM experiment A) in order to explore the impact of using a more realistic nonlinear viscosity model for 
solving the stress balance equations. 
 



- The authors consider only off-the-shelf solvers that “naturally fit the ISSM framework”, whereas 
several efforts (not mentioned by the authors) have been done in recent years in order to build 
efficient solvers/preconditioners tailored on the ice sheet problems. Some of these solvers have been 
demonstrated on large-scale simulations of Greenland or Antarctic ice sheets. See, for example, T. 
Isaac et al., SIAM J. Sci. Comput., 37(6), B804–B833; Tezaur et al., Procedia Computer Science, 
51:2026-2035, ICCS, 2015, S. Cornford at al. J. Comput. Phys, 232(1):529-549, 2013; plus the one 
by Brown et al. already cited, but not discussed, by the authors. I recommend that the authors 
make it clear in the abstract that they are only considering the off-the-shelf solvers readily available 
in ISSM. I also recommend to consider more realistic problems and to mention relevant work in the 
literature. 
 
We updated the text to include the recommended citations relevant to this work and specified that the 
focus of this work was to test readily available solvers in the abstract. As you mentioned, our results using 
PETSc solvers within ISSM are relevant to ISSM users. However, since many numerical models use 
PETSc, including the Parallel Ice Sheet Model (PISM) and the Community Ice Sheet Model (CISM), 
which has the ability to leverage PETSc solvers through the Trilinos package, we anticipate that our 
results should extend to other ice sheet models and benefit modelers beyond the ISSM community. 
 
Minor comments: 
- At line 144 the authors mention that they apply single-point constraints on velocity and thickness 
equations. I’d like the author to expand on this, mentioning how/with what values they constrain in 
a single point the velocity and thickness. Typically, single-point constraining is used in presence of a 
singular problems (which should not happen here), and it is known to artificially modify the 
spectrum of the matrix, which in turn can deteriorate the convergence of iterative solvers. 
 
The text referring to using single point constraints was misstated and is corrected in the updated 
manuscript to note that we impose Dirichlet boundary conditions. Removing these entries from the matrix 
does not adversely impact the condition number of the stiffness matrix. 
 
- Line 150, how the vertical velocity is reconstructed? With an L2 projection? 
 
We solve the incompressibility equation to recover the vertical velocity, which is constant per element.  
Subsequently, we use an L2 projection to evaluate the nodal velocity. We updated the manuscript to 
clarify this point. 
 
- The time reported in the tables is solver time, or total time (including assembly, linear solvers and 
I/O)? The weak scaling results for the iterative solvers are not very good and it would be useful to 
understand what is causing this. 
 
We updated the text in the manuscript to note that the timing results include solving the system of 
equations, assembling the stiffness matrix, load vector, and updating the input from the solution. 
 
  



Response to RC2: 
 
This work aims to provide insight into different solver choices for a particular full-Stokes ice sheet 
model (ISSM) by testing a range of iterative solver choices from the widely available PETSc solver 
library on a specific test problem (ISMIP-HOM, experiment F) and contrasting with their 
native/default direct-solve approach (which uses MUMPS). They conclude that switching to the 
PETSc iterative solvers generally improves time to-solution and scaling as the problem size 
(number of elements in the finite-element mesh) increases, and are able to provide some suggestions 
as to which solvers appear to be better suited to their needs. In my opinion, this is a useful 
contribution to the literature, and I found it to be well-written and well-organized. I do have a few 
suggestions which I think would greatly increase the usefulness of this work. 
 
My primary criticisms, if you can call them that, are regarding the choice of benchmark problem. 
While I think that the choice of ISMIP-HOM problem F is a reasonable choice for representing a 
fully- or mostly-grounded ice sheet (like the Greenland Ice Sheet), I wonder how extendable the 
results and conclusions are to systems with fast-flowing ice streams and large dynamic ice shelves as 
are found in Antarctica, represented, for example, by the MISMIP family of benchmarks. In our 
experience (admittedly not with a full-Stokes model), marine ice sheets are often much more 
challenging for the linear solvers due to the mathematical nature of the floating ice shelves.   
My larger objection is that I strongly disagree with the choice of a linear (constant viscosity) 
rheology for these experiments. In our experience (again admittedly not with a full-Stokes model), 
one of the hardest things for many solvers to handle is the large range of viscosities produced by the 
normal nonlinear rheology. We’ve often had the case where solvers which perform perfectly well 
with constant viscosities perform poorly (or fail to converge) when the nonlinear rheology is turned 
on. I suspect you’re getting an incomplete and possibly misleading view of solver performance for 
"real" ice sheet problems in this case. Is there a compelling reason not to use a "standard" 
nonlinear rheology for these tests? 
 
Thank you for your review and comments. We used the ISMIP-HOM experiment F test since it involved 
a transient simulation and is a commonly used benchmark test.  The intent of our study was to promote 
the use of iterative methods over linear solvers using a simplified model, which could then be refined in 
future work using a real-world simulation. As you mention, the specification of linear viscosity in this 
benchmark test is a limiting feature in relation to real-world problems. To address the impact of nonlinear 
rheology on solving the stress balance equations, we are including results from applying the same solvers 
on another benchmark test (ISMIP-HOM experiment A) that uses a nonlinear viscosity model for ice.  We 
updated the manuscript to highlight the limitations of the transient benchmark test (experiment F) and will 
include the results from this new study. 
 
Minor points – 
1. line 95 – please cite some examples of the full-Stokes solver work that you’re referring to 
 
We added additional references to the manuscript. 
 
2. line 102 – "well know" -> "well known" 
 
Fixed typo. 
 
3. line 108 – FS isn’t a requirement for active GL dynamics, e.g. MISMIP(1,3d,++). In fact, the 
authors of this work routinely use SSA for GL problems... 
 



We updated the text to avoid implying that full Stokes is required for modeling grounding line dynamics.  
 
4. line 123 – "suit" -> "suite" 
 
Fixed typo. 
 
5. line 145 – "period" -> "periodic" 
 
Fixed typo. 
 
6. line 171 – please elaborate on or clarify what you mean by "methods that naturally fit the ISSM 
framework" 
 
We updated the manuscript to be clearer on the point that our intention was to use solvers that did not 
require customization or specialization of the solver routine within ISSM so that the conclusions based on 
our results could be used by other models as well. 
 
7. line 172 – using only the default settings for the PETSc components is likely too limiting of a 
choice. I understand why you’d do that (putting yourself in the shoes of a model-user who doesn’t 
want to fiddle with solver parameters or explore all of the options available). However, we’ve found 
that there are cases where minor changes in options result in major improvements in solver 
performance and robustness. I’d suggest that since the goal of this work is to be a reference for 
ISSM (and other ISM) users, you should make some effort (maybe by asking the PETSc developers 
or another linear solver expert for some advice) to make the solvers perform as well as possible. I 
think this work will have a much larger impact in that case. The other point, of course, is that 
"default" options can change. I’d suggest presenting two sets of results – one with the "default" 
settings, and one after some attempt has been made to tune the solver parameters. (it is, of course, 
possible that the default parameters *do* produce the best performance). Of course, then, you 
would also need to document the particular solver options you used. 
 
As you summarized, our intention was to highlight strong performance gains that can be attained using 
iterative solvers in PETSc with limited intervention on the part of modelers (i.e. using default values). In 
this context, we avoided the large number of options that can be tuned for each combination of iterative 
scheme with a particular preconditioner and treated each solver with the same level of attention. Also, in 
light of the simplifications underlying the benchmark test there is no guarantee that speed-ups based on 
customization of the components would straight forwardly correlate to real-world models. Future work, 
aimed at refining the results presented in this work, will be based on more realistic models and address 
the impact of customizing individual components, as you suggested. We updated the manuscript to note 
that significant performance gains are attainable by customizing the options of the PETSc components for 
a preferred solver.  
 
8. Conclusion – To give a bit of extra weight to your conclusions, it might be useful to embed your 
conclusion in the larger context of what many have found to be the case in other scientific 
computation fields – one suggestion would be to add a statement along the lines of "the conclusion 
that scalable iterative methods are better suited than direct methods for solving large linear 
systems echoes the experience of many other researchers across a wide range of scientific 
disciplines". 
 
Indeed this was the main conclusion of this study.  We adopted your suggestion and updated the 
manuscript to emphasize this conclusion. 
 



9. line 301 – The acknowledgments end with a stray "(" after Jed’s name. Perhaps they got cut off? 
 
Fixed typo. 
 
10. Figure 2 – I am impressed with Figures 2-4 – they do a good job of conveying a lot of 
information clearly. I’d suggest replacing "horizontal labels" and "vertical labels" with 
"horizontal rows" and "vertical columns" for clarity in the caption.  
 
Thank you for your comments.  We updated the figure caption for clarity as you suggested. 
 
11. Figure 6 – It would be helpful to include an "ideal scaling" line in this plot for comparison. You 
mention the slopes in the text, but including it on the graph itself can make things easier for the 
reader. 
 
As suggested, we updated the figures and captions to denote ideal scaling. 
 
12. Figure 6 – More numbers than a single "10" on the horizontal axis would also be useful. 
 
As suggested, we updated the axis bounds. 
 
13. Figures 5 and 6 – If I read these plots correctly (not completely assured due to the lack of x-axis 
labeling in Figure 6), it appears that the number of elements per processor used for weak scaling in 
Figure 5 (~250) corresponds to the far-right data points (most processors/fewest elements per 
processor) in the strong-scaling plot in figure 6. In both of the examples, this is where it appears 
that you start to see a degradation in your solver scaling, which might imply that you’re being a bit 
too aggressive when you generated figure 5 since you seem to have stepped out of your ideal scaling 
regime. In other words, it might be the case that if you took a look at weak scaling with more 
elements/processor (500, perhaps), your MUMPS weak scaling might look better.  
 
While using 250 elements per processor provided the fastest results for iterative methods applied to all but 
the largest model, your assessment that the scaling deteriorates at larger model sizes, especially for the 
linear solver is correct. Also, figure 5 had an error in color scale, which misrepresented the results. We 
fixed this error in this figure and used 500 elements/CPU for presenting weak scaling, as you suggested.  
 
14. Figure 6 – it would be nice to have one more data point for your strong scaling plots, since it 
appears that your scaling is just beginning to tail off for MUMPS at the largest number of 
processors. I also realize that it may be a point too far... 
 
The number of points used for scaling was chosen to be consistent with the tests that were performed for 
all solvers and plotted in Figures 2-4.  
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Abstract.

Identifying fast and robust numerical solvers is a critical issue that needs to be addressed in order

to improve projections of polar ice sheets evolving in a changing climate. This work evaluates the

impact of using sophisticated
:::::::
advanced

:
numerical solvers for transient ice flow simulations using

the NASA-JPL
:::::::
ice-flow

::::::::::
simulations

::::::::
conducted

::::
with

::::
the

:::
JPL/UCI Ice Sheet System Model (ISSM).5

We identify optimal numerical solvers by testing them on a commonly used ice flow benchmark test,

the
:
a
:::::
broad

:::::
suite

::
of

::::::
readily

::::::::
available

:::::::
solvers,

::::::
ranging

:::::
from

:::::
direct

::::::
sparse

::::::
solvers

::
to

:::::::::::::
preconditioned

::::::
iterative

::::::::
methods,

:::
on

::
the

:::::::::
commonly

:::::
used Ice Sheet Model Intercomparison Project for Higher-Order

ice sheet Models (ISMIP-HOM) Experiment F
:::::::::
benchmark

::::
tests. Three types of analyses are consid-

ered: mass transport, horizontal stress balance, and vertical stress balance. A broad suite of solvers10

is tested, ranging from direct sparse solvers to preconditioned iterative methods.
:::::::::::::::
incompressibility.

The results of the fastest solvers for each analysis type are ranked based on their scalability across

mesh size for each basal sliding conditionsspecified in Experiment F
:::
and

::::
basal

::::::::
boundary

:::::::::
conditions.

We find that the fastest iterative solvers are ∼1.5-100
::::
–100

:
times faster than the default direct

solver used in ISSM,
:

with speed-ups improving rapidly with increased mesh resolution. We pro-15

vide a set of recommendations for users in search of efficient solvers to use for transient ice flow

:::::::
ice-flow simulations, enabling higher-resolution meshes and faster turnaround time. The end result

will be improved transient simulations for short-term, highly resolved forward projections (10-100

::::::
10–100

:
year time scale) and also improved long-term paleo-reconstructions using higher-order rep-

resentation of stresses in the ice. This analysis will also enable a new generation of comprehensive20

uncertainty quantification assessments of forward sea-level rise projections, which rely heavily on

ensemble or sampling approaches that are inherently expensive.

1



1 Introduction

Fast and efficient numerical simulations of ice flow are critical to understanding the role and impact

of polar ice sheets (Greenland Ice Sheet, GIS, and Antarctica Ice Sheet, AIS) on sea-level rise in25

a changing climate. As reported in the Intergovernmental Panel on Climate Change AR5 Synthesis

report (Pachauri et al., 2014), “The ability to simulate ocean thermal expansion, glaciers and ice

sheets, and thus sea level, has improved since the AR4, but significant challenges remain in repre-

senting the dynamics of the Greenland and Antarctic ice sheets.” One of these challenges is the fact

that Ice Sheet Models (ISMs) need to resolve ice flow at high spatial resolution (500 m to 1 km) in30

order to capture mass transport through outlet glaciers. This is especially the case for the GIS, which

has a significant number of outlet glaciers in the 5-10
::::
5–10

:
km width range (Rignot et al., 2011;

Morlighem et al., 2014; Moon et al., 2015). This leads to transient ice-flow simulations with highly

resolved meshes, which in turn reduces the time step prescribed by the Courant-Friedrichs-Lewy

(CFL) condition that is necessary for providing convergence and avoiding
::
to

:::::::
maintain

:::::::::::
convergence35

:::
and

:::::
avoid

:::::::::
developing

:
numerical instabilities. This combination of high spatial and temporal resolu-

tion implies that ISMs are faced with challenges involving both scalability and speed.

The traditional approach to address this combined challenge is to solve a simplified set of equa-

tions for stress balance, relying on approximations to the stress tensor, which drastically reduce the

number of degrees of freedom (dofs). These approximations have been extensively documented in40

the literature , (Hindmarsh, 2004) and will not be described in detail here. However, we provide a

brief summary of the characteristics of these models in order to relate the implications of our results

in terms of solver efficiencies. The most comprehensive system of equations for modeling stress

balance in ice flow is the full-Stokes model (Stokes, 1845), which captures each component of the

stress tensor, and is hence the most complete physical description of stress equilibrium. It comprises45

four dofs (i.e. three velocity components and pressure) that are solved on a 3D mesh.

The Blatter/Pattyn formulation
:::::::::::
Higher-Order

::::::::::
formulation

:
(HO, Blatter, 1995; Pattyn, 2003) uses

the fewest assumptions to the stress tensor. This model neglects horizontal gradients of vertical

velocities by assuming that these terms are negligible compared to vertical gradients of horizontal

velocities. In addition, bridging effects are neglected. The resulting model comprises two dofs for50

horizontal velocity (with vertical velocity being recovered through the incompressibility equation)

::::::::
velocities that are solved on a 3D mesh.

::::::::::::
Subsequently,

:::
the

::::::
vertical

:::::::
velocity

::
is
:::::::::
recovered

:::::
using

:::
the

::::::::::::::
incompressibility

::::::::
equation.

:
The next simplified formulation, the Shallow-Shelf or Shelfy-Stream

Approximation (SSA) (SSA, MacAyeal, 1989), arises from further assuming that vertical shear is

negligible. This results in a set of two equations for the horizontal components of velocity (with55

vertical velocity also being
:::
that

::
are

::::::::
collapsed

::::
onto

::
a

::
2D

:::::
mesh,

::::::
where

:::
the

::::::
vertical

:::::::
velocity

:
is
:
recovered

through the incompressibility equation), collapsed onto a 2D mesh. This is one of the most efficient

models used for fast-flowing ice streams and ice shelves,
::::::

where
::::::
motion

:::
is

:::::::::
dominated

::
by

:::::::
sliding

(MacAyeal, 1989; Rommelaere, 1996; MacAyeal et al., 1998).
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Finally, for the interior of the ice sheet, ISMs rely on the Shallow Ice Approximation (SIA) (SIA,60

Hutter, 1983). In this model, horizontal gradients of vertical velocity are neglected compared to the

vertical gradients of horizontal velocities and only the deviatoric stress component
:::::::::
components

:::
of

::::::
vertical

:::::
shear

:::
are

:::::::
included

:::
in

:::
the

::::::::
deviatoric

:::::
stress

:
(i.e. σ′

xz and σ′
yzare included). This reduces the

stress balance equations to a simple analytical formula relating the surface slope, ice thickness, and

basal friction at the ice/bedrock interface. It is computationally very efficient and has been relied65

upon for long paleo-reconstructions of ice from the Last Glacial Maximum (LGM) to present day

(Payne and Baldwin, 2000; Ritz et al., 1996; Huybrechts, 2004).

This list of model approximations is not exhaustive and does not include hybrid approaches such

as the L1L2 formulation that mixes both SSA and SIA approximations. For readers that are inter-

ested in this topic, a comprehensive classification can be found in Hindmarsh (2004). Increasingly70

though, simple approximations such as the SIA have proven incapable of replicating observed ve-

locity changes, such as the rapid acceleration of the West Antarctic Ice Sheet (Rignot, 2008) in the

past two decades, or seasonal variations in surface velocities exhibited by GIS outlet glaciers (Moon

et al., 2015). In addition, they are unable to capture ice-flow dynamics at resolutions compatible with

most of the GIS outlet glaciers and fast ice streams of the AIS. In this context, the need for leverag-75

ing faster solvers within ISMs using accurate ice flow
:::::::
ice-flow formulations is critical for improving

short-term projections of sea-level rise.

Our approach is to use a suite of solvers available within the Portable Extensible Toolkit for

Scientific Computations (PETSc) to accelerate
:::
The

:
Ice Sheet System Model (ISSM) simulations

involving higher-order ice-flow formulations. Our goal is to identify the fastest and most scalable80

solvers that are stable across different basal sliding conditions. The ISSM framework relies on a

massively parallelized thermo-mechanical finite element ice sheet model that was developed to sim-

ulate the evolution of Greenland and Antarctica in a changing climate (Larour et al., 2012). ISSM

employs the full range of ice flow
:::::::
ice-flow approximations described above, and is therefore a good

candidate for this study
:::::::
studying

:::
the

::::::::
efficiency

:::
of

:::::::
different

::::::
solvers

:::
on

:::::::
ice-flow

:::::::
models. By default,85

ISSM relies on a direct numerical solver called the MUltifrontal Massively Parallel sparse direct

Solver (MUMPS) (MUMPS, Amestoy et al., 2001, 2006), to solve the system of algebraic equations

resulting from the finite element discretization of the transient evolution of an ice sheet (i.e. solving

the discrete mass transport, momentum balance, and thermal equations). However, ISSM can also

use numerical methods provided by the extensive suite of PETSc solvers, in particular the iterative90

kind, along with preconditioners that are well suited for ice-flow simulations.

Relying on
:::::
Using a direct parallel solver provides a robust and stable numerical scheme. However,

this approach tends to be slow and memory intensive for larger
::::
large

:
problems, where the number of

dofs approaches 100,000 and more. Indeed, as
::
or

:::::
more.

:::
As noted by Larour et al. (2012), the CPU

time consumed by the default solver (i.e. MUMPS) accounts for 95% of the total solution time. In95

addition, there are significant problems with scalability associated with the direct solver approach
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Larour et al. (2012), which have not been explored to date, that preclude ISSM from efficiently run-

ning large-scale, high-resolution projections for the GIS and AIS. In
::::::
addition

::
to

::::::::
MUMPS,

:::::
ISSM

::::
can

:::
also

::::
use

::::::::
numerical

::::::::
methods

:::::::
provided

:::
by

:::
the

::::::::
extensive

:::::
suite

::
of

::::::
PETSc

:::::::
solvers,

:::::::::
including

:::::::
iterative

:::::::
methods

::::::::
combined

:::::
with

:::::::::::::
preconditioning

:::::::
matrices

::::
that

:::
are

::::
well

::::::
suited

:::
for

:::::::
ice-flow

::::::::::
simulations.

:::
In100

:::::::
addition

::
to

::::::::
MUMPS,

::::::
ISSM

:::
can

::::
also

:::
use

:::::::::
numerical

::::::::
methods

:::::::
provided

:::
by

:::
the

::::::::
Portable

:::::::::
Extensible

::::::
Toolkit

::
for

::::::::
Scientific

::::::::::::
Computations (PETSc, Balay et al., 1997),

::::::::
including

:::::::
iterative

:::::::
methods

:::::::::
combined

::::
with

:::::::::::::
preconditioning

:::::::
matrices

:::
that

:::
are

::::
well

:::::
suited

:::
for

:::::::
ice-flow

::::::::::
simulations.

::
In

:
order to reduce the im-

pact of the numerical solver as the bottleneck on the ISSM solution time, this study evaluates the per-

formance of using state-of-the-art numerical solvers for transient ice flow simulations. While there105

is a significant amount of research associated with solving the saddle point problem resulting from

the finite element discretization of the full-Stokes model, the literature regarding optimal numerical

solvers for simpler formulations is to our knowledge limited to .

This study assesses the convergence, speed, and scalability of preconditioned iterative numerical

solvers applied to transient ice flow simulations. However, it does not provide a roadmap for identifying110

optimal solvers for the broad array of ice flow formulations available
::::::
ice-flow

:::::::::::
simulations.

::::
Our

:::::::
approach

::
is
:

to modelers. Our approach is to carry out
::::::::::
characterize

:::
the

::::::
impact

::
of

:::::
using

::
a
::::
suite

:::
of

::::::
readily

::::::::
available

::::::
PETSc

::::::
solvers

:::
to

:::::::::
accelerate

:::::
ISSM

::::::::::
simulations

:::::::::
involving

::::::::::
higher-order

::::::::
ice-flow

:::::::::::
formulations.

:::
Our

:::::
goal

:
is
:::

to
:::::::
identify

:::
fast

::::
and

:::::::
scalable

::::::
solvers

:::
that

::::
are

:::::
stable

:::::
across

::::::::
different

:::::
basal

:::::
sliding

::::::::::
conditions.

::::
Here,

:::
we

:::::::
conduct a comprehensive assessment of numerical solvers on a calibrated115

test case, the well-know
::::
using

:::::::::
calibrated

:::
test

:::::
cases

:::::
from

:::
the

::::::::::
well-known

:
Ice Sheet Model Inter-

comparison Project for Higher-Order ice sheet Models (ISMIP-HOM) benchmark
:::::::::
experiments

:
(Pat-

tyn et al., 2008). These benchmark tests provide a good platform for testing numerical solvers ,

particularly for
:::::
Using

::::
these

:::::::::::
well-studied

:::::::::
benchmark

::::
tests

::::::
allows

::
us

:::
to

:::::::
evaluate

:::
the

::::::::::
performance

:::
of

::::::::
numerical

::::::
solvers

:::
for

:::::::
ice-flow

:
simulations employing the Blatter-Pattyn formulation . Our focus is120

specifically on this
:::
HO

::::::::::
formulation

::
in
::
a
::::::::
repeatable

:::::::
manner.

:

::::
This

::::
work

::::::::::
specifically

::::::
focuses

:::
on

:::
this

::::::
widely

::::
used formulation, as it currently represents the most

computationally demanding model (short of full-Stokes) capable of capturing vertical as well as

horizontal shear stresses necessary to model an entire basin (Pattyn, 1996). For cases where active

grounding line dynamics are considered, a high-resolution
:::
The

:::::
finite

:::::::
element

:::::::::::
discretization

:::
of

:::
the125

full-Stokes model would be required .However
::::
leads

::
to

::
a

::::::::::
well-studied

::::::
saddle

::::
point

::::::::
problem,

::::::
which

::::::::
represents

::
an

::::::
active

:::
area

:::::::
research

::
in
::::::::::
geophysics

::::
(e.g. Benzi et al. (2005); Elman et al. (2014)

:
).
::::::
While

:::::
recent

::::
work

::::
(e.g.

:
Isaac et al. (2015)

:
)
:::
has

::::::
shown

::::::::
promising

::::::
results, stable iterative full-Stokes solvers

are not readily available , and
::::
and,

::
in

:::::::
general, are significantly disruptive to integrate in terms of their

code base, which is the reason we will not be considering them here. The Blatter/Pattyn
:
in

::::
this

:::::
study.130

:::
The

:::
HO

:
model represents the next, most complete formulation and represents a significant compu-

tational bottleneck compared to its 2D and 1D counterparts, which are significantly less demanding
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because of the drastic reduction in the number of dofs required for vertically collapsed 2D meshes

(SSA) or local 1D analytical formulations (SIA).
::
In

::::
light

::
of

:::
the

:::::::
limited

::::::
number

:::
of

::::::
studies

:::::::
focused135

::
on

:::::::
efficient

::::::
solvers

:::
for

:::::::::::
approximate

::::
flow

:::::::
models

:::
(i.e.

:
Brown et al. (2013); Cornford et al. (2013);

Tezaur et al. (2015)
:
),
:::
this

:::::
work

:::::::
surveys

:
a
:::::
broad

:::::
range

:::
of

::::::
solvers

:::
for

:::
the

:::
HO

:::::::
ice-flow

::::::
model.

::::::
While

:::
our

:::::::
analysis

::::
uses

::::::
ISSM,

:::
our

::::::
results

:::
are

:::::::
relevant

::
to

:::::
other

:::::::
ice-flow

::::::
models

::::
and

::::::::::
frameworks

:::
that

::::
use

::::::
PETSc

::::::
solvers.

:

The manuscript is structured as follows. In section 2, we describe the ISMIP-HOM Experiment140

F model and our approach for testing numerical methods on this benchmark test
::::::::::
experiments

::::
that

::
we

::::::::
consider

::::
and

:::
the

::::::::
approach

:::::::
adopted

:::
for

::::::
testing

::::::::
different

::::::::
numerical

::::::::
methods. In section 3, we

summarize efficient baseline solvers to use for transient simulations that naturally fit
:::::
using the ISSM

framework. In section 4, we discuss the timing results from testing a wide range of solvers, which

in addition to enabling large-scale simulations yields significant speed-ups in solution time. We then145

conclude on the scope of this study and summarize our findings.

2 Model and Setup

In an effort
::::
order

:
to identify optimal numerical solvers for a broad class of transient ice flow

simulations
:::::::
ice-flow

::::::::::
simulations, we test a suit

:::
suite

:
of PETSc solvers on a synthetic ice flow experiment

:::::::
synthetic

::::::::
ice-flow

::::::::::
experiments

:
with varying basal sliding conditions. We consider the effective-150

ness of competing solvers (in terms of speed) using the ISMIP-HOM tests, since these experi-

ments represent a suite of accepted benchmark tests that are commonly used in the community

to validate proposed higher-order (3D) approximate ice flow models.
::::::::::::
approximations

:::
of

:::
the

:::::
stress

::::::
balance

:::::::::
equations.

:::
We

:::
first

:::
use

:
Experiment F of the ISMIP-HOM tests represents an ideal simulation

for benchmarking
::
to

:::::::
evaluate

:
competing numerical solvers since it involves a transient ice flow155

simulation and two tests to compare
::::::
entails

:
a
::::::::

transient
:::::::
ice-flow

::::::::::
simulation

::::
with

::::
two

::::
test

:::::
cases

::::::::
involving distinct basal sliding regimes. This

:::::::
transient

:::::::::
simulation allows us to independently test the

solvers on each analysis component of
::::
(mass

::::::::
transport,

:::::::::
horizontal

:::::
stress

:::::::
balance,

:::
and

:::::::::::::::
incompressibility)

:::::::::
underlying a transient simulation in ISSM and evaluate the performance of competing solvers across

the specified
::
for

:::::::
models

::::
using

::::::::
different

:
basal sliding conditions. In addition, Experiment F is rep-160

resentative of the type of physics solved for in many scenarios of ice sheets retreating and advanc-

ing onto downward or upward-sloping bedrocks(provided the bedrock slope is adjusted, which is

seamlessly done). It is therefore wide-ranging in terms of applicability and happens to be a com-

monly accepted benchmark experiment that is used by many ISMs.
:::::::
However,

:::::
since

::::::::::
Experiment

::
F

:::::::
specifies

:
a
::::::::
constant

:::::::
viscosity

:::
for

::::
ice,

:::
we

:::
also

::::::::
consider

:::::::::::
ISMIP-HOM

::::::::::
Experiment

::
A

::
as

::
it
:::::::
includes

::
a165

::::::::
nonlinear

:::::::
rheology

:::
for

::::
ice.

:::::
While

::::
this

::
is

::::
only

:
a
:::::
static

::::
test,

::::::::::
Experiment

::
A

::::::
allows

::
us

::
to
::::::::

evaluate
:::
the

::::::::::
performance

::
of
:::::::

solvers
::::::
applied

:::
to

:::
the

:::::::::
horizontal

:::::
stress

:::::::
balance

::::::::
equations

:::
for

::::::::::
simulations

:::::
using

::
a

::::
more

:::::::::
physically

:::::::
realistic

:::::
model

::
of

:::
ice

::::::::
rheology.

:
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Specifically, Experiment F
:::::::::
Experiment

::
F
:
consists of simulating the flow of a 3D slab of ice (10

km square, 1 km thick) over an inclined bedrock
:::
bed (3 degrees) with a superposed Gaussian-shaped170

bump (100 m in height) until the free surface geometry and velocities reach steady state. Here,

we run our transient simulation for 1500 years, using 3-year time steps, in order to allow the free

surface to relax and reach a steady state
::::::::::
steady-state configuration. The prescribed material law is

a linear viscous rheology (resulting
:::
that

::::::
results in a constant effective viscosity )

::
for

:::
ice. In order

to test different friction parameterizations, Experiment F explores two test cases of boundary con-175

ditions at the bedrock/ice interface: 1) no-slip (frozen bed) and 2) viscous slip (sliding bed). For

both scenariossingle-point constraints on the velocity and thickness are applied to the boundaries in

order to constrain the system,
:::
we

:::::
apply

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions

:::
for

:::
the

::::::::
velocities

::::::
along

:::
the

::::::::
boundary

:::
and

::
set

:::
the

::::::
values

::
to

::::
zero. This is slightly different from the period

:::::
using

:::::::
periodic boundary

conditions suggested by the ISMIP-HOM benchmark test, but has more relevance to the boundary180

conditions typically
::::
tests;

::::::::
however,

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions

:::
are

:::::
more

:::::::
relevant

::
to
:::::::::

boundary

::::::::
conditions

::::::::
generally

:
used by modelers. Fig. 1 displays the surface velocity and surface elevation

results at the end of the transient simulation using ISSM. These results are in line
::::::::
consistent

:
with

typical steady state profiles for Experiment F, with slight differences near the boundaries affected by

using different boundary conditions.185

In an effort to independently test the numerical methods on the underlying solution components

of an ISSM transient simulation , a suite of preconditioners and iterative methods is independently

tested
::::::::::
Experiment

::
A

::::::::
simulates

:::
the

:::::
flow

::
of

::
a

:::
3D

::::
slab

::
of

:::
ice

::::
(80

:::
km

::::::
square,

::
1
:::
km

::::::
thick)

::::
over

:::
an

::::::
inclined

::::
bed

::::
(0.5

:::::::
degrees)

::::
with

:::::::::
sinusoidal

:::::
bumps

:::::
(500

::
m

:::::::::
amplitude).

::::
This

::::::::::
experiment

:::::::
assumes

::::
that

::
the

:::
ice

::
is
::::::
frozen

::
to

:::
the

::::
bed

:::
(i.e.

::::::
no-slip

::::::::
boundary

::::::::::
condition).

:::::
While

::::
this

:::
test

::
is

:::::::::
prognostic

::
in

::::::
nature190

:::
and

::::
does

:::
not

:::::::
consider

:::
the

::::::::::::
time-evolution

::
of

:::
the

:::
ice

:::::::::::
configuration,

::
it

::::
does

::::::
include

:
a
::::::::
nonlinear

::::::::
viscosity

:::::
model

:::
for

:::
ice,

:::::
which

::
is

:::::
more

::::::
realistic

::::
than

:::
the

:::::::
constant

::::::::
viscosity

:::::::
specified

::
in

::::::::::
Experiment

::
F.

::::::::
Similarly

::
to

:::::::::
Experiment

:::
F,

::
we

::::::::
prescribe

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions

:::
for

:::
the

::::::::
velocities

:::::
along

::::
the

::::::::
boundary

:::
and

:::
set

:::
the

::::
value

::
to
:::::
zero.

:::
Our

::::::::
approach

:::
for

::::::::::
identifying

:::::::
efficient

:::::::::
numerical

::::::::
methods

:::
for

::::
each

:::::::
analysis

::::::::::
component

::
of

::::
the195

:::::::
transient

:::::::::
simulation

:::
in

:::::
ISSM

::
is
:::

to
::::::::::::
independently

:::
test

::::::::::::
combinations

:::
of

:::::::::::::
preconditioning

::::::::
matrices

::::
with

:::::::
iterative

:::::::
methods

:
on the system of equations resulting from the finite element discretization

of the stress balance and mass transport equations. Because
:::::
Since

:
we rely on the Blatter/Pattyn

:::
HO formulation, the stress balance is split into a

:::
only

::::::
solves

:::
the

:
horizontal stress balance (solving

for the horizontal components of velocity) and
:::
and

:::::::
requires

:
an additional step to recover vertical200

velocitiesusing
::::
solve

:::
for

:::
the

:::::::
vertical

::::::::
velocities.

:::::
Here,

:::
we

::::
use the incompressibility equation .

:::
and

::
an

:::
L2 ::::::::

projection
:::

to
::::
solve

:::
for

:::
the

:::::::
vertical

:::::::::
velocities. We call these steps the horizontal velocity so-

lution and vertical velocity
::::::::::::::
incompressibility

:
solution, respectively. In addition, running a transient

simulation implies a mass transport module, which combined with the velocity analyses imply three
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solution types for
:::::::
requires

::::
three

:::::::
systems

::
of

::::::::
equations

::
to

::
be

::::::
solved

::
at each time step. For each solution205

type,

:::
For

::::
each

::::::
system

::
of

:::::::::
equations,

::
we

:::
test

:
a wide range of solvers is tested. This includes direct solvers

as well as preconditioned iterative solvers
::::::::
including

:::
the

::::::
default

:::::
solver

:::::::::
(MUMPS)

:::
and

:::::::::::::
preconditioned

::::::
iterative

::::::::
methods

::::::::
provided

::
by

:::::::
PETSc. When referring to the solvers available through the PETSc

interface, we rely on the abbreviations used in the PETSc libraries by labeling a preconditioning ma-210

trix as a PC and an iterative method as a KSP (Krylov subspace method). Here the
:
a preconditioning

matrix improves the spectral properties of the problem (i.e. the condition number) without altering

the solution provided by the iterative method. Since the Jacobian of the system of equations resulting

from the finite element discretization of the horizontal velocity solution
::::
stress

:::::::
balance is symmetric

positive definite a wide range of iterative solvers and preconditioners are applicable and potentially215

efficient. For a complete review of potential solvers we point to Benzi et al. (2005)
:::
and Saad (2003).

In the subsequent benchmark simulations, 10 PC matrices, and 20 KSP iterative methods are tested

in unique solver combinations. Additionally, the effect of not applying a preconditioning matrix to

the iterative method is tested for each KSP by using
:::::::::
represented

::
by

:
PC=None in PETSc

::::
none.

::::
The

::::::
solvers

:::::
tested

:::
for

::
all

::::::::
analysis

::::
types

:::
are

::::::::
indicated

:::
by

:::
the

:::::::::::
permutations

::
of

:::
the

:::::
KSP

:::
and

:::
PC

::::::::
methods220

::::
listed

::
in
:::

the
::::::::

headings
::
of

::
4. In an attempt to use the PETSc solvers in ISSM with minimal invasive-

ness, we restrict the inclusion of KSPs and PCs from the PETSc suite by only testing methods that

naturally fit the ISSM framework and rely on default settings for the specific PETSc components

:::
(i.e.

:::::::
without

:::
the

:::::
need

:::
for

::::::::::::
customization

::
or

::::::::::::
specialization

::
of

:::
the

::::::
solver

:::::::
routine).

:::::::::::
Anticipating

::::
that

:::::::
modelers

:::::
may

:::
not

::::
tune

:::
the

:::::::::
individual

::::::::::
components

:::
in

:::::::
PETSc,

:::
we

:::
test

:::::
each

::::::
method

:::::
using

:::::::
default225

:::::
values

::
to

:::::::
evaluate

:::::::
baseline

:::::::::::
performance

:::::::
provided

:::
by

::::
each

:::::::
method

::::::
natively.

The slab of ice in Experiment F is modeled using four levels of mesh refinement. The smallest,

most coarse resolution
:::::::::::::::
coarsest-resolution

:
model consists of 2000 elements resulting from a 10×

10× 10 (x,y,z) grid of triangular prismatic 3D elements. Three larger models are produced by

refining each direction of the coarse
:::::::
smallest model by a factor of 2, leading to 16,000, 128,000,230

and 1,024,000 element models. Each model size is tested using four CPU cases: 250, 500, 1000, and

2000 elements per CPU. Only the fastest timing results for simulations where the solution passes

three ISSM convergence tests (i.e. mechanical stress balance and convergence of the solution in

both a relative and absolute sense) at each time step using default tolerances are included in the

ranking results. All of the simulations are
::::
these

::::::::::
simulations

::::
were

:
performed on the NASA Advanced235

Supercomputing Pleiades cluster (Westmere nodes: 12
:
2
:::::::
six-core

:
Intel Xeon X5670 CPUs

:::::::::
processors

per node, 24 GB per node) using ISSM version 4.2.5 and PETSc version 3.3.

3 Results
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For each of the three ISSM solution types (horizontal velocity, vertical velocity, and mass transport)

we run simulations with four mesh sizes (2000, 16,000, 128,000, and
::
To

::::
study

:::
the

::::::
impact

::
of
:::::
using

::
a240

::::::::
nonlinear

:::::::
viscosity

::::::
model

::
for

:::
ice

::
on

::::::
solver

:::::
speed

:::
and

:::::::::::
convergence,

:::
we

:::::
follow

:::
the

:::::
same

:::::::::::
methodology

::::::
applied

::
to

::::::::::
Experiment

:
F
::::

(i.e.
:::::
same

::::::
solvers,

::::::::::::
discretization

:::::::
strategy,

:::
and

:::::
CPU

:::::
cases)

::::
and

:::::::
evaluate

:::
the

::::::::::
performance

::
of

::::::
solvers

:::::::
applied

::
to

:::
the

:::::
stress

::::::
balance

::::::::
equations

:::
for

::::::::::
Experiment

:::
A.

::::::::
However,

:::
we

::::
omit

:::::
testing

:::
the

::::::
largest

::::::
model

:::
size

::::
(i.e.

:
1,024,000 elements) , four CPU cases (250, 500, 1000, and 2000

Elements per CPU ), 10 PC matrices, and 20 KSP iterative methods
:::
due

::
to

:::
the

::::::
intense

::::::::::::
computational245

::::::::
resources

::::::::
necessary

:::
for

::::
this

:::::
model

::::
size

:::
and

::::
the

::::::
limited

::::::::::
information

::::::
gained

:::
by

:::
this

:::::::::
prognostic

::::
test

::::::
relative

::
to

:::
the

:::::
more

::::::::::::
comprehensive

::::::::
transient

::::::
model.

::::::::::
Simulations

::
of

::::::::::
Experiment

::
A
:::::
were

:::::::::
performed

::::
more

:::::::
recently

:::
on

:::
the

:::::::
Pleiades

::::::
cluster

:::::
using

::::::::
upgraded

:::::::::
Broadwell

:::::
nodes

::
(2

::::::::::::
fourteen-core

::::
Intel

:::::
Xeon

:::::::::
E5-2680v4

:::::::::
processors

:::
per

::::
node

::::
with

::::
128

:::
GB

:::
per

:::::
node)

::::
with

:::::
ISSM

:::::::
version

::::
4.11

:::
and

::::::
PETSc

:::::::
version

:::
3.7.

::::::
Updates

::
to

:::
the

::::::
ISSM

::::
code

::::
from

:::::::
version

::::
4.2.5

::
to
:::::::

version
::::
4.11

::::
have

::::::
added

:::
new

::::::::::
capabilities

::::
that250

::
are

:::
not

:::::
used

::
in

:::
this

:::::
study.

::::
The

:::::::
solution

:::::::
methods

:::
and

:::::::::
algorithms

:::::::
between

:::::
these

:::::::
versions

:::
are

:::
the

:::::
same,

:::
and

:::
the

::::::
results

::::
from

:::
this

:::::
study

:::::
apply

::
to

:::
all

::::::::::
intermediate

:::::::
versions

::::
that

::::
users

::::
may

:::
be

:::::::
working

::::
with.

:

3
::::::
Results

::::
Since

::::
our

::::::
primary

:::::::
interest

:
is
:::::::::
identifying

::::
fast,

:::::
stable

::::::
solvers

:::
for

:::::::
transient

:::::::
ice-flow

::::::::::
simulations,

:::
we

::::
first

::::::
present

:::
the

:::::
results

:::::
from

::::::::::
Experiment

:
F.
::::
Our

::::::
timing

::::::
results,

::::::::
measured

::
in

:::::::
seconds,

:::::::
consists

::
of

:::
the

:::::
CPU255

::::
time

::::::::
associated

:::::
with

:::::::::
assembling

:::
the

:::::::
stiffness

:::::::
matrix,

::::
load

::::::
vector,

::::::
solving

:::
the

:::::::
system

::
of

:::::::::
equations,

:::
and

:::::::
updating

:::
the

:::::
input

::::
from

:::
the

::::::::
solution. Only the fastest results for each model size , measured by

CPU time (seconds), for solving the horizontal velocity analysis (fastest 10%), the vertical velocity

::::::::::::::
incompressibility

:
analysis (fastest 5%), and the mass transport analysis (fastest 5%) are shown in

Figs. 2-
:
–4, respectively. These thresholds (i.e. 10%, 5%, and 5%) are chosen so as to exhibit clear260

trends in identifying the fastest and most robust solvers. Here, we associate the robustness of a solver

(PC/KSP combination) in terms of efficiently solving a given analysis for
:::::
across

:
the wide range of

tested model sizes and distinct basal sliding
::::
both

:::::
basal

::::::::
boundary

:
conditions. This

:::::::::::
classification is

different from a solver that is the
:::::
solvers

::::
that

:::
are

:
optimal (i.e. fastest) for a specific scenario

:::
case,

but it allows users to identify methods
:::::::
modelers

::
to

:::::::
identify

::::::
solvers

:
that are fast across the largest set265

of conditions, be it mesh size, number of available CPUs, or basal sliding conditions. Users
::::::
regime.

::::::::
Modelers interested in optimal performance for a specific simulation should consult Figs. 2-

:
–4 for

each analysis component and use a solver corresponding to a color-filled symbol (i.e. fastest 1%

result) closest to their model size, where the number of recommended CPUs is specified by the color

of the symbol.270

We
:::
For

::::::::::
Experiment

::
F,

::
we

:
highlight the most robust solvers (i.e. the fastest PC/KSP combinations

across all model sizes and both basal sliding conditions) in Figs. 2-
:
–4 using red boxes. Thus, a red

box highlights solver combinations
:
a
:::::
solver

::::::::
(PC/KSP

:::::::::::
combination)

:
where all four symbols (i.e. all
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tested mesh sizes) are present
:::::
among

:::
the

::::::
fastest

:::::::
methods

:
for both basal sliding

:::::::
boundary

:
conditions.

Whereas the color-filled symbols only identify
::::::
identify

:::
the solvers that are among the fastest timing275

results (top 1%) for the mesh size specified by the symbol type
:::
that

:::::
mesh

:::
size

::::
and

::::
basal

:::::::::
boundary

::::::::
condition. The highlighted solvers

::::
from

::::
Figs.

::::
2–4

:
may be used as ISSM solver defaults for each

analysis type underlying the transient solution
::
of

:::
the

::::::::
transient

:::::::::
simulation (i.e. horizontal velocity,

vertical velocity
::::::::::::::
incompressibility, and mass transport). For the horizontal velocity solution, the re-

sults in Fig. 2 show six highlighted solvers are robust (i.e. four symbols displayed for both sliding280

cases). Furthermore, these
::::
basal

::::::::
boundary

::::::::::
conditions).

:::::
These

:
results indicate that using a block Ja-

cobi preconditioner is well suited for this analysis type across both sliding cases
::
for

::::
both

::::::
sliding

::::
and

:::::
frozen

::::
bed

::::::::
scenarios. For the vertical velocity

::::::::::::::
incompressibility

:
analysis, the highlighted solvers in

Fig. 3 indicate that using a variant of the Jacobi preconditioner (block Jacobi, Jacobi or point block

Jacobi), in conjunction with the corresponding KSPs yields the most robust results. For the mass285

transport analysis, the situation is more nuanced in terms of preconditioners, but both the bcgs and

bcgsl KSP solvers tend to be robust across several preconditioners. Surprisingly, not using a pre-

conditioner
::
for

:::
the

:::::
mass

:::::::
transport

:::::::
analysis

:
seems to yield very fast and robust results when used in

combination with the lsqr and bcgs solvers, which was not expected.

Fig
:::
Figs. 5 and Fig. 6 plot the weak and strong scalability associated with solving the ISMIP-HOM290

Experiment F test
:::::::::
Experiment

::
F
:
using the default ISSM solver (MUMPS) and iterative solvers se-

lected from the highlighted solvers in Figs. 2-
:
–4 for each analysis component of

::::
type

:::::::::
underlying the

transient simulation. Here
:::::::::
Specifically, we compare the default solver results to a combined strategy

that uses a point block Jacobi (i.e. PC=pbjacobi) preconditioned
:::::::::::
preconditioner

::::
with

::
a biconjugate

gradient stabilized (i.e. KSP=bcgsl) iterative method to solve the mass transport analysis , a block295

Jacobi (i.e. (PC=bjacobi) preconditioned minimum residual (i.e.
::::::::
pbjacobi, KSP=minres)

:::::
bcgsl),

::
a

::::
block

::::::
Jacobi

::::::::::::
preconditioner

::::
with

::
a

::::::::
minimum

:::::::
residual iterative method to solve the horizontal veloc-

ity analysis ,
:::::::::::
(PC=bjacobi,

::::::::::::
KSP=minres),

:
and a point block Jacobi (i.e. PC=pbjacobi) preconditioned

conjugate gradient on
::::::::::::
preconditioner

::::
with

:
a
:::::::::
conjugate

:::::::
gradient

:::::::
iterative

::::::
method

:::::::
applied

::
to the nor-

mal equations (i.e.
:
to
:::::
solve

:::
the

::::::::::::::
incompressibility

:::::::
analysis

::::::::::::
(PC=pbjacobi,

:
KSP=cgne)iterative method300

to solve the vertical velocity analysis. One issue that arose while carrying out the weak scalability

analysis was that simulations using MUMPS to solve the largest model (i.e. 1,024,000 elements)

experienced memory and cluster issues for both sliding cases
:::
and

::::::
frozen

:::
bed

::::::::
scenarios

:
(e.g. compu-

tational nodes restarting and general memory issues). We
:::
For

:::::
these

::::
tests,

:::
we

:
estimate the total time

required to solve both sliding cases using MUMPS on the largest model
:::
with

:::
the

::::::::
MUMPS

:::::
solver

:
by305

linearly extrapolating the total time from the number of iterations completed during a two-hour and

eight-hour run. These estimated
:::::
timing results are displayed as the

::
by

:
diamond symbols in Fig. 5 for

the direct solver only.

::
In

:::::::::
considering

:::
the

:::::::::
magnitude

:::
of

::
the

::::::
slopes

::::::::::
representing

:::
the

:::::
weak

:::
and

::::::
strong

:::::::::
scalability,

:::
we

:::::
recall

:::
that

:::
our

::::::
timing

::::::
results

::::::
include

:::::::
routines

::::::
outside

:::
of

:::
the

:::::
solver

::::::::
procedure

::::
(i.e.

::::::::::
assembling

:::
the

:::::::
stiffness310

9



::::::
matrix,

::::
load

::::::
vector,

::::
and

::::::::
updating

:::
the

:::::
input

:::::
from

:::
the

::::::::
solution)

::::
that

:::
are

:::
not

::::::::::
necessarily

::::::::
scalable.

::::::::
However,

:::
the

:::::::
relative

:::::::::
scalability

::::
(i.e.

:::::::::
differences

:::
in

::::::
slope)

:::::::
between

:::
the

:::::::::::::
preconditioned

::::::::
iterative

:::::::
methods

:::
and

:::
the

:::::
direct

::::::
solver

::::::::
illustrates

:::
the

::::::::::
differences

::
in

:::::::::::
performance

:::::::
between

:::::
these

::::::::::
approaches.

Optimal weak scalability would imply a
::
for

::
a

:::::
solver

:::::::
implies

:
a
:

horizontal slope in Fig. 5 and the

ability to solve increasingly refined models with a fixed ratio of elements per CPU in constant time.315

Here, the slope
:::::
slopes

::::::::::
representing

:::
the

:::::
weak

:::::::::
scalability

:
of the preconditioned iterative solver (i. e.

0.468) in Fig. 5 is much smaller than the slope of
:::
for

:::
the

:::::
frozen

::::
bed

:::
and

::::::
sliding

::::
bed

::::::::::::
configurations

::
are

::::::
0.441

:::
and

::::::
0.495,

::::::::::
respectively.

::::::::
Whereas

:::
the

::::::
slopes

:::
for

:
the direct solver (i. e. 1.200).

:::
are

:::::
much

:::::
larger

::
at

:::::
1.124

:::
and

:::::
1.165

:::
for

:::
the

::::::
frozen

:::
and

::::::
sliding

::::
bed

::::::::::::
configurations,

:::::::::::
respectively. For the largest

model (i.e. 1,024,000 elements) the iterative solver is more than two orders of magnitude faster than320

the ISSM default solver: ∼57 hours (estimated) compared to ∼15 minutes. As Fig. 5 indicates, using

a preconditioned iterative method over direct solvers
:::
the

:::::
direct

:::::
solver

:
is increasingly beneficial for

larger model sizes. For very small models (i.e. 2000 elements), using MUMPS is marginally slower

:::::
(∼1.5

:::::
times)

:
than the presented iterative methods(i. e. ∼1.5 times faster).

:
. Optimal strong scalability

would imply
:::::
implies

:
a slope equal to -1 in Fig. 6 and the ability to solve a model with a fixed number325

of elements faster by using more CPUs. The slope
:::::
slopes

:
in Fig. 6 for the direct solver (

::::::::::
representing

::
the

::::::
strong

:::::::::
scalability

::
of

::::
the

:::::
direct

:::::
solver

:::
for

:::
the

::::::
frozen

::::
and

::::::
sliding

::::
bed

::::::::::::
configurations

:::
are

::::::
-0.332

:::
and

::::::
-0.399,

:::::::::::
respectively.

::
In
:::::::::::

comparison,
:::
the

::::::
slopes

:::
for

:::
the

:::::::::
combined

:::::::
iterative

:::::::
solvers

::::::
applied

:::
to

::
the

::::::
frozen

::::
and

::::::
sliding

:::
bed

::::::::::::
configurations

:::
are

::::::
-0.897

:::
and

::::::
-0.911,

:::::::::::
respectively,

::::::
clearly

:::::::
favoring

:::::
these

::::::
solvers

::::
over

:::
the

:::::
direct

:::::
solver.

:
330

::
To

:::::
show

:::
the

::::::
impact

::
of

::::::::
nonlinear

::::::::
viscosity

::
on

:::
the

:::::::::
efficiency

::
of

:::
the

::::::::
presented

:::::::
solvers,

:::
we

::::
plot

:::
the

:::::
timing

::::::
results

:::
for

:::::::
solving

:::
the

:::::
stress

:::::::
balance

::::::::
equations

:::
in

::::::::::
Experiment

::
A

::::
(Fig.

:::
7).

::::
Fig.

::
7
:::::
plots

:::
the

:::::
fastest

::::
(top

::
15%

:
)
:::::
timing

::::::
results

:::
for

::::
each

:::::
mesh

::::
size,

:::::
using

::
the

:::::
same

:::::::
symbols

::
as

:::
the

::::::::
previous

::::
plots

:::
for

:::::::::
Experiment

::
F,
::::::
where

:::::::::
color-filled

:::::::
symbols

::::::::
represent

:::
the

::::::
overall

::::::
fastest

:::::
results

:
(i.e. -0.365) compared

to the combined iterative solvers (
:::
top

:
1%)

:::
for

::::
each

::::::
model

::::
size.

::
In

:::::::::
comparing

:::
our

::::::
results

::
to

:::::
using

:::
the335

::::::
default

:::::
ISSM

:::::
solver

::::::::::
(MUMPS),

::
we

::::
plot

:::
the

:::::
strong

::::
and

::::
weak

:::::::::
scalability

::::
(Fig.

:::
8)

::
for

:::
the

:::::
direct

::::::
solver

:::
and

:::
one

:::
of

:::
the

:::::
fastest

:::::::
solvers

::::::::
identified

::::
from

::::
Fig.

::
7

:::::::::
(KSP=cg,

:::::::::::
PC=bjacobi).

:::::::
Similar

::
to

:::
the

::::::
results

::
for

::::::::::
Experiment

::
F,

:::
the

:::::
slopes

:::
of

::
the

:::::
weak

:::::::::
scalability

::::
(Fig.

:::
8a)

:::
for

:::
the

::::::::::::
preconditioned

:::::::
iterative

:::::::
method

::::::
(0.205)

::
is

:::
also

:::::
much

:::::::
smaller

:
(i.e. -0.904) clearly favors the latter.

:::::
closer

::
to

::::::
optimal

::::::::::
scalability)

::::
than

::
the

::::::
direct

:::::
solver

:::::::
(0.883).

::
In

:::::::::
comparing

:::
the

::::::
strong

::::::::
scalability

:::
of

::::
these

:::::::
solvers

::::
(Fig.

::::
8b),

:::
the

::::
slope

:::
of340

::
the

:::::::::::::
preconditioned

:::::::
iterative

:::::::
method

:::::::
(-0.737)

:::
also

::::::::
indicates

:::::
better

:::::::::::
performance

::::
than

:::
the

::::
slope

:::
of

:::
the

:::::
direct

:::::
solver

:::::::
(-0.270).

:

4 Discussion

The results clearly show that
::::::
Solving

:
the horizontal velocity solution

::::::
analysis

:
dominates the CPU

time needed to solve a transient simulation . This is not surprising given that the stiffness matrix345
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resulting from the discretization of the horizontal stress balance equations has the highest condition

number of all analyses, and hence is the most difficult to efficiently precondition
::::
since

::::
this

:::::::
analysis

:::::::
involves

::::
more

::::
dofs

:::
and

:::
has

::
a

::::
much

::::::
higher

::::::::
condition

::::::
number

::::
than

:::
the

::::
mass

::::::::
transport

:::
and

::::::::::::::
incompressibility

:::::::
analyses. Our results, however, show that this bottleneck can be significantly reduced for moderate-

sized models (i.e. 16,000 to 128,000 elements) by using any of the highlighted methods
:::::
solvers,350

which leads to significant speed-up
::::::::
speed-ups

:
relative to the default solver (i.e. ∼7.5-37.26

:::
-37

times faster).

As Fig. 5 shows, using a direct solver such as MUMPS is not recommended for transient simu-

lations of models using more than 128,000 elements. This is both due to the significant speed-ups

(more than 10 times) achieved by applying iterative solvers to transient simulations of
:::::
using

:::::::
iterative355

::::::
solvers

:::
for

:::::::
transient

::::::::::
simulations

:::::::::
involving large models (more than 20,000 elements) and to the

inherent memory restrictions associated with using the direct solver that prevent massive transient

simulations (more than 1,000,000 elements).

Most of the limitations associated with using the default solver on large models arise from the LU

Factorization phase in the MUMPS solver, which is not yet parallelized. This could be remedied by360

switching on the out-of-core computation capability for this decomposition, but this has not been

successfully tested yet and would potentially shift the problem of memory limitations to disk space

and read/write speeds (the size of the matrices being significant). Furthermore, Fig. 5 indicates that

the highlighted solvers are not only capable of handling the largest model (1,024,000 elements), but

the solution time is nearly equivalent to using the default MUMPS solver on a significantly smaller365

model size (
::
i.e.

::
∼20,000 elements).

In
:::::::::
evaluating

:::
the

:::::
effect

::
of

:::::
using

::
a

::::::::
nonlinear

::::::::
viscosity

:::::
model

:::
for

:::
ice

:::
on

:::::
solver

::::::::::::
performance,

:::
we

:::
see

:::
that

:::::
many

::
of

:::
the

:::::::
methods

::::::
which

::::::::
efficiently

:::::
solve

:::
the

::::::::
horizontal

:::::::
velocity

:::::::
analysis

:::
for

::::::::::
Experiment

:
A
:::::

(Fig.
::
7)

:::
are

:::::::::
consistent

::::
with

:::
the

:::::::
solvers

:::::::::
highlighted

:::
for

::::::::::
Experiment

::
F
::::
(Fig.

:::
2),

::::::
which

:::::::
includes

::
a

::::
much

:::::::
simpler

:::::::
constant

::::::::
viscosity

:::
for

::::
ice.

::::::::::
Specifically,

:::
we

::::
see

:::
that

:::
the

::::::
block

:::::
Jacobi

:::::::::::::
preconditioner370

:::::::::::
(PC=bjacobi)

::
is
::::::::
effective

:::::
across

::
a
:::::::
number

::
of

:::::::
iterative

::::::::
methods

:::
for

::::
both

::::::::::
benchmark

:::::::::::
experiments.

:::::
While

:::
this

::::::::::
comparison

::::
only

:::::::
extends

::
up

::
to
::::::
model

::::
sizes

::
of

:::::::
128,000

:::::::::
elements,

::
we

::::
see

::::
from

:::
the

:::
plot

:::
of

::::
weak

:::::::::
scalability

::::
(Fig.

::::
8a)

:::
that

:::::
using

:::
the

:::::::
iterative

:::::
solver

::::::
results

::
in
:::::::::
speed-ups

:::::::
ranging

::::
from

::::::::
∼1.2–19

::::
times

:::::
faster

::::
than

:::::
using

:::
the

::::::
default

:::::
solver

:::
for

::::::
model

::::
sizes

:::::::::
increasing

::::
from

:::::::::::::
2,000–128,000

::::::::
elements.

::
In practice, users may experience numerical convergence issues

:::::
issues

::::
with

:::::::::
numerical

::::::::::
convergence375

when applying some of the iterative methods presented in Figs. 2-
:
–4 for their particular application.

In these instances using the ISSM default solver (MUMPS) provides a stable solution strategy. Fur-

thermore, since solving the horizontal velocity analysis is the most CPU-time intensive stage of the

transient simulation process, using a direct solver for the other analysis types and relying on Fig. 2

to select an optimal solver for the horizontal velocity analysis may provide the best balance between380

stability and speed.
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While the relative rankings of the numerical solvers , presented in Figs. 2-4,
::::
tested

::::::
solvers

::::::::
presented

::
in

:::
this

::::
work

:
are specific to the ISMIP-HOM Experiment F test, testing the solvers with

:::::::::::
Experiments,

:::::::
applying

::::
these

::::::::
methods

::
to

:::::::::
simulations

:::::
using realistic model parameterizations (e.g. nonlinear viscosity,

anisotropic mesh, realistic
:::::::::
data-driven

::::::::
boundary

::::::::::
conditions,

:::::::::
anisotropic

:::::::
meshes,

::::
and

:::::::
complex

:
ge-385

ometries) also results in significant speed-ups compared to the default
:::::
solver, though these com-

putations are not shown here. For those interested in further refining the findings of our analysis,

we suggest testing
:::
We

:::::::::::
acknowledge

::::
that

::
in

:::::::
relation

::
to

:::::
using

:::::::
synthetic

::::
test

:::::
cases,

:::::::::
real-world

::::::
model

::::::::::::::
parameterizations

::::
may

:::::
affect

:::
the

::::::::::
convergence

::::
and

::::::
relative

:::::::::::
performance

::
of

:::
the

::::::
iterative

:::::::
solvers

:::::
tested

::
in

:::
this

:::::
work.

::::::::
However,

:::::
since

:::
any

:::
of the highlighted solvers over a broad range of configurations of390

the ISMIP-HOM Experiment F benchmark test including varying the slope of the bed angle, the bed

stickiness, the bedrock bump height, and using non-linear creep type rheologies for the ice viscosity.

::
are

:::::::::::
significantly

:::::
more

:::::::
efficient

::::
than

:::::
using

:
a
:::::
linear

::::::
solver,

:::
our

::::::
results

:::::::
provide

:
a
:::::
useful

:::::::
starting

:::::
point

::
for

::::::::
modelers

:::::::
looking

:::
for

:::::::
efficient

:::::::
methods

::
to

:::
use

:::
for

:::::::
specific

:::::::
ice-flow

::::::::::
simulations.

:::
We

:::::::::
recommend

::::
that

:::::
future

:::::::::
refinement

::
of

::::
these

::::::
results

::::::
include

::::::::::::
customization

::
of

:::
the

::::::
PETSc

::::::::::
components,395

:::::
which

:::
can

:::::
lead

::
to

:::::::::
significant

:::::::::::
performance

:::::
gains

::::
over

:::::::
default

::::::
values,

::::
and

:::::::
include

:::::
more

:::::::
realistic

:::::::::
geometries

:::
that

:::::::
include

::::::
varying

:::::::
degrees

::
of

:::::::::
anisotropy.

:
Finally, it should be noted that the presented

optimal solvers do not require a supercomputer and may be used with fewer CPUs than the number

indicated by the symbol color in Figs. 2-
:
–4. Indeed, the highlighted iterative methods may provide

speed-ups (compared to using MUMPS) larger than we presented in Fig. 5
::::::::
indicates when using400

computers with limited memory.

5 Conclusions

The results presented herein offer guidance for selecting fast
:::
and

::::::
robust numerical solvers for tran-

sient ice-flow simulations across a broad range of model sizes and basal sliding
::::::::
boundary

:
condi-

tions. Here, the highlighted solvers offer significant speed-ups (∼1.5-100
::::
–100 times faster) rela-405

tive to the default ISSM solver (MUMPS). Furthermore, the highlighted solvers enable large-scale,

high-resolution transient simulations that were previously too large to run with the default solver

in ISSM. While users of ISSM
::::
These

:::::::::
combined

:::::::
benefits

:::
are

::::::::
consistent

:::::
with

:::::
results

::::::
across

::
a

:::::
broad

::::
range

:::
of

::::::::::::
computational

::::::::::
disciplines,

::::::
which

::::
also

:::::
show

:::
that

::::::::
iterative

::::::
solvers

:::
are

:::::::::::
significantly

:::::
more

:::::::
efficient

::::
than

:::::
direct

::::::
solvers

:::
for

::::::
solving

::::::
sparse

:::::
linear

:::::::
systems

::
as

:::
the

:::::::
number

::
of

::::
dofs

::::::::
becomes

:::::
large.410

:::::
While

::::::::
modelers

:
may prefer to use the default

:
a direct solver as a stable strategy, the performance

gains afforded by
:::::::::
significant

::::::::::
performance

:::::
gains

:::::::
attained

:::::
using the preconditioned iterative methods

identified
:::::::::
highlighted

:
in this study provide a compelling case worth considering

::
to

:::::::
consider. Here,

taking the time to find an efficient solver is strongly recommended for computationally demanding

simulations involving high-resolution meshes as well as uncertainty quantification studies or param-415

eter studies entailing repeated simulations.
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6 Code Availability

The results from this work are reproducible using ISSM
::::::::
(versions

:::::::::
4.2.5–4.11) with the corresponding

PETSc solvers used for each simulation. Here
::::::
analysis

:::::
type.

:::::
Here,

:::
the

::::::
current

:::::::
version

::
of

:
ISSM is

available for download at . The model for simulating https://issm.jpl.nasa.gov
:
,
:::
and

::::::::
previous

:::::::
versions420

::
are

::::::::
available

:::::
from

:::
the

::::
svn

:::::::::
repository.

::::
The

::::::
models

:::
for

:::::::::
simulating

:::::
these

:
ISMIP-HOM Experiment

F is
::::::::::
Experiments

:::
are

:
documented on the website and is also included in the test directory of the

download.
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Figure 1. ISSM results for the ISMIP-HOM benchmark Experiment F transient simulation after 1500 years.

Surface velocity (m a−1) and steady state surface elevation profile (m) along the central flowline are shown for

the frozen and sliding bed cases.
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Figure 2. Horizontal velocity analysis: timing results for the fastest solvers (top 10%) tested on ISMIP-HOM

Experiment F. The top (1%)
:
timing results are distinguished using color-filled symbols. Both basal sliding

:::::::
boundary conditions for Experiment F are shown: frozen bed (upper half) and sliding bed (lower half). The

::::
Each solver is represented by the combination of a preconditioner (horizontal labels

::::
rows) and a Krylov subspace

method (vertical labels
::::::
columns) using PETSc abbreviations. Simulations are performed using four mesh sizes

(denoted by the symbols in the legend) and four CPU cases (denoted by the colors in the legend). Only the

fastest CPU case (i.e. color) is displayed. Red boxes highlight solver combinations that rank among the fastest

methods for all model sizes and both bed conditions (i.e. four symbols in the top and bottom frame).
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Figure 3. Vertical velocity
:::::::::::::
Incompressibility

:
analysis: timing results for the fastest solvers (top 5%) tested on

ISMIP-HOM Experiment F. The top
:
(1%

:
) timing results are distinguished using color-filled symbols. Red boxes

highlight solver combinations that rank among the fastest methods for all model sizes and both bed conditions

(i.e. four symbols in the top and bottom frame). See Fig. 2 for more details.
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Figure 4. Mass transport analysis: timing results for the fastest solvers (top 5%) tested on ISMIP-HOM Exper-

iment F. The top (1%)
:
timing results are distinguished using color-filled symbols. Red boxes highlight solver

combinations that rank among the fastest methods for all model sizes and both bed conditions (i.e. four symbols

in the top and bottom frame). See Fig. 2 for more details.
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Figure 5. Weak scalability of
::
for

::::::::
simulating

:::::::::::
ISMIP-HOM

:::::::::
Experiment

::
F

:::::
using the default ISSM solver

(MUMPS) compared with a combination of robust solvers (selected from the highlighted solvers in Figs. 2-
:
–4)

for the components
:::
each

:::::::
analysis

:::::::::
component of the transient ISSM simulationof ISMIP-HOM Experiment

F. The simulations are carried out using a constant ratio of 250 elements per CPU and show the impact of

increasing mesh size on simulation time (s). The
:::
This combination of iterative solvers is chosen according to the

highlighted results presented in Fig. 4, 2 and 3. It consists of : 1) a point block Jacobi (pbjacobi) preconditioned

biconjugate gradient stabilized (bcgsl) iterative method for the mass transport analysis; 2) ,
:
a block Jacobi (bja-

cobi) preconditioned minimum residual (minres) iterative method for the horizontal velocity analysis, and 3) a

point block Jacobi (pbjacobi) preconditioned conjugate gradient on the normal equations (cgne) for the vertical

velocity
:::::::::::::
incompressibility

:
analysis.

:::::
These

:::::::::
simulations

:::
are

::::::::
conducted

::::
using

::
a

::::::
constant

::::
ratio

::
of

::::
500

:::::::
elements

::
per

::::
CPU

::::::
(except

:::
for

::
the

::::::
largest

:::::
model

:::
with

:::
the

:::::
direct

:::::
solver)

:::
and

:::::
show

::
the

::::::
impact

::
of

::::::::
increasing

::::
mesh

:::
size

:::
on

::::::::
simulation

:::
time

::::::::
(seconds).

::::
Ideal

:::::
weak

:::::
scaling

::
is

::::::::
consistent

:::
with

::
a
:::::::
horizontal

:::::
slope.

::::::
Timing

:::::
results

::::::
include

:::
the

::::
CPU

:::
time

::::::::
associated

::::
with

:::::::::
assembling

:::
the

::::::
stiffness

::::::
matrix,

::::
load

:::::
vector,

::::::
solving

:::
the

:::::
system

:::
of

:::::::
equations,

::::
and

::::::
updating

:::
the

::::
input

::::
from

:::
the

::::::
solution.

:
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Figure 6. Strong scalability of the default ISSM solver (MUMPS) compared with a combination of robust

solvers (selected from the highlighted solvers in Figs. 2-
:
–4) for the components of the transient ISSM simulation

of ISMIP-HOM Experiment F. See Fig. 5 for the specific solvers used
::::::

specified for each analysis component.

Strong scalability indicates
::::::::
represents the impact of increasing the number of CPUs while keeping the mesh

size constant (16,000 elements). Color-filled symbols identify
:::
Ideal

:::::
strong

::::::::
scalability

::
is

::::::::
consistent

:::
with

:
a
:::::
slope

::::
equal

::
to

::
-1.

::::::
Timing

:::::
results

::::::
include the number

::::
CPU

:::
time

::::::::
associated

::::
with

::::::::
assembling

:::
the

::::::
stiffness

::::::
matrix,

::::
load

:::::
vector,

::::::
solving

:::
the

:::::
system

:
of CPUs used to achieve

:::::::
equations,

:::
and

:::::::
updating

:
the fastest result for each basal

sliding case
::::
input

::::
from

:::
the

::::::
solution.
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Figure 7.
:::::::::
Horizontal

::::::
velocity

:::::::
analysis:

:::::
timing

:::::
results

:::
for

::
the

:::::
fastest

::::::
solvers

:::
(top

:::
15%

:
)
::::
tested

:::
on

::::::::::
ISMIP-HOM

::::::::
Experiment

:::
A.

:::
The

:::
top

::
(1%)

:::::
timing

::::::
results

::
are

:::::::::::
distinguished

::::
using

:::::::::
color-filled

:::::::
symbols.

:::
See

:::
Fig.

::
2
::
for

:::::
more

:::::
details.

:
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Figure 8.
:::::::::

Scalability
::
of

::
the

::::::
default

::::
ISSM

:::::
solver

:::::::::
(MUMPS)

:::::::
compared

::::
with

:
a
:::::::::::
preconditioned

:::::::
iterative

::::::
method

::::::::::
(PC=bjacobi,

:::::::
KSP=cg)

::
for

:::::::::::
ISMIP-HOM

:::::::::
Experiment

::
A.

::
a,

:::::
Weak

::::::::
scalability

::
of

:::::
solvers

:::::
using

:
a
:::::::
constant

::::
ratio

:
of
::::

500
:::::::
elements

:::
per

:::::
CPU;

::::
ideal

::::
weak

::::::::
scalability

::
is
:::::::::
represented

:::
by

:
a
::::::::
horizontal

:::::
slope.

::
b,

::::::
Strong

::::::::
scalability

:
of
::::::

solvers
:::
for

:
a
::::::
16,000

::::::
element

::::::
model;

::::
ideal

:::::
strong

::::::::
scalability

::
is

:::::::::
represented

::
by

:
a
:::::

slope
::::
equal

::
to
:::
-1.

::::::
Timing

:::::
results

:::::
include

:::
the

::::
CPU

::::
time

:::::::
associated

::::
with

:::::::::
assembling

::
the

:::::::
stiffness

:::::
matrix,

::::
load

:::::
vector,

::::::
solving

::
the

::::::
system

::
of

:::::::
equations,

:::
and

:::::::
updating

:::
the

::::
input

::::
from

:::
the

::::::
solution.
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