
We would like to expressly thank Editor Ham, Prof Christianson, and anonymous review for their 

helpful comments and support of our work. In this document, we address the comments made by 

the reviewers. 

Additionally, it bears mention that due in part to the suggestion that the norm under which adjoint 

convergence is evaluated should be modified, and due in part to the fact that the computing cluster 

on which some the experiments in the initial submission were run was replaced by one with differing 

specifications, all experiments for this paper were re-run. This then accounts for the slightly differing 

timing estimates in Table 5, where it can be seen that virtually all run times are shorter than their 

counterparts in the first submission. Also, the time step and # of time steps of the Smith Glacier 

experienced was slightly modified; this was not for any reason relating to code changes, but simply a 

wish to have a longer simulation and a shorter time step, which was took less time on the new 

cluster. Note the shading is different than in the initial submission because (a) the colorscale is 

different and (b) the duration is longer. 

Reviewer 1 

This paper presents an application of the adjoint fixed point iteration proposed by Christianson 

(1994) to the MITgcm ice flow model. The paper describes motivates the algorithm, describes the 

basic principles and the implementation and demonstrates its usability on two problems. Overall, 

the article is well written and deŵoŶstrates the ďeŶefits of ChristiaŶsoŶ’s algorithŵ oǀer applǇiŶg 
AD "naively".  

Thank you very much for your comments! 

* Section 5: It would be interesting to state the solver tolerances, and the number of required 

Picard iterations.  

The forward and reverse tolerances are both 10^-8 – stated as well in the original manuscript (line 

374). Note that, while this has not changed in the revision, a change has been made to the code in 

respoŶse to referee 2’s reǀieǁ ;see ďeloǁͿ oŶ the iŵportaŶĐe of usiŶg the ĐoŶjugate norm to 

establish convergence of the adjoint loop; so for the adjoint this tolerance reflects reduction of the 

1-norm and not the sup-norm. Convergence criteria in the forward problem are unchanged. 

We now give the average forward and reverse iteration counts as well. 

* Lines 463ff: The performance of the LU-solver will degenerate with the size of the problems, as 

direct solvers typically scale worse than well-preconditioned linear solvers. Hence, this sentence 

should be phrased more carefully.  

Thank you, we make note of this now. 

* Figure 2: From the text description it is expected that for a forward tolerance of 10-9, the error 

would be 0 (as it is assumed as the ground truth). Adding this data point results in a big jump from 

10-9 to 10-8. What is the reason for this?  

The error presented is absolute error (sup-norm), i.e. not scaled by the norm of the adjoint field. 

(We now qualify maximum error by maximum *pointwise* error, we feel this is sufficient to avoid 

confusion). As adjoint values are O(10^5), errors can be considerable even if relative errors are not. 

Scaling the sup-norm of the error by the sup-norm of the adjoint field would yield a value of ~10^-9 

for the leftmost point; and similarly if we considered L2-norms. Still, the linear dependence shown 

would remain – and it is the linear dependence that we attempt to show with this figure. 



Note that the rightmost point (10^-4) is now removed. It was determined that in this experiment, 

the forward problem was not well-enough converged for the adjoint model to produce a zero-order-

correct answer, and we have left this point off in our revision as we feel the four points shown are 

still sufficient for our argument. 

* Table 5: It would be interesting and usefull also list (and discuss) the required Picard iteration 

numbers that were used in the forward/adjoint solves.  

This is done now (see above). 

* The references should be checked for correct spelling (e.g. names in titles should be captitalized)  

DoŶe, thaŶks for ĐatĐhiŶg these… 

* Lines 469-484: This paragraph is essential and I would have liked to read it earlier. The question 

that this paragraph adresses is: The adjoint equations are linear, so why does one need to perform 

a (computationally expensive) Picard iteration at all? 

Thank you for the suggestion – this paragraph now appears in the introduction with a brief 

restatement in the discussion/conclusions section. 

Reviewer 2 (Christianson) 

General comment  

I really like this paper. 

 It’s a ŶiĐe appliĐatioŶ of aŶ estaďlished fiǆed-point iteration method to a new area, explained in a 

way that should facilitate use of the approach elsewhere. The iterator used is interesting, because 

it is sufficiently contractive to converge in a relatively small number of iterations (unlike those used 

in CFD, for example) but is not super-linear (unlike, say, Newton constructors), and so adjoint 

iteration is required and the choice of adjoint start-point is potentially significant.  

Thank you! 

There are two audiences for this paper: geoscientists looking to apply AD efficiently to their 

specific problems; and those already familiar with AD wanting to apply this particular approach in 

another application domain. It may be worthwhile to insert additional references to the standard 

AD literature in order to help the second group get the most out of this paper; and to help the first 

group learn more about AD, which in turn will give them access to techniques which originated in 

other application domains.  

Thank you for the suggestion. The citations you suggest below have been added, and in the 

introduction as soon as AD is mentioned we give reference to a few general texts (and a community 

website) 

Specific comments  

liŶe ϴϳ: the ŵeĐhaŶiĐal adjoiŶt ǁas origiŶallǇ proposed ďǇ J.C. Gilďert, ͞AutoŵatiĐ Differentiation 

aŶd Iteratiǀe ProĐesses͟, OptiŵizatioŶ Methods aŶd “oftǁare ϭ;ϭͿ ;ϭϵϵϮͿ, ϭϯ-22, and it might be 

useful to Đite the disĐussioŶ iŶ Gilďert’s paper, as ǁell as that iŶ ChristiaŶsoŶ ϭϵϵϰ. That the 
ŵeĐhaŶiĐal adjoiŶt doesŶ’t alǁaǇs aĐtuallǇ solǀe the adjoint fixed-point problem accurately - or at 

all - was pointed out by Gilbert: the quick test whether it did is to check if the adjoints 

corresponding to u_0 are close to zero, where u_0 is the starting value for the forward iterations.  



Thank you – a reference to the Gilbert paper has been added 

line 155: This would be a good point to insert some references to standard AD literature: as well as 

the excellent book by Griewank and Walther already in the Reference list, there is a brisk 

introductory survey paper (available open-aĐĐessͿ ďǇ BartholoŵeǁBiggs et al, ͞AutoŵatiĐ 
DiffereŶtiatioŶ of Algorithŵs͟, JCAM ϭϮϰ;ϭ-2) (2000), 171-190.  

Thank you for the suggestion – references added. 

line 164: this observation remains true even when the matrix is not self-adjoint.  

We still believe that a self-adjoint matrix allows for greater ease. To put in context, see Goldberg and 

Heimbach (2013), Parameter and state estimation with a time-dependent adjoint marine ice sheet 

model, The Cryosphere, 7(6), 1659-1678, eqs 7-8 (the paper is now referenced). Were the matrix not 

self-adjoint, the subroutine that implements these equations would need to transpose the matrix 

stored to tape. 

liŶe ϭϵϯ: it doesŶ’t haǀe to ďe the EuĐlideaŶ Ŷorŵ, ĐoŶtraĐtioŶ ǁith respeĐt to aŶǇ operator Ŷorŵ 
will do!  

We haǀe reŵoǀed ͞EuĐlideaŶ͟.  

Formally, we realise it should be specified that this operator norm is that induced by the norm in 

which the fixed-point problem converges. On the other hand, since norms in a finite-dimensional 

vector space are equivalent, then as long as we fix the problem size the choice of norm should not 

be important. We hope you agree and we do not press the matter further in the text (though see 

below for line 250). 

liŶe ϮϬϮ: ͞uses a fiǆed poiŶt loop to ĐalĐulate ;ϳͿ͟ - not quite. The fixed point loop in Christianson 

(1994) deliberately calculates (10) rather than (7). This is for two reasons: to avoid repeatedly 

addiŶg ŶuŵeriĐallǇ ;ǀerǇͿ sŵall terŵs to ďig oŶes; aŶd iŶ order to alloǁ a ͞ǁarŵ start͟ ďǇ usiŶg 
an "arbitrary" initial value of delta* w that is close to the fixed point. It may be worth moving 

equation (10) earlier in the paper and pointing out explicitly that : (a) equation (7) converges with 

n to the value of delta* a-hat that corresponds to the fixed point of equation (10) ; (b) equation 

(10) converges to the correct fixed point regardless of what starting point for delta* w is actually 

used ; and (a) equation (7) corresponds to the result of calculating delta* a-hat after iterating 

equation (10) precisely n times starting from delta* w = delta* u ; Table 4 seems to assume 

starting at delta* w = delta* u, but there is no need for this restriction.  

line 245: see above discussion on line 202.  

Thank you for the correction. While we see the mistake made (eq 7 assumes a specific initial 

condition) we feel it is correct to say that your algorithm constructs the truncated infinite series 

within ďraĐkets iŶ ;7Ϳ, alďeit Ŷot as aŶ ͞eŶd-produĐt͟, so the ǁordiŶg is aŵeŶded to refleĐt this. We 
feel it is clear enough from (6) that (7) converges to delta* a-hat, so this is not made explicit.  

The discussion around (10) is modified slightly. Attn is brought to the fact this is equivalent to step 9  

of Alg 3.1 of BC94, and further we show that the result of n iterations with arbitrary delta*w0 will 

converge to the prefactor in (10), showing the point you make that convergence is indep. of the 

initial guess. 

line 250: it would be nice to know what norm is being used for the forward convergence: logically 

the adjoint norm should be used for the reverse convergence. (For example, the sup norm should 



be used in reverse if the 1-norm is used forwards; the euclidean norm is self-adjoint, etc.) To first 

order, the error in the calculated value of the cost function J is the inner product of the error in u 

(from the forward pass) with the converged value of delta* w. This inner product is bounded by 

any vector norm of the error in u multiplied by the corresponding adjoint vector norm of delta* w: 

ChristiaŶsoŶ, ͞Reǀerse aĐĐuŵulatioŶ aŶd iŵpliĐit fuŶĐtioŶs͟, OptiŵizatioŶ Methods aŶd “oftǁare, 
9 (4) (1998), 307-322.  

Thank you for addressing this. In our first draft (paper and code) the sup-norm was used to evaluate 

convergence in all loops.  

Again, due to the equivalence of norms in finite-dimensional spaces we argue this should not matter 

too much in practice. Still, we have updated the code to use the conjugate norm (i.e. 1/p+1/q=1 if 

1<p<\infty, otherwise sup-norm <--> 1-norm) to evaluate convergence of the adjoint loop. All the 

results presented in the revision implement this change, with the sup-norm used for the forward 

iteration. This is made clear in the paper. 

(We point out that Fig 2 plots the sup-norm of the error, but results look similar in the 1- and 2-

norms.) 

line 393: the point about indirect solvers being more efficient in large dimensions is a good one, 

but (as well as having the best derivative values) the final forward iteration also generally has the 

best pre-conditioner.  

This is a good point, though this statement presupposes the type of preconditioner being used – but 

we do find that as the forward iteration proceeds, the number of required CG iterations for a given 

accuracy drops. We choose the phrasing: 

͞Even without the L-U optimization, however, the BC94 algorithm ensures all linear solves in the 

adjoint model correspond to the converged state of the fixed-point problem. In practice, this matrix 

is relatively well-conditioned, leading to better performance of the Conjugate Gradient solver.͟ 

Technical comments  

 

line 54: applying the chain rule to the numerical values  

done 

line 76: correspond to a discretization of the correct  

done 

line 123: of a nonlinear operator F to obtain u:  

done 

line 165: - this analytic approach allows invocation  

done 

line 198: required to ensure convergence of Phi to a fixed point  

done 



line 229: undone at the end of each iteration. Once convergence is reached, storing takes place as 

normal in the POSTLOOP phase.  

done 

line 232: simplest to replace certain specific sections of OpenAD-transformed code  

we chose to reword slightly to bring the OpenAD templace mechanism to light 

line 253: would not require changes to this subroutine [obviously it will affect what the subroutine 

does!]  

agreed! But we went with a slightly different modification 

liŶe Ϯϴϱ: i’ŵ reallǇ Ŷot Đlear ǁhǇ these are uŶiforŵly set to zero  

This was simply to more easily define the experiment, as we say now: ͞(in reality, there would be 

``background'' melting to be perturbed, and changes to these melt rates would elicit responses of 

similar magnitudes, but background melting is zero for the sake of simplicity)͟ 

liŶe ϯϬϬ: presuŵaďlǇ ŵ_{i,j}ˆ{fp} is the ǀalue oďtaiŶed usiŶg BCϵϰ?  

Yes, noted now 

line 330: state the range from Figure 2 explicitly here. 

done 

 It would also be useful to have iteration counts for forward and reverse convergence (rather than 

having to deduce them from Table 5.)  

Presumably you are referring to table 5, and not the Fig 2 experiments, we agree these values are 

relevant to table 5 and are now included; however, they are less relevant to figure 2 (and 

furthermore the experiments would need to be run again to get this information). 

line 340: in reverse order relative to forward computation.  

done 

line 354: recover variable values from the forward computation, so that they can be used in the 

adjoint computation.  

done 

line 359: only one level of checkpoints is required.  

Done, thank you, it was worded awkwardly before 

line 442: closer to the forward sweep Fig 1(d) caption: useful to know how the 2nd order 

differencing was done.  

In the caption we refer the reader to eq 17 (now 18). 

Fig Ϯ: seeŵs to haǀe aŶ outlier at ϭϬˆ-4. Any idea why?  

We determined that the adjoint model essentially was not converging at this high a forward 

tolerance, and decided to remove this point from the analysis. We feel that the remaining 

datapoints still support our argument. 



Table 5: what is the significance of the red and blue entries? 

This is to highlight the memory difference between the mechanical and fixed-point adjoint 

approaches, and to highlight the performance gain of the L-U optimization. We have added a note to 

the caption.  
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Abstract. We apply an optimized method to the adjoint generation of a time-evolving land ice model

through algorithmic differentiation (AD). The optimization involves a special treatment of the fixed-

point iteration required to solve the nonlinear stress balance, which differs from a straightforward

application of AD software, and leads to smaller memory requirements and in some cases shorter

computation times of the adjoint. The optimization is done via implementation of the algorithm of5

Christianson [1994] for reverse accumulation of fixed-point problems, with the AD tool OpenAD.

For test problems, the optimized adjoint is shown to have far lower memory requirements, poten-

tially enabling larger problem sizes on memory-limited machines. In the case of the land ice model,

implementation of the algorithm allows further optimization by having the adjoint model solve a

sequence of linear systems with identical (as opposed to varying) matrices, greatly improving per-10

formance. The methods introduced here will be of value to other efforts applying AD tools to ice

models, particularly ones which solve a “hybrid” shallow ice / shallow shelf approximation to the

Stokes equations.

1 Introduction

In recent decades it has become clear how little we understand about the processes governing ice15

sheet behavior (Vaughan and Arthern, 2007), and the complexity that is required in numerical ice

sheet models in order to understand this behavior (Little et al., 2007; Lipscomb et al., 2009). The

representation of poorly-understood processes in ice sheet models leads to large, poorly-constrained

parameter sets, the size of which might potentially scale with the size of the numerical grid. It is

vital that there be a means to relate the outputs of an ice sheet model back to these parameters, both20

comprehensively and efficiently. However, the simplest method of sensitivity assessment – running

the model multiple times while varying each parameter in isolation – quickly becomes intractable

because of the complexity of the models. Consider, for instance, a dynamic model of the Antarctic

1



Ice Sheet, which takes several days to run on a supercomputing cluster, and contains several hundred

thousand parameters pertaining to the spatially varying frictional and geothermal properties of the25

bed over which it slides. Assessing the sensitivity of the model to this parameter field by the method

described above would not be feasible.

Adjoint models provide a means to assess these sensitivities in a way which is independent of the

number of parameters. The adjoint of an ice sheet model simultaneously calculates the derivatives of

a single model output (often called a cost function) with respect to all model parameters – or rather,30

the gradient of the cost function with respect to the parameter set, or control variables. Note that the

latter computation more naturally lends itself to scientific inquiry, as

– this single output can be one of societal interest, for instance the contribution of an ice sheet

to sea level over a given time window; and

– an investigator is unlikely to solely be interested in just one of these (potentially) several35

hundred thousand poorly-constrained parameters.

The adjoint model is essentially the linearization of the model, only the information is propagated

backward in time (or rather in reverse to computational order). As such, the original model is often

referred to as the forward model. Essentially, it is this backward-in-time propagation that allows for

simultaneous calculation of these derivatives, regardless of the dimension of the parameter set.40

One of the earliest instances of the use of the adjoint of an ice sheet flow model was that of

MacAyeal (1992), in which a control method was developed to optimally fit a model to observed

velocities through adjustment of bed friction parameters. The ice flow model used in this study was

a depth-integrated approximation to the shear-thinning Stokes equations, appropriate to ice shelves

and weak-bedded streams (MacAyeal, 1989). Moreover, it was a “static” model, i.e. it consisted only45

of the nonlinear stress balance governing ice velocities, and did not evolve the ice geometry or tem-

perature. The method has since been used in a number of applications (e.g., MacAyeal et al., 1995;

Rommelaere, 1997; Vieli and Payne, 2003; Larour et al., 2005; Khazendar et al., 2007; Sergienko et al.,

2008; Joughin et al., 2009). Similar methods have been applied to “higher-order” approximations

(Pattyn et al., 2008), or to the Stokes equations themselves (e.g., Morlighem et al., 2010; Goldberg and Sergienko,50

2011; Petra et al., 2012; Perego et al., 2014; Isaac et al., 2015).

More recently, algorithmic differentiation (AD) tools have been applied to ice sheet models for

adjoint model generation. AD tools differentiate models by differentiating elemental operations and

applying the chain rule
✿

to
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

values
✿

(
✿✿✿

e.g.
✿

,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Forth et al. (2012); Naumann (2012),
✿✿✿✿

also
✿✿✿

see

www.autodiff.org
✿

). They have been applied extensively to atmospheric and ocean codes (Errico,55

1997; Heimbach et al., 2002; Heimbach, 2008). The use of AD offers ease of differentiation of the

model. For instance, the majority of the adjoint models mentioned in the previous paragraph ignore

the dependence of nonlinear ice viscosity on strain rates, producing an “approximate” set of adjoint

equations which have the same form as the forward model, allowing for code reuse. At the same time,

2
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this “approximate” adjoint ignores terms in the model gradient without knowing whether they are60

negligible. While the “full” adjoint model involves equations distinct from the forward model, the use

of AD avoids having to write the code to solve them. Another advantage is modularity. Modifying,

for example, the specific form of strain-rate dependence of viscosity in an ice sheet model would

then require invasive changes to an analytically-derived set of adjoint equations. When generating

the adjoint through AD, these changes are automatic. Furthermore, AD tools are invaluable when65

dealing with time-dependent or multiphysics models, where model complexity makes it very difficult

to generate adjoint code “by hand”. In fact, to date the only time-dependent ice sheet adjoint models

have been generated through the use of AD (Heimbach and Bugnion, 2009; McGovern et al., 2013;

Goldberg and Heimbach, 2013; Larour et al., 2014).

For clarity we will draw a distinction between the partial differential equations (PDEs) that com-70

prise a mathematical model of a physical system, and the computational model that discretizes these

equations. The PDEs represent an operator, the linearization of which has an adjoint (the continuous

adjoint), which can be discretized Goldberg and Sergienko (2011)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Goldberg and Sergienko, 2011).

Alternatively, the computational model can be differentiated directly. We focus on this discrete ad-

joint in this paper. As mentioned above, a discrete adjoint model can be thought of as the reverse or-75

der computation of the original model Griewank and Walther (2008); Heimbach and Bugnion (2009)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Griewank and Walther, 2008; H

but an important subtlety is that this discrete adjoint may not necessarily correspond to the correct

continuous
✿

a
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿

of
✿✿

the
✿✿✿✿✿✿

correct
✿

adjoint, a subtlety which bears on the accuracy of ice sheet

adjoint models.

Most ice flow models solve a nonlinear elliptic system of partial differential equations (PDEs) for80

ice velocity, and these equations require an iterative fixed-point approach. (Here “most ice flow mod-

els” is taken to mean all ice flow models, except those which make the Shallow Ice Approximation

(SIA, Hutter (1983)). The SIA strictly applies only to slow-moving ice frozen at its base, and not the

fast-flowing ice streams at the Antarctic and Greenland margin which currently exhibit variability.)

We refer to this fixed-point iteration as the Forward Fixed Point Iteration (FFPI). Ice sheet models of85

this type, to which AD tools have been applied previously, simply step backward through the FFPI

(Goldberg and Heimbach, 2013; Larour et al., 2014; Martin and Monnier, 2014). This strategy is

sometimes referred to as the mechanical adjoint (Griewank and Walther, 2008). The mechanical ad-

joint of a fixed-point solution is in fact the iterative solution of a distinct fixed-point problem, whose

convergence differs from that of the forward loop (Christianson, 1994)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gilbert, 1992; Christianson, 1994),90

and to which we refer as the Adjoint Fixed Point Iteration (AFPI). As such the mechanical adjoint

could potentially perform too many iterations, thereby wasting resources; or too few iterations, re-

sulting in decreased accuracy. In fact, in some cases the mechanical adjoint can be inaccurate re-

gardless, as we show in Section 4.1. Additionally, the mechanical adjoint can lead to burdensome

memory and/or recomputation loads as discussed in Section 3. Martin and Monnier (2014) show95
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accuracy can be maintained by truncating the iteration in the mechanical adjoint, but do not provide

a robust, situation-independent way of doing so.

✿

It
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿

pointed
✿✿✿

out
✿✿✿

that
✿✿✿✿✿

some
✿✿✿✿✿✿

authors
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿✿

ice
✿✿✿✿✿

model
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿✿

generation
✿✿✿✿✿✿✿

without

✿✿✿

any
✿✿✿✿✿✿✿

iteration
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿

model.
✿✿✿✿✿✿✿✿✿✿

Depending
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

Stokes
✿✿✿✿✿✿✿✿✿✿

momentum

✿✿✿✿✿✿

balance
✿✿✿✿✿

used,
✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿

stress
✿✿✿✿✿✿✿

balance
✿✿✿

can
✿✿

be
✿✿✿✿✿✿

derived
✿✿✿✿✿✿✿

directly
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

equations
✿✿✿✿✿✿✿

involved
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Perego et al., 2014; Isaac et al., 2015).100

✿✿✿

The
✿✿✿✿✿

result
✿✿

is
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

elliptic
✿✿✿✿✿✿✿

equation
✿✿✿✿

that
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

solved
✿✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿

iteration,
✿✿✿

but
✿✿✿✿✿✿

which
✿✿✿✿✿

leads
✿✿

to
✿✿

a

✿✿✿✿✿

linear
✿✿✿✿✿✿

system
✿✿✿✿

that
✿✿

is
✿✿✿

far
✿✿✿

less
✿✿✿✿✿✿

sparse
✿✿✿✿

than
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿

model.
✿✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

equations
✿✿✿✿✿

must

✿✿✿✿✿✿✿✿✿

potentially
✿✿

be
✿✿✿✿✿✿✿✿

re-derived
✿✿

if
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿

physics
✿✿✿

are
✿✿✿✿✿✿✿

changed.
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿

not
✿✿✿

all
✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximations
✿✿

to

✿✿

the
✿✿✿✿✿✿

Stokes
✿✿✿✿✿✿✿

balance
✿✿✿✿✿

allow
✿✿✿✿

such
✿✿

an
✿✿✿✿✿✿✿✿✿

approach.
✿✿✿✿✿✿✿✿

“Hybrid”
✿✿✿✿✿

stress
✿✿✿✿✿✿✿✿

balances,
✿✿✿✿✿

which
✿✿✿✿✿

solve
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

two-dimensional

✿✿✿✿✿✿✿✿✿✿✿✿

approximations
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

Stokes
✿✿✿✿✿✿✿

balance
✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿

for
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿

fast-sliding
✿✿✿✿

and
✿✿✿✿

slow
✿✿✿✿✿✿✿✿

creeping105

✿✿✿✿

flow,
✿✿✿

are
✿✿✿✿✿✿✿✿✿

increasing
✿✿

in
✿✿✿✿✿✿✿✿✿

popularity
✿✿✿

due
✿✿

to
✿✿✿✿

low
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿

cost
✿✿✿✿

but
✿✿✿✿✿✿✿✿✿

reasonable
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the

✿✿✿✿

First
✿✿✿✿✿

Order
✿✿✿✿✿✿✿✿✿✿✿✿

approximation [
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Goldberg (2011); Schoof and Hindmarsh (2010); Cornford et al. (2013); Arthern et al. (2015);

✿✿

W.
✿✿✿✿✿✿✿✿✿

Lipscomb,
✿✿✿✿

pers.
✿✿✿✿✿✿

comm]
✿

.
✿✿✿

Our
✿✿✿

ice
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

implements
✿✿✿✿

such
✿

a
✿✿✿✿✿✿

hybrid
✿✿✿✿✿

stress
✿✿✿✿✿✿✿

balance.
✿✿✿✿✿✿✿✿✿✿✿✿✿

Differentiating

✿✿✿✿

such
✿

a
✿✿✿✿✿✿✿

balance
✿✿

at
✿✿✿✿

the
✿✿✿✿✿✿✿

equation
✿✿✿✿✿

level
✿✿

is
✿✿✿✿✿✿✿

possible
✿✿✿✿

but
✿✿✿✿

very
✿✿✿✿✿✿✿

tedious,
✿✿✿✿

and
✿✿✿✿

leads
✿✿✿

to
✿✿✿✿

very
✿✿✿✿✿✿✿✿✿✿✿

complicated

✿✿✿✿✿✿✿✿✿

expressions
✿✿✿✿

that
✿✿✿✿✿✿

depend
✿✿✿✿✿✿✿

strongly
✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Goldberg and Sergienko, 2011),
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿

undesirable110

✿✿✿✿✿✿✿✿

properties.
✿

Christianson (1994) provides a mathematical strategy for finding the adjoint of a fixed-point prob-

lem via direct solution of a related fixed-point problem. The convergence of this related problem can

be directly evaluated, avoiding the problem of too many or two few iterations. A novelty of the

approach is that only information from the converged state of the forward loop is used for the ad-115

joint computation, permitting additional efficiency gains. In this paper we present an application

of the AD software OpenAD (Utke et al., 2008) to the MITgcm time-dependent glacial flow model

(Goldberg and Heimbach, 2013). A different AD tool has previously been applied to this ice model,

so here we focus on the implementation of the Christianson algorithm (henceforth called BC94) –

an innovation which is observed to yield substantial improvements in performance.120

2 Fixed-point problem

The forward model to which AD methods are applied is that of Goldberg (2011), which is a “hy-

brid” of two low-order approximations to the nonlinear Stokes flow equations that govern ice creep

over timescales longer than a day (Greve and Blatter, 2009). These are the Shallow Ice Approxi-

mation, appropriate for slow-flowing ice governed by vertical shear deformation, and the Shallow125

Shelf Approximation (SSA; Morland (1987); MacAyeal (1989)), appropriate for fast-flowing ice

governed by horizontal stretching and shear deformation. The hybrid equations have been shown ap-

propriate in both regimes, and represent considerable computational savings over the Blatter-Pattyn

equations (Blatter, 1995; Pattyn, 2003; Greve and Blatter, 2009), as they require the solution of a

two-dimensional system of elliptic PDEs rather than a three-dimensional one.130
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We do not discuss the details of the model here, as they are given in detail in Goldberg (2011)

and in Goldberg and Heimbach (2013). Rather, we focus on its FFPI. Conceptually, the model al-

gorithm can be divided into two components: prognostic (time-dependent) and diagnostic (time-

independent). In the MITgcm land ice model, the prognostic component comprises an update to ice

vertical thickness (H) through a depth-integrated continuity equation, as well as an update of the135

surface elevation and, implicitly, the portion of the model domain where ice is floating in the ocean

rather than in contact with its bed. The diagnostic component solves the FFPI for ice velocities

based on the current thickness profile. Mathematically this step can be understood as the inversion

of a nonlinear operator F
✿

to
✿✿✿✿✿✿

obtain
✿✿

u:

F (u,a) = f . (1)140

Here u is a vector representing horizontal depth-averaged velocities u and v. F is the discretiza-

tion of a nonlinear elliptic PDE in depth-averaged velocity. a represents the set of material pa-

rameters that determine the coefficients of the PDE: ice thickness (H), basal friction rheologi-

cal parameters (C), and ice rheological parameters (A). f is the discretization of driving stress

(Cuffey and Paterson, 2010), or the depth-integrated hydrostatic pressure gradient (which is deter-145

mined by ice thickness). In this model (and in many others) the nonlinear elliptic equation is solved

by a sequence of solutions of linear elliptic operators, where the operators depend on the result of

the previous linear solve:

u(m+1) = (L{u(m),a})
−1f ≡ Φ(u(m), â), (2)

where, in the definition of Φ, â represents the augmentation of the set a to include f . L is a linear150

operator constructed using u(m), the current iterate of u, and the parameters â. Note that â will

differ for each time step through the dependence on ice thickness, which is updated by the prognostic

component of the model. In general, the ice rheological parameters depend on ice temperature, which

is advected and diffused over time. Our ice model does not have a thermomechanical component,

but once developed, it will not affect the algorithm we present in this paper.155

Eq. (2) is our FFPI mentioned previously. In practice the iteration is truncated when subsequent

iterates agree in some predefined sense, but in theory will converge to a unique solution u∗(â). In the

process of computing the adjoint to the ice model, ∂u∗

∂â
must be found, either directly or indirectly.

The focus of this paper is an efficient, scalable method of computing this object.

3 Forward model and “mechanical adjoint”160

Here we give a brief overview of how the model and its mechanical adjoint are constructed. For

further details the reader should consult Goldberg and Heimbach (2013). Table 1 contains a high-

level pseudocode version of the ice model time stepping procedure. Superscripts denote time step
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indices. First the velocity solve (CALC_DRIVING_STRESS and the following loop) finds ice veloc-

ities based on current ice thickness and material parameters; then the prognostic component updates165

thickness (ADVECT_THICKNESS). The function Φ comprises the construction of the linear sys-

tem L (including the nonlinear dependence of the matrix coefficients on the previous iterate) and its

solution.

Table 2 gives an overview of our implementation of the mechanical adjoint. Here we introduce

some notation: for a given computational variableX , the adjoint to X , which formally belongs to the170

dual tangent space at X , is denoted δ∗X (e.g. Heimbach and Bugnion, 2009)(
✿✿✿✿

e.g.,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Heimbach and Bugnion (2009);

✿✿✿

see
✿✿✿

also
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bartholomew-Biggs et al. (2000); Griewank and Walther (2008)). The algorithm evolves the

adjoint variables (e.g., δ∗H) backward in time. These adjoint variables carry with them the sensitiv-

ities of the model output to the corresponding forward variables, and the sensitivities are eventually

propagated back to the input parameters. Note that the adjoints of the individual (pseudo-) subrou-175

tines are given and correspond to the (pseudo-) subroutines of the forward model, mirroring the way

the adjoint is actually constructed. Just like the forward model, the adjoint contains an inner loop

– this is a specific implementation of the AFPI, which will be discussed in further detail below.

As the computation of Φ involves the solution of a linear system of equations, the adjoint of Φ in-

volves the solution of the adjoint of that system. Since the matrix L{u(m),a} is self-adjoint, it is180

easier to calculate this result analytically than for an AD tool to differentiate the linear solver code

– allowing
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Goldberg and Heimbach, 2013).
✿✿✿✿

This
✿✿✿✿✿✿

allows
✿✿✿

for invocation of external “black box”

libraries that cannot be differentiated by the tool. This strategy is used by other applications of AD

to
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿

allows
✿✿✿✿✿✿✿✿✿

invocation
✿✿

of
✿✿✿✿

AD
✿✿✿

for ice models (e.g., Martin and Monnier, 2014).

An important point to be made is that the inner loop in Table 2 is executed as many times as185

the corresponding inner loop in the forward model (lastm[n]), without any checks of convergence.

This could lead to under- or over- convergence, as stated previously. Another important aspect is

that at each reverse time step, and, importantly, at each iteration of the FFPI, the state of the forward

model is required. In particular, every matrix L{u(m),a} must be stored (or recomputed), along with

other intermediate variables within the fixed-point loop. The storage and recovery steps are shown190

explicitly in tables 1 and 2 – and can lead to burdensome memory loads depending on the number

of fixed-point iterations taken at each time step.

The mechanical adjoint of our model was first generated using TAF (Transformation of Algo-

rithms in Fortran; Giering et al. (2005)), but has subsequently been generated via OpenAD with

little further difficulty.195

4 Fixed point treatment

Christianson (1994) presents an algorithm (BC94) for calculating the adjoint of a fixed-point prob-

lem that addresses the shortcomings given above, namely the dependence of the termination of the
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adjoint loop on that of the forward loop, and the requirement to store variables at each iteration of

the adjoint loop. Additionally it provides the opportunity for further optimization when applied to a200

higher-order ice sheet model, as discussed below.

4.1 Mathematical basis

For a rigorous mathematical analysis of BC94 the user is asked to consult the original paper. Here

we give a brief overview of its mathematical basis. In terms of Eq. (2), consider the converged state

of the fixed point problem:205

u∗ =Φ(u∗, â). (3)

Consider a total differential of this equation:

δu∗ =
∂Φ

∂u
(u∗, â)δu∗ +

∂Φ

∂â
(u∗, â)δâ. (4)

Rearranging gives

δu∗ =

[

I −
∂Φ

∂u

]

−1
∂Φ

∂â
δâ. (5)210

If the Euclidean operator norm of the square matrix ∂Φ/∂u is less than unity then the above is

equivalent to

δu∗ =
(

I + ∂Φ/∂u+(∂Φ/∂u)
2
+(∂Φ/∂u)

3
+ ...

) ∂Φ

∂â
δâ. (6)

Note that in the above series, ∂Φ/∂u is always evaluated at the converged solution u∗. The above

condition on the norm of ∂Φ/∂u will not hold in general – but since this is one of the conditions215

required for convergence
✿

to
✿✿✿✿✿✿

ensure
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

of
✿✿

Φ to a fixed point, we can expect that it will be

satisfied at u∗.

From eq. (6) we obtain the desired adjoint operator, approximated by a truncated series of length

n:

δ∗â=

(

∂Φ

∂â

)T



I +

(

∂Φ

∂u

)T

+

(

(

∂Φ

∂u

)T
)2

+ ...+

(

(

∂Φ

∂u

)T
)n


δ∗u∗. (7)220

The algorithm of Christianson (1994) uses
✿✿✿✿✿✿✿✿✿

essentially
✿✿✿✿✿✿✿✿✿

constructs
✿✿✿

the
✿✿✿✿✿✿✿

operator
✿✿✿✿✿✿

within
✿✿✿✿✿✿✿✿

brackets

✿✿

in (7)
✿✿✿

via a fixed-point loopin order to calculate , the convergence criterion of which determines

the truncation length n. This loop represents an implementation of the AFPI, distinct from the one

implemented by the mechanical adjoint. In order to make this distinction explicit, the operator in eq.

(7) can be written225

n
∑

i=0

(

∂Φ

∂â

)T n
∏

k=n+1−i

(

∂Φ

∂u

)T

, (8)
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where it is understood that in the i= 0 term the product sequence evaluates to the identity. It is

straightforward to check that the mechanical adjoint (cf Table 2) effectively computes the operator

n
∑

i=0

(

∂Φ(n−i)

∂â

)T n
∏

k=n+1−i

(

∂Φ(k)

∂u

)T

, (9)

where ∂Φ(k)/∂u and similar terms indicate that the gradient is calculated using the variables that230

have been stored at forward iteration k, rather than at the converged solution. It is apparent that this

expression can differ from eq. (7) if some iterates are far from the fixed point, or if the gradient of Φ

is sensitive to u. In fact, it has been observed in certain cases that a poor choice of initial iterate can

lead to inaccurate adjoint calculation. Furthermore, in the mechanical adjoint, the truncation length

depends on the number of forward iterations, which may not be related to the convergence of this235

series. A scheme which truncates this series based on the size of the truncated terms will be more

robust.

4.2 Implementation in OpenAD

Tables 3 and 4 give an overview of our implementation of BC94 in the MITgcm ice model using

OpenAD. High-level changes to the code were necessary, but the subroutines that comprise the ac-240

tion of the operator Φ were left unchanged. As shown in 3, rather than calling Φ directly, the loop

implementing the FFPI calls a subroutine called PHISTAGE with an argument phase which has

values PRELOOP, INLOOP, or POSTLOOP. Just before the fixed-point loop PHISTAGE is called

with PRELOOP, which does nothing (that is, nothing in forward mode). Within the loop, PHISTAGE

is called with argumentINLOOP, which essentially has the same effect as the call to Φ in the original245

ice model time stepping algorithm. After the loop is converged, PHISTAGE is called with argument

POSTLOOP, which calls Φ one more time (which, if the iteration is converged, should have negli-

gible effect). Of key importance is that any storing of variables that takes place within the call to Φ

in the INLOOP phase is undone at the end of each iteration, unless .
✿✿✿✿✿

Once
✿

convergence is reached.

In other words, exactly one “iteration’s worth” of storage occurs during the time step
✿

,
✿✿✿✿✿✿

storing
✿✿✿✿✿

takes250

✿✿✿✿

place
✿✿

as
✿✿✿✿✿✿✿

normal
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

POSTLOOP
✿✿✿✿✿

phase.

The reason for the addition of this layer PHISTAGE is rooted in the nature of OpenAD source

transformation. To implement BC94 using this tool, it was found to be simplest to replace OpenAD-transformed

code with handwritten code, which can be done at the subroutine level using templates files
✿✿✿✿✿

apply
✿✿✿

the

✿✿✿✿✿✿✿

template
✿✿✿✿✿✿✿✿✿

mechanism
✿✿✿✿✿✿✿✿

provided
✿✿

by
✿✿✿✿✿✿✿✿

OpenAD,
✿✿✿✿

that
✿✿✿

lets
✿✿✿

the
✿✿✿✿✿✿✿

end-user
✿✿✿✿✿✿

provide
✿✿

a
✿✿✿✿✿✿✿✿✿

customized
✿✿✿✿✿✿✿✿✿✿✿✿

differentiation255

✿✿

of
✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿

sections
✿✿

of
✿✿✿

the
✿✿✿✿

code
✿✿

by
✿✿✿✿✿✿

means
✿✿

of
✿

a
✿✿✿✿✿✿✿✿

template,
✿✿✿✿✿✿✿✿✿✿✿

hand-written
✿✿✿✿

once
✿✿✿

and
✿✿✿

for
✿✿

all. Such a template

was written for PHISTAGE in order to implement the pseudocode in tables 3 and 4. The subroutine

thus serves as a “layer” which does not affect the diagnostic ice physics represented by the function

Φ or the prognostic physics implemented outside of the FFPI loop. Thus the modularity offered by

the AD approach is not lost.260
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Table 4 shows how the adjoint model is constructed, making use of the OpenAD-generated ad-

joint code for Φ. In adjoint mode, the calls to PHISTAGE happen in reverse order. The variable

w is a placeholder with no real role in the forward computation, but the adjoint of the call to

PHISTAGE in the POSTLOOP phase assigns to δ∗w the adjoint values of velocity resulting from

AD_ADVECT_THICKNESS,
✿✿

in
✿✿✿✿✿

other
✿✿✿✿✿✿

words
✿✿✿✿

δ∗u∗. In the INLOOP
✿✿✿✿✿✿✿✿

INLOOP phase δ∗w is updated265

according to the equation :

δ∗w(m+1) = δ∗w(m)

(

∂Φ

∂u

)T

+ δ∗u (10)

where m indicates the AFPI iteration step. (In the table , the subscript indices are left off for clar-

ity.)This loop iteratively constructs the truncated infinite series
✿

).
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

assignment
✿✿

is
✿✿✿✿✿✿✿✿

equivalent
✿✿✿

to

✿✿✿

step
✿✿

9
✿✿

of
✿✿✿✿✿✿✿✿✿

Algorithm
✿✿✿✿

9.1
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Christianson (1994).
✿✿✿✿✿

Given
✿✿✿✿

that
✿✿✿✿

δ∗w
✿✿

is
✿✿✿✿✿✿✿✿✿

initialized
✿✿

to
✿✿✿✿✿✿

δ∗u∗,
✿✿

it
✿✿✿

can
✿✿✿

be270

✿✿✿✿

seen
✿✿✿

that
✿✿✿✿✿✿✿

δ∗w(n)
✿✿

is
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

argument
✿✿

of
✿✿✿✿✿✿✿

(

∂Φ
∂â

)T
in eq. 7(or rather, its action on δ∗u∗).

✿

.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Christianson (1994) observes
✿✿✿✿✿✿✿✿✿✿

furthermore
✿✿✿

that
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿✿✿✿

criteria
✿✿✿

are
✿✿✿✿

met,
✿✿✿✿

any
✿✿✿✿

other
✿✿✿✿✿✿

initial

✿✿✿✿✿✿

δ∗w(0)
✿✿✿✿

will
✿✿✿✿✿✿✿✿

converge
✿✿

to
✿✿✿✿

δ∗â
✿✿✿

for
✿

a
✿✿✿✿✿✿✿✿

sufficient
✿✿✿

n.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

property
✿✿✿

can
✿✿✿

be
✿✿✿✿

used
✿✿✿

to
✿✿✿✿✿✿✿✿✿

implement
✿

a
✿✿✿✿✿✿

warm

✿✿✿

start
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿

when
✿✿

a
✿✿✿✿✿

good
✿✿✿✿✿

initial
✿✿✿✿✿

guess
✿✿

of
✿✿✿✿✿

δ∗w
✿✿

is
✿✿✿✿✿✿✿✿

available.
✿✿✿

We
✿✿✿

did
✿✿✿✿

not
✿✿✿

test
✿✿✿✿

this
✿✿✿✿

idea
✿✿✿

for

✿✿✿

our
✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿✿✿✿

experiments. Finally, the adjoint-mode call to PHISTAGEwith PRELOOP represents the275

operation of
(

∂Φ
∂â

)T
on the result.

The introduction of the variable w represents the bulk of the modifications that were necessary

to implement the algorithm using OpenAD. The only additional modification is a handwritten eval-

uation of convergence of δ∗w: we terminate when the relative reduction in the sup-norm
✿✿✿✿

norm
✿

of

the change in δ∗w is below a fixed tolerance.
✿✿✿

The
✿✿✿✿✿

norm
✿✿

in
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

is
✿✿✿✿✿✿✿✿✿

evaluated
✿✿

is
✿✿✿

the280

✿✿✿✿✿✿✿✿

conjugate
✿✿✿✿✿

norm
✿✿

to
✿✿✿

that
✿✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

iteration:
✿✿✿✿

that
✿✿

is,
✿✿

if
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿

is
✿✿✿✿✿✿✿✿✿

evaluated
✿✿

in

✿✿

the
✿✿✿

Lp
✿✿✿✿✿✿

norm,
✿✿✿✿

then
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿

is
✿✿✿✿✿✿✿✿✿

evaluated
✿✿

in
✿✿✿

the
✿✿✿

Lq
✿✿✿✿✿

norm,
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿

1
p
+ 1

q
= 1

✿✿✿✿

(and
✿✿✿

the
✿✿✿

L1

✿✿✿✿

norm
✿✿

is
✿✿✿✿✿✿✿✿

conjugate
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

sup-norm).
✿✿✿✿✿✿✿

Though
✿✿

all
✿✿✿✿✿✿

norms
✿✿✿

are
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-dimensional
✿✿✿✿✿✿

vector

✿✿✿✿✿

space,
✿✿✿

this
✿✿✿✿✿✿

feature
✿✿

is
✿✿✿✿✿✿

added
✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

completeness,
✿✿✿✿✿✿✿✿✿

motivated
✿✿

by
✿✿✿

the
✿✿✿✿

fact
✿✿✿

that
✿✿✿

the
✿✿✿✿

error
✿✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿✿

derivative
✿✿

is

✿✿✿✿✿✿✿

bounded
✿✿

by
✿✿✿

the
✿✿✿✿✿

inner
✿✿✿✿✿✿

product
✿✿

of
✿✿✿

the
✿✿✿✿

error
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

iteration
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

error
✿✿

in
✿✿

the
✿✿✿✿✿✿✿

reverse
✿✿✿✿✿✿✿

iteration285

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Christianson, 1998).
✿✿

In
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

this
✿✿✿✿✿✿

paper,
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿

iteration
✿✿

is

✿✿✿✿✿✿✿✿

evaluated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

sup-norm
✿✿✿✿✿

(thus
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

is
✿✿✿✿✿✿✿✿

evaluated
✿✿

in
✿✿✿

the
✿✿✿

L1
✿✿✿✿✿✿

norm).

We emphasize that all of these modifications are at the level of the “wrapper” PHISTAGE, which

does not contain any representation of model physics (and hence changes to
✿✿

the
✿

model physics would

not impact
✿✿✿✿✿✿

require
✿✿✿✿✿✿

changes
✿✿

to
✿

this subroutine nor its handwritten adjoint code
✿✿

to
✿✿

its
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿

template).290

4.3 Optimization of linear solve

As mentioned previously, evaluating Φ involves the solution of a large (self-adjoint) linear system,

and thus the adjoint of Φ involves the solution of a linear system with the same matrix (assuming

the same values of u and â). In the mechanical adjoint model, within a given time step, this matrix

differs with each iteration of the adjoint loop; however, in BC94, only the right hand side differs.295
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This invariance suggests the use of a linear solver whose cost can be amortized over a number of

solves, such as an L-U decomposition or an algebraic multigrid preconditioner, the internal data

structures of which only need be constructed once. In this study, we consider only an L-U solver.

5 Test Experiment

A simple experimental setup was developed to test the accuracy, performance, and convergence300

properties of the implementation of BC94. The setup consists of an advancing ice stream and shelf in

a rectangular domain (x,y) ∈ [0,80km]× [0,40km]. We prescribe an idealized bedrock topography

R and initial thickness h0. R does not vary in the along-flow (x−) direction and forms a channel

through which the ice flows, prescribed by

R(x,y) =−600− 300× sin
( πy

40km

)

, (11)305

while initial thickness is given by

h0(x,y) =











300 m+min
(

1,
(

x−50 km
62 km

)2
)

× 1000 m 0≤ x < 50 km

300 m 50 km≤ x≤ 70 km.
(12)

Where x > 70 km, there is open ocean (until the ice shelf front advances past this point). Where ice

is grounded, a linear sliding governs basal stress:

τ b =−Cu (13)310

where C = 25 Pa (a−1m). The Glen’s Law coefficient (which controls the ice stiffness) is given by

8.5 × 10−18 Pa−3 a−1, corresponding to ice with a uniform temperature of ∼-34◦C. At the upstream

boundary, ice flows into the domain at x= 0 at a constant volume flux per meter width of 1.5 × 106

m2/a. At y = 0 and y = 40 km no-flow conditions are applied. Velocity, thickness and grounding line

are plotted in Fig. 1(a). Further details of the equations are given in Goldberg and Heimbach (2013).315

In the experiment, a cost function J is defined by running the model forward in time for 8 years,

and evaluating the summed square velocity at the end of the run. That is,

J =
∑

i,j

u(i, j)2 + v(i, j)2 (14)

where i and j indicate cell indices in the x− and y−directions, respectively, and u and v are cell-

centered surface velocities. Unless specified otherwise time step is 0.2 years and grid resolution is320

2000 m, so 1 ≤ i ≤ 40 and 1 ≤ j ≤ 20. The control variable consists of basal melt rate m, defined for

each cell and considered constant over a cell and in time (and nonzero only where ice is floating),

and set uniformly to zero in the forward run, even under floating ice
✿✿

(in
✿✿✿✿✿✿✿

reality,
✿✿✿✿

there
✿✿✿✿✿✿

would
✿✿✿

be

✿✿✿✿✿✿✿✿✿✿✿

“background”
✿✿✿✿✿✿✿

melting
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿

perturbed,
✿✿✿

and
✿✿✿✿✿✿✿✿

changes
✿✿

to
✿✿✿✿✿

these
✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿✿✿

would
✿✿✿✿✿

elicit
✿✿✿✿✿✿✿✿

responses
✿✿✿

of

✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿✿

magnitudes,
✿✿✿

but
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿

melting
✿✿

is
✿✿✿✿

zero
✿✿✿

for
✿✿✿

the
✿✿✿✿

sake
✿✿

of
✿✿✿✿✿✿✿✿✿✿

simplicity). Fig. 1(b) plots the325
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adjoint sensitivities of m, or alternatively ∂J/∂mij , where mij is melt rate in cell (i, j). The field

shows broad-scale patterns that are physically sensible: in the margins of the ice shelf toward its

front, thinning through basal melting will weaken the restrictive force on the shelf arising from

tangential stresses at the no-slip boundaries. The driving force for flow is proportional to ice shelf

thickness, and so in the center of the shelf thinning leads to deceleration. Meanwhile, ice shelf330

velocities are very insensitive to melting at the center of the ice shelf front.

We find that the results of the mechanical adjoint and of the adjoint model implementing BC94

(which we henceforth refer to as the “fixed-point adjoint”) are almost identical, with a relative dif-

ference no larger than 10−6 over the domain (not shown). However, the adjoint sensitivities should

also be compared against a “direct” computation of the gradient, i.e. one which does not involve the335

adjoint model. In this case ∂J/∂mij is approximated through finite differencing, by perturbing mij

by a finite amount and running the forward model again. This calculation is carried out for each cell

(i, j). Fig. 1(c) plots discfd, given by

discfd =
δ∗mfp

ij − δ∗mcd
ij

δ∗mcd
ij

δ∗mfp
ij − δ∗mcd

ij

δ∗mfp
ij

✿✿✿✿✿✿✿✿✿✿✿✿✿

, (15)

where
✿✿✿✿✿✿

δ∗mfp
ij ✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿

through
✿✿

the
✿✿✿✿✿✿

BC94
✿✿✿✿✿✿✿✿

algorithm,
✿✿✿✿✿

while
✿

δ∗mcd
ij is a centered-difference approx-340

imation:

δ∗mcd
ij =

1

2ǫ
(J(mij + ǫ)− J(mij − ǫ)), (16)

and J(mij + ǫ) indicates that the meltrate at cell (i, j) only is perturbed by ǫ. ǫ is set to 0.01 m/a

uniformly.

discfd is seen to become quite large, on the order of ∼1% in some parts of the domain, warranting345

further examination. An implicit assumption in the discrepancy measure discfd is that the finite

difference approximation has negligible error, which may not be the case. We can estimate where

this finite-difference error will be large: from a Taylor series expansion, and ignoring round-off error

(which we do not attempt to estimate), the error in approximating the adjoint sensitivity of mij by

finite difference is roughly proportional to the second derivative ∂2J/∂(mij)
2. As a proxy for this350

quantity we plot in Fig. 1(d) the 2nd-order difference of J :

∆2Jij = J(mij + ǫ)+ J(mij − ǫ)− 2J (17)

Aside from the left-hand boundary, this
✿✿✿

This
✿

measure appears to correlate well with discfd. Thus we

can at least partly attribute the pattern of discrepancy in Fig. 1(c) to errors in the finite difference

approximation,
✿✿✿✿✿

aside
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

central
✿✿✿

part
✿✿✿

of
✿✿✿

the
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿✿

front.
✿✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿

relative
✿✿✿✿✿✿

errors
✿✿✿

are355

✿✿✿✿✿

likely
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿✿✿

sensitivities. We emphasize that (17) is not an accu-

rate measure of the second derivative – which is obviously not achievable through finite differencing

if first-order derivatives are inaccurate – but is simply meant to give an indication of its magnitude.
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5.1 Truncation errors

The analysis of Christianson (1994) suggests the error of the calculated adjoint depends linearly on360

both the reverse truncation error and the forward truncation error. The reverse truncation error is the

difference between the final and penultimate iterates in the adjoint loop, i.e. the error associated with

terminating the loop after a finite number of iterations. That is, referring to Table 4, if m iterations

are carried out, the reverse truncation error is equal to

α‖wm −wm−1‖, (18)365

where α is related to the gradient of Φ at the fixed point. The norm here is the sup-norm, because

this is the norm on which our convergence criterion is based.

While a tight bound for α will vary with each time step, it can be expected that the reverse trunca-

tion error will vary linearly with the convergence tolerance and we do not address it further. However,

we investigate the dependence on forward truncation error as follows. A sequence of adjoint model370

runs is carried out with increasingly smaller tolerances
✿✿✿✿

(from
✿✿✿✿✿

10−5
✿✿

to
✿✿✿✿✿✿

10−8) for the forward fixed-

point iteration loop. The tolerance of the reverse loop is kept at a small value (10−8). The adjoint

sensitivities corresponding to the smallest forward tolerance (10−9) are assumed to be “truth”; er-

ror is estimated by comparison with these values. Fig. 2 plots the maximum
✿✿✿✿✿✿✿✿

pointwise
✿

error in the

adjoint calculation over the domain against the forward tolerance, which is a good measure of the375

forward truncation error. Within a range of forward truncation error the dependence is nearly linear,

although this dependence appears to become weaker as forward truncation error becomes smaller.

5.2 Performance

Here we evaluate the relative performance of the mechanical and fixed-point adjoint models in terms

of both timing and memory use. The results are presented in Table ??, but we must first briefly380

discuss how the OpenAD-generated adjoint computes sensitivities for a time-dependent model. As

mentioned in the introduction, adjoint computation takes place in reverse
✿✿✿✿

order
✿✿✿✿✿✿✿

relative
✿✿

to
✿✿✿✿✿✿✿

forward

✿✿✿✿✿✿✿✿✿✿

computation. This presents an issue, because at each time step in this reverse computational mode,

the adjoint model requires knowledge of the full model state at the corresponding forward model time

step. In general, keeping the entire trajectory (including intermediate variables) of a time-dependent385

model run in memory is not tractable. Therefore efficient adjoint computation is a balance between

recomputation (beginning from intermediate points in the run known as “checkpoints”), storage of

checkpoint information on disk, and keeping variables in memory (in data structures called “tapes”).

The “store” and “restore” commands in tables 1-4 refer to tape manipulation. For further information

on adjoint computation see Griewank and Walther (2000) and Griewank and Walther (2008).390

In our implementation this amounts to an initial forward run with no taping (aside from the final

time step), but writing of checkpoints to disk. This initial run is referred to below as the “forward

sweep”. Afterwards the “reverse sweep” begins, beginning with the final time step. The reverse

12



sweep consists of an intial
✿✿✿✿✿

initial
✿

adjoint computation for the final timestep. As reverse computation

proceeds, the model is restarted from checkpoints to recover variables used in
✿✿✿✿✿✿✿

variable
✿✿✿✿✿

values
✿✿✿✿✿

from395

✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿✿

computation,
✿✿

so
✿✿✿✿

that
✿✿✿✿

they
✿✿✿

can
✿✿

be
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿

adjoint computation. The details of this pro-

cess are important because they determine how many extra forward time steps (without taping) must

be taken. These plain time steps set up the computation of a subsequent time step in “tape mode”,

i.e. they write intermediate variables to tape during computation. This is followed immediately by a

time step computation in “adjoint mode”. In the model runs we consider, no extra plain checkpoints400

are
✿✿✿✿

only
✿✿✿

one
✿✿✿✿✿

level
✿✿

of
✿✿✿✿✿✿✿✿✿✿

checkpoints
✿✿

is
✿

required. A run of 40 time steps, then, will consist of nearly

40 time steps in “plain mode” (no taping, but with checkpoint writing), 40 time steps in tape mode,

and 40 time steps in adjoint mode. Even if adjoint time steps and writing to disk and to tape are

negligible, such a run will still take about twice as long as the forward model.

In Table ?? we compare run times for the forward and reverse sweeps for the mechanical and405

fixed-point adjoints of our test problem, at multiple grid resolutions. We also give run times for

the “untouched”
✿

,
✿✿

or
✿✿✿✿✿✿✿

“plain”
✿

model, i.e. code which has not been transformed by OpenAD. The

difference between this time and the forward sweep represents writing checkpoints to disk, taping in

the final time step, and any other extra steps or changes (e.g. modified variable types) caused by the

transformation.410

We also show the
✿✿✿✿✿✿✿✿✿

additionally
✿✿✿✿

give
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿

iterations
✿✿✿

per
✿✿✿✿

time
✿✿✿✿

step.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿

“plain”

✿✿✿

runs
✿✿✿✿

this
✿✿✿✿✿✿

number
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

Picard
✿✿✿✿✿✿✿

iterations
✿✿✿

per
✿✿✿✿

time
✿✿✿✿

step
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

forward
✿✿✿✿✿✿

model,
✿✿✿✿✿✿

which

✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

change
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿

runs.
✿✿✿

For
✿✿✿✿✿✿

adjoint
✿✿✿✿

runs,
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

iteration
✿✿✿✿✿

count
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿

loop,

✿✿

i.e.
✿✿✿

the
✿✿✿✿

loop
✿✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿✿✿

Table
✿✿

4,
✿

is
✿✿✿✿✿✿

given.
✿✿✿

We
✿✿

do
✿✿✿

not
✿✿✿✿

give
✿

a
✿✿✿✿✿

value
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

mechanical
✿✿✿✿✿✿✿

adjoint,
✿✿

as
✿✿✿

the

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿

iterations
✿✿

is
✿✿✿

set
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿

iterations.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿

average415

✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

iteration
✿✿✿✿✿

count
✿✿✿✿✿✿

grows
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿

80x40
✿✿✿

and
✿✿✿✿✿✿

160x80
✿✿✿✿✿

runs,
✿✿✿

the
✿✿✿✿

same
✿✿

is
✿✿✿

not
✿✿✿✿

true

✿✿

for
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿

runs.

✿✿✿✿

Also
✿✿✿✿✿✿✿

reported
✿✿

is
✿✿✿

the
✿

maximum length of the double tape in memory. There are different tapes

for different variable types: integer, double, logical and character. The double tape is observed to

require the most memory in our tests. However, due to storage of loop indices, the integer tape is420

nonnegligible, requiring between 20% (in the largest test) to
✿✿✿

and 50% (in the smallest test) of the

memory required by the double tape. The numbers reported represent an upper bound, as our system

of reporting tape lengths has a granularity of 16×(1024)2 elements.
✿✿✿✿

Thus
✿✿✿

all
✿✿✿✿✿

BC94
✿✿✿✿

runs
✿✿✿✿

have
✿✿✿✿✿✿

double

✿✿✿✿✿✿✿

memory
✿✿✿✿✿

loads
✿✿✿✿✿✿✿

between
✿

8
✿✿✿✿

MB
✿✿✿✿

and
✿✿✿

136
✿✿✿✿

MB,
✿✿✿✿

but
✿✿✿✿

more
✿✿✿✿✿

exact
✿✿✿✿✿✿

figures
✿✿✿✿✿✿

cannot
✿✿✿

be
✿✿✿✿✿

given.
✿✿✿✿✿✿✿✿

Memory
✿✿✿✿

load

✿

is
✿✿✿✿

per
✿✿✿✿✿✿✿✿

processor
✿✿

–
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

why,
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

mechanical
✿✿✿✿✿✿

adjoint
✿✿✿✿✿

runs,
✿✿✿

the
✿✿✿✿✿✿

double
✿✿✿✿

tape
✿✿✿✿✿✿

length
✿✿✿✿✿✿✿✿

increases425

✿✿✿✿✿✿✿

four-fold
✿✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿

40x20
✿✿✿

run
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

80x40
✿✿✿

run,
✿✿✿

but
✿✿✿

not
✿✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿

80x40
✿✿✿

run
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

160x80
✿✿✿

run.
✿✿

In
✿✿✿✿

this

✿✿✿✿

case,
✿✿✿✿✿✿

domain
✿✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿✿✿✿✿

decreases
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

per-processor
✿✿✿✿

tape
✿✿✿✿✿✿

length;
✿✿✿

but
✿✿

on
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿

the
✿✿✿✿

tape

✿✿✿✿✿

grows
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

iteration
✿✿✿✿✿

count
✿✿✿✿✿✿

(rather
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿

average),
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

about
✿✿✿✿

twice
✿✿✿

as

✿✿✿✿

large
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

160x80
✿✿✿

run
✿✿✿

as
✿✿✿

the
✿✿✿✿✿

others.
✿
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In all cases, the forward and adjoint fixed-point tolerance thresholds are set to 10−8. As resolution430

increases, stability considerations require smaller time steps, so the number of time steps doubles

when cell dimensions are halved. The simulations are run on Intel Xeon 2.67
✿✿✿✿

2.40GHz cpus and

the number of cores used is displayed. Unless otherwise specified, the Conjugate Gradient solver

from the PETSc library (http://www.mcs.anl.gov/petsc) with IL-U preconditioner is used to invert

all matrices.435

The results show that without further optimization, the BC94 algorithm does not offer large timing

performance gain over the mechanical adjoint. The forward sweep is slightly shorter, but the reverse

sweep is roughly the same. However, the memory load is far less, only going up to (at most) 136 MB

in the high resolution run where the mechanical adjoint uses 2.76
✿✿✿

2.95
✿

GB. This provides a possible

explanation for the forward sweep of the mechanical adjoint being slower: it is overhead associated440

with the additional memory allocation. As even at the highest resolution this is still a modestly-

sized problem, it is likely that certain setups of the model on certain machines would quickly reach

memory limits and either crash or beginning swapping memory, significantly affecting performance.

Substantial timing performance gains are not seen until the L-U optimization described in Sec-

tion 4.3. As discussed, this optimization is made possible by the BC94 algorithm. At the highest445

resolution tested, the reverse sweep takes 40
✿✿

31% less time, and overall the model run is 30
✿✿

22%

shorter. The performance gain is due to the fact that in a time step, the direct L-U decomposition

is only done once, and subsequent linear solves are by forward- and back-substitution, which are

far less expensive operations. As indirect solvers such as Conjugate Gradients are typically faster

than direct matrix solvers, it is unclear what relative performance gain would be at even higher res-450

olutions; but in the three resolutions tested, relative performance improves with resolution
✿✿

as
✿✿✿✿

well

✿✿

as
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

realistic
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿

in
✿✿✿✿✿✿

Section
✿✿✿

6,
✿

a
✿✿✿✿✿✿✿✿✿

noticeable
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿✿✿

was
✿✿✿✿✿✿✿✿

observed.
✿✿✿✿✿

Even
✿✿✿✿✿✿✿

without

✿✿

the
✿✿✿✿

L-U
✿✿✿✿✿✿✿✿✿✿✿✿

optimization,
✿✿✿✿✿✿✿✿

however,
✿✿✿

the
✿✿✿✿✿

BC94
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿

ensures
✿✿✿

all
✿✿✿✿✿

linear
✿✿✿✿✿✿

solves
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

converged
✿✿✿✿

state
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

fixed-point
✿✿✿✿✿✿✿✿

problem.
✿✿✿

In
✿✿✿✿✿✿✿

practice,
✿✿✿✿

this
✿✿✿✿✿✿

matrix
✿✿

is
✿✿✿✿✿✿✿✿

relatively

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

well-conditioned,
✿✿✿✿✿✿

leading
✿✿

to
✿✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Conjugate
✿✿✿✿✿✿✿

Gradient
✿✿✿✿✿✿

solver.455

We mention that the BC94 algorithm has recently been implemented in the AD tool Tapenade,

through a different user interface that relies on directives inserted in the code rather than on the

OpenAD templating mechanism. It has not been tested on an ice flow model but on two other CFD

codes, without our linear solver optimisation part. Their performance results are in line with ours,

with a minor run-time benefit but a major reduction of memory consumption (Taftaf et al., 2015).460

6 Realistic Experiment

In addition to idealized experiments, the fixed-point adjoint has been tested in a more realistic

setting. Smith Glacier in West Antarctica is a fast-flowing ice stream that terminates in a floating

ice shelf. In recent years, high thinning rates of Smith have been observed (Shepherd et al., 2002;
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McMillan et al., 2014), and this is thought to be related to, or even caused by, thinning of the ad-465

jacent ice shelves by submarine melting (Shepherd et al., 2004). Here we examine this mechanism

using the fixed-point adjoint. To initialize the time-dependent model, we choose a domain and a rep-

resentation of the bedrock elevation and ice thickness in the region from BEDMAP2 (Fretwell et al.,

2013) and constrain the hidden parameters of the model (basal frictional coefficient field and depth-

averaged ice temperature) according to observed velocity using methods that have become standard470

in glaciological data assimilation (e.g., Joughin et al., 2009; Favier et al., 2014). The observed ve-

locities come from a dataset of satellite-derived velocity over all of Antarctica (Rignot et al., 2011).

Using the bed and thickness data, and the inferred sliding and temperature fields, the model is

stepped forward for 5 years with 0.2
✿✿

10
✿✿✿✿

years
✿✿✿✿

with
✿✿✿✿✿

0.125
✿

year time steps
✿✿

(80
✿✿✿✿

time
✿✿✿✿✿

steps). The simu-

lation is run on 24
✿✿

60
✿

cpus. As with our test experiment, submarine melt rate is used as the control475

variable. The cost function, rather than being a measure of velocity, is the loss of Volume Above

Floatation (VAF) in the domain at the end of the 5
✿✿

10
✿

years. VAF is essentially the volume of ice

that could contribute to sea level change, and is often used to assess the effects of ice shelf thinning

on grounded ice Dupont and Alley (2005). It is given by

VAF =
∑

i

HAF(i)∆x∆y, (19)480

HAF(i) =

(

h(i)+
ρw
ρ
R(i)

)+

, (20)

where i is cell index, h is thickness, ρ and and ρw are respectively ice and ocean density,R is bedrock

elevation, and the “+” superscript indicates the positive part of the number. We use ρ= 918 kg/m3

and ρw = 1028 kg/m3. A key aspect is that any floating ice does not contribute to VAF.

The results are shown for the ice shelves connecting to Smith Glacier in Fig. 3, overlain on485

grounded ice velocities (adjoint melt rate sensitivities are zero where ice is grounded). It is inter-

esting to note where the sensitivities are largest, along the margins of the ice shelves and also along

the boundary between the two main sections of the ice shelf. The mechanism is similar to that of

our test experiment: the margins are where shear stress is exerted, and thinning here will lessen the

backforce on grounded ice. The boundary between the two sections of the ice shelf likely plays a490

similar role in the ice shelf force balance, as velocity shear is large in this area (not shown).

Regarding accuracy, the finite-difference approximation to the gradient cannot be found for every

ice shelf cell. However, we compared the adjoint sensitivity to the finite difference approximation at

4 arbitrary locations, and relative discrepancy was on the order of 10−5. In terms of performance,

this is a much larger setting than even the highest resolution examined in the test problem. The495

500 m cell size leads to approximately 200,000 ice-covered cells in the domain (which means the

matrices involved, which incorporate both x− and y− velocities, have 400,000 rows and columns).

The forward sweep has a run time of 1700
✿✿✿✿

1150
✿

seconds and the reverse sweep 2340 seconds.
✿✿✿✿

1778

✿✿✿✿✿✿✿

seconds.
✿✿✿✿✿✿✿

Without
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿

L-U
✿✿✿✿✿✿✿✿✿✿✿

optimisation,
✿✿✿

the
✿✿✿✿✿✿

reverse
✿✿✿✿✿

sweep
✿✿

is
✿✿✿✿✿

2765
✿✿✿✿✿✿✿

seconds.
✿

(Multiple runs on
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the same cluster give similar timing results.) Only the fixed-point adjoint with an L-U solver for500

the adjoint loop is considered. The timing results are encouraging, indicating that the reverse sweep

timing comes closer the forwardsweep timing with larger-scale simulations
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿✿✿✿

forward/adjoint

✿✿✿✿✿

timing
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

the
✿✿✿

test
✿✿✿✿✿✿✿

problem
✿✿✿✿✿✿

carries
✿✿✿✿

over
✿✿

to
✿✿✿✿✿✿✿✿✿✿

large-scale,
✿✿✿✿✿✿✿

realistic
✿✿✿✿✿✿✿✿

problems.

7 Discussion and conclusions

The fixed-point algorithm of Christianson (1994) has been successfully applied to the adjoint cal-505

culation of a land ice model. The algorithm is very relevant to the model code, as the bulk of the

model’s computational cost is the solution of a nonlinear elliptic equation through fixed-point iter-

ation. As many land ice models solve a similar fixed-point problem – particularly those intended

to simulate fast-flowing outlet glaciers in Antarctica and Greenland – the methodology introduced

here has potential for the application of algorithmic differentiation techniques to other ice models.510

The implementation of the algorithm replaces a small portion of AD-generated code by handwrit-

ten code. However, this is done such that it does not interfere with the modularity offered by AD

approach, and it does not require revision as model physics change.

The algorithm offers two advantages over the more straightforward “mechanical adjoint,” i.e. the

application of AD without intervention. First, the code solves the true adjoint to the fixed point it-515

eration, rather than an approximation (c.f. Eq. 9). This avoids inaccurate results arising from “bad”

initial guesses, and ensures proper convergence of the fixed-point adjoint. Second, the memory re-

quirements do not increase with the number of adjoint iterations as they do with the mechanical

adjoint. In the case of OpenAD, the effect on timing performance is small; but for machines with

limited memory or for larger problems, the large memory load associated with the mechanical ad-520

joint will be a serious issue.

In the context of our ice model, the nature of the algorithm allows for further optimization, as

it replaces the sequential solve of linear systems with differing matrices to a sequence of solves

with the same matrix. Replacing the Conjugate Gradient solver of the forward model with a direct

L-U solver in the adjoint model leads to further performance improvement. The ratio of the reverse525

sweep to forward sweep, which is roughly the ratio of the run times of adjoint and forward models,

decreases from 2.6 for the smallest problem considered to 1.4 for the largest. In the case where only

a single time step is taken (not discussed above), no checkpoints are necessary, and the duration of

the reverse sweep can be as little as 0.3 times the forward sweep.

It should be pointed out that some authors have implemented ice model adjoint generation without530

any iteration within the adjoint model. Depending on the approximation to the Stokes momentum

balance used, the adjoint stress balance can bederived directly from the equations involved (Perego et al., 2014; Isaac et al., 2015).

The result is a linear elliptic equation that can be solved without iteration , but which leads to a

linear system that is far less sparse than in the forward model. Additionally, the equations must
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potentially be re-derived if the model physics are changed. Moreover, not all such approximations535

to
✿✿✿✿✿

noted,
✿✿✿✿✿✿✿✿

however,
✿✿✿

that
✿

the Stokes balance allow such an approach. “Hybrid” stress balances, which

solve two-dimensional approximations to the Stokes balance and are appropriate for both fast-sliding

and slow creeping flow, are increasing in popularity due to low computational cost but reasonable

agreement with the First Order approximation e.g. Goldberg (2011); Schoof and Hindmarsh (2010); Cornford et al. (2013); Arthern e

W. Lipscomb, pers. comm. Our ice model implements such a hybrid stress balance . Differentiating540

such a balance at the equation level is possible but very tedious, and leads to very complicated

expressions that depend strongly on discretization (Goldberg and Sergienko, 2011),both undesirable

properties
✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿

gain
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

amortization
✿✿

of
✿✿✿

the
✿✿✿✿

L-U
✿✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

adjoint

✿✿✿✿✿✿✿

iteration
✿✿✿✿

loop.
✿✿

If
✿✿✿

the
✿✿✿✿

L-U
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿✿✿✿✿

degrades
✿✿

in
✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿✿✿✿

relative
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

Conjugate
✿✿✿✿✿✿✿✿

Gradient

✿✿✿✿

solve
✿✿

(a
✿✿✿✿✿✿✿✿

potential
✿✿✿

for
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿

problems)
✿✿

or
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿

iterations
✿✿✿✿✿✿✿✿✿

decreases,
✿✿✿✿

this
✿✿✿

gain
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

lost.545

✿✿

As
✿✿✿✿✿✿✿✿✿

mentioned
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

introduction,
✿

it
✿✿

is
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿✿✿✿✿✿

differentiate
✿✿✿

the
✿✿✿✿✿

stress
✿✿✿✿✿✿

balance
✿✿

of
✿✿✿

an
✿✿

ice
✿✿✿✿✿✿

model
✿✿

at

✿✿

the
✿✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿

equation
✿✿✿✿

level
✿✿✿✿✿✿

rather
✿✿✿

than
✿✿✿

the
✿✿✿✿✿

code
✿✿✿✿

level.
✿✿✿✿✿

Such
✿✿✿✿✿✿✿✿✿✿

approaches,
✿✿✿✿✿✿✿

however,
✿✿✿

(a)
✿✿✿✿✿✿

cannot
✿✿✿✿✿

make

✿✿✿

use
✿✿

of
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿

solvers,
✿✿✿

(b)
✿✿✿✿✿✿

remove
✿✿✿✿✿✿✿✿✿

somewhat
✿✿✿

the
✿✿✿✿✿✿✿✿✿

modularity
✿✿✿

of
✿✿✿

the
✿✿✿

AD
✿✿✿✿✿✿✿✿

approach,
✿✿✿✿

and
✿✿✿

(c)

✿✿

are
✿✿✿✿

not
✿✿✿✿✿✿✿

suitable
✿✿✿

for
✿✿✿✿✿✿✿✿

“hybrid”
✿✿✿✿✿✿✿

models,
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿✿

becoming
✿✿✿✿✿✿✿

popular
✿✿✿✿

due
✿✿

to
✿✿✿✿

their
✿✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿✿

between

✿✿✿✿✿✿✿✿

generality
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿

expense. Thus we argue that our application of the Christianson fixed-550

point algorithm in our algorithmically differentiated ice model framework represents a contribution

to land ice modeling in general.

8 Code availability

All code necessary to carry out the experiments is publicly available through the MITgcm, Ope-

nAD and PETSc websites. Please see the supplement to the paper for detailed instructions regarding555

installation and running of experiments.
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Table 1. Pseudocode version of forward model time-stepping procedure.

FOR n = initialTimeStep TO finalTimeStep

// Constructs â from H [n] :

CALL CALC_DRIVING_STRESS(H [n]
)

m = 0

REPEAT UNTIL CONVERGENCE OF u

u = Φ(u, â)

m = m+1

store L, u and other variables

lastm[n]
= m

// Finds H [n+1] from continuity equation with u:

CALL ADVECT_THICKNESS()

Table 2. Pseudocode version of mechanical adjoint.

FOR n = finalTimeStep DOWNTO initialTimeStep

// Constructs δ∗H [n] and δ∗u[n] from δ∗H [n+1]

// via the adjoint of the continuity equation :

CALL AD_ADVECT_THICKNESS()

REPEAT lastm[n]
TIMES

restore L, u and other variables

δ∗â = δ∗â+ δ∗u
(

∂Φ
∂â

)T

δ∗u = δ∗u
(

∂Φ
∂u

)T

// Updates δ∗H [n] from δ∗â :

CALL AD_CALC_DRIVING_STRESS(δ∗H [n]
)

22



Table 3. Pseudocode version of modified forward model for BC94.

FOR n = initialTimeStep TO finalTimeStep

// Constructs â from H [n] :

CALL CALC_DRIVING_STRESS(H [n]
)

u = initial guess

CALL PHISTAGE(PRELOOP, w, u, â)

REPEAT UNTIL CONVERGENCE OF u

CALL PHISTAGE(INLOOP, w, u, â)

CALL PHISTAGE(POSTLOOP, w, u, â)

// Finds H [n+1] from continuity equation with u:

CALL ADVECT_THICKNESS()

SUBROUTINE PHISTAGE(phase, w, u, â)

IF (phase==PRELOOP)

// do nothing

ELSE IF (phase==INLOOP)

save tape pointer

u = Φ(u, â)

// Makes sure no storage is done :

restore tape pointer

ELSE IF (phase==POSTLOOP)

u = Φ(u, â)

store L, u and other variables
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Table 4. Pseudocode version of fixed-point (BC94) adjoint.

FOR n = finalTimeStep DOWNTO initialTimeStep

// Constructs δ∗H [n] and δ∗u from δ∗H [n+1]

// via the adjoint of the continuity equation :

CALL AD_ADVECT_THICKNESS()

CALL AD_PHISTAGE(POSTLOOP, δ∗w, δ∗u, δ∗â)

REPEAT UNTIL CONVERGENCE OF δ∗w

CALL AD_PHISTAGE(INLOOP, δ∗w, δ∗u, δ∗â)

CALL AD_PHISTAGE(PRELOOP, δ∗w, δ∗u, δ∗â)

δ∗u = 0.0

// Updates δ∗H [n] from δ∗â :

CALL AD_CALC_DRIVING_STRESS(δ∗H [n]
)

SUBROUTINE AD_PHISTAGE(phase, δ∗w, δ∗u, δ∗â)

IF (phase==POSTLOOP)

δ∗w = δ∗u

ELSE IF (phase==INLOOP)

save tape pointer

restore L, u and other variables

δ∗w = δ∗w
(

∂Φ
∂u

)T
+ δ∗u

// Makes sure converged state is reused :

restore tape pointer

ELSE IF (phase==PRELOOP)

δ∗â = δ∗w
(

∂Φ
∂â

)T
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Figure 1. (a) Surface speed (shading) in the test experiment. The flow direction is from right to left, and the

white portion of the figure is where the ice shelf has not advanced to the end of the domain. Black contours

give thickness spaced every 200 m and the white contour is the grounding line. (b) Adjoint sensitivities of ice

speed to basal melt rates. (c) (log) relative discrepancy between adjoint sensitivities and the gradient calculated

via finite differencing. (d) 2nd
✿✿✿✿

(log)
✿✿✿✿✿

second
✿

order differencing of cost function J
✿✿✿

(see
✿✿

eq.
✿✿✿

17).
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indicates linear dependence.
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Figure 3. Adjoint sensitivity of loss of Volume above Floatation (VAF) to basal melting under the ice shelves

adjacent to Smith Glacier (location shown in inset). Filled contours give modeled ice velocity where ice is

grounded; red-white shading gives adjoint melt rate sensitivity under ice shelves. The thick black contour de-

notes the boundary of the ice shelves.
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