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Abstract. Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a 

coordinated effort between the climate and glaciology communities.  The Ice Sheet Model Intercomparison Project for 20 
CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on 

the Greenland and Antarctic Ice Sheets.  In this paper, we describe the framework for ISMIP6 and its relationship to other 

activities within CMIP6.  The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time 

within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models.  To facilitate analysis of the multi-

model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol 25 
for all variables related to ice sheets.  ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level 

changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.   

1 Introduction 

Ice sheets constitute the largest and most uncertain potential source of future sea-level rise (Church et al., 2013, Kopp et al., 

2014). The Greenland and Antarctic Ice Sheets currently hold ice equivalent of over 7 and 57 meters of sea-level rise, 30 
respectively.  Observations indicate that the Greenland and Antarctic Ice Sheets have contributed approximately 7.5 mm and 

4 mm of sea-level rise over the 1992-2011 period (Shepherd et al., 2012) and that their contribution to sea-level rise is 

accelerating (Rignot et al., 2011a). Sea-level change has been identified as a long-lasting consequence of anthropogenic 
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climate change, as sea levels will continue to rise even if temperatures are stabilized (Meehl et al., 2012). Therefore, 

assessing whether the observed rate of mass loss from the ice sheets will continue at the same pace, or accelerate, is crucial 

for risk assessment and adaptation efforts. 

 

In addition to their impact on sea-level change, ice sheets influence the Earth’s climate through changes in freshwater fluxes, 5 
orography, surface albedo and vegetation cover, across multiple spatial and temporal scales (Vizcaíno, 2014). Ice-sheet 

evolution and iceberg discharge affect ocean freshwater fluxes (e.g., Broecker, 1994), which in turn can affect oceanic 

circulation (e.g., Weaver et al., 2003), and marine biogeochemistry (Raiswell et al., 2006). Changes in ice sheet orography 

modify near-surface temperatures by altering atmospheric circulation (Ridley et al., 2005) on both regional and global scales 

(e.g., Manabe and Broccoli, 1985). Surface albedo and elevation change due to the waxing and waning of ice sheets has 10 
played an important role in past interglacial-glacial transitions (e.g., Calov et al., 2009; Abe-Ouchi et al., 2013). Seasonal 

fluctuations in ice-sheet albedo can also exert considerable influence on local surface energy fluxes (e.g., Box et al., 2012), 

through both melt and snowfall. Over longer timescales, changes in ice-sheet elevation can cause a positive feedback on 

surface mass balance, wherein a thinning ice sheet experiences warmer temperatures at lower elevations, which causes 

further melting and thinning.  Ice-sheet elevation changes can also alter the local climate, for instance changing the trajectory 15 
of Southern Ocean storms that penetrate onto the Antarctic Plateau (Morse et al., 1998). 

 

Ice sheets gain mass primarily by accumulation of snowfall, and lose mass through a combination of surface meltwater 

runoff, surface sublimation, iceberg discharge to the ocean, and basal melting (under both grounded ice and floating ice 

shelves).  The Antarctic Ice Sheet experiences minimal surface melt and thus loses mass primarily through basal melting and 20 
iceberg calving.  Most basal mass loss in Antarctica occurs under ice shelves (e.g. Joughin et al., 2003; Pritchard et al., 

2012), but sub-ice-sheet meltwater is also produced over large areas (Fricker et al., 2007).  Together, basal melting and 

iceberg calving currently outweigh snowfall accumulation to the Antarctic Ice Sheet (Rignot et al., 2013; Depoorter et al., 

2013).  The Greenland Ice Sheet is also currently losing mass overall; this occurs primarily through iceberg calving and 

surface runoff.  Surface mass balance changes have recently surpassed iceberg calving changes as the dominant contributor 25 
to Greenland mass loss (van den Broeke et al., 2009), with increased surface runoff now contributing 60% of the mass loss 

(Enderlin et al., 2014). Due to the long response time of ice sheets, mass changes observed at present are a complex 

combination of the response to present climate changes, as well as past climate changes as far back as several tens of 

thousands of years. These integrating effects of ice sheets and the vastly different time scales on which ice sheet models and 

climate models operate have historically inhibited efforts to interface these two components of the Earth system. 30 
 

Previously, ice sheets were not explicitly included in the CMIP process, and separate modeling studies were used to make 

projections of their future contributions to sea level.  This has often led to mismatches between the climate data used to force 

these models and the contemporary version of the CMIP projections. This mismatch was perhaps acceptable when ice sheets 
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were regarded as passive elements of the climate system on sub-millennial time scales (e.g., Church and Gregory, 2001).  

Observations of rapid mass loss associated with dynamic change in the ice sheets, however, have highlighted the need to 

couple ice sheets to the rest of the climate system.  At one stage, this mismatch was such that little confidence could be 

placed in the projections of ice-sheet models, which were felt to omit the key processes responsible for observed changes 

(e.g., Meehl et al., 2007).  With subsequent developments in ice-sheet modeling, many of the processes thought to affect ice-5 
sheet dynamics on sub-centennial time scales (such as grounding-line migration, changes in basal lubrication and to some 

extent iceberg calving) can be simulated with some confidence (e.g., Church et al., 2013).  Previous ice sheet model inter-

comparison exercises have played a crucial role in this development.  An excellent example is the ongoing series of inter-

comparisons aimed at understanding issues associated with the numerical modeling of grounding-line motion (e.g., Pattyn et 

al., 2012, 2013).  Two previous international efforts, the SeaRISE and ice2sea initiatives, supplied projections on which the 10 
assessments of Church et al. (2013) were based. A major criticism of both efforts, however, was that they were based on 

forcing from the Special Report on Emissions Scenarios (SRES, Nakićenović et al., 2000) rather than the current 

Representative Concentration Pathway (RCP, van Vuuren et al., 2011) framework. The Ice Sheet Model Intercomparison 

Project for CMIP6 (ISMIP6) is explicitly designed to ensure that ice sheet (hence sea-level) projections are fully compatible 

with the CMIP6 process. 15 
 

ISMIP6 brings together for the first time a consortium of international ice sheet models and coupled ice sheet – climate 

models. This effort will thoroughly explore the sea-level contribution from the Greenland and Antarctic Ice Sheets in a 

changing climate and assess the impact of large ice sheets on the climate system. In this paper, we provide an overview of 

the ISMIP6 effort and present the ISMIP6 framework. We begin by explaining the objectives and approach for ISMIP6 20 
(Sect. 2), and describe the experimental design (Sect. 3). We next present an evaluation and analysis plan (Sect. 4) and 

finally discuss the expected outcome and impact of ISMIP6 (Sect. 5).   

2 Objectives and Approach 

ISMIP6 was initiated with the help of the Climate and Cryosphere (CliC) effort of the World Climate Research Project 

(WCRP) and is now a targeted activity of CliC. The main goal is to better integrate ice sheet models in climate research in 25 
general, and in the CMIP initiative in particular. ISMIP6 offers the exciting opportunity of widening the current CMIP 

definition of the Earth System to include ice sheets. Together with the CliC targeted activity on glacier modeling 

(GlacierMIP) and existing models for thermal expansion within the CMIP framework, output from ISMIP6 will add sea level 

to the family of variables for which CMIP can provide routine IPCC-style projections. ISMIP6 is primarily focused on the 

CMIP6 scientific question “How does the Earth System respond to forcing?”, but will also contribute to answering the 30 
question “How can we assess future climate change given climate variability, climate predictability and uncertainty in 

climate scenarios?” for scenarios involving the mass budget of the ice sheets and its impact on global sea level.  



4 
 

 

ISMIP6 targets two Grand Science Challenges (GCs) of the WRCP: “Melting Ice and Global Consequences” and “Regional 

Sea-level Change and Coastal Impacts”. Specifically, the primary goal of the ISMIP6 effort is to improve our understanding 

of the evolution of the Greenland and Antarctic Ice Sheets under a changing climate. A related goal is to quantify past and 

future sea-level contributions from ice sheets, including the associated uncertainties. These uncertainties arise from 5 
uncertainties in both the climate input and the response of the ice sheets.  A secondary goal is to investigate the role of 

feedbacks between ice sheets and climate in order to gain insight into how changes in the ice sheets will affect the Earth 

climate system. 

 

These goals require an experimental framework that can address the following objectives: 10 
- Develop better models of climate and ice sheets, as both coupled systems and individual components 

- Improve understanding of how ice sheets respond to climate on various timescales, both in the past and in the future 

- Improve understanding of how ice sheets affect local and global climate, and explore ice sheet-climate feedbacks 

- Improve simulation of sea-level change, especially projections for the 21st century and over the next 300 years 

 15 
As depicted in Fig. 1, our goals and objectives rely on three distinct modeling efforts: i) traditional CMIP atmosphere – 

ocean general circulation models (AOGCM/AGCMs) without dynamic ice sheets, ii) standalone dynamic ice sheet models 

(ISMs) that are driven by provided forcing fields (“offline”), and iii) atmosphere-ocean climate models coupled to dynamic 

ice sheets (AOGCM-ISMs), which, as described in the following sections, can be combined to form an integrated 

framework. 20 

3 ISMIP6 Experimental Design 

Following the CMIP6 protocol, the ISMIP6 experiments both use and augment the CMIP6-DECK (Diagnostic Evaluation 

and Characterization of Klima) and Historical simulations (Meehl et al., 2014; Eyring et al., 2016). In addition, ISMIP6 

collaborates with the CMIP6-Endorsed Paleoclimate Model Intercomparison effort (PMIP4, Kageyama et al., 2016) and 

builds on the CMIP6-Endorsed ScenarioMIP (O’Neill et al., 2016) that focuses on future climate experiments for CMIP6. 25 
For a selected number of AGCM/AOGCM experiments that are already part of CMIP6 (Table 1 and described in Sect. 3.1), 

three additional model configurations are proposed: “XXX-withism”, “ism-XXX-self” and “ism-XXX-std”, where XXX stands 

for different forcing scenarios as described later and shown in Table 2. The first case, “XXX-withism”, indicates that the ice 

sheet model is run interactively with the climate model (the AOGCM-ISM configuration described in Sect. 3.2). The other 

two cases describe an offline, or “standalone”, ice sheet model that is driven by outputs from either an uncoupled AOGCM 30 
“ism-XXX-self” (the ISM configuration described in Sect. 3.2) or from a standard ISMIP6 dataset “ism-XXX-std” that will be 

provided for the glaciology community (the ISM configuration described in Sect. 3.3). The goal of the ism-XXX-self 
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simulations is to obtain an ice sheet evolution and sea-level contribution that can be compared to the AOGCM-only and the 

AOGCM-ISM experiments in order to gain insight into the feedbacks between ice sheets and climate. Differences between 

the ism-XXX-self runs and AOGCM-ISM runs will be attributable to ice-sheet feedbacks on other climate components. The 

ism-XXX-std experiments will complement the AOGCM and AOGCM-ISM experiments by using ice sheet configurations 

and forcing data sets that are as realistic as possible, aiming to minimize the effects of AOGCM biases. The ism-XXX-std 5 
simulations target mainly the glaciology community and aim to simulate realistic ice-sheet evolution for sea-level estimates. 

A related set of standalone experiments, called initMIP, will explore uncertainties associated with the initialization of ice 

sheet models for Greenland and Antarctica. 

3.1 Analysis of experiments with climate models proposed elsewhere in CMIP6 (and not coupled to ISMs) 

A first component of the ISMIP6 effort is to assess and evaluate CMIP atmosphere general circulation models (AGCMs) and 10 
coupled atmosphere – ocean general circulation models (AOGCMs) over and surrounding the polar ice sheets.  This part of 

ISMIP6 can be viewed as diagnostic in the sense that all climate models that participate in CMIP6 will be included in this 

assessment without requiring extra work from the climate modeling centers.  These experiments do not include dynamic ice 

sheets, and as explained in the CMIP6 protocol (Eyring et al., 2016), climate modeling centers that contribute to CMIP6 are 

required to submit simulations for the DECK and CMIP6 Historical runs.  Our goals are to establish the suitability of the 15 
CMIP models for producing climate input for ice sheet models and to assess the uncertainty in projections of sea-level 

change arising from such climate input. As described in Sect. 4, an additional goal is to assess past and projected changes in 

surface forcing (here for a fixed ice-sheet extent and topography), along with the resulting sea-level contribution from both 

ice sheets due to changes in surface freshwater flux alone.  The largest uncertainty in century-scale sea-level projections, 

however, remains the dynamic ice sheet response to changes in atmospheric and oceanic conditions, which will be addressed 20 
by the other components of ISMIP6 (Sect. 3.2 and 3.3). 

 

The experiments with climate models not coupled to ISMs, listed in Table 1, are central to ISMIP6 and thus briefly 

introduced.  These AGCM/AOGCM experiments are already part of CMIP6, such that more detailed information on the 

experimental protocol is available elsewhere in this special issue.  ISMIP6 uses three of the four DECK experiments 25 
described in Eyring et al. (2016).The Atmospheric Model Intercomparison Project (amip, Gates et al., 1999) simulation 

allows the evaluation of the atmospheric component of climate models given prescribed sea-surface temperatures and sea ice 

conditions.  These oceanic forcings are based on observations and range from January 1979 to December 2014 for CMIP6 

(see Appendix A1.1 of Eyring et al., 2016).  The pre-industrial control, piControl, is a coupled atmospheric and oceanic 

simulation with constant conditions, chosen to represent pre-industrial values (with 1850 as the reference year, see Appendix 30 
A1.2 of Eyring et al., 2016). piControl serves as the starting point for many simulations and is meant to capture the pre-

industrial quasi-equilibrium state of the climate system.  It allows an evaluation of model drift and provides insight into the 
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unforced internal variability.  The DECK also contains two idealized “climate change” experiments, in which the CO2 

concentration is varied to gain insight into the Earth system response to basic greenhouse gas forcing.  ISMIP6 will focus on 

a 1pctCO2to4x simulation, a slightly modified version of the DECK 1pctCO2 simulation. The 1pctCO2 simulation is 150 

years long, starting from the piControl, with a 1% per year increase in atmospheric CO2 concentration. The 1pctCO2to4x 

simulation is identical to 1pctCO2 for the first 140 years, at which point the CO2 concentration reaches four times the initial 5 
value. At this point, 1pctCO2to4x branches from 1pctCO2 and continues with constant quadrupled CO2. (Note that the 

1pctCO2to4x scenario was called 1pctCO2 in CMIP5 (Taylor et al., 2012) and 1pctto4x in CMIP3.) In order to produce 

boundary conditions for their ism-1pctCO2to4x-self simulation, groups participating in ISMIP6 with a coupled AOGCM-

ISM should carry out a 1pctCO2-4xext simulation, which starts from year 140 of their 1pctCO2 simulation and runs for a 

minimum of 210 years (and ideally 360 years, see Sect 3.2) with CO2 concentration held fixed. The 1pctCO2to4x fields will 10 
not be stored in the CMIP6 archive, but can be generated by merging the outputs from the first 140 years of the 1pctCO2 run 

with that from 1pctCO2-4xext. 

 

The CMIP6 Historical simulation, historical, tests the capability of AOGCMs to simulate the historical period, defined as 

1850 to 2014.  The forcing is derived from observations of solar variability and changes in atmospheric composition, 15 
including both anthropogenic and volcanic sources (see Appendix A2 of Eyring et al., 2016). The more distant past is the 

focus of PMIP4, which designs paleoclimate experiments (Kageyama et al., 2016; Otto-Bliesner et al., 2016).  ISMIP6 

collaborates with PMIP4 for experiment lig127k, a simulated time slice of the Last Interglacial (LIG): the warm period from 

129,000 to 116,000 years ago when global mean sea level was 5–10 m higher than present (Masson-Delmott et al., 2013).  

The future in CMIP6 falls under the guidance of ScenarioMIP (O’Neill et al., 2016), ISMIP6 will focus on the high-emission 20 
scenario ssp585 that produces a radiative forcing of 8.5 W m-2 in 2100 and its extension to 2300, to evaluate climate and ice 

sheet changes in response to a large forcing.  If time permits, lower-emission mitigation scenarios will also be included in the 

ISMIP6 standalone ice sheet framework.  

 

Evaluation of the climate over and surrounding the ice sheets is necessary both to establish the suitability of current climate 25 
models to provide forcing for ice sheet models, and to gain insight into sea-level uncertainty arising from uncertainty in 

atmospheric and oceanic climate forcings. Of particular interest is the surface climate over the ice sheets, with a focus on 

temperature and surface mass balance (SMB). SMB is defined as total precipitation minus evaporation, sublimation and 

surface runoff, where runoff is meltwater less any refreezing within the snowpack. Because the ocean condition is prescribed 

for the amip simulation but not for the historical simulation, we expect that the temperature and SMB provided by the two 30 
simulations over the same time period will differ. We will explore our second interest, the capability of climate models to 

reproduce the oceanic state in the vicinity of the ice sheets, using the historical simulation.  
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The general approach for evaluating the atmospheric component of climate models over the ice sheets (e.g., Yoshimori and 

Abe-Ouchi, 2012; Fettweis et al., 2013; Vizcaíno et al., 2013; Cullather et al., 2014; Lenaerts et al., 2016) is to compare the 

large-scale atmospheric state over the polar regions, the local climate, and processes at the ice-sheet surface. The latter 

focuses on whether the climate model can simulate snow processes, including albedo evolution and refreezing, at a 

horizontal resolution that captures the SMB gradients at ice sheet margins. Both the atmospheric components and factors that 5 
can affect atmospheric processes are often evaluated. One example is determining whether sea ice conditions are adequately 

captured in historical simulations (e.g., Lenaerts et al., 2016), as sea ice can influence moisture availability and therefore 

precipitation. However, adequate modeling of precipitation also requires well-resolved ice sheet topography (orographic 

forcing), which remains challenging for coarse-resolution climate models (Vizcaíno, 2014).  

 10 
The large-scale atmospheric state over the polar regions is often assessed by comparing the modeled atmospheric flow at 500 

hPa to atmospheric reanalysis values.  For the local climate, near-surface winds and near-surface temperatures can be 

compared to regional climate models (RCM) such as RACMO2 (van Meijgaard et al., 2008; Lenaerts et al., 2012; van 

Angelen et al., 2014), MAR (Fettweis, 2007; Fettweis et al., 2011), or HIRHAM (Langen et al., 2015; Lucas-Picher et al., 

2012), reanalysis (e.g., Agosta et al., 2015), and observations where available. RCMs are also used to evaluate the spatial 15 
pattern of surface mass balance and its components (precipitation, sublimation, and surface melt) computed by global 

circulation models. The surface energy budget, particularly the seasonal cycle of net shortwave and longwave radiation and 

the sensible and latent heat fluxes, can be evaluated against measurements taken by automatic weather stations on the ice 

sheet surface. Such stations include, for example, the 15 Greenland stations known as the GC–Net (Steffen and Box, 2001), 

the Greenland PROMICE network with a focus on the ablation zone (Ahlstrom et al., 2008), and in Antarctica the Neumayer 20 
Base (Lenaerts et al., 2010). These stations also record winds and temperatures. The surface temperature over the ice sheets 

may also be evaluated from satellite observations, using, for example, data derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS, Hall et al., 2012). These remotely sensed temperature products show the onset and/or spatial 

extent of surface melt (e.g., Mote et al., 1993; Hall et al., 2013), which can then be used to assess whether the climate models 

capture the relevant processes at the ice sheet surface (e.g., Fettweis et al., 2011; Cullather et al., 2016).  However, a full 25 
understanding of why surface melt varies from model to model may require investigations that include cloud properties (van 

Tricht et al., 2016).  

 

The current generation of climate models participating in CMIP6 is unlikely to simulate ocean circulation in ice shelf 

cavities or within fjords. Thus, evaluation of the ocean state around the ice sheets involves first establishing that the climate 30 
models can reproduce certain properties of the key water masses. Ocean circulation around the Greenland Ice Sheet involves 

a complex interaction between polar waters of Arctic origin and Atlantic waters from the subtropical North Atlantic (Straneo 

et al., 2012). The mechanisms that transport warm water through fjords and toward the ice fronts remain an active area of 

research (Wilson and Straneo, 2015; Straneo and Cenedese, 2015).  In the Southern Ocean, important water masses include 
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Antarctic Bottom Water and Antarctic Intermediate Waters. In the coastal regions, Circumpolar Deep Water, Antarctic 

Surface Water, and High Salinity Shelf Water are the primary oceanic influences on ice sheets (Bracegirdle et al., 2016). 

Given the difficulty many CMIP5 models had in capturing high-latitude ocean properties, CMIP6 models should be 

evaluated using existing datasets (Bracegirdle et al., 2016). These datasets include Argo, expendable bathythermograph 

(XBT) and conductivity/temperature/depth (CTD) vertical temperature and salinity profiles (e.g., Dong et al., 2008), sea ice 5 
extent products sourced from passive microwave instruments (e.g., Bjorgo et al., 1997; Cavalieri and Parkinson, 2012; 

Parkinson and Cavalieri, 2012), sea surface temperature (SST) from WindSat and AMSR-E over the open ocean, satellite 

altimetry (Jason-1 and Jason-2) over the open ocean, and World Ocean Atlas 2009 climatological temperatures. For ocean 

models that include ice-shelf cavities and ice/ocean interactions, sub-ice-shelf basal melting can be compared with 

glaciological estimates of ice-shelf melting around Antarctica (Rignot et al., 2013; Depoorter et al., 2013) derived from 10 
remote-sensing observations, as well as independent tracer-oceanographic estimates (Loose et al., 2009; Rodehacke et al., 

2006).  Just as regional atmospheric models will be key for evaluating the atmospheric component of climate models, 

regionally focused ocean models (e.g., Timmermann et al., 2012) and ocean reanalysis products (e.g. Menemenlis et al., 

2008) are likely to provide valuable insight for evaluating CMIP ocean models.  

 15 

3.2 Experiments with climate models coupled to ISMs 

The second component of ISMIP6 is a suite of experiments designed to assess the impacts of dynamic ice sheets on climate 

and to better understand feedbacks between ice sheets and climate. We also aim to obtain an ensemble of sea-level 

projections from fully coupled atmosphere – ocean – ice sheet frameworks, which can later be compared to projections from 

standalone ice sheet models (Sect. 3.3).  The experiments should be identical to the corresponding standard CMIP AOGCM 20 
experiments except for the treatment of ice sheets, so that any observed feedbacks and impacts can be attributed to dynamic 

ice sheets and not to other sources.  As indicated in Table 2, four coupled AOGCM-ISM simulations are proposed, whose 

experiment IDs are piControl-withism, 1pctCO2to4x-withism, historical-withism and ssp585-withism. These simulations are 

complemented by four ISM simulations: ism-piControl-self, ism-1pctCO2to4x-self, ism-historical-self and ism-ssp585-self. 

 25 
In the XXX-withism setup, the ice sheet model is run interactively with the AOGCM: the climate model sends a surface 

forcing (SMB at a minimum) to the ice sheet model, and receives changes in ice sheet geometry. The land surface type and 

surface elevation in the climate model are dynamic, allowing, for example, a reduced albedo if the land surface changes from 

glaciated to unglaciated. Changes in the ice sheet mass should also affect the ocean temperature and salinity, as freshwater 

fluxes (liquid and/or solid) and energy fluxes are routed to the ocean.  Liquid fluxes can originate from surface runoff, 30 
subglacial drainage systems, or basal melting of the ice in contact with the ocean. Solid fluxes come from iceberg calving, 

which may be computed with calving laws whose details are left to the discretion of the modeling groups. Explicit iceberg 
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models are not required. Similarly, ocean melting of ice shelves can be handled as desired, as long as the net freshwater flux 

and latent heat flux are routed consistently to the ocean model.   

 

The ism-XXX-self configuration denotes runs of an uncoupled ice sheet model driven by the outputs of the AOGCM-only 

simulation (Sect. 3.1).  The ism-XXX-self experiment is only meaningful in combination with a completed XXX-withism, and 5 
with the same combination of climate and ice sheet models. In this configuration, changes in the ice sheet do not affect the 

climate model, and therefore the climate inputs passed to the ice sheet model differ from those in the AOGCM-ISM 

experiment.  The ice sheet model should, however, be configured with the same settings as for the AOGCM-ISM runs and 

should use the same initial conditions (i.e., the outcome of the spin-up carried out with the coupled AOGCM-ISM).  

 10 
Initial conditions for both the ism-XXX-self experiments and the XXX-withism experiments will be generated by running the 

coupled AOGCM-ISM to a quasi-equilibrium state with pre-industrial forcing that represent year 1850.  Pre-industrial 

AOGCM-ISM spin-up is an area of active research (e.g., Fyke et al. 2014) that seeks to produce a consistent non-drifting 

coupled state corresponding to the pre-industrial climate, which is different from the contemporary state (Kjeldsen et al., 

2015).  The challenge is that ice sheets reach quasi-equilibrium on timescales of many millennia, more slowly than the 15 
oceans, which typically have been the slowest components of AOGCMs. To reach steady state, the ice sheet model may have 

to be run for ~10,000 years or longer. Since runs of this length are impractical for a complex climate model, the coupling 

between the ice sheet model and the climate model will likely have to be asynchronous for at least part of the spin-up. In this 

case, once the ice sheet model has reached steady state, the coupled system should be run synchronously for an additional 

period before starting the experiments. ISMIP6 will not dictate spin-up procedures for obtaining pre-industrial initial ice-20 
sheet conditions, but the procedure should be documented. 

 

Ideally, the ice sheet model should be forced with the actual SMB computed by the climate model, rather than an SMB 

corrected to match observed climatology.  We accept that there may be biases in the atmospheric or land models that can 

lead to an unrealistic SMB, which could result in a steady-state ice sheet geometry that differs substantially from present-day 25 
observations. However, correcting for these biases can distort the feedbacks between ice sheets and climate that we seek to 

investigate. We hope to learn from and ultimately reduce these biases, in the same way that biases elsewhere in the simulated 

coupled climate system are reduced by greater understanding and improved model design. On the other hand, if the geometry 

of the spun-up ice sheet is greatly different from observations, then the initial ice sheet for the ism-XXX-self experiments may 

be far from steady state with the SMB forcing from the standard, uncoupled AOGCM. As a result, the ism-XXX-self 30 
experiment could have a large drift that obscures the climate signal. The drift will be quantified from the control 

experiments. In case of a large drift, or if the spun-up ice sheet in the coupled system is deemed to be too unrealistic, an 
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alternative spin-up method would be to apply SMB anomalies from the AOGCM, superposed on a climatology that yields 

more realistic equilibrium ice sheet geometry. 

 

The method used to downscale SMB (as well as oceanic forcing) from the coarse climate model grid to the finer ice sheet 

model grid is left to the discretion of each group, but should be well documented. The data request for ISMIP6 in Appendix 5 
A asks modelers to report certain fields on both the atmospheric and ice sheet grids to allow for an evaluation of the 

downscaling procedure. Also, ISMIP6 prefers that the surface-melt component of SMB be obtained from an energy-based 

method that conserves mass and energy, to facilitate interpretation of the drivers of SMB variability and change (e.g. 

Vizcaíno, 2014). Highly parameterized methods of computing surface melt, such as positive-degree-day (PDD) methods 

(e.g. Reeh, 1991; Bougamont et al., 2007), should be avoided. The choice of the ice sheet model, its complexity in 10 
approximating ice flow, and ice-sheet-relevant boundary conditions (e.g., geothermal flux) are left to the modelers’ 

discretion. In all experiments, however, the ice sheets should not be forced to terminate at the present-day ice margin if the 

simulated SMB and/or the ice sheet dynamics cause a margin advance.  

 

Regardless of the spin-up method, the first ISMIP6 experiment to be performed with the coupled AOGCM–ISM is the pre-15 
industrial control, piControl-withism. This is a multi-century (500 years suggested) control run aiming to assess model drift 

and systematic bias and to capture unforced natural variability. The drift in the standalone ISM experiments ism-XXX-self 

will be quantified with a control run (ism-piControl-self).  The core ISMIP6 prognostic climate change experiment is 

1pctCO2to4x-withism, which applies a 1% per year increase in CO2 concentrations over 140 years until levels are 

quadrupled, then holds concentrations fixed for an additional two to four centuries. The 1pctCO2to4x-withism will be 20 
compared to the AOGCM simulation 1pctCO2to4x (the first 140 years of the DECK 1pctCO2 merged with the 1pctCO2-

4xext) and to ism-1pctCO2to4x-self (the standalone ISM forced by the AOGCM surface mass balance and temperature from 

1pctCO2to4x).  The duration of these three experiments should be the same.  It is suggested that the experiments be run for 

at least 350 years, and if possible for 500 years, because previous studies (e.g., Ridley et al., 2005; Vizcaíno et al., 2008; 

2010) indicate that coupled AOGCM–ISM runs start to clearly diverge from uncoupled runs after about 250–300 years of 25 
simulation.  

 

Another set of experiments repeats the CMIP6 historical and ssp585 simulations with a coupled AOGCM-ISM.  The 

historical-withism simulation begins at year 1850 from the pre-industrial spin-up and finishes at the end of 2014. This 

simulation is followed by ssp585-withism, with experimental settings and forcings as described in O’Neill et al. (2016).  The 30 
ssp585-withism begins in January 2015 and is initiated from the December 2014 results of the historical-withism simulation. 

The ssp585-withism experiment is run for the 21st century and its extension to the end of the 23rd century.  For completeness, 

these experiments are to be repeated with standalone ISM simulations ism-historical-self and ism-ssp585-self. We accept that 
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with this protocol, the 2015 ice sheet is likely to be distinct from the observed ice sheet due to model drift from the Historical 

run, and that this will have implications for projected ice sheet evolution (e.g., Stone et al., 2010).   

 

Based on community feedback, we expect that several AOGCM–ISMs will be ready to participate in coupled climate 

experiments for CMIP6. Table 3 shows climate modeling centers that have expressed interest in participating in ISMIP6. 5 
The primary focus is coupled ice-sheet–atmosphere simulation for the Greenland Ice Sheet, but some groups have indicated 

participation only in the diagnostic aspect of ISMIP6 (where the goal is to provide climate data for the standalone ice sheet 

work). Full coupling of ice sheet models to climate models remains challenging, especially for interactions with the ocean. 

Accurate treatment of ice-ocean interactions requires ISMs that can simulate grounding line migration (which demands fine 

grid resolution) and iceberg calving, and ocean models that can simulate circulation in the cavities below ice shelves and the 10 
consequent melting or accretion of ice on the undersides of the shelves. Accurate treatment of ice-ocean interactions will 

likely also require ocean models to alter their domain (both vertically and horizontally) as the calving front migrates and as 

sub-ice-shelf ocean cavities evolve in space and time.  For the Greenland Ice Sheet, ocean models may need to capture fjord 

dynamics on smaller spatial scales (~1 km) than are currently resolved by global ocean models. In addition, credible ice-

ocean coupling requires accurate knowledge of the bathymetry beneath ice shelves and ice sheets, where data are sparse.  15 
Because of these challenges, we do not expect a realistic treatment of the Antarctic Ice Sheet in the ISMIP6 coupled 

AOGCM-ISM experiments. Antarctica is included, however, in the standalone experiments described in the next section.  

3.3 Experiments with ISMs not coupled to climate models 

The final set of ISMIP6 experiments will use standalone ice sheet models driven by climate model output and other datasets. 

Groups and models that have expressed an interest in participating in this aspect of ISMIP6 are listed in Table 4. The models 20 
participating in this effort will likely be configured differently from those in the ism-XXX-self simulations described in Sect. 

3.2.  For example, an ice sheet model that is spun up to quasi-equilibrium with a climate model will likely have a thickness 

and extent that differ appreciably from observed values, whereas standalone models can be initialized more realistically. 

Also, an ISM in a climate model might use a coarse resolution or a simple approximation of ice dynamics in order to be 

more computationally efficient, while the same model used strictly for projections would likely have a finer resolution, at 25 
least in regions of fast flow (e.g. Aschwanden et al., 2016), and could incorporate more complex ice flow dynamics.  

Similarly, ice sheet models that are used for paleoclimate studies are often distinct from those used for projections of a few 

hundred years.   

3.3.1 initMIP 

The initMIP ice sheet experiments are designed to explore uncertainties in sea-level projections associated with model 30 
initialization and spin-up. Such uncertainties have been identified by previous model intercomparison efforts (e.g., 
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Bindschadler et al., 2012; Nowicki et al., 2013a, b; Edwards et al., 2014a, Shannon et al., 2013; Goelzer et al., 2013; Gillet-

Chaulet et al., 2012) and include the impacts of model initial conditions, sub-grid scale processes, and poorly known 

parameters. The initMIP project aims to evaluate initialization procedures, to estimate trends caused by model initializations 

and to investigate the impact of choices in numerical and physical parameters (e.g., stress balance approximation or model 

resolution).  Results of the initMIP project are expected to point to specific aspects of ice sheet initialization that have a 5 
crucial impact on sea-level projections and may be improved.   

 

ISM initialization methods to present-day conditions range from running paleo-climate spin-up for thousands of years (e.g., 

Martin et al., 2011; Sato and Greve, 2012; Aschwanden et al., 2013; Fürst et al., 2015; Saito et al., 2016) to assimilating 

present-day observations (e.g., Morlighem et al., 2010; Gillet-Chaulet et al., 2012; Seroussi et al., 2013, Arthern et al., 2015). 10 
The choices made in this procedure affect ice sheet extent, flow rates, volume, and volume trends, which can have 

substantial effects on estimates of ice sheet contribution to sea-level rise (e.g. Aðalgeirsdóttir et al., 2014). Improving ISM 

initial conditions is an active area of research and a multidisciplinary effort. It requires acquisition of additional data with 

high spatial coverage over entire ice sheets and at increased resolution (e.g., Bamber et al., 2013; Rignot et al., 2011b; 

Joughin et al., 2010a; Howat et al., 2014). Ideally, all datasets used in the data assimilation are from the same period, as 15 
initializing an ice sheet model with datasets taken at different times can cause the ice flow model to artificially redistribute 

the glacier mass in unrealistic ways that serve only to reconcile these inconsistencies (Seroussi et al., 2011). This also 

implies that the date associated with the initial state can differ between models based on the data sets used. New algorithms 

that reconcile initialization datasets are being developed, most notably for bedrock elevation (e.g., Morlighem et al., 2011; 

Morlighem et al., 2014), which is notoriously poorly constrained.  20 
 

The initMIP project consists of a Greenland component and an Antarctic component.  Following initialization, there is a set 

of two forward experiments for the Greenland Ice Sheet and three forward experiments for the Antarctic Ice Sheet, each run 

for at least 100 years: i) a control run (ism-ctrl-std), ii) a surface mass balance anomaly run (ism-asmb-std) and iii) a basal 

melt anomaly run (ism-abmb-std) in which anomalous melt is applied beneath the floating portion of the Antarctic Ice Sheet. 25 
All other model parameters and forcing in the forward runs are the same as those used for initialization. The ism-ctrl-std is 

an unforced forward experiment designed to evaluate the initialization procedure and characterize model drift, the surface 

mass balance remaining identical to the one used during the initialization procedure. In ism-asmb-std, a prescribed SMB 

anomaly is applied to test the model response to a large perturbation. The schematic perturbation anomaly mimics outputs of 

several SMB models of different complexity between the end of the 20th century and the end of the 21th century, and is 30 
designed to capture the first-order pattern of SMB changes expected from climate models.  The schematic SMB anomalies 

are defined everywhere on the model grid, and are therefore applicable for models with varying ice sheet extent. In ism-

abmb-std, a prescribed anomaly of basal melting rate under floating ice is applied while SMB is kept the same as in ism-ctrl-
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std. Because of the difference in ice shelf extent between the different models, the basal melt anomaly is prescribed to be 

constant for each basin.  This scalar value is different for each basin and derived from the mean values of the ice shelf melt 

observed by Rignot et al. (2013) and Depoorter et al. (2013). The applied anomaly simulates a doubling of sub-ice-shelf 

melting after 40 years of simulation for models with initial melting rates close to today’s observations. 

 5 
Since these experiments are designed to allow comparison among the different models, some simplifications are imposed. 

Neither SMB nor bedrock topography should be adjusted in response to ice-sheet geometric changes in these forward 

experiments.  However, to sample the uncertainty in sea-level due to initialization, groups are encouraged to submit multiple 

variations of the experiment, for example by changing the sliding law, stress balance approximation, model resolution, or 

datasets (such as using different bedrocks). While the initialization procedures used by the different participating groups are 10 
not prescribed by ISMIP6, it is expected that individual groups will take advantage of the initMIP results to improve their 

initialization procedures. initMIP is also intended to give ice sheet modelers an opportunity to get involved in ISMIP6 at an 

early stage, before outputs of CMIP6 AOGCM become available; hence our prescription of simplified anomalies.  We refer 

interested readers to the initMIP webpage (http://www.climate-cryosphere.org/wiki/index.php?title=InitMIP) for more 

information.   15 

3.3.2 ism-XXX-std configuration 

The ism-XXX-std experiments target primarily the glaciology community and seek to obtain realistic ice sheet evolution to 

inform estimates of past, present and future sea level.  ISMIP6 will supply forcing data from CMIP6 that allows standalone 

ISMs to simulate the evolution of both the Greenland and Antarctic Ice Sheets.  ISMIP6 seeks to assess the uncertainty in 

sea-level change arising from both the ice sheet models and the climate forcing.  A key concern is that ISMIP6 assess 20 
uncertainty associated with emission scenario and the AOGCMs’ simulation of these scenarios: for a given emission 

scenario, the AOGCMs simulation of this scenario will result in a range of atmospheric and oceanic forcings. Clearly, there 

is a tension between the range of potential ice sheet forcing, the need to explore uncertainty associated purely with ISMs 

(e.g., related to initial conditions, bedrock topography and parametric uncertainty), and the computing requirements of 

specific ISMs (some of which may only be able to perform a small number of experiments). To this end, we anticipate 25 
identifying a subset of forcing from the CMIP6 AOGCM ensemble based on the analysis of AOGCM simulations of ice-

sheet climate (Sect. 3.1).  The subset will be chosen to capture the full range of potential ice sheet forcing for a given 

emission scenario, using metrics of the SMB and ocean forcing to investigate that range.  Within the selected subset of 

forcing, we plan to identify a small number of simulations that all ISMs must perform.  Groups that are able to perform 

numerous simulations will be encouraged to participate in all experiments. Shannon et al. (2013) is an example of this 30 
approach. 
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The forcing data can naturally be divided into atmospheric and oceanic forcing.  Central to the former is the means to 

determine SMB associated with a particular CMIP6 experiment.  Several methods have previously been employed to do this. 

Until we can assess the quality of the climate simulated by CMIP6 AOGCMs above and around the ice sheets (after the 

analysis of the CMIP6 DECK and Historical simulations), a definitive choice cannot be made. However, we list the options 

in order of preference: 5 
1. Use the SMB calculated by the AOGCM directly.  This has the advantage that the SMB will be entirely consistent with 

other parts of that AOGCM’s simulation of climate.  There is concern, however, that the quality of the SMB computed 

by the AOGCMs will make this approach unrealistic due primarily to the mismatch between the spatial resolution of 

AOGCMs and the characteristic length scale of variations in SMB.  Several groups have, however, made recent progress 

in this area (e.g., Vizcaíno et al., 2013; Lipscomb et al., 2013).  The use of anomalies should also be considered in this 10 
context. 

2. In the event that AOGCM-determined SMB is shown to be inadequate, an intermediate step is required.  Previously, this 

has been the use of Regional Climate Models (RCMs) to simulate SMB. For example, the ice2sea effort chose to 

generate SMB from an RCM (Edwards et al., 2014a,b; Fettweis et al., 2013).  This approach, however, introduces a 

further link into the processing chain that may lead to delay in the production of sea-level projections.  It also introduces 15 
the issue of choice of RCM and whether results from a number of RCMs should be used (further complicating the 

design of the ISM ensemble). Furthermore, the use of RCMs as intermediaries between AOGCMs and ISMs adds 

ambiguity about which biases are introduced by the AOGCMs and which biases are the result of the RCMs. 

3. Use a parameterization or simplified process model to simulate SMB by downscaling atmospheric forcing over the ice 

sheet from an AOGCM.  This approach was used by SeaRISE (Bindschadler et al., 2013), where the precipitation and 20 
surface temperature from 18 AOGCMs models taking part in the A1B scenario were combined to generate monthly 

mean values. These mean precipitation and temperature values were then passed to the SMB scheme of the ice sheet 

model (generally a PDD method that accounted for the temperature aspect of the SMB-elevation feedback) to obtain 

SMB anomalies that were added to the ice sheet surface conditions at initialization.   

 25 
A further consideration is that the AOGCM models assume a fixed ice sheet elevation: i.e., they neglect the effect of ice 

sheet elevation change on the atmosphere and hence omit the SMB-elevation feedback.  Standalone ISMs will need to 

include this effect by parameterizing the SMB lapse rate (Edwards et al., 2014a,b; Fettweis et al., 2013; Goelzer et al., 2013).  

This approach may be less of an issue for method 3 above because SMB is determined interactively within the ISM rather 

than being prescribed as forcing. 30 
 

A second way in which the atmosphere could force dynamic change in ice sheets is through the production of large 

quantities of melt water. Mechanisms have been proposed that link melt water to both ice shelf collapse (Banwell et al., 
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2013) and enhanced lubrication of ice flow (Zwally et al., 2002) (although recent modeling studies suggest a minor influence 

of the latter on large-scale ice flow (e.g., Shannon et al., 2013)).  Surface air temperature and runoff forcing will therefore 

also be made available. 

 

Both Antarctica and Greenland are thought to respond to changes in proximal ocean temperatures, which affect the melt 5 
rates of floating ice shelves and the vertical faces of outlet glaciers.  Obtaining suitable oceanic forcing from CMIP6 climate 

models will be a major challenge.  Few CMIP6 models will calculate the appropriate melt rates, and even these results are 

likely to be inaccurate because of issues of model resolution and the unique physics of ocean circulation adjacent to melting 

ice.  Melt rates will therefore need to be determined outside the climate model using an index for proximal ocean 

temperature.  This index is most likely to be water temperature (and salinity) at the continental shelf break at an intermediate 10 
range of depths (equivalent to the base of ice shelves or the depth of ice grounded on bedrock). This quantity will be 

included in our evaluation of CMIP6 forcing (see Sect. 3.1). 

 

A wide range of approaches has been used to calculate the required melt rate from prescribed ocean-temperature forcing. The 

simplest method is to calculate melt rate anomalies from changes in the nearest ocean temperature using an observationally 15 
derived relation of 10 m yr-1 °C-1 (Rignot and Jacobs, 2002). However, this linear relation between ocean temperature and 

melt rates is calibrated for melt rates at the grounding line, and likely is missing important non-linearities (Holland et al., 

2008). An alternative approach is to parameterize melt rates as proportional to the difference between ocean temperature at 

the shelf break and the freezing temperature at the ice shelf base. Beckman and Goosse (2003) developed such a scheme for 

ocean models, and similar schemes have been applied in offline ice sheet model simulations with idealized ocean forcing 20 
(e.g., Martin et al., 2011; Pollard and DeConto, 2012; DeConto and Pollard, 2016). In those studies, the ocean temperature is 

set to the average temperature between 200 and 600 m depth (Martin et al., 2011), or the temperature at 400 m depth 

(DeConto and Pollard, 2016), or specified differently for specific Antarctic sectors (Pollard and DeConto, 2012). Depending 

on the evaluation of the CMIP6 models, ISMIP6 may adapt one of these choices, or could prescribe depth-varying profiles of 

ocean temperature (and possibly salinity). The dependence of melt rates on thermal driving ranges from linear (Martin et al., 25 
2011) to quadratic (Pollard and DeConto, 2012; DeConto and Pollard, 2016). Since the freezing temperature at the ice base 

decreases with depth, the melt rates in all schemes tend to be higher near grounding lines, as found from observations.  

 

If none of the CMIP6 ocean models can accurately capture the broad-scale polar ocean circulation or produce realistic near-

shelf temperatures, an alternative is to prescribe a melt rate that simply depends on the ice shelf draft (e.g. Joughin et al., 30 
2010b; Favier et al., 2014). This approach is less satisfactory, however, as it ignores temporal changes in ocean conditions, 

and typically uses coefficients calibrated to local thermal conditions.  If ISMIP6 uses this approach, the provided coefficients 

would not be uniform, but would take into account that ocean waters reaching ice shelf cavities or fronts differ regionally. In 
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Antarctica, for example, the ice shelves of Pine Island Glacier and Thwaites Glaciers lie in “warm” water, while the 

Filchner-Ronne or Ross ice shelves reside in “cold” water. Ocean temperatures reflect the dominant water sources, with 

warm waters dominated by circumpolar deep waters (Jacobs et al., 2011), while cold waters typically correspond to high- 

salinity shelf water (Nichols et al., 2001).  

 5 
Ice-ocean interactions are an active area of research, and more sophisticated parameterizations of melt are becoming 

available (e.g., Jenkins, 2016; Asay-Davis et al., 2016). Simplified models of the system could be used (e.g., Payne et al., 

2007), as could high-resolution ocean models that resolve ice-shelf cavities and fjords. Given this wide range of methods, 

ISMIP6 will leave the detailed choice of the parameterization to individual ice-sheet modelers, but will issue guidance on 

what constitutes an acceptable parameterization. We will organize workshops with the polar ocean community to investigate 10 
how to best derive oceanic forcing for ice sheet models, so that by the time the CMIP6 ocean models are evaluated, a clearer 

protocol is in place.  The calculated melt rate will be part of the standard data request for ice sheet models (see Appendix A), 

and part of our evaluation will be to determine how well the applied forcing compares to observed melt rates of Rignot et al. 

(2014) and Depoorter et al. (2014).  

 15 
ISMIP6 will not dictate the choice of ice sheet model complexity in terms of the ice flow approximation, the basal sliding 

law, the treatment of grounding lines, the calving law, the ice-sheet-specific boundary conditions (e.g., bedrock topography), 

or the initialization method. An exception is that models of the Antarctic Ice Sheet should include floating ice shelves and 

grounding line migration.  The spatial resolution of the ISM in the vicinity of fast-flowing ice streams and the grounding line 

affects the dynamic response (Durand et al., 2009; Pattyn et al., 2012, 2013), and the model resolution must be fine enough 20 
to capture this response accurately. To this end, participating models are encouraged to take part in model intercomparison 

efforts that target specific aspects of ice sheet modeling, such as the current MISOMIP (Marine Ice Sheet–Ocean Model 

Intercomparison Project; Asay-Davis et al., 2016) and are required to take part in initMIP (initialization-focused experiments 

that compare and evaluate the simulated present-day state; Sect. 3.3.1). The lack of a stricter protocol is a reflection of the 

challenges in identifying which factors are the most important when making projections, which datasets are most accurate, 25 
and how to best capture and parameterize certain ice-sheet processes.  For example, although the choice of bedrock 

topography affects mass transport and is thus likely to influence a projection, it is currently not possible to identify a best 

dataset due to the difficulty in obtaining bedrock measurements.  Groups are encouraged to repeat the experiments with a 

variety of perturbations of weakly constrained parameters, boundary conditions, etc. in order to test the sensitivity of 

projections to these choices. 30 
 

Unlike the protocol for climate models, the ism-XXX-std simulations cannot be initiated from a spin-up corresponding to year 

1850. This is due to the challenge of initializing ice sheet models to pre-industrial conditions, which are constrained more 
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weakly than the contemporary state: the quantity of accurate, high-resolution data available during the satellite era far 

exceeds that available for pre-industrial and historical periods.  The majority of ice sheet models use these data in 

sophisticated initialization and assimilation procedures, such that the present-day state of the ice sheet is simulated with high 

fidelity.  The lack of suitable data before the satellite era means that no such accuracy can be assumed for simulations of the 

historical periods.  Such inaccuracies are known to have a large effect on projections.  For instance, discrepancies between 5 
projections can often be attributed to slight differences in the geometry (e.g., Shannon et al. 2013).  The ism-XXX-std 

simulations will thus be initiated from a present-day spin-up. 

 

The first ism-XXX-std simulation is ism-pdControl-std, the ice sheet present-day control with constant forcing needed to 

evaluate model drift.  This constant forcing is based on the climate at the end of the initialization procedure.  For many 10 
models, the forcing and simulation will be the same as the ism-ctrl-std in the initMIP experiment (Sect. 3.3.1), unless a 

change has been made in the initialization. The idealized climate change experiment, ism-1pctCO2to4x-std, considers a 1% 

per year atmospheric CO2 concentration rise until quadrupled concentrations and stabilization thereafter. The ism-historical-

std will be an abbreviated simulation for the historical period (as it begins from the present-day spin-up) and, following the 

CMIP6 protocol, ends in December 2014.  The ism-amip-std is a simulation for the last few decades to understand the well-15 
observed record of ice sheet changes.  The results from the ism-amip-std and ism-historical-std are likely to differ, and the 

comparison will provide some insight into the relative importance of biases, climate variability and climate change.  The 

main simulation for projecting 21st century sea-level rise is the ism-ssp585-std, which is initiated from the ism-historical-std 

simulation.  (As mentioned previously, other scenarios will be considered if time permits.) If possible, projections should 

continue to the end of the 23rd century.   20 
 

We complement the experiments for the recent past and future with one paleo experiment (ism-lig127k-std), to simulate 

Greenland ice-sheet evolution during the Last Interglacial. The transient simulation will span the period 135 kyr to 115 kyr 

to include transitions from the preceding and to the following cold periods. The climate forcing for ism-lig127k-std will be 

derived from the PMIP4-CMIP6 experiment lig127k and other (transient) LIG climate simulations (cf. Bakker et al., 2012; 25 
Lunt et al., 2013) that will be performed by PMIP4 (Otto-Bliesner et al., 2016). The proposed experiment builds on past 

efforts to study Greenland ice-sheet stability and evolution during the LIG and constrain the Greenland contribution to the 

LIG sea-level highstand (e.g. Robinson et al., 2011; Born and Nisancioglu, 2012; Helsen et al., 2013). 

3.4 Prioritization of experiments and timing  

The ISMIP6 experiments listed in Table 2 are divided into three “Tiers” to indicate prioritization. Tier 1 denotes experiments 30 
that are to be completed by the ISMIP6 participants.  Tier 2 experiments are highly encouraged, while Tier 3 experiments are 

optional. 



18 
 

 

For the coupled AOGCM-ISM experiments, the Tier 1 experiments piControl-withism and 1pctCO2to4x-withism should be 

performed first.  These experiments have already been performed by many climate modeling groups, and their idealized 

settings allow for an easier evaluation of the ice-climate feedback. The Tier 2 experiments, historical-withism and ssp585-

withism, are more relevant to our goal of producing sea-level projections concurrent with the CMIP6 future climate.  Ideally, 5 
the XXX-withism and ism-XXX-self experiments would follow the corresponding AOGCM experiments with no more than a 

six-month lag. 

 

For the standalone ism-XXX-std experiments, ISMIP6 is constrained by the timing of the AOGCM runs that will be used to 

derive forcings for ice sheets.  We anticipate that the DECK simulations will not be completed before spring of 2017, which 10 
implies that climate models cannot be evaluated rigorously before summer 2017, and in turn that the ISM Tier 1 experiments 

based on CMIP6 DECK forcing would begin in 2018.  As soon as suitable forcings are available from the SSP5-8.5 

experiments (CMIP6-Endorsed ScenarioMIP, Tier 1), ism-ssp585-std will be the focus of the standalone ISM work.  To 

allow ice-sheet modeling groups the necessary time to perform the simulations, we plan to begin ism-ssp585-std in early 

2019. Similarly, the ism-lig127k-std cannot proceed until the PMIP participants have completed the CMIP6-Endorsed 15 
PMIP4 Tier 1 experiment and other transient PMIP4 experiments.  In the meantime, ISMIP6 standalone ice sheet models 

will focus on initMIP, with the goal of finishing this suite of experiments by the end of 2016 for Greenland and by the end of 

2017 for Antarctica.  

4 Evaluation and Analysis 

The framework described in this paper entails an evaluation of the climate system, with a particular focus on the polar 20 
regions.  This framework works toward the goals of i) assessing the effect of including dynamic ice sheets in climate models 

and ii) improving confidence in projections of sea-level rise associated with mass loss from the Greenland and Antarctic Ice 

Sheets. Our evaluation and analysis will be based on key model output variables for the atmosphere, ocean and ice sheets 

that form the ISMIP6 data request summarized in Appendix A.  

4.1 Evaluation of ice sheet models  25 

Ice sheet models will be evaluated using methodologies already in use by the ice-sheet modeling community. These metrics 

typically begin by assessing whether the volume and area of the modeled present-day ice sheet are comparable to observed 

values.  The next step evaluates the spatial patterns of surface elevation, ice sheet thickness, surface velocities, and positions 

of the ice front and grounding line.  Some ice sheet models are initialized using data assimilation methods, which precludes 

the use of certain observations in the evaluation.  Evaluation of these models can be done by hindcasting, a method that 30 
evaluates whether recent observed trends are captured (Aschwanden et al., 2013).  Examples include comparison against the 
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gravimetry (GRACE) time series from 2003 onwards, which provides an integrated set of measurements for mass changes in 

Greenland and Antarctica. This approach will also enable a direct comparison between predicted sea-level rise from ISMs 

and the change in ocean mass observed by GRACE.  The recent IMBIE effort (Ice Sheet Mass Balance Inter-comparison 

Exercise, Shepherd et al., 2012) facilitates this comparison by combining observations from gravimetry, altimetry and 

velocity changes between 1992-2012 into a single dataset of annual mass budget for each ice sheet.  The follow-on effort, 5 
IMBIE2 (Shepherd, personal communication), will extend the record in time and plans to separate the observed mass change 

into SMB and dynamic components.  

4.2 Effects of dynamic ice sheets on climate 

The combination of coupled AOGCM-ISM simulations (XXX-withism) and standalone ice sheet simulations (ism-XXX-self) 

will support a clean analysis of ice-sheet feedbacks on the climate system, which can further affect ice-sheet evolution (e.g., 10 
Driesschaert et al., 2007; Goelzer et al., 2011; Vizcaíno et al., 2008, 2010, 2015). A limited number of feedbacks can be 

studied in an AOGCM without a dynamic ISM. For instance, because AOGCMs generally compute ice-sheet SMB through a 

land model coupled on hourly time scales to the atmospheric model, the albedo-melt feedback can be studied in an AOGCM 

alone. Other important feedbacks, however, are present only if the ice sheet is dynamic: 

• As ice sheets thin, the lower elevation leads to warmer surface temperatures that increase melting. This ice-15 
elevation feedback is small on sub-century time scales (Edwards et al., 2014b), but over longer time scales, it can 

drive ice sheets to a point of no return, where retreat would continue unabated even if the climate returned to an 

unperturbed state. 

• Changes in ice sheet elevation modify the regional atmospheric circulation (e.g., Ridley et al., 2005), which can 

either enhance or slow the rate of retreat. 20 
• Changes in land surface cover (e.g., from glaciated to vegetated) can darken and warm the surface, promoting 

atmospheric warming and further melting. 

• Increased freshwater fluxes (both solid and liquid) from retreating ice sheets can modify the density structure of the 

ocean, possibly suppressing convection and weakening the Atlantic meridional overturning circulation. Although 

some studies (e.g., Hu et al., 2009) find that this is a small effect, others suggest that increased runoff from the 25 
Greenland Ice Sheet has already reduced deep convection in the Labrador Sea (Yang et al., 2016). 

• The buoyancy of fresh glacial meltwater from sub-ice-shelf melting can modify the ocean circulation that drives the 

melting. On longer time scales, changes in the size and shape of sub-shelf cavities may also alter the circulation. 

The ISMIP6 experiments will be performed on climate model runs lasting several centuries, long enough to allow a detailed 

analysis of at least the first four of these feedbacks. Ocean cavity feedbacks, however, may require further development of 30 
ocean models that can adjust their boundaries dynamically as marine ice sheets advance and retreat. 
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4.3 Sea-level change 

The SMB over the Greenland Ice Sheet is currently becoming less positive, thus resulting in an increasing contribution to 

sea-level rise due to increased surface runoff (van Angelen et al., 2014; Fettweis et al., 2011).  This trend is expected to 

continue (Fettweis et al., 2013; Rae et al., 2012), although there is a large spread in AOGCMs (Yoshimori and Abe-Ouchi, 

2012). The picture is less clear for the Antarctic Ice Sheet, where both accumulation and surface melt are projected to 5 
increase (Lenaerts et al., 2016).  The multi-model ensemble of the surface freshwater flux from AOGCM simulation will 

provide insight into the resulting contribution of past and future sea level due to changes in SMB alone. 

 

The largest uncertainty in sea level, however, remains the dynamic contribution from the ice sheets. ISMIP6 targets the 

contribution of dynamic ice sheets to global sea level, via multi-model ensemble analysis of standalone ice sheet models 10 
(ism-XXX-std). For a number of experiments, the multi-model ensemble from the ism-XXX-std will be contrasted to the 

multi-model ensemble resulting from coupled AOGCM-ISM simulations (ism-XXX-withism).  We expect the results of the 

standalone modeling (ism-ssp585-std) to be more robust for projections, as we anticipate that the spun-up ice sheet from the 

coupled historical simulation (historical-withism) will differ substantially from present-day observations, and these 

differences will alter the projected ice sheet evolution (e.g., Stone et al., 2010; Shannon et al., 2013).  The projections from 15 
ssp585-withism will likely expose issues resulting from coupling dynamic ice sheet models to climate models, motivating the 

community to begin resolving them.  

 

We also aim to quantify the uncertainty in sea level arising from uncertainties in both the ice sheet models and the climate 

input, hence the need to sample across scenarios and models.  For example, the ongoing initMIP project will provide insight 20 
into sea-level uncertainties resulting from ice sheet model initialization.  By repeating model runs with different datasets, 

sliding laws, model resolutions, etc., initMIP will allow us to constrain the sea-level contribution associated with these 

choices.  Ice sheet evolution will also depend on climatic drivers. For instance, given a certain number of AOGCMs that 

simulate present-day ice-sheet SMB reasonably well, comparing their SMB results under various climate-change simulations 

will allow us to quantify climate-model-driven uncertainty in SMB. If relationships between large-scale climate drivers (e.g., 25 
regional temperature and precipitation) and ice-sheet area-integral SMB can be established (e.g., Gregory and Huybrechts, 

2006; Fettweis et al., 2013), this would allow estimation of SMB from AOGCM experiments for other climate scenarios. If 

possible, synergies with other CMIP6 efforts will allow us to further investigate the uncertainty in climate input.  For 

example, the CMIP6-Endorsed High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al., 2016) and 

Coordinated Regional Climate Downscaling Experiment (CORDEX, Gutowski et al., 2016) may allow us to quantify the 30 
impacts of increased resolution on SMB. 
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5 Discussion and conclusion 

ISMIP6 has an experimental protocol and a diagnostic protocol.  The experimental design uses and builds upon the core 

DECK and CMIP6 Historical simulations, along with selected CMIP6-Endorsed PMIP4 and ScenarioMIP simulations.  The 

suite of ISMIP6 experiments involves three types of models: AOGCM/AGCM with no dynamic ice sheets, coupled 

AOGCM-ISM, and standalone ISM.  The diagnostic protocol is based on ice-sheet-related model outputs, many of which are 5 
already present in the CMIP6 atmosphere and ocean diagnostics. The evaluation of the climate in the polar regions from 

AOGCM and AOGCM-ISM simulations will guide recommendations for existing and new ice-sheet–climate coupling 

efforts.  ISMIP6 promotes the development of the ice sheet component of climate models in an effort to bring both climate 

and ice-sheet models to greater maturity.  ISMIP6 targets two of the WCRP Grand Science Challenges: “Melting Ice and 

Global Consequences” and “Regional Sea-level Change and Coastal Impacts”.  Given the current rapid changes in the 10 
Greenland and Antarctic Ice Sheets, ice sheets no longer be considered passive players in the climate system.  Their 

contributions to future sea level will likely have considerable human and environmental impacts, and ISMIP6 will facilitate 

research in this critical area.  

 

ISMIP6 will coordinate simulation and analysis of ice sheet evolution in a changing climate.  Inclusion of ice sheet models is 15 
unique in CMIP history and is necessary to advance understanding of the sea-level contribution from the Greenland and 

Antarctic Ice Sheets, the climate system response to ice-sheet changes, and the feedbacks between ice sheets and climate.  

ISMIP6 is thus an important step in closing the gap between the climate and ice-sheet modeling communities. Our key 

output, the sea-level contribution from ice sheets, complements the projections of ocean thermal expansion that already sit 

within the CMIP framework. This improvement will help sea level join the family of variables for which CMIP can provide 20 
routine IPCC-style projections. Ultimately, the success of ISMIP6 relies on the broad participation of the CMIP6 modeling 

centers, standalone ice sheet modeling groups, and analysts of the atmosphere, ocean and ice sheets. 

 

Data availability  

The model output from the simulations described in this paper will be distributed through the Earth System Grid Federation 25 
(ESGF) with digital object identifiers (DOIs) assigned. In order to document CMIP6’s scientific impact and enable ongoing 

support of CMIP, users are obligated to acknowledge CMIP6, the participating modeling groups, and the ESGF centers (see 

details on the CMIP Panel website at http://www.wcrp-climate.org/index.php/wgcm-cmip/about-cmip). Datasets for natural 

and anthropogenic forcings are required to run the experiments; these datasets are described in separate invited contributions 

to this Special Issue. The forcing datasets will be made available through the ESGF with version control and DOIs assigned. 30 
Exceptions in the distribution method will be made for the forcing for the initMIP Greenland and Antarctic efforts that 

specifically target standalone ice sheet models. Instruction of how to obtain forcing datasets not available through ESGF will 

be posted on the ISMIP6 website (http://www.climate-cryosphere.org/activities/targeted/ismip6).  
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6 Appendix A: Variable Request 

This special issue includes a manuscript that is dedicated to the CMIP6 data request. The majority of our data request is 

based on the CMIP5 CMOR tables Amon (Monthly Mean Atmopsheric Fields), Omon (Monthly Mean Ocean Fields), 20 
LImon (Monthly Mean Land Cryosphere Fields), and OImon (Monthly Mean Ocean Cryosphere Fields), which already 

contained many of the output required to diagnose and intercompare the climate over land ice/ice sheets and to derive 

forcing for the ice sheets. In the CF convention, ‘land ice’ comprises grounded ice sheets, floating ice shelves, glaciers and 

ice caps, while ‘ice sheet’ refers to grounded ice sheets and floating ice shelves. A few additional variables are needed to 

properly derive the forcings for ice sheets from AOGCMs, and to record outputs from the evolving ice sheets in the coupled 25 
AOGCM-ISMs experiments (such as ice elevation change), or from the standalone ice sheet simulations.  In this Appendix, 

we briefly outline the ISMIP6 data request on the atmosphere grid (Table A1), ocean grid (Table A2), and ice sheet grid 

(Table A3), and provide some context for key new variables.   

 

The mass change of ice sheets (see Fig. A1) is a result of the surface mass balance (SMB), ice melt (or refreeze) at the base 30 
of the grounded ice sheet (BMB), and mass exchange with the ocean.  The latter can be further split into frontal mass balance 

(FMB, defined as iceberg calving and melt (or refreeze) at the ice shelf front) and melt (or refreeze) at the base of ice shelves 
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(BMB).  All fluxes are defined as positive when the process adds mass to the ice sheet and negative otherwise. The thermal 

state of the ice sheet models is documented by the basal temperature and by the temperature at the ice sheet-snowpack 

interface.  Note that BMB and basal temperature are computed differently depending on whether the ice is grounded or 

floating, requiring the use of distinct Long Names, but same Standard Names in Table A3.   

 5 
Climate models will be evaluated primarily based on how well they can simulate SMB over the ice sheets.  This quantity 

(see Vizcaíno (2014) and Fig. A2) can be defined as precipitation minus runoff minus evaporation (which in our context 

includes any sublimation, a small term over ice sheets), where precipitation is the sum of snowfall and rainfall.  Runoff is the 

liquid water that escapes the ice sheet, while some of the water may be retained in the snow pack and possibly refreezes. The 

evaluation of climate models also benefits from analysis of energy fluxes, key temperatures, and area fraction of land ice, 10 
grounded ice sheet (excludes ice shelf) and snow over the land ice.  Note that some variables, such as SMB, are present in 

both Table A1 and Table A3, since in a coupled AOGCM-ISM simulation, the two will differ due to downscaling to the ice 

sheet grid.  The data request for the ocean serves primarily as input to construct oceanic forcing for ice sheet models off-line. 

It is not as extensive as the data request for the atmosphere, because marine boundary conditions for outlet glaciers and ice 

shelves are not routinely generated by AOGCMs.  It is therefore premature to set diagnostic protocols at this stage.  15 
However, participants are asked to follow the protocols of the CMIP6-Endorsed Ocean Model Intercomparison Project 

(OMIP, Griffies et al., 2016) when preparing the data listed in Table A2, in particular when regridding the ocean data from a 

native grid to the CMIP6 standard grids.  The ice sheet data request contains key characteristics needed to evaluate the ice 

sheet geometry, and ice sheet flow.  It also contains key ice sheet specific boundary conditions that may differ between 

models and a record of the forcing applied to the ice sheet model. To facilitate the analysis of the ice sheet contribution to 20 
sea level, a number of integrated measures (for example, ice sheet mass) are also requested.  
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8 Tables and Figures 

Table 1: Overview of the experiments with climate models not coupled with ice sheet models that are to be used by ISMIP6.  
All experiments are started on 1 January and end on 31 December of the specified years. 
Experiment  CMIP6 label 

(experiment_id) 
Experiment description Start 

year 
End 
year 

Minimum no. 
years per 
simulation 

Major purposes 

DECK experiments 
AMIP  amip Observed SSTs and SICs prescribed 1979 2014 36 Evaluation, variability 
Pre-industrial 
control  

piControl  Coupled atmosphere-ocean pre-
industrial control  

n/a n/a 500 Evaluation, unforced variability 

1% yr-1 CO2 
concentration 
increase 

1pctCO2 CO2 concentration prescribed to 
increase at 1% yr-1  

n/a n/a 150 Climate sensitivity, feedbacks, 
idealized benchmark 

Extension of 1pctCO2, needed to generate 1pctCO2to4x  
Extension from 
year 140 of 
1pctCO2 with 4 
time CO2 

1pctCO2-4xext Branched from 1pctCO2 run at year 
140 and run with CO2 fixed at 
quadruple pre-industrial concentration 

n/a n/a 210 Climate sensitivity, feedbacks, 
idealized benchmark 

CMIP6 historical simulation 
Past ~ 1.5 
centuries 

historical  Simulation of the recent past  1850 2014 165 Evaluation 

CMIP6-Endorsed ScenarioMIP simulations 
SSP5-8.5 ssp585 Future scenario with high radiative 

forcing by the end of the century  
2015 2100 86 Climate sensitivity 

SSP5-8.5ext ssp585 Extension of high radiative forcing 
future scenario  

2101 2300 200 Climate sensitivity 

CMIP6-Endorsed PMIP4 simulation 
PMIP4 last 
interglacial 

lig127k Equilibrium simulation of the peak of 
the last interglacial period 

127ka n/a 100 Climate sensitivity, feedbacks, 
long responses 

 5 
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Table 2: Overview of the ISMIP6 experiments with dynamic ice sheets that are either coupled to climate models (AOGCM-
ISM, XXX-withism) or run offline (ISM, ism-XXX-self and ism-XXX-std).  All experiments are started on 1 January and end 
on 31 December of the specified years. PD indicates that the start date correspond to the date of the present-day ISM spin-5 
up. 
Experiment  CMIP6 label 

(experiment_id) 
Experiment description Start 

year 
End 
year 

Minimum no. 
years per 
simulation 

Starting conditions Tier 

Repeat of DECK experiments with dynamic ice sheets  
AMIP  ism-amip-std Offline ISM forced by ISMIP6-

specified AGCM amip output 
PD 2014 n/a ISM spinup 2 

piControl-withism 
 

Pre-industrial control with interactive 
ice sheet 

n/a 
 

n/a 
 

500 
 

AOGCM-ISM spinup 
 

1 
 

Pre-industrial 
control  

ism-piControl-self Offline ISM forced by own AOGCM 
piControl output 

n/a n/a 500 AOGCM-ISM spinup 1 

Present-day 
control 

ism-pdControl-std Offline ISM forced by end of present-
day spinup conditions  

n/a n/a 100 ISM spinup 1 

Repeat of 1pctCO2to4x with dynamic ice sheets  
1pctCO2to4x-
withism 

Simulation with interactive ice sheet 
forced by 1% yr-1 CO2 increase to 4x 
CO2 (subsequently held constant to 
quadruple levels) 

n/a n/a 350 AOGCM-ISM spinup 1 

ism-1pctCO2to4x-
self 

Offline ISM forced by own AOGCM 
1pctCO2to4x output 

n/a n/a 350 AOGCM-ISM spinup 1 

1% yr-1 CO2 
concentration 
increase to 4 time 
CO2 

ism-1pctCO2to4x-
std 

Offline ISM forced by ISMIP6-
specified AOGCM 1pctCO2to4x 
output 

n/a n/a 350 ISM spinup 1 

Repeat of CMIP6 historical simulation with dynamic ice sheets  
historical-withism Historical simulation with interactive 

ice sheets  
1850 2014 165 AOGCM-ISM spinup 2 

ism-historical-self Offline ISM forced by own AOGCM 
historical output 

1850 2014 165 AOGCM-ISM spinup 2 

Past ~ 1.5 
centuries 

ism-historial-std Offline ISM forced by ISMIP6-
specified AOGCM historical output 

PD 2014 n/a ISM spinup 2 

Repeat of CMIP6-Endorsed ScenarioMIP simulations with dynamic ice sheets  
ssp585-withism SSP5-8.5 simulation with interactive 

ice sheet  
2015 2100 86 historical-withism 2 

ism-ssp585-self Offline ISM forced by own AOGCM 
ssp585 output 

2015 2100 86 ism-historical-self 2 

High radiative 
forcing future 
emission scenario 
(SSP5-8.5) 

ism-ssp585-std Offline ISM forced by ISMIP6-
specified AOGCM ssp585 output 

2015 2100 86 ism-historical-std 2 

ssp585-withism Extension of SSP5-8.5 simulation 
with interactive ice sheet  

2101 2300 200 ssp585-withism 3 

ism-ssp585-self Offline ISM forced by own AOGCM 
ssp585 output 

2101 2300 200 ism-ssp585-self 3 

Extension of high 
radiative forcing 
future scenario 
(SSP5-8.5ext) 

ism-ssp585-std Offline ISM forced by ISMIP6-
specified AOGCM ssp585 output 

2101 2300 200 ism-ssp585-std 3 

Last interglacial simulation based on PMIP4 simulations with standalone ice sheet only  
Last interglacial ism-lig127k-std Last interglacial simulation forced by 

lig127k and other PMIP experiments. 
135ka 115ka 20000 ISM spinup 3 

initMIP Greenland and Antarctic simulations with standalone ice sheet only  
Present-day 
control 

ism-ctrl-std Present-day control n/a n/a 100 ISM spinup 1 

Surface mass 
balance 

ism-asmb-std Surface mass balance anomaly 
prescribed 

n/a n/a 100 ISM spinup 1 

Basal melt ism-bsmb-std Basal melt anomaly under floating 
ice prescribed (Antarctica only) 

n/a n/a 100 ISM spinup 1 
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Table 3: Climate Modeling Centers that have expressed an interest in ISMIP6. *Indicates only an interest in the diagnostic 

component (no AOGCM-ISM participation anticipated).  

Climate Model Ice Sheet Model Institute/Country 
CanESM* 
CESM2 

CNRM-CM 
EC-Earth 

GISS 
INMCM 

IPSL-CM6 
MIROC-ESM 

MPI-ESM 
UKESM 

None 
CISM 

GRISLI 
GrIS 
PISM 
VUB 

GRISLI 
IcIES 
PISM 

BISICLES 

CCCma/CA 
NCAR-LANL/USA 

CNRM-CERFACS/FR 
DMI/DK 

NASA-GISS/USA 
INM/RU 
IPSL/FR 

AORI-UT-JAMSTEC-NIES/JP 
MPI/DE 

MetOffice/UK 
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Table 4: Ice sheet modeling groups that have expressed an interest in ISMIP6. 
 x Indicates planned contribution. 

Ice Sheet Model Greenland Antarctica Institute/Country 
BISICLES x  BGC/UK 

CISM x  LANL/NCAR/USA 
Elmer/Ice x x LGGE/FR 
f.ETISH x x ULB/BE 
GISM x  VUB/BE 

GRISLI x  LSCE/FR 
IcIES x x MIROC/JP 

IMAUICE x x IMAU/NL 
ISSM x x JPL/USA 
ISSM x x UCI/USA 
ISSM x  AWI/DE 

MPAS-LI  x LANL/ORNL/USA 
PennState3D  x PSU/USA 

PISM x  UAF/USA 
PISM x x ARC/NZ 
PISM x  DMI/DK 
PISM x  MPIM/DE 

SICOPOLIS x x ILTS/JP 
SICOPOLIS x x PIK/DE 

Úa  x BAS/UK 
WAVI  x BAS/UK 

 5 
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Table A1: Data in the LImon Table (Monthly Mean Land Cryosphere Fields) and/or Amon Table (Monthly Mean 

Atmospheric Fields) needed to capture the glaciated/ice sheet surface realm. These fields are saved on the atmosphere grid 

and contain monthly output. Tier indicate priority of variable: Mandatory (1), Desirable (2), Experimental (3).  These 

variables are requested for climate models participating in the diagnostic component of ISMIP6 (Table 1), and for the XXX-

withism experiments (Table 2). Flux variables are defined positive when the process adds mass or energy to the ice sheet and 5 
negative otherwise. 

Long name (netCDF) Units Standard name (CF) Tier 

Near surface air temperature (2m) K air_temperature 1 

Surface temperature K surface_temperature 1 

Snow internal temperature K temperature_in_surface_snow 2 

Temperature at the top of ice sheet model  K temperature_at_top_of_ice_sheet_model 2 

Surface mass balance flux kg m-2 s-1 land_ice_surface_specific_mass_balance_flux 2 

Snowfall flux kg m-2 s-1 snowfall_flux 1 

Rainfall flux kg m-2 s-1 rainfall_flux 2 

Surface snow and ice sublimation flux kg m-2 s-1 surface_snow_and_ice_sublimation_flux 2 

Surface snow and ice melt flux kg m-2 s-1 surface_snow_and_ice_melt_flux 2 

Surface snow melt flux kg m-2 s-1 surface_snow_melt_flux 3 

Surface ice melt flux kg m-2 s-1 land_ice_surface_melt_flux 3 

Surface snow and ice refreezing flux kg m-2 s-1 surface_snow_and_ice_refreezing_flux 3 

Land ice runoff  kg m-2 s-1 land_ice_runoff_flux 2 

Snow area fraction 1 surface_snow_area_fraction 1 

Land ice area fraction 1 land_ice_area_fraction 1 

Grounded ice sheet area fraction 1 grounded_ice_sheet_area_fraction 1 

Floating ice shelf area fraction 1 floating_ice_shelf_area_fraction 1 
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Land ice altitude m surface_altitude  1 

Net latent heat flux over land ice W m-2 surface_upward_latent_heat_flux 1 

Sensible heat flux over land ice W m-2 surface_upward_sensible_heat_flux 1 

Downwelling shortwave W m-2 surface_downwelling_shortwave_flux_in_air 1 

Upward shortwave over land ice W m-2 surface_upwelling_shortwave_flux_in_air 1 

Downwelling longwave W m-2 surface_downwelling_longwave_flux_in_air 1 

Upward longwave over land ice W m-2 surface_upwelling_longwave_flux_in_air 1 

Albedo over land ice 1 surface_albedo 2 
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Table A2: Data on the Omon Tables (Monthly Mean Ocean Fields) needed to capture the glaciated/ice sheet surface realm or 
for intercomparison of the model simulations. These fields are saved on the ocean grid and contain monthly output. Data 
preparation should follow the CMIP6-Endorsed OMIP protocol. Tier indicates priority of variable: Mandatory (1), Desirable 
(2), Experimental (3). These variables are requested for climate models participating in the diagnostic component of ISMIP6 5 
(Table 1), and for the XXX-withism experiments (Table 2). Flux variables are defined positive when the process adds mass to 
the ocean and negative otherwise. 

Long name (netCDF) Units Standard name (CF) Tier 

Global surface height above geoid m sea_surface_height_above_geoid 1 

Global average thermosteric sea-level 
change 

m global_average_thermosteric_sea_level_change 1 

Sea water potential temperature oC sea_water_potential_temperature 1 

Sea surface temperature oC sea_surface_temperature 2 

Sea water salinity Psu sea_water_salinity 1 

Water flux into sea water from iceberg  kg m-2 s-1 water_flux_into_sea_water_from_icebergs 2 

Water flux into sea water from ice sheets  kg m-2 s-1 water_flux_into_sea_water_from_land_ice 3 
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Table A3: Data on the LImonant, LImongre, LIyrant or LIyrgre Tables needed to capture the dynamical ice sheet model 
realm. These fields are saved on the ice sheet grid and contain monthly or yearly output. Tier indicate priority of variable: 
Mandatory (1), Desirable (2), Experimental (3). These variables are requested for models participating in the XXX-withism, 
ism-XXX-self and ism-XXX-std experiments (Table 2). Flux variables are defined positive when the process adds mass or 5 
energy to the ice sheet and negative otherwise.  

Long name (netCDF) Units Standard name (CF) Tier 

Ice sheet altitude  m surface_altitude 1 

Ice sheet thickness  m land_ice_thickness 1 

Bedrock altitude  m bedrock_altitude 1 

Bedrock geothermal heat flux W m-2 upward_geothermal_heat_flux_at_ground_level

_in_land_ice 

3 

Land ice calving flux kg m-2 s-1 land_ice_specific_mass_flux_due_to_calving 3 

Land ice vertical front mass balance flux kg m-2 s-1 land_ice_specific_mass_flux_due_to_calving_a

nd_ice_front_melting 

2 

Surface mass balance and its components kg m-2 s-1 see Table A1 1 

Basal mass balance of grounded ice sheet  kg m-2 s-1 land_ice_basal_specific_mass_balance_flux 2 

Basal mass balance of floating ice shelf  kg m-2 s-1 land_ice_basal_specific_mass_balance_flux 2 

X-component of land ice surface velocity m yr-1 land_ice_surface_x_velocity 1 

Y-component of land ice surface velocity m yr-1 land_ice_ surface_y_velocity 1 

Z-component of land ice surface velocity m yr-1 land_ice_ surface_upward_velocity 2 

X-component of land ice basal velocity m yr-1 land_ice_basal_x_velocity 1 

Y-component of land ice basal velocity m yr-1 land_ice_basal_y_velocity 1 

Z-component of land ice basal velocity m yr-1 land_ice_basal_upward_velocity 2 

X-component of land ice vertical mean 
velocity   

m yr-1 land_ice_vertical_mean_x_velocity 
 

2 

Y-component of land ice vertical mean 
velocity   

m yr-1 land_ice_vertical_mean_y_velocity 2 
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Land ice basal drag Pa magnitude_of_basal_drag_at_land_ice_base 3 

Surface temperature K surface_temperature 1 

Temperature at the top of ice sheet model  K temperature_at_top_of_ice_sheet_model 1 

Basal temperature of grounded ice sheet K temperature_at_base_of_ice_sheet_model 1 

Basal temperature of floating ice shelf K temperature_at_base_of_ice_sheet_model 1 

Land ice area fraction 1 land_ice_area_fraction 1 

Grounded ice area fraction 1 grounded_ice_sheet_area_fraction 1 

Floating ice sheet area fraction 1 floating_ice_sheet_area_fraction 1 

Surface snow area fraction 1 surface_snow_area_fraction 2 

Scalar outputs / Integrated measures 

Ice mass kg land_ice_mass 2 

Ice mass not displacing sea water kg land_ice_mass_not_displacing_sea_water 2 

Area covered by grounded ice m2 grounded_land_ice_area 3 

Area covered by floating ice m2 floating_ice_shelf_area 3 

Total SMB flux kg s-1 tendency_of_land_ice_mass_due_to_surface_m
ass_balance 

3 

Total BMB flux kg s-1 tendency_of_land_ice_mass_due_to_basal_mass
_balance 

3 

Total calving flux kg s-1 tendency_of_land_ice_mass_due_to_calving 3 
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Figures and Figure Captions 
 

 
Figure 1: Overview of the ISMIP6 effort designed to obtain forcing from climate models, project sea-level contributions using ice 
sheet models, and explore ice sheet-climate feedbacks.   5 
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Figure A1: Illustration of the mass change of ice sheets and key processes that are specific to ice sheet model evaluation or forcing. 
See text for details. 
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Figure A2: Illustration of key processes needed to compute atmospheric forcing for ice sheet models, and to evaluate the surface 
mass balance simulated by climate models.  

 
 5 


