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Abstract:  

Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral 

analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating 

variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy’s power 

spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This 15 

drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital 

components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in 

nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship 

between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-

harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes 20 

in amplitude and frequency. 

Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) 

captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a 

single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the 

polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means 25 

of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. 

Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a 

unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns 

reconstruct changes in accumulation rate, whereas amplitude modulation identifies eccentricity-modulated precession. The 

functioning of the time-variant sinusoidal model is illustrated and validated using a synthetic insolation signal. The new 30 

modeling approach is tested on two case studies: (1) a Plio-Pleistocene benthic δ
18

O record from ODP Site 846 and (2) a 

Danian magnetic susceptibility record from the Contessa Highway section, Gubbio, Italy.  
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1 Introduction  

Variations in solar radiation received by the Earth are caused by quasi-periodic changes in its astronomical parameters: 

precession, obliquity and eccentricity. These quasi-periodic oscillations induce climate variations, which are often recorded 

in sedimentological archives (Hinnov, 2013). The periodicities of the different orbital cycles are reasonably well constrained 

for the last 50 Ma (Berger et al., 1992; Laskar et al., 2004; 2011a, b; Westerhold et al., 2012; Waltham, 2015) and over the 5 

last 20 years, the application of astrochronology and cyclostratigraphy to numerous records throughout the Cenozoic led to 

significant improvements of the Geological Time Scale (both in precision and accuracy, Hinnov and Hilgen, 2012 in 

Gradstein et al., 2012). Moreover, the detection of an astronomical imprint in sedimentological archives sheds light on the 

relative contribution of orbital parameters to climate variability, and provides hints to which parts of the globe (tropical vs. 

high latitudes) dominantly drive global climate change.  10 

The identification and extraction of the orbital components is essential in studies applying the astronomical theory (Muller 

and MacDonald, 2000). The interpretation of those components converts distance-series into time-series. Various techniques 

for distance- and time-series analysis allow for this quantitative assessment in a sedimentological archive. Spectral analysis 

constitutes the foundation of this process (Hinnov, 2013). A broad range of spectral analysis techniques exists. A 

periodogram depicts the spectral power of a signal using discrete (Fast) Fourier Transformations (FFT). Thompson (1982) 15 

introduced the multi-taper method (MTM) to overcome some of the limitations of conventional Fourier Transformations. 

The MTM harmonic analyses are also applied on moving analysis frames (i.e. moving window approach) with the aim to 

localize principal orbital components jointly in the time and frequency domain, for example through evolutive harmonic 

analysis (Meyers et al., 2001; Pälike et al., 2006; Meyers and Hinnov, 2010). In this study the term analysis frame is 

preferred over the term (moving window) to avoid confusion with the window (or tapering) function terminology which is 20 

often encountered in signal processing too. Different astrochronologic studies rather use moving analysis frame FFT (e.g. 

Lourens and Hilgen, 1997; Martinez et al., 2012, 2015; Yao et al., 2015) or continuous wavelet transform, describing the 

signal through a scalogram – a bank of user-defined filters with time-varying non-uniform resolution (e.g. Torrence and 

Campo, 1998; De Vleeschouwer et al., 2014).  

The aforementioned methods and most other commonly used in cyclostratigraphy are non-parametric in nature, which 25 

means that no assumption about the origin of the data is taken into account. Accordingly, they cannot ensure unique 

instantaneous amplitude-frequency description of a signal (Boashash, 1992) and therefore can hamper a correct 

interpretation of a proxy series, as discussed for example in Meyers et al. (2001) or Laurin et al. (2016). Hiatuses, noise and 

changes in sedimentation rate are additional sources of uncertainty (e.g. Meyers and Sagemann, 2004; Meyers et al., 2008). 

Recently, a parametric method a.k.a. TimeOpt model has been introduced (Meyers, 2015) that combines band-pass 30 

filtering, the Hilbert transform and specific signal modeling to describe the precession-band envelope from stratigraphic 

data. The signal model consists of a set of sinusoids with constant amplitudes plus noise. The model parameter (amplitudes) 

estimates are obtained by linear least-squares regression across a fine grid of sedimentation rates and the one providing the 
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largest goodness-of-fit is retained. A constraint of this approach is related to the assumption that sedimentation rate is 

constant within the analysis frame – stratigraphic interval analyzed. For certain cases this might be approximately true; in a 

more general scenario, however, such an assumption will give rise to model-data mismatch. 

This study circumvents this drawback by using a polynomial modeling approach to estimate and extract instantaneous 

amplitude and frequency in orbital components. The approach has been proven useful to characterize audio signals (music 5 

and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010; 2012). Paleoclimate proxy signals and 

audio signals share similar dynamics; the only difference is the frequency relationship between the signal components. A 

harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. By 

dropping the harmonicity constraint in the model for audio signals, a proxy signal is conceived as a collection of non-

harmonic sinusoids whose instantaneous amplitude and frequency vary over the record. Those variations are captured by 10 

polynomials whose coefficients describe the relationship between varying amplitude and frequency of the sinusoids in an 

analysis frame. The main benefit of this approach is that short-term variations in sedimentation rate can be captured by the 

proposed method, as the signal model allows for instantaneous frequency change in the analysis frame. Moreover, for each 

data sample the sedimentation rate can be estimated leading to the concept of instantaneous sedimentation rate. The signal 

model identification (parameter estimation) boils down to solving a system of linear equations. Additionally, a measure for 15 

the uncertainty of the model estimates is given by means of Monte Carlo simulations. 

After introducing the reader to the ACE v.1 model, distance-series analysis on a modified insolation data for the last six 

million years as modeled by Laskar et al. (2004) is carried out. Thereafter, a first case-study using an un-tuned Pliocene-

Pleistocene benthic oxygen isotope (δ
18

O) record from ODP Site 846 (Mix et al., 1995; Shackleton et al., 1995) is tested. A 

second case-study deals with a Danian magnetic susceptibility record from the pelagic carbonate Contessa Highway section 20 

in Gubbio, Italy (Sinnesael et al., 2016). 

 

 

2 Methods 

2.1 Extraction of orbital waveforms 25 

Let’s consider a geologic succession that is sampled uniformly in the spatial domain at depths z1, z2 … with z0 being the 

sampling interval. In an N-point measurement analysis frame the stratigraphic record y(zn) can be represented analytically as 

a sum of K sinusoids - principal astronomical forcing components sk(zn) embedded in the stratigraphic data - plus stochastic 

perturbation e(zn): 

 30 

𝑦(𝑧𝑛) = ∑ 𝑠𝑘(𝑧𝑛) + 𝑒(𝑧𝑛)𝐾
𝑘=1    (1) 
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The components responsible for astronomically forced insolation are Earth’s orbital eccentricity, obliquity and precession 

whilst the perturbation accounts for climatic and stratigraphic noise (e.g. Meyers et al., 2008). The sinusoids sk(zn) are 

typically non-stationary, exhibiting some variations in the instantaneous amplitude and phase within the analysis frame: 

 

𝑦(𝑧𝑛) = ∑ 𝐴𝑘(𝑧𝑛)𝑐𝑜𝑠[2𝜋𝑓𝑘𝑧𝑛 + 𝜙𝑘(𝑧𝑛)]𝐾
𝑘=1 + 𝑒(𝑧𝑛)   (2) 5 

 

where fk are the average spatial frequencies in cycle m
-1

. The instantaneous amplitude (envelope) Ak(zn) originates in the solar 

system dynamics. The instantaneous phase has two components: i) the linear phase term 2𝜋𝑓𝑘𝑧𝑛 determined by the 

corresponding orbital cycle, and ii) phase fluctuation term 𝜙𝑘(𝑧𝑛), chiefly due to climate-sensitive sedimentation. The goal 

is to estimate sk(zn), k = 1…K from the noisy record y(zn). 10 

Strictly speaking, the model as described in (2) cannot be solved because more parameters are present (unknowns, i.e. 

Ak(zn)  and 𝜙𝑘(𝑧𝑛)) than there are measurement points: assuming the frequencies fk a priori known, there are 2KN parameters 

for N measurements. Although this constraint is too restrictive for the purpose of the present study, it turns out that it can be 

relaxed by using a concept formalized in the following assumption: 

 15 

Assumption 1: In absence of unconformities, Ak(z) and 𝜙𝑘(𝑧) are differentiable functions of z throughout the record. 

 

Differentiability implies continuity and this holds true for records generated by the time-continuous forcing and deposition 

patterns in undisturbed areas. The principal advantage of this assumption is that (2) can be reformulated such to make the 

signal model identifiable. By using the identity cos(γ + δ) = cos γ cos δ – sin γ sin δ, (2) can be rewritten as follows: 20 

 

𝑦(𝑧𝑛) = ∑ 𝑎𝑘(𝑧𝑛)𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧𝑛) +𝐾
𝑘=1  𝑏𝑘(𝑧𝑛)𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧𝑛) + 𝑒(𝑧𝑛)   (3) 

 

with 

 25 

𝑎𝑘(𝑧𝑛) = −𝐴𝑘(𝑧𝑛)𝑠𝑖𝑛(𝜙𝑘(𝑧𝑛))   (4) 

 

𝑏𝑘(𝑧𝑛) = 𝐴𝑘(𝑧𝑛)𝑐𝑜𝑠(𝜙𝑘(𝑧𝑛))   (5) 

 

Although (2) and (3) – (5) are formally identical, they describe the dynamics of the orbital components in a very different 30 

way. The model (2) is highly nonlinear in the sense that the cosine is non-stationary in both amplitude and frequency. The 

model (3) – (5), however, is non-stationary only in amplitude (i.e. ak(zn) and bk(zn)), with linear argument in the sine and 
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cosine terms. According to Assumption 1 ak(z) and bk(z) are continuous functions in z. Accordingly, they can be 

approximated by spatial polynomials of order P evaluated at zn: 

 

𝛼𝑘(𝑧𝑛) = 𝑎𝑘,0 + 𝑎𝑘,1𝑧𝑛 + ⋯ + 𝑎𝑘,𝑃𝑧𝑛
𝑃 ≈ 𝑎𝑘(𝑧𝑛)   (6) 

 5 

𝛽𝑘(𝑧𝑛) = 𝑏𝑘,0 + 𝑏𝑘,1𝑧𝑛 + ⋯ + 𝑏𝑘,𝑃𝑧𝑛
𝑃 ≈ 𝑏𝑘(𝑧𝑛)   (7) 

 

The “approximately equal” symbol in the last expressions accounts for possible errors in the polynomial approximation – 

modeling errors. By inserting (6) – (7) into (3) the following equation is obtained: 

 10 

𝑦(𝑧𝑛) = ∑ (𝑎𝑘,0 + ⋯ + 𝑎𝑘,𝑃𝑧𝑛
𝑃  )𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧𝑛) +𝐾

𝑘=1 (𝑏𝑘,0 + ⋯ + 𝑏𝑘,𝑃𝑧𝑛
𝑃)𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧𝑛) + 𝜀(𝑧𝑛)   (8) 

 

According to the last expression, orbital components can be modeled as a stationary sine-cosine fk – basis modulated by 

polynomials. The benefits of such a model for analyzing stratigraphic data are: 

 15 

1) Both instantaneous amplitude and frequency are simultaneously and compactly characterized by a small number of 

polynomial coefficients. 

 

2) The number of parameters to estimate is 2K(P+1), which can be kept smaller than N by either increasing the number of 

measurements or reducing the number of components to be estimated. 20 

 

3) The model is linear-in-parameters and can easily be estimated by means of the linear least-squares procedure, outlined in 

the Appendix to this paper. 

 

Once the model parameters (polynomial coefficients in (8)) are estimated, the orbital component waveforms can be extracted 25 

from the stratigraphic data in the following way: 

 

𝑠̂(𝑧𝑛) = ∑ (𝑎̂𝑘,0 + ⋯ + 𝑎̂𝑘,𝑃𝑧𝑛
𝑃  )𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧𝑛) +𝐾

𝑘=1 (𝑏̂𝑘,0 + ⋯ + 𝑏̂𝑘,𝑃𝑧𝑛
𝑃)𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧𝑛)    (9) 

 

where the symbol ‘^’ stands for estimate. The principal blocks of the present algorithm are shown in Figure 1. 30 

 

2.2 Sedimentation rate estimation and time axis tuning 
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Once the estimate of the instantaneous frequency is provided, the sedimentation rate is obtained in a straightforward manner. 

In what follows, a two-step algorithm is described based on the concept of amplitude-phase decomposition in non-stationary 

signals (Picinbono, 1997). 

 

2.2.1 Step 1 – Instantaneous phase estimation 5 

By combining (3) – (5) we obtain:  

 

𝐴𝑘(𝑧𝑛) = √𝑎𝑘
2(𝑧𝑛) + 𝑏𝑘

2(𝑧𝑛)   (10) 

 

𝜙𝑘(𝑧𝑛) = −𝑎𝑡𝑎𝑛 (
𝑎𝑘(𝑧𝑛)

𝑏𝑘(𝑧𝑛)
) , 𝑘 = 1 ⋯ 𝐾   (11) 10 

 

The former (Ak(z)) is the true instantaneous amplitude whilst the latter 𝜙𝑘(𝑧𝑛) is the true instantaneous phase fluctuation of 

the orbital components. The estimated instantaneous phase is readily obtained by means of the previously estimated signal 

model: 

 15 

𝜙̂𝑘(𝑧𝑛) = − 𝑎𝑡𝑎𝑛 (
𝛼̂𝑘(𝑧𝑛)

𝛽̂𝑘(𝑧𝑛)
) , 𝑘 = 1 ⋯ 𝐾   (12) 

 

2.2.2 Step 2 – Instantaneous frequency estimation 

By definition, the instantaneous frequency is the time derivative of the instantaneous phase (Cohen, 1995): 

 20 

𝑓𝑘(𝑧𝑛) = 𝑓𝑘 +
1

2𝜋

𝑑𝜙̂𝑘(𝑧)

𝑑𝑧
|

𝑧=𝑧𝑛

= 𝑓𝑘 +
𝑑𝛼̂𝑘(𝑧)

𝑑𝑧
𝛽̂𝑘(𝑧)−

𝑑𝛽̂𝑘(𝑧)

𝑑𝑧
𝛼̂𝑘(𝑧)

𝐴𝑘
2(𝑧)

|

𝑧=𝑧𝑛

, 𝑘 = 1 ⋯ 𝐾   (13) 

 

Assuming that the sinusoids in the stratigraphic signal model are correctly associated to the astronomical forcing 

components, the sedimentation rate 𝑟𝑘(𝑧𝑛) can be estimated for each component: 

 25 

𝑟𝑘(𝑧𝑛) =
𝐹𝑘(𝑘𝑦𝑟−1)

𝑓̂𝑘(𝑐𝑚−1)
  , 𝑘 = 1 ⋯ 𝐾   (14) 

 

with 𝐹𝑘(𝑘𝑦𝑟−1) being the known nominal astronomical forcing temporal frequencies. The mean sedimentation rate is 

obtained by averaging 𝑟𝑘(𝑧𝑛) over k: 

 30 
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𝑟(𝑧𝑛) =
1

𝐾
∑ 𝑟𝑘(𝑧𝑛)𝐾

𝑘=1    (15) 

 

Recalling the definition of sedimentation rate: 

 

𝑟(𝑧) =
𝑑𝑧

𝑑𝑡
   (16) 5 

 

the spatial-temporal conversion is carried out by reformulating (16) as a function of space and then integrating it over space. 

Finally, the integrals are approximated by means of partial sums: 

 

𝑡𝑛 = ∫
𝑑𝑧

𝑟(𝑧)
≈ 𝑧0 ∑ (𝑟(𝑧𝑗))

−1
𝑛
𝑗=1

𝑧

0
, 𝑛 = 1 ⋯ 𝑁   (17) 10 

 

The last expression gives the time points that mitigate the distortion of the spatial axis due to varying sedimentation rate. 

 

2.3 Practical considerations 

In the present section, the choice of analysis parameters involved with stratigraphic signal model estimation is discussed. 15 

 

2.3.1 Size of the analysis frame - N 

This data-dependent issue is dealt with in numerous areas of signal processing and, to the best of our knowledge, there is no 

analytical solution. Most approaches are heuristic; however, they are usually quite effective as long as there is some a priori 

knowledge about the problem at hand. Depending on the data record, a larger or shorter frame size might be appropriate but 20 

no frame size is adequate for all data. 

Basically, two constraints must be considered when choosing the number of measurement points for analysis. The lower 

bound on N is settled by the frequency resolution (i.e. 
𝑧0

𝑁
) needed either to resolve closely spaced sinusoidal components (e.g. 

the different precession components) or to capture at least one period of the slowest signal component e.g. long-term 

eccentricity (i.e. Rayleigh frequency). This piece of information is usually available beforehand.  25 

The upper bound on N depends on the speed of fluctuations of the instantaneous amplitude and frequency along the 

record. Excepting for some special cases, this is something that we do not know a priori. Accordingly, a reasonable decision 

is to restrict the choice of N to the lower bound. 
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2.3.2 Selection of the components frequencies - fk 

According to (2) fk are defined as the mean sinusoidal frequencies in the analysis frame i.e. the instantaneous frequency 

fluctuates around fk. In other words, an orbital component behaves as a narrow-band signal whose bandwidth is much smaller 

than the Nyquist frequency and most of the spectral energy is clustered around fk. Assuming that the range of the overall 

frequency variation is known for a given orbital component – which is user defined in the present approach –the mean 5 

frequency is associated with the strongest peak in the FFT of the signal in the frame. Although such a simple FFT-based 

peak-picking algorithm approach might introduce certain bias in the fk estimate, it is readily compensated by the flexibility of 

the proposed signal model (Fernando et al., 2004). 

 

2.3.3 Degree of polynomials - P 10 

This parameter is responsible for capturing variations in the terms  𝐴𝑘(𝑧𝑛)𝑠𝑖𝑛(𝜙𝑘(𝑧𝑛)) and 𝐴𝑘(𝑧𝑛)𝑐𝑜𝑠(𝜙𝑘(𝑧𝑛)) in (4) and 

(5) respectively. For certain proxy records (up to approximately 50 Ma back in time) variations in the instantaneous 

amplitude might be inferred from the theoretical model of an orbital component (e.g. numerical models of Laskar et al., 

2004; 2011a). However, the instantaneous phase fluctuations are in general unknown beforehand – at best the total 

bandwidth of an orbital component might be known (Laurin et al., 2016). Accordingly, there is not an analytical way to 15 

determine P and once again it is necessary to resort to heuristics.  

What is known is that the relationship N – P is not arbitrary; broadly speaking, there is a direct dependence in the sense 

that larger N requires larger P and vice versa (McAulay and Quatieri, 1986). The reason is that smaller N imposes a quasi-

stationarity constraint on the signal – an orbital component behaves almost as a stationary sinusoid with only slightly 

changing instantaneous amplitude and frequency. In accordance, first order polynomial approximation P = 1 is usually 20 

enough to properly address the modeling requirements in (9). Larger N implies possibly stronger variations of the underlying 

sinusoids – the quasi-stationarity assumption has to be dropped and thus larger P is needed. Bearing in mind the 

aforementioned discussion on the size of analysis frame, P ∊ [1 – 3] is a reasonable choice for most proxy signals. 

 

2.4 Uncertainty Analysis 25 

Providing reliable uncertainty bounds in this estimation approach is challenging. Our model is obtained by a weighted 

least squares procedure, resulting at the same time in the estimated parameter values and an estimate of the covariance 

matrix. However, the covariance matrix is only valid if i) there are no model errors, ii) there is no exogenous noise in the 

system that is also passing through a nonlinear operation. Both elements are shortly discussed below. 

Model errors: It is hard to avoid model errors on geological data. These model errors come from the polynomial 30 

approximations (6) – (7). Accordingly, larger uncertainties (in this study expressed as standard deviations) are due to a low 

signal-to-noise ratio and/or fast instantaneous amplitude/frequency changes in the analysis frame. It turns out that model 
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errors will increase the uncertainty on the estimates. There are two reasons for that: the model errors will increase the level 

of the residuals, and the residuals are no longer independent of the input (actually, they are uncorrelated). 

Noise passing through the nonlinearity: If the disturbing noise is passing through the nonlinearity, the observed noise 

disturbances at the output of the system are no longer independent of the input. In that case all the classical methods to 

generate uncertainty bounds fail because these assume explicitly that the disturbing noise is independent of the input. In that 5 

case alternatives need to be developed to provide reliable uncertainty bounds, but to the best knowledge of the authors, such 

methods are not available yet. For that reason, the covariance matrix obtained from the estimation can be used as a first 

indication, but it should be used with care. 

To provide a measure of uncertainty in this study we use Monte Carlo simulations (using the covariance matrix) on the 

instantaneous frequency and sedimentation rate estimates. This was done through following steps. Primary, it is assumed that 10 

the model parameters (polynomial coefficients) are normally distributed correlated random variables characterized by a 

2K(P+1) multivariate normal distribution. 

 

1) Together with the model parameter estimates θ̂ in an analysis frame (A.5), the MATLAB ® least-squares routine 

“lscov” also returns the 2K(P+1) × 2K(P+1) symmetric positive semi-definite covariance matrix S. This matrix 15 

contains the parameter variances on its diagonal; the rest of the elements are parameter covariance’s which account 

on the correlation between the parameters. 

2) By means of the MATLAB ® routine “normrnd” a set of random parameters entries were generated by sampling the 

multivariate normal distribution characterized by θ̂ and S. 

3) With these entries the procedure (10) – (15) was carried out and the instantaneous frequency and sedimentation rate 20 

estimates in the analysis frame were obtained. 

4) Steps 1) – 3) were run for all the analysis frames along the data record and the estimates were recombined by means 

of the overlap-add strategy. 

5) Steps 1) – 4) were run 100 times and the depth-variant standard deviations on the instantaneous frequency and 

sedimentation rate were obtained. The figures in this manuscript and the provided MATLAB ® routines in the 25 

supplementary materials report by default one standard deviation (1σ). 

 

The outcome of this process provides a hint on the size of the estimate uncertainties and equally on the spatial distribution of 

the uncertainty. As explained above, attention has to be payed to the absolute size of the uncertainties. Intervals in the 

analyzed record where the estimations are less reliable will be visible as peaks in the uncertainties, which is valuable 30 

information for interpreting and comparing the results of the analysis as a whole. Also the loss in power of an orbital period 

compared to the noise level causes peaks in uncertainty. This is because the ACE v.1 model always estimates a signal in 

every analysis frame, even though the power of a signal does not stand out of the noise level.  
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3 Results and Discussion  

3.1 Synthetic insolation signal  

To illustrate the proposed ACE v.1 model, a case-study is presented on a modified insolation signal. As we are dealing with 

a synthetic case-study aiming to introduce the mechanisms of the ACE v.1 model, we do not yet implement the uncertainty 5 

analysis. The basis of the analyzed signal is the classical 65° N summer (21 June) insolation curve (Milankovitch, 1941) for 

the last six million years, as modeled by Laskar et al. (2004) (Figure 2A). The periodogram shows the different obliquity and 

precession related frequencies, which are the components determining the changes in insolation (Figure 2B). Subsequently 

white and red noise are added to the original signal and made the conversion from the time domain towards the distance 

domain mimicking a changing sedimentation rate (SR) (Figure 1C). The white noise is normally distributed (Gaussian) with 10 

the standard deviation providing the signal-to-noise ratio of 0.09. The red noise is generated as a first-order autoregressive 

process with the correlation factor equal to 0.999 giving rise to the signal-to-noise ratio of 0.003. To mimic a changing 

sedimentation rate, the time-series is converted into distance-series. The original time-series has one sample per one 

thousand years. Initially, a constant SR of 2 cm kyr
--1

 is assumed to make a first conversion to the depth domain. The 

artificial changing SR is constructed by using the second degree polynomial shown in Fig. 2H-I. In practice, the input signal 15 

is interpolated, which increases the sampling rate much above the Nyquist frequency; next, the signal is resampled over the 

grid established by the SR. 

The periodogram of the detrended signal is given in Figure 2D, while its spectrogram is depicted in Figure 2E. The level 

of white noise in combination with the changing SR has made the identification of the main ~41 kyr obliquity (~1.2 cycle m
-

1
) peak less obvious. The precession-related frequencies (~2-2.8 cycle m

-1
) are still clearly present; however the merging of 20 

the ~22 and ~24 kyr periods into a single ~23 kyr precession component and the resulting amplitude modulation must be 

noticed (Figure 2E). The high-power peak around the 0.2 cycle m
-1 

frequency is the result of the introduced red noise.  

With the user’s a priori knowledge, certain frequencies ranges – bandwidths – in the distance domain are interpreted as to 

correspond with the astronomical frequencies of obliquity and precession: ~41 kyr obliquity [0.62 – 1.38] cycle m
-1

, ~22 and 

24 kyr precession [1.49 – 2.35] cycle m
-1

 and ~19 kyr precession [1.75 – 2.75] cycle m
-1

. It must be pointed out that the 25 

model does not deal with the identification of the (orbital) components but that the components waveforms are simulated. 

The orbital component identification remains with the operator. In this particular case, the precession bandwidths overlap as 

a consequence of the distortion introduced by the artificial SR. As the characterization of this specific distortion is known, 

this overlap can be dealt with by letting the bandwidths evolve along the record in function of the defined polynomial related 

to the SR change. However, in case a similar argumentation cannot be ensured for a case-study, the use of the model in its 30 

current form is not recommended. 

Providing these frequency ranges for this case-study and a frame size of 5 m the model estimates the three given 

components (Figure 2F). As described in previous chapter, the choice of the frame size is a heuristic trade-off between: (1) 
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have at least some periods of your lowest frequency component in one frame and (2) be long enough to be able to separate 

closely spaced components. In this case, the obliquity period of 41 kyr [~1.15 cycle m
-1

] is considered as the lowest 

frequency to be taken into account. The aim is not to separate the ~22 and ~24 kyr precession components, but distinguish 

the merged ~23 and the single ~19 kyr periods.  

From the modeled waveforms, the estimated instantaneous frequencies are extracted (Figure 2G). To avoid potential 5 

discontinuities at the frame edges, the well-known overlap-add method is used (e.g. Verhelst, 2000). Essentially, overlapping 

data are summed and afterwards normalized again by a given weight, which is a function of the number of frame overlaps 

for a data point. 

Using the a priori knowledge, the frequencies can be converted into SR estimates (Figure 2H). Taking the average SR of 

all three modeled components (Figure 2I), the distance series can be transposed into a time-series. The periodogram of the 10 

new time-series still contains traces of the white and red noise but is much cleaner than the modified insolation signal 

(Figure 2J).  

In summary, it is the user who needs to identify and provide a bandwidth for each component that is to be modeled and the 

size of the analysis frame. The selected bandwidths are typically based on other available geological constraints, like bio- or 

magnetostratigraphy. This artificial case-study illustrates the good performance of the model in estimating components, 15 

extracting the instantaneous frequencies and making a successful conversion towards the time domain. This conversion has 

been done autonomously by the algorithm for given frequencies that have to be traced. No band-pass-filtering or tuning to 

another form of model has been used. Here, the test started from a time-series of insolation with very well constrained orbital 

components. The following two case-studies deal with real geological case-studies.  

 20 

3.2 ODP 846 benthic δ
18

O record 

The stratigraphy and chronology of the Plio-Pleistocene has benefited largely from benthic oxygen isotope records and its 

stacks (Lisiecki and Raymo, 2005; Huybers, 2007; Hilgen et al., 2012 in Gradstein et al., 2012). One of the longest and most 

detailed records of this sort comes from Ocean Drilling Program (ODP) Site 846 from the tropical Pacific Ocean (3°06’S, 

90°49’W; Mix et al., 1995; Shackleton et al., 1995). The length of the core is ~206 m, spanning the last 5.3 Ma and is 25 

sampled for benthic δ
18

O with an average resolution of 10 cm (~2.5 kyr; Mix et al., 1995; Shackleton et al., 1995). Spectral 

analysis has identified strong ~100 kyr and ~41 kyr periodicities. While the origin of the 100 kyr cycle in the Pleistocene 

glacial is subject of debate (Imbrie et al., 1993; Muller and MacDonald, 1997; Lisiecki, 2010), the 41 kyr periodicity can be 

attributed to obliquity. Other studies on ODP 846 alkenone-derived sea surface temperatures have shed light on the relative 

importance of obliquity and precession (high and low latitude) on the climatology of the tropical ocean system (Liu et al., 30 

2004; Cleaveland and Herbert, 2007; Herbert et al., 2010). The ODP 846 benthic δ
18

O record is used in the reference LR04 

Pliocene-Pleistocene benthic stack (Lisiecki and Raymo, 2005). 
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This record is selected for a case-study as it is well studied and has an astronomically calibrated age model (LR04), which 

allows for the evaluation of the proposed approach. The raw data is the benthic δ
18

O depth series (Figure 3A). After 

detrending, the peridiogram and spectrogram reveal elevated spectral power around ~0.3 and ~0.6 cycle m
-1

 (Figure 3B, 3C). 

Using the a priori knowledge of the core, the first dominant frequency is identified as corresponding with a 100 kyr 

periodicity, while the ~0.6 cycle m
-1

 corresponds with the 41 kyr obliquity. Figure 3D shows the spectrogram of the two 5 

modeled components. Following a similar reasoning as in the previous case-study, an analysis frame size of 10 m is utilized. 

Using the instantaneous frequency estimates (Figure 3E), the corresponding evolution of the sedimentation rate can be 

estimated (Figure 3F). As the origin of the 100 kyr cycle is debatable (Imbrie et al., 1993; Muller and MacDonald, 1997; 

Lisiecki, 2010), the 41 kyr derived sedimentation rate is selected and compared with the SR as derived from the LR04 age 

model for the ODP 846 core (Figure 3I). To do so, the stratigraphic levels are subtracted of subsequent samples and divided 10 

by their age (LR04) difference (Figure3I). This simple operation results in abrupt changes in sedimentation rate which 

cannot be captured by the ACE v.1 model approach. These abrupt changes originate from the principle that the LR04 age 

model is based on a stack, which enhances the signal-to-noise ratio compared to an analysis on a single core. Moreover, it is 

tuned to an ice model that is driven by the 21 June insolation at 65°N. Therefore, in this study a 500-point running average is 

taken to smooth the results (Figure 3I). Only the long term averaged trends are captured by our ACE v.1 estimation approach 15 

and not the fine-scaled sedimentation rates of the original LR04 age model. This is because: (i) the ACE v.1 model in its 

current form cannot deal with fast changes in sedimentation rate (ii) the signal-to-noise-ratio of the stacked LR04 age model 

is superior to the ratio of a single record and (iii) no other a priori information as that the obliquity band should be in a 

certain frequency range is used in the ACE v.1 analysis, contrary to the LR04 age model where other geological constraints 

are included. In the described approach, a frequency range is selected, which with the user’s a priori knowledge could be 20 

associated with the 41 kyr obliquity [0.47 – 0.71] cycle m
-1

 and let the algorithms extract its waveform. The corresponding 

age model is then created by using the estimated instantaneous frequency changes and the association with the 41-kyr 

obliquity period.  

Except for a small difference between 60-90 m the match between the results of the ACE v.1 model and the averaged 

LR04 age model is close. Remarkably, the interval has a pronounced elevated uncertainty on its estimation (Figures 3G and 25 

3H). The origin of the mismatch is the lower signal amplitude in this interval. Note the elevated signal amplitude around 70-

80 m around the frequency of 0.5 cycle m
-1

 whereas the 41-kyr component is mainly around the 0.6 cycle m
-1 

(Figure 3C).
 

This feature makes that the ACE v.1 model suggests a small drop in sedimentation rate between 70-80 m (Fig. 3I), whereas 

the LR04 age model suggests a gradual rise in sedimentation rate in this interval. This mismatch could be reduced by 

increasing the lower boundary of the selected frequency range for the obliquity component estimation. A similar feature on a 30 

smaller scale is detectable around level 40-50 m (Figure 3G). Between 140 m and the bottom of the core, there is low power 

in the 41-kyr frequency range. However, in contrast to the 60-90m interval, there are no neighboring (in the frequency 

domain) elevated signal amplitudes. The loss of power in this frequency range at this position translates in an elevation of 

the uncertainty on the estimations for this interval (Figures 3G and 3H). In general, the comparison between the ACE v.1 
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modeled sedimentation rates and LR04 sedimentation rates yield satisfactory results, as stratigraphic intervals where a 

mismatch exists are red-flagged by increased uncertainty on the ACE v.1 model. The sign of the mismatch in sedimentation 

rates is not consistent throughout the core, which means that over- and underestimates of sedimentation rates cancel each 

other out. In this particular case study, there seems to be an overestimation in total duration (compared to the LR04 age 

model) of ~5 %, which is significant but not so bad, considering that we simply used the tracking of the obliquity related 5 

frequency. The periodogram of the tuned record, based on the 41 kyr derived SR, reveals a much cleaner signal (Figure 3J). 

Using the comparison between the SR derived in this novel approach and deduced from the LR04 age model for the ODP 

846 record (Figure 3I), the conclusion is that again the algorithm performs well in capturing the main averaged trend. 

 

3.3 Danian magnetic susceptibility record 10 

This second case-study is related to a Danian magnetic susceptibility (MS) record from the pelagic carbonate Contessa 

Highway section, Gubbio, Italy. The Gubbio sections are well-known for its pioneering studies including planktonic 

biostratigraphy (Luterbacher and Premoli Silva, 1964), magnetostratigraphy (Arthur and Fischer, 1977) and the Cretaceous-

Palaeogene boundary (Alvarez et al., 1980). The MS record consists of a total of 1049 samples with a sample spacing of 1 

cm for the lower half of the record and a sample spacing of 2 cm for the upper half (Sinnesael et al., 2016). The total length 15 

is 14 m and includes a large portion of the Danian including magnetochrons C29r (Paleogene part) to the top of C27n 

(Lowrie at al., 1982, Coccioni et al., 2012a, b). Sinnesael et al. (2016) presented a cyclostratigrahic framework for this 

section, reporting the orbital imprint in this dataset. 

Before the actual analysis, anomalous peaks in MS which are typically related to volcanic ashes (Figure 4A) are removed. 

Also, the first 1.3 m of the record was excluded from analysis because the MS record is heavily disrupted by the Dan-C2 20 

hyperthermal event (Coccioni et al., 2010). The periodogram of the detrended signal shows elevated power at frequencies of 

2.3 and 6.0 cycle m
-1 

(Figure 4B). With a sedimentation rate estimate derived from bio- and magnetostratigraphic constraints 

from the Danian in Gubbio  of 4 m Myr
-1 

(Coccioni et al., 2012b), these frequencies respectively correspond with the periods 

of short eccentricity and obliquity. Because of tidal dissipation, the periodicity of obliquity cycles during the Danian was 

shorter than today’s ~41 kyr value. Here, a duration of 39.6 kyr per obliquity cycle is used as calculated by Berger et al. 25 

(1992). Accordingly, three frequency ranges are traced, which respectively seem to correspond with an orbital period: short 

eccentricity [1.78 – 2.57] cycle m
-1

, obliquity [5.13 – 6.58] cycle m
-1 

and precession [8.98 – 10.98] cycle m
-1

 (Figure 4D, 

4E). Except for two intervals (102-104 m and 108-110 m), the precessional component does not exceed the noise level 

(Figure 4C). Nevertheless, SR is derived using all three astronomical components, all showing a similar pattern of a more or 

less stable SR around 4.4 m Myr
-1

 in the lower part of the section. From 111 m till the end of the section at 114 m, a 30 

transition towards higher SR (4.9 m Myr
-1

) occurs. Notice an increase in uncertainty at this transition (Figures 4G and H). 

The final uncertainties on the SR in this case-study (one standard deviation) stay however very small, several orders of 

magnitudes smaller than in the ODP846 case-study. The sedimentation rate estimate that is based on precession shows a 
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somewhat deviating pattern between 104-108 m, corresponding to the interval where this component only has a minor 

imprint (Figure 4C and E). The average SR is used to transform the distance-series into a time-series. The periodogram of 

the tuned time-series shows a clear obliquity peak and elevated power in the range of the 100 kyr eccentricity (Figure IG). 

Interestingly, the largest peak of the new spectrum is close to 405-kyr eccentricity period. Moreover, the lower frequency 

domain of the spectrum contains fewer peaks that are unrelated to astronomical forcing. Frequencies in the domain of the 5 

precession stay hardly distinguishable from the noise levels. 

In the original publication, Sinnesael et al. (2016) used a band-pass filter to extract the long eccentricity component, 

assuming a constant average sedimentation rate of 4.3 m Myr
-1

. Subsequently, this filtered signal was used to tune the record 

to the eccentricity solution (Laskar et al., 2011a). The results reported in this study are thus in agreement with the original 

interpretation for the part of the section before the jump in SR towards a value of ~ 4.9 m Myr
-1 

(Figure 4J). However, this 10 

slight increase in SR was not reported by Sinnesael et al. (2016). Interestingly, a similar increase in sedimentation rate has 

been described in a cyclostratigraphical study of a nearby coeval section in the Bottaccione Gorge, also in Gubbio, Italy 

(Galeotti et al., 2015). Galeotti et al. (2015) attribute this change to the recovery of the carbonate productivity, which had 

dropped after the Cretaceous-Boundary boundary (K-PgB) environmental changes. Differently, Galeotti et al. (2015) obtain 

SR lower than 4 m Myr
-1

 (up to 2 m Myr
-1

) for the interval between 1 and 4 m above the K-PgB (Figure 4J). The first 1.3 m 15 

of the Danian was not taken into account in the analysis on the Contessa section, because of the perturbation of the DAN-C2 

event on the MS signal. However, for the overlapping stratigraphic levels, using this new modeling approach, there are no 

indications for such a significant drop in SR. Also, Sinnesael et al. (2016) do not observe a drop in SR in this stratigraphic 

interval. The possible presence of slump structures in the stratigraphic interval above 3-4 m above the K-PgB in the 

Bottaccione section could be an explanation for this different interpretation. 20 

The constraint of the use constant band-pass filter ranges for a (sub-) record disappears with the ACE v.1 modelling 

approach. This reduces the risk of missing potential delicate changes in SR as for example the small increase towards the end 

of this particular section.  

 

 25 

4 Conclusions and Prospects 

 

This study introduces a new approach to time-series analysis in the field of cyclostratigraphy. The main focus is on the 

estimation of already identified components in a signal. The identification (or detection) of the components is based on the a 

priori knowledge of the user, given available geological constraints. Those components are given a frequency-range, which 30 

is determined by the user and can correspond with astronomical periods of for example eccentricity, precession and 

obliquity. Once this first step has been taken, the selected components are simulated by making use of a model that is not 

based on FFT-derived methods, bandpass filtering or other commonly used methods in cyclostratigraphy but one that relies 
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on polynomial modeling. Basic uncertainty analysis is provided too in order to be able to assess the size and distribution of 

the model estimate uncertainties. 

The ACE v.1 model in its current version should be used under following constraints: (1) significant sinusoidal-like 

variations can be detected and identified in a proxy record, (2) the frequency ranges of the components cannot overlap for a 

given analysis, (3) the user makes an appropriate tradeoff between the analysis frame size and the degree of the used 5 

polynomials and (4) no fast changes in sedimentation rate can be detected. 

The first case-study on a controlled modified insolation signal documents the ability of this proposed new approach to 

successfully model components of a signal. Furthermore, it shows that the estimated instantaneous frequencies derived from 

the modeling can easily be converted to sedimentation rates which can be used to convert distance-series into time-series. A 

more robust result is obtained by taking the average sedimentation rate of the different estimated components. New spectral 10 

analysis shows strongly reduced levels of both white and red noise.  

Also the second case-study concerning the benthic δ
18

O record of ODP Site 846 illustrated key features of the proposed 

ACE v.1 model. The tracking of the obliquity component is successful and the derived sedimentation rates on the basis of 

this modeled component are in close agreement with the average age model for ODP846 as constructed by LR04. However, 

only the long term averaged trends are captured and not the fine-scaled sedimentation rates of the original LR04 age model. 15 

This is because: (a) the ACE v.1 model in its current form cannot deal with fast changes in sedimentation rate (b) the signal-

to-noise-ratio of the LR04 is superior to the ratio of a single record and (c) no other a priori information coming from other 

geological constraints is included as that the obliquity band should be in a certain frequency range. Moreover, the practical 

use of the uncertainty analysis on the size and distribution of the model estimates is well exemplified. This case-study 

illustrates too that the suggested approach is an additional instrument in time-series analysis to automatically extract 20 

waveforms and derive time. As such one can exclude the human influence in the tuning process (often heuristically 

determining relative minima and maxima in a proxy record). However, the verification with available geological constraints 

remains essential in the validation of the model.  

The third case-study dealt with a Danian magnetic susceptibility record from the Contessa Highway section Gubbio, Italy. 

It forms a good illustration of how a priori knowledge is used to select certain components to model, but also how the results 25 

of the model can be coupled back to existing interpretations. Moreover, it demonstrates the disadvantages of using the 

classical bandpass filtering approach in the tuning process, which is circumvented with this new modeling approach. The 

approach sheds new light on the astrochronological age model and derived sedimentation rates of the Danian in Gubbio. 

Following the model, there is probably no significant drop in SR in the oldest half of the Danian section in Gubbio, but there 

is a suggested increase in SR from the middle of magnetochron C27r. Again the crucial role of the verification of the model 30 

results with other available geological constraints must be emphasized, in this case as discussed in Galeotti et al. (2015) and 

Sinnesael et al. (2016).  

This paper convincingly introduces the principles and illustrates the functioning of the concept of time-series analyses by 

polynomial modeling of sinusoidal behavior in earth-science proxy series. Further work will concentrate on: (i) automated 
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identification of significant components, (ii) the release of the constraint of non-overlapping of the component’s frequency 

ranges and (iii) allowing the tracking off faster sedimentation rate changes. Note, that this modeling approach is designed to 

be used in a cyclostratigraphical framework. However, it can easily be adapted for all kind of time-series analyses on data, 

which contain significant cyclic (sinusoidal) variation. The reader is invited to make use of the ACE v.1 model and provide 

feedback on its functioning and further development.  5 

 

 

Code Availability 

 

The ACE v.1 model is designed in MATLAB ® and all scripts are available in the Supplementary Materials. These include a 10 

main script that enables the user to load data, define model parameters, use the functions and produce basic graphical output. 

Also the separate scripts of the three functions “OrbitalComponentEstimation”, “SedimentationRateEstimation” and 

“UncertaintyAnalysis” are included as well as an instructive manual 

“Manual_ACEv1_Model_Sinnesael_etal_2016_GMD.txt”.  

 15 
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Appendix 

Estimation of the model parameters 

The model parameters in (8) are estimated by minimizing the following cost function in the matrix form in the least-squares 25 
sense: 

𝑚𝑖𝑛(𝐲 − 𝐇𝛉)𝑇(𝐲 − 𝐇𝛉)   (A.1) 

where the symbol T denotes matrix transpose operator. The elements in (A.1) are defined as follows: 

 Vector containing the stratigraphic data 

𝐲 = (𝑦(𝑧1), 𝑦(𝑧2), ⋯ , 𝑦(𝑧𝑁))
𝑇
   (A.2)  30 

 Vector containing the model parameters 
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𝛉 = (𝑎1,0, ⋯ 𝑎1,𝑃, 𝑏1,0, ⋯ 𝑏1,𝑃 ⋯ 𝑎𝐾,0, ⋯ 𝑎𝐾,𝑃 , 𝑏𝐾,0, ⋯ 𝑏𝐾,𝑃)
𝑇
   (A.3) 

 Matrix containing the signal model 

𝐇 = (𝐇1,𝑠 𝐇1,𝑐 𝐇2,𝑠 𝐇2,𝑐 ⋯ 𝐇𝐾,𝑠 𝐇𝐾,𝑐 )   (A.4) 

 

with 5 

 

𝐇𝑘,𝑠 = (

𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧1)  𝑧1𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧1) ⋯ 𝑧1
𝑃𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧1)

𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧2)  𝑧2𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧2) ⋯ 𝑧2
𝑃𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧2)

⋮                              ⋮                            ⋮          
𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧𝑁)  𝑧𝑁𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧𝑁) ⋯ 𝑧𝑁

𝑃𝑠𝑖𝑛(2𝜋𝑓𝑘𝑧𝑁)

) 

 

𝐇𝑘,𝑐 = (

𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧1)  𝑧1𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧1) ⋯ 𝑧1
𝑃𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧1)

𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧2)  𝑧2𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧2) ⋯ 𝑧2
𝑃𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧2)

⋮                             ⋮                            ⋮       
𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧𝑁)  𝑧𝑁𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧𝑁) ⋯ 𝑧𝑁

𝑃𝑐𝑜𝑠(2𝜋𝑓𝑘𝑧𝑁)

) 

 

The solution to the least-squares problem (A.1) is the vector of sought model parameters: 

𝜽̂ = 𝐇†𝐲   (A.5) 10 

where H
†
 is the pseudo inverse of H. 
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Figures 

 

Figure 1: (a) Major steps in cyclostratigraphic signal processing. (b) The estimation step – a focus of the present study. 15 

 

Figure 2: ACE v.1 analysis for a synthetic insolation signal. (A) 6 Ma Insolation for 65°N 21 June (Wm-2) (Laskar et al., 2004). (B) 

The periodogram of the clean insolation signal as plotted in Fig. 2A. (C) To make the conversion from the distance towards the 

time domain a constant sedimentation rate of 2 cm kyr-1 is used. Using linear interpolation a non-constant sedimentation rate is 

mimicked. The changing sedimentation rates is plotted in Figs. 2H-I. Additional white and red noise are added to the signal as 20 

discussed in the text. (D) The periodogram of the modified insolation signal as plotted in Fig. 2C, which is noisier than the original 

periodogram (Fig. 2B) because of the added perturbations. (E) The spectrogram of the modified insolation signal. (F) The 

spectrogram of the three modeled components (41 kyr obliquity, 23 kyr precession and 19 kyr precession) using ACE v.1. (G) 

Estimated instantaneous frequencies for the three modeled components. (H) Using the associated astronomical periods of the 

modeled frequencies, the corresponding sedimentation rate is calculated and compared with the initial input change in 25 

sedimentation rate. (I) Comparison between the initial input change in sedimentation rate and the mean of the modeled 

components. (J) Periodogram of time-series of the signal where the mean sedimentation rate estimate is used to make the 

conversion to the time domain.  

 

Figure 3: ACE v.1 analysis for a Plio-Pleistocene benthic oxygen isotope record. (A) ODP Site 846 δ18O record (Wm-2) (Mix et al., 30 

1995; Shackleton et al., 1995). (B) The periodogram of the ODP Site 846 δ18O record as plotted in Fig. 2A. (C) The spectrogram of 

the ODP Site 846 δ18O record. (D) The spectrogram of the two modeled components (100 kyr periodicity and 41 kyr obliquity) 

using ACE v.1. (E) Estimated instantaneous frequencies for the two modeled components. (F) Using the associated (astronomical) 

periods of the modeled frequencies, the corresponding sedimentation rate is calculated. (G) The uncertainties on the estimated 

instantaneous frequencies (1σ). (H) The uncertainties on the sedimentation rate estimates (1σ). (I) Comparison between the ACE 35 
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v.1 estimated sedimentation rate and the derived non-averaged and 500-point averaged sedimentation rates for ODP Site 846 

according to the age model of the LR04 stack (Lisiecki and Raymo, 2005) and the estimated change in sedimentation rate based on 

the modeled obliquity component. (J) Periodogram of time-series of the signal where the mean sedimentation rate estimate is used 

to make the conversion to the time domain.  

 5 

Figure 4: ACE v.1 analysis for a Danian magnetic susceptibility record. (A) Contessa Highway Danian magnetic susceptibility 

record (m3 kg-1) (Sinnesael et al., 2016). (B) The periodogram of the Danian magnetic susceptibility as plotted in Fig. 2A. (C) The 

spectrogram of the Danian magnetic susceptibility record. (D) The spectrogram of the three modeled components (100 kyr 

eccentricity, 39.6 kyr obliquity and 22.5 kyr precession using ACE v.1 (Berger et al., 1992). (E) Estimated instantaneous 

frequencies for the three modeled components. (F) Using the associated (astronomical) periods of the modeled frequencies, the 10 

corresponding sedimentation rate is calculated. (G) The uncertainties on the estimated instantaneous frequencies (1σ). (H) The 

uncertainties on the sedimentation rate estimates (1σ). (I) Periodogram of time-series of the signal where the mean sedimentation 

rate estimate is used to make the conversion to the time domain. (J) Comparison between the ACE v.1 estimated sedimentation 

rate and the derived sedimentation rates in the studies by Galeotti et al. (2015) and Sinnesael et al. (2016). 
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