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Abstract. Biodiversity is one of the key mechanisms that facilitate the adaptive response of plank-

tonic communities to a fluctuating environment. How to allow for such a flexible response in ma-

rine ecosystem models is, however, not entirely clear. One particular way is to resolve the natural

complexity of phytoplankton communities by explicitly incorporating a large number of species

or plankton functional types. Alternatively, models of aggregate community properties focus on5

macroecological quantities such as total biomass, mean trait, and trait variance (or functional trait

diversity), thus reducing the observed natural complexity to a few mathematical expressions. We

developed the modelling tool PhytoSFDM, which can resolve species discretely and can capture ag-

gregate community properties. The tool also provides a set of methods for treating diversity under

realistic oceanographic settings. This model is coded in Python and is distributed as an open-source10

software. PhytoSFDM is implemented in a 0D physical scheme and can be applied to any location

of the global ocean. We show that aggregate-community models reduce computational complex-

ity while preserving relevant macroecological features of phytoplankton communities. Compared to

species-explicit models, aggregate models are more manageable in terms of number of equations

and have faster computational times. Further developments of this tool should address the caveats15

associated with the assumptions of aggregate community models and on implementations into spa-

tially resolved physical settings (1D and 3D). With PhytoSFDM we embrace the idea of promoting

open source software and encourage scientists to build on this modelling tool to further improve our

understanding of the role that biodiversity plays in shaping marine ecosystems.
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1 Introduction20

Numerical models are simplified abstractions of complex phenomena. They are engineered for the

problem at hand and cannot be designed to maximize simultaneously the three key requirements of

generality, precision, and realism, because one of these must be sacrificed in favour of the other two

(Levins, 1966). Marine ecosystem models are no exceptions, and the scientific community has ques-

tioned the trend towards increasing model complexity, in terms of large numbers of state variables25

and parameters (Fulton et al., 2003; Anderson, 2005; Hood et al., 2006; Anderson, 2010). Alterna-

tives such as trait-based models have been put forward as a way to simplify overly parameterised

ecosystem models (Follows and Dutkiewicz, 2011).

In the past two decades, trait-based models of planktonic ecosystems have become important tools

for elucidating the fundamental mechanisms behind emergent patterns of community structure and30

diversity. Most of these models describe the phytoplankton community by a discrete representation

of many species or functional groups (Baird and Suthers, 2007; Follows et al., 2007; Bruggeman,

2007; Barton et al., 2010; Banas, 2011; Ward, 2012; Smith et al., 2015). Alternatively, models have

been developed that treat the whole phytoplankton species assemblage as a single entity (Wirtz and

Eckhardt, 1996; Norberg et al., 2001; Merico et al., 2009; Bruggeman, 2009; Wirtz, 2013; Wirtz35

and Sommer, 2013; Terseleer et al., 2014; Acevedo-Trejos et al., 2015). These models use aggregate

community properties such as total biomass, mean trait, and trait variance to describe changes in

phytoplankton community composition. Hence, by approximating the full spectrum of species or

functional types with just a few macroecological properties, these models present a way of reducing

the complexity of natural communities (Merico et al., 2009).40

The simplification of both types of trait-based models (i.e. discrete and aggregate) relies on the

use of a key trait, for which relationships with other traits can be formulated. Cell size is recognised

as one of the most important traits for characterising phytoplankton communities (Litchman et al.,

2008; Finkel et al., 2010; Litchman et al., 2010; Marañón, 2015), and it has been commonly used in

plankton ecosystem models (Baird and Suthers, 2007; Banas, 2011; Ward, 2012; Wirtz, 2013; Wirtz45

and Sommer, 2013; Terseleer et al., 2014; Acevedo-Trejos et al., 2015; Smith et al., 2015). This mor-

phological trait affects trophic organisation of foodwebs and the sequestration of CO2 into the ocean

interior (Chisholm, 1992). Phytoplankton size also impacts on many ecological and physiological

functions and is linked to other relevant traits via tradeoff relationships (see reviews by Litchman

et al., 2008; Finkel et al., 2010; Litchman et al., 2010). Therefore, studies on how cell size is asso-50

ciated to ecological and physiological processes and on the impact that these associations have on

the structure and functioning of planktonic communities are of fundamental importance (Marañón,

2015; Andersen et al., 2015).

Here we present a new phytoplankton size and functional diversity model (called PhytoSFDM)

that allows for five different ways of describing the size composition of phytoplankton communities55

in the upper mixed layers of the world oceans. In the first variant, the phytoplankton community is
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described according to the classical approach that resolves the discrete assemblage of many differ-

ent species and then we present four alternative ways to express aggregate community properties

of phytoplankton based on four different ways of treating size diversity. We provide this model as

open-source so that it can be used, modified and redistributed freely with the aims of fostering repro-60

ducibility and encouraging investigations about the impact of environmental conditions on properties

of phytoplankton community structure and diversity.

2 Model description

PhytoSFDM is developed from the study of Acevedo-Trejos et al. (2015), which used a size-based

model of aggregate community properties to investigate the phytoplankton size structure and size65

diversity in two environmentally contrasting regions of the Atlantic Ocean. In this model, the phy-

toplankton community self-assembles according to a trade-off emerging from relationships between

cell size and (1) nitrogen uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. In Phy-

toSFDM we have extended this work by providing four ways of treating size diversity using a

moment-based approximation (see Smith et al., 2011; Bonachela et al., 2015, and section 2.1.370

in this study). In addition, we include a discrete version of the model (hereafter referred to as the

full model) to better illustrate the potential of using aggregate models as compared to the equivalent

discrete version. In the following, we present the mathematical equations, a description of the code

structure, and easy-to-follow examples of how to use the model.

2.1 Mathematical formulations75

2.1.1 Mixed layer scheme

The zero-dimensional physical setup consists of two vertical layers, the upper-mixed layer contain-

ing the pelagic ecosystem and the abiotic bottom layer with nitrogen concentration as forcing. Fol-

lowing Evans and Parslow (1985) and Fasham et al. (1990), we describe material exchange between

the two layers (K) as a function of the mixed-layer depth (M),80

K=
κ+h+(t)

M(t)
, (1)

where κ is a constant that parameterises diffusive mixing across the thermocline and h+(t) is a func-

tion that describes entrainment and detrainment of material. The latter is given by h+(t) =max[h(t),0],

with h(t) = dM(t)/dt.

Zooplankton are considered capable of maintaining themselves within the upper mixed layer, thus,85

their mixing term simplifies to KZ = h(t).
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2.1.2 Dynamics of the full phytoplankton community

The description of the phytoplankton community is a trait-based variant of the classical Nutrient-

Phytoplankton-Zooplankton-Detritus (NPZD) model (Fasham et al., 1990). We consider only one

nutrient, nitrogen, which constitutes the currency of our model, one zooplankton population (com-90

posed of individuals assumed to be identical) and a single detritus pool. We define n morphologically

distinct phytoplankton types (hereafter referred to as morphotypes), and we consider n equal to ei-

ther 10 or 100. Each morphotype is characterised by a biomass Pi and a cell size Si, in units of µm

Equivalent Spherical Diameter. The distribution of biomass along the size dimension is known to be

positively skewed (i.e. an asymmetrical size distribution with a pronounced right tail compared to95

its left tail), due to physiological, morphological and ecological constraints that limit phytoplankton

from a minimum size of around 0.15 µm ESD to a maximum size of about 575 µm ESD (Marañón,

2015; Andersen et al., 2015). Consequently, we assume a log-normal distribution of size to represent

the size of each morphotype, thus transforming the cell size Si as follows Li=ln(Si). The net growth

rate of the whole phytoplankton community (P) is then given by:100

dP

dt
=

n∑
i=1

fi(Li,E) ·Pi , (2)

where fi(Li, E) is the net growth rate of size class i, which we assume to be a proxy for fitness

(Smith et al., 2011). Hence fi accounts for the gains and losses of each morphotype as a function of

cell size (Li) and environment E. The latter includes changes in nitrogen, irradiance, temperature,

and grazing. The equation describing the fitness functions of each size class i is thus given by:105

fi = µP ·F(T) ·H(I) ·U(Li,N) − µZ ·G(Li,Pi) ·Z − V(Li,M) − mP − K , (3)

where µP indicates the maximum growth rate and F(T) = e0.063·T is Eppley’s formulation for

temperature-dependent growth (Eppley , 1972). The light limiting term, H(I), represents the total

light I available in the upper mixed layer. According to Steele’s formulation (Steele , 1962):

H(I) =
1

M(t)

M∫
0

[
I(z)

Is
· e(1−

I(z)
Is
)
]
dz , (4)110

where Is is the light level at which photosynthesis saturates and I(z) is the irradiance at depth z. The

exponential decay of light with depth is computed according to the Beer-Lambert law with a generic

extinction coefficient kw

I(z) = I0 · e−kw·z . (5)
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The current versions of our model does not specify any size-dependence for light absorption,115

although we provided suggestions on how this could be done (sections 4 and 6).

The nutrient limiting term U in equation 3 is determined by a Monod function with a half-

saturation constant KN, which scales allometrically with phytoplankton cell size L (Litchman et

al., 2007),

U(Li,N) =
N

N+KN
=

N

N+(βU · eLi·αU)
, (6)120

with βU and αU, respectively, intercept and slope of the KN allometric function (i.e., the power law

βU ·SαU ). This empirical relationship is based on observations of different phytoplankton groups

(see figure 3b in Litchman et al., 2007), with the regression parameters rescaled from cell volume to

ESD.

The loss term G(Li,Pi) in Equation 3, represents zooplankton grazing. As mentioned above, here125

we consider a single zooplankton population, which is assumed to be an assemblage of identical

individuals with a size-selective feeding preference given by:

G(Li,Pi) =
eLi·αG∑n

i=1Pi · eLi·αG +KP
, (7)

where αG is the slope for size-dependent grazing or the power law 1 ·SαG ) and KP is the half

saturation constant. This formulation is inspired by meta-analyses of laboratory data (Hansen et al.,130

1994, 1997), and reflects a grazing preference of zooplankton for smaller phytoplankton cells. For

demonstration purposes, we use here a simple formulation for zooplankton grazing, however, other

functional relationships can be implemented and tested in future versions of PhytoSFDM (see also

sections 4 and 6).

The loss term V(Li,M) in Equation 3 represents the sinking of phytoplankton as a function of135

size and depth of the mixed layer,

V(Li,M) =
βV · eLi·αV

M(t)
, (8)

where the constants αV and βV are the parameters of the function relating phytoplankton cell size

to sinking velocity according to Stokes’ law (Kiørboe, 1993), or the power law βV ·SαV . These

parameters are expressed here in units of meters per day.140

Our model formulation does not specify an explicit size dependence for the phytoplankton max-

imum growth rate (µP). Various compilations of data from laboratory experiments reveal different

size scalings for µP , either as a power law of cell volume (Litchman et al., 2007; Edwards et al.,

2012) or as a uni-modal distribution in terms of cell size (Wirtz, 2011; Ward, 2012; Marañón et al.,

2013). Therefore, we adopted an approach similar to that of Smith et al. (2015), who reproduced145
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the uni-modal distribution of realised growth rate over size using two physiological trade-offs. We

specified our trade-off in terms of three allometric relationships, and this results in an indirect size-

dependence of phytoplankton growth rate.

The loss term mP in Equation 3 accounts for all phytoplankton losses other than those from

grazing and mixing.150

Differential equations for the nutrient (N), zooplankton (Z), and detritus (D) complete the model

system:

dN

dt
=−

n∑
i=1

µP ·F(T) ·H(I) ·U(Li,N) ·Pi + δD ·D + K · (N0 −N) , (9)

dP

dt
=

n∑
i=1

(µP ·F(T) ·H(I) ·U(Li,N) − µZ ·G(Li,Pi) ·Z − V(Li,M) − mP − K)Pi , (10)

dZ

dt
=

n∑
i=1

δZ ·µZ ·Z ·G(Li,Pi) ·Pi − mZ ·Z2 − KZ ·Z , (11)155

dD

dt
=

n∑
i=1

(1− δZ) ·µZ ·Z ·G(Li,Pi) ·Pi +

n∑
i=1

mP ·Pi + mZ ·Z2 − δD ·D − K ·D , (12)

where δD is the mineralization rate and N0 is the nitrogen concentration below the upper mixed layer.

µZ, δZ and mZ are, respectively, maximum growth rate, prey assimilation coefficient, and mortality

rate of zooplankton. All parameter values and their units are reported in Table 1.

2.1.3 Dynamics of the aggregate phytoplankton community160

The phytoplankton community comprising many distinct morphotypes (Equations 2 to 8) can be

approximated with the so-called moment-based approach (Wirtz and Eckhardt, 1996; Norberg et al.,

2001; Merico et al., 2009; Terseleer et al., 2014; Acevedo-Trejos et al., 2015). Wirtz and Eckhardt

(1996); Norberg et al. (2001) and Merico et al. (2009), used a Taylor expansion together with a

moment closure technique to approximate the whole community with three macroscopic properties,165

which correspond to the first three order moments of the approximated biomass distribution. These

properties are: total biomass, mean trait, and trait variance. These works (Wirtz and Eckhardt, 1996;

Norberg et al., 2001; Merico et al., 2009) were inspired by earlier applications in quantitative genet-

ics (Abrams et al., 1993) and are reviewed by Smith et al. (2011) and more recently by Bonachela et

al. (2015).170

Here the whole phytoplankton community is characterised by the morphological trait cell size

and by a trade-off that emerges from three allometric relationships described by Equations 6-8). The

equations of the respective macroscopic properties are:
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dP

dt
≈ P · (f+ 1

2
· f(2) ·V) , (13)

dL

dt
≈ f(1) ·V , (14)175

dV

dt
≈ f(2) ·V2 , (15)

where f is the net growth rate (or the fitness function, see equation 3), and f(n) is the nth derivative

of the net growth with respect to the trait. Due to competitive exclusion, however, the phytoplankton

community loses functional diversity over time, i.e. the variance declines to zero with time, in both

full and aggregate model formulations (Merico et al., 2014). We name this standard formulation180

"Unsustained Variance".

Alternatively, one can use the approximated model to focus only on changes in the mean trait,

thus ignoring changes in the variance by fixing it to an arbitrary constant value:

dP

dt
≈ P · (f+ 1

2
· f(2) ·V) , (16)

dL

dt
≈ f(1) ·V , (17)185

dV

dt
= 0 . (18)

While using these two formulations (i.e. Unsustained and Fixed Variance) can be acceptable in

some special cases (e.g. in experiments that lead to competitive exclusion or where diversity is

being manipulated), it is clear that they fail to account for changes in the adaptive capacity of the

community, which requires allowing the size variance, and thereby functional diversity, to vary over190

time (Merico et al., 2014).

Within our modelling tool we also provide two alternative ways of treating the size variance:

immigration (following Norberg et al., 2001) and trait diffusion (following Merico et al., 2014).

The treatment with immigration considers the introduction of biomass and new trait values from

hypothetical adjacent communities into the resident community. The addition of incoming amount195

of biomass per day is named immigration I,

dP

dt
≈ P[f+

1

2
· f(2) ·V]+ I , (19)

dL

dt
≈ f(1) ·V+

I

P
(LI −L) , (20)

dV

dt
≈ f(2) ·V2 +

I

P
[(VI −V)+ (LI −L)2] , (21)

where LI and VI are, respectively, the mean size and the size variance of the immigrating commu-200

nity. As implemented by Acevedo-Trejos et al. (2015), we treat I as a density-dependent process
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(i.e. I = δI ·P), and set LI equal to the mean size of the resident community (i.e. LI = L). Thus,

we assume that phytoplankton immigrating from adjacent areas is characterised by sizes similar to

the simulated community, implying that the immigrating community has been exposed to the same

selection pressures as the simulated community (Terseleer et al., 2014). We also assume that the205

rate of immigration increases proportional to the concentration of phytoplankton, consistent with

observations of diversity patterns along the Atlantic Ocean (Chust et al., 2013).

The treatment of the size variance based on trait diffusion (Merico et al., 2014) gives:

dP

dt
≈ P · [f + 1

2
· f(2) ·V+

1

2
· ν(r4 ·V− 3 · r2 )] , (22)

dL

dt
≈ f(1) ·V+ ν(r3 ·V− 3 · r1 ) , (23)210

dV

dt
≈ f(2) ·V2 + ν(r4 ·V2 − 5 ·V · r2 +2 · r) , (24)

where ν is the trait diffusivity parameter, r is the reproduction rate (or gross growth), and rn is the

nth derivative of gross growth with respect to the trait. Note that the process of trait diffusion (last

term in the equation 24) depends on the gross growth r, via the trait diffusivity constant ν, thus, an

increase in phytoplankton gross growth causes an increase in trait variance (Merico et al., 2014).215

The system of differential equations for all variance treatments is completed by equations describ-

ing gains and losses in nitrogen (N), zooplankton (Z), and detritus (D):

dN

dt
=−µP ·F(T) ·H(I) ·U(L,N) ·P + δD ·D + K · (N0 −N) , (25)

dZ

dt
= δZ ·µZ ·Z ·G(L,P) ·P − mZ ·Z2 − KZ ·Z , (26)

dD

dt
= (1− δZ) ·µZ ·Z ·G(L,P) ·P + mP ·P + mZ ·Z2 − δD ·D − K ·D . (27)220

The first term in equation 25 represents a reduction of the nitrogen pool due to phytoplankton

growth, which is a function of temperature, light, nitrogen, and mean size (see the description of

equation 3 in the previous section). The last two terms in equation 25 represent sources of nitrogen

due to remineralisation and mixing. The first term in equation 26 describes size-dependent grazing,

while the last two terms describe losses of zooplankton due to mortality and mixing. The first term225

in equation 27 represents a fraction of phytoplankton biomass that is not assimilated by zooplankton

and the following two terms represent the mortality of phytoplankton and zooplankton, respectively.

The detritus pool is reduced by remineralisation and mixing. Parameter values and their units are

reported in Table 1.
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2.2 Environmental forcing230

We compiled monthly climatological forcing data for mixed-layer depth (MLD), photosynthetic

active radiation (PAR), sea surface temperature (SST) and concentration of nitrogen immediately

below the upper mixed layer (N0). The MLD data were obtained from Monterey and Levitus (1997)

using the variable density criterion and are openly accessible from https://www.nodc.noaa.gov/OC5/

WOA94/mix.html. The PAR data were obtained from the Moderate Resolution Imaging Spectrora-235

diometer (MODIS), for the time period 2002-2011. This dataset is managed and distributed by the

NASA’s Ocean Biology Processing Group (http://oceancolor.gsfc.nasa.gov/cms/). SST and N0 were

obtained from the World Ocean Atlas 2009 (WOA09), which is maintained and distributed by NOAA

(https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html). For consistency and efficiency, all data

were transformed from their original formats (e.g. TXT and HDF) to NetCDF. All monthly forcing240

were spatially averaged over the selected location (square boxes in Figure 1) and then interpolated

to obtain daily values (Figure 2).

3 Test-case simulation

A test-case model configuration is provided for a location of the North Atlantic ocean at 47.5◦ N

15.5◦ W (Figure 1), a region where seasonal changes in mean size and size diversity are well known245

(Acevedo-Trejos et al., 2015). This region presents the typical oceanographic conditions of a tem-

perate environment (Figure 2). The environmental conditions produce a pronounced phytoplankton

bloom in spring, which stimulates secondary production and almost the full depletion of nitrogen

(Figure 3). Overturning of the water column in autumn restocks the pool of nitrogen and light limi-

tation together with lower temperatures halts primary production (Figures 2 and 3).250

3.1 Comparison of full and aggregate models

Within PhytoSFDM, we provide a practical example of how to implement and compare phytoplank-

ton community models that aim to describe a) a full assemblage of species or morphotypes (see

section 2.1.2), and b) an aggregate community (see section 2.1.3). The aggregate community model

is an approximation of the full assemblage of species or morphotypes(Wirtz and Eckhardt, 1996;255

Norberg et al., 2001; Merico et al., 2009).

Figures 3 and 4 show the results of, respectively, the full model and the aggregate model for

the Unsustained Variance case. N, P, Z, and D are unaffected by the type of model considered. As

expected, the dynamics of P, L, and V produced by the aggregate model are good approximations

of those produced by the full model. Both models exhibit competitive exclusion, as indicated by260

the reduction in the number of morphotypes and consequently in the loss of size variance over time

(Figure 4). The phytoplankton community evolves towards the optimal trait value, which is expressed

by the fittest few morphotypes for the chosen parameterisation and the prevailing environmental
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conditions. Although competitive exclusion is well established theoretically (Hardin, 1960), natural

communities of phytoplankton are typically very diverse, hence we will explore in the following the265

effects of different ways of sustaining the variance.

3.2 Comparison of variance treatments

The key aspect of trait-based models is their ability to describe the phytoplankton community in

terms of mean trait and trait variance. Figures 5 and 6 show the results of one-year simulation after

an initial spin-up phase of four years. While the four treatments produce very similar, if not identical,270

dynamics for N, P, Z, and D (Figure 5), the results for the mean size and the size variance differ

considerably among treatments (Figure 6).

As already discussed, the system loses diversity over time when variance is unsustained. The loss

of diversity reduces the capacity of the community to adapt to changing environmental conditions

via shifts in species composition, as a flat year-round mean trait shows (Figure 6, grey lines). Under275

Fixed Variance, size diversity is locked at an arbitrary value. If this value is high enough, the mean

size can adapt in response to changes in nutrient availability and grazing regimes (Figure 6). This

treatment can be useful for studies focusing only on the size structure of the community but it is

otherwise based on an arbitrarily fixed level of diversity and cannot offer meaningful insights, for

example about biodiversity and ecosystem functioning relationships.280

Trait Diffusion and Immigration show similar results for the mean size but not for the size variance

(Figure 6). Since the mechanism of Trait Diffusion depends on reproduction, i.e. gross growth (see

equation 24), the highest diversity of the community is reached in spring under high growth rates

and declines when moving towards winter. Size diversity also peaks in spring for the case of Immi-

gration because this mechanism is density-dependent (see equation 21), but the variances predicted285

in autumn and winter are, respectively, lower and higher than those obtained with Trait Diffusion

(Figure 6). As mentioned above, this originates from the different assumptions underlying the Trait

Diffusion and Immigration treatments, which consider, respectively, an internal or an external source

of phytoplankton biomass, mean trait, and trait variance. In the case of trait-diffusion, such internal

source is gross growth because the size variance of the phytoplankton community is proportional290

to it via the diffusivity constant ν (last terms in equations 22, 23 and 24). In contrast, immigration

represents a source of biomass (I) and size variance (I/P[VI−V]) external to the phytoplankton

community being simulated (e.g. from an adjacent patch). Hence, during the autumn-winter transi-

tion, the size variance tends to decline in the trait diffusion case as phytoplankton gross growth is

reduced by growth-limiting processes. Instead, the trait variance keeps building up to values similar295

to the variance of the immigrating community in the case of Immigration.
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3.3 Sensitivity to changes in parameter values

We tested the sensitivity of the annual mean in P, L, and V to variations of +/- 25 % in parameter

values. To quantify this sensitivity, we formulated an index S that accounts for relative changes in

model results:300

S =
X(p)−X(p′)

X(p)
· 100 , (28)

where X(p) is the result of the state variable X obtained with the standard parameter p and X(p′) is

the result of the state variable X obtained with the modified parameter p′=p±25 %.

The four treatments of size variance respond similarly to changes in parameter values (Figure 7).

The annual means of all three state variables (P, L, and V) are sensitive to changes in the parameters305

controlling zooplankton grazing (i.e. µZ,mZ,KP,δZ). However, P also shows a sensitive response

to parameters affecting phytoplankton gross growth, such as kw,Is,µP, and mP. Mean size is the

most robust variable with less than 10 % relative change compared to the standard run. The size

variance treatments for Immigration and Trait Diffusion are affected by the parameters controlling

the input of exogenous (i.e. δI for Immigration) or endogenous variance (i.e. ν, for Trait Diffusion).310

The results of the Unsustained Variance model are very sensitive to changes in µZ and the case of

Fixed Variance shows a sensitivity that is similar to the other cases, except for the variance itself.

3.4 Computational efficiency

Trait-based models that aim at resolving the complexity of natural communities by incorporating

many different species or functional types can be expensive in terms of computational time (Baird315

and Suthers, 2007; Follows et al., 2007; Bruggeman, 2007; Banas, 2011; Ward, 2012). Alternatively,

trait-based models that focus on aggregate community properties such as total biomass, mean trait,

and trait variance can be more computationally efficient. In table 2 we report a quantification of

the computation time required for calculating the full and aggregate models presented here. We

obtained more than 10-fold longer computation time for the full model than for the aggregate model.320

In addition, when we increase the resolution of the full model from 10 to 100 morphotypes, the

difference in computation time increases by more than 20-fold. Thus increasing the realism, in terms

of number of species or morphotypes comes at a significant computational cost.

4 Strength and weakness of moment-based approximations

Models are simplifications of reality and, as such, are based on assumptions. For example, the simple325

exponential growth model is based on a number of assumptions that do not hold in all circumstances

(many factors affect the intrinsic growth rate, which is often not time-invariant, not all individuals

within a population are identical, nothing can grow indefinitely, etc.). However, this model is widely
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used within its range of validity. Likewise, the approximation of full models with moment-based

approaches requires an assumption about the shape of the phytoplankton trait distribution (Wirtz330

and Eckhardt, 1996; Norberg et al., 2001; Merico et al., 2009). Typically, unimodal distributions,

e.g. normal or log-normal, are assumed. However, depending on how the fitness function (i.e. the

net growth rate of the phytoplankton community) is constructed and parameterised, the value of

f(2), that is the rate of change of the variance (Equations 15, 18, 21 24), can be positive, implying a

disruptive selection or branching. This represents an indication that the unimodality assumption does335

not hold (Bonachela et al., 2015). Alternatively, f(2) can remain negative over time, implying that the

community continually loses variance, thus constituting a strong indication against the occurrence

of disruptive selection. Therefore, models based on moment approximations require careful checks

about the validity of the unimodality assumption throughout the time of the simulations. Figure 8

shows, for our test case, the predicted variance V, f(2) and its components for the four variance340

treatments. In our test case, f(2) is negative for all treatments and its changes are jointly driven

by bottom-up, f(2)U(L,N), and top-down processes, f(2)G(L,P), i.e. the second derivatives with

respect to the trait for nitrogen uptake (equation 6) and grazing (equation 7) terms. Sinking plays a

role mainly during spring, but its influence is minor compared to the effects of nitrogen uptake and

grazing.345

It is unclear whether unimodality in size distributions is a robust feature in the oceans. Observa-

tional evidence from recent work (Downing et al., 2014) suggests that at large temporal scales, from

5 to 20 years, unimodality of size distributions is a consistent feature of phytoplankton communities

of the North Sea. By contrast, multimodality is typically observed on temporal scales of less than

one year (Downing et al., 2014). We consider that the observational evidence available remains in-350

sufficient to identify general patterns. However, the ocean is a highly variable environment and we

considered it more likely that multimodality, for example because of size-selective grazing events, is

a short-term, transient situation rather than the norm, because mixing would continuously reshuffle

plankton assemblages and restore homogeneous conditions.

An aspect that our model does not include in its current version is the dependency of light ac-355

quisition on phytoplankton cell size. Given that the effect of cell size on light harvesting is well

understood (Augusti, 1991; Finkel and Irwin, 2000; Finkel, 2001), it could be implemented in the

model. Future versions of PhytoSFDM could address this gap by considering the vertical attenuation

of light as a function of both phytoplankton biomass and cell size, following the approach proposed

by Baird and Suthers (2007).360

Uncertainty remains about how to described the zooplankton population, which we simplified as

an assemblage of identical individuals. This has been the standard approach in plankton ecosystem

modelling for decades and we based the first version of PhytoSFDM on this simple and classical

formulation. In recent years, however, significant efforts have been made to increase the level of de-

tail of the zooplankton component in ecosystem models. Approaches are numerous and include the365

12



consideration of different zooplankton functional types, different size classes, and different feeding

preferences and strategies (Banas, 2011; Ward, 2012; Prowe et al., 2012; Wirtz, 2012; Mariani et al.,

2013; Vallina et al., 2014; Ryabov et al., 2015). A trait-based description of zooplankton can help

reducing model complexity while maintaining an adequate representation of diversity. The selection

of traits to consider for ecosystem models will depend on the questions under scrutiny. For example,370

traits that could characterize zooplankton-related process in ecosystem models that focus on nutrient

cycling are maximum growth rates, stoichiometric requirements, and the size distribution of food

particles (Litchman et al., 2013). Since many zooplankton traits scale allometrically with body size,

scaling laws should be considered because they are effective ways to generalise the relationships

among different traits and thus to reduce model complexity. Implementing such a diversity of graz-375

ing mechanisms and processes is a natural step forward in the development of ecosystem models.

However, a consistent representation of different grazing strategies remains an aspect under develop-

ment (Litchman et al., 2013; Smith et al., 2014). PhytoSFDM constitutes a starting model platform

for gradually building model complexity at different trophic levels.

5 Concluding remarks380

Biological communities are complex adaptive systems (Levin, 1998) characterised by many com-

ponents and interconnections that lead to emergent properties and nonlinear responses. Models help

us to formalise and simplify the complexity we observe in nature. This simplification allows us to

render natural phenomena treatable and testable (Levins, 1966; Anderson, 2005, 2010). Over time,

however, phytoplankton models have grown more complex, computationally more complicated, and385

often inaccessible to the wider scientific community, aspects that can all hamper advancements in the

field. To help reverse this trend we developed PhytoSFDM as a tool to promote the use of trait-based

models (whether species-explicit or aggregate models) of marine ecosystems.

A key decision in modelling is choosing an appropriate level of detail for the problem at hand. For

example, a species-explicit model offers obvious advantages, which aggregate models cannot offer,390

when the interest lies in understanding the relative importance of particular species in providing

certain ecological services or in quantifying the effect of disruptive selection. Aggregate models,

instead, can be more useful at a higher level of abstraction, when the interest lies on macroecological

properties. In addition, as we have shown, aggregate models present an advantage with respect to

computation time when compared to full models. The advantages in terms of reducing complexity395

and computation time remain unproven in spatially explicit settings (e.g. in 1D and 3D), although

preliminary applications have shown promising results (Bruggeman, 2009).

PhytoSFDM provides a set of methods, under the open source concept, to quantify macroecolog-

ical properties of phytoplankton communities, as an alternative to the traditional discrete, species-
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explicit approach. This effort, we hope, will foster our understanding about the role that biodiversity400

plays in shaping marine ecosystems.

6 Code availability

PhytoSFDM is written in Python (version 2.7.x) as a lightweight and user-friendly package to facil-

itate use and re-distribution. We provide PhytoSFDM as free software under the GNU General Pub-

lic License version 2. The python package is hosted in: a) GitHUB (https://github.com/SEGGroup/405

PhytoSFDM) a software repository that allows for version control, b) Zenodo (https://zenodo.org/

record/49849) an open scientific repository, and c) PyPI (https://pypi.python.org/pypi/PhytoSFDM)

one of the most popular python package repository. To be able to install and operate the package,

the user should be familiar with the Python language and should have a running python distribu-

tion (preferably version 2.7.x) that includes the latest versions of the libraries pip and setuptools.410

Additional required libraries are matplotlib, numpy, scipy and sympy. PhytoSFDM can then be con-

veniently installed by typing the following command from a terminal window:

$ p i p i n s t a l l PhytoSFDM

or by downloading the tarball from the GitHub repository. This is installed using the source file

setup.py contained in the PhytoSFDM folder by typing:415

$ py thon s e t u p . py i n s t a l l

The package consists of three main modules: Example, SizeModels, and EnvForcing. Example is

the entry point: it computes and compares full and aggregate models with the four treatments of

variance (unsustained, fixed, trait diffusion, and immigration) at the testing location in the north

Atlantic Ocean (centred at 47.5◦ N and 15.5◦ W). The example is run from a terminal by typing:420

$ PhytoSFDM_example

or from an interactive python shell by typing:

>>> i m p o r t phytosfdm . Example . example as exmp

>>> exmp . main ( )

The module SizeModels, contains the model variants. Here the user can a) modify the default425

parameters, b) symbolically solve the derivatives with respect to the trait, and c) log-transform mean

trait and trait variance. To run the model at a specific location in an interactive python shell one

should type:

>>> from phytosfdm . S izeMode ls . s i z e m o d e l s i m p o r t SM

>>> Lat =47 .5430

>>> Lon =344.5

>>> RBB=2.5
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>>> SM1= SM( Lat , Lon , RBB, " Imm " )

In the above example, the model is executed at a location in the North Atlantic Ocean centred

at 47.5◦N and 15.5◦W (here transformed to a scale of 0◦ to 360◦). RBB specify the range of the435

bounding box (in degrees) for averaging the environmental forcing variables. The fourth argument

SM1 is an object that contains the call of the function SM, which runs the size model at the specified

location and with the desired treatment for the size variance, in this case Immigration.

The last module, EnvForcing, consists of a class containing spatially averaged forcing data. The

climatological data have monthly resolution but we include a method to interpolate the data to a440

daily time step. Spatially averaged and temporally interpolated forcing at a specific location can be

extracted by typing:

>>> MLD= E x t r a c t E n v F o r ( Lat , Lon , RBB, ’ mld ’ )

Additional information on the usage of the package is contained in the Readme file and in the

repository webpage in GitHUB. The source code of our model is fully and freely accessible. Users445

can modify or add new model variants. This can be done my manipulating the module sizemodels,

which contains model variants as separated methods within the class SM. By using a version control

system such as GitHUB, users can fork our repository, i.e. create a copy, which allows one to freely

change and experiment without affecting the original code. Users can also modify the original code

and submit a new version by pulling a request. More details can be found in our GitHUB repository450

(https://github.com/SEGGroup/PhytoSFDM).
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Figures

Figure 1. Environmental forcing variables considered in PhytoSFDM. The data shown are annual average of

mixed-layer depth (MLD), photosynthetic active radiation (PAR), sea surface temperature (SST), and nitrogen

concentration below the mixed-layer (N0). The square boxes mark the location of the test-case simulation.

Figure 2. Temporal variation of the environmental variables. The monthly climatology data (red dots) are spa-

tially averaged over the test location (square boxes in Figure 1). The interpolation (continuous line) is obtained

with a 3rd (MLD and PAR) and a 5th (SST and N0) order polynomial.
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Figure 3. NPZD dynamics of the full model (Section 2.1.2 ) and of its equivalent aggregate model (Unsustained

Variance, Section 2.1.3) for the last year of the simulations. The total phytoplankton in the full model corre-

sponds to the sum of all Pn. The red dots are observations of nitrogen concentrations (monthly data obtained

from the World Ocean Atlas) and the green dots are remotely sensed Chl-a data (8-day composite obtained from

MODIS).
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Figure 4. Number of morphotypes and size variance over the first year of the simulation. Here we included

the morphotypes with a biomass greater than 0.01 mmolNm−3. Models that do not consider a mechanism to

sustain variance exhibit competitive exclusion of morphotypes and a rapid decline of size diversity.

Figure 5. Nutrient, Phytoplankton, Zooplankton and Detritus dynamics over a seasonal cycle for the four vari-

ants of the aggregate model (see section 2.1.3), named Unsustained and Fixed Variance, Trait Diffusion, and

Immigration.
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Figure 6. Dynamics of the size structured phytoplankton community and its functional size diversity for the

four variance treatments (see section 2.1.3), named Unsustained and Fixed Variance, Trait Diffusion, and Im-

migration.

Figure 7. Sensitivity of four variance treatments to an increase and a decrease by 25 % in the default parameter

values. The values and definitions of all parameters are given in table 1.
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Figure 8. Components of the size variance (V), where f(2) is the second derivative of the fitness function with

respect to the trait, f(2)U(L,N), f(2)G(L,P) and f(2)V(L,M) are, respectively, nitrogen uptake, zooplankton

grazing and phytoplankton sinking components of f(2).

Tables
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Table 1. Parameters definitions, their units and their default values as provided in PhytoSFDM.

Definition Symbol (Units) Value

Diffusive mixing across the thermocline κ (m·d−1) 0.1

Light attenuation constant kw (m−1) 0.1

Optimum irradiance Is (Em−2d−1) 30

P max growth rate µP (d−1) 1.5

P mortality rate mP (d−1) 0.05

Z grazing rate µZ (d−1) 1.35

Z mortality rate mZ (d−1) 0.3

P half-saturation KP (mmol N m−3) 0.1

P assimilation coefficient δZ (-) 0.31

Mineralization rate δD (d−1) 0.1

Immigration rate δI (mmol N d−1) 0.008

Trait diffusivity parameter ν (-) 0.008

Slope for allometric grazer preference αG ([µm ESD]−1) -0.75

Intercept of the KN allometric function βU (mmol N m−3) 0.14257

Slope of the KN allometric function αU (mmol N m−3 [µm ESD]−1) 0.81

Intercept of the V allometric function βV (m·d−1) 0.01989

Slope of the V allometric function αV (m·d−1 [µm ESD]−1) 1.17

Size variance of immigrating P V0 (Ln [µm ESD]2) 0.58

Number of morphotypes n (-) 10 or 100

Table 2. Computation time in seconds for the full model with 10 and 100 morphotypes and the four variants of

the aggregate model.

System Full10 Full100 Unsustained Fixed Trait Diffusion Immigration

MacOS 2.8 GHz Intel i7 282.515 6696.503 16.012 20.374 15.177 16.644

Windows 3.0 GHz Intel i5 369.597 8722.753 20.236 22.485 20.736 20.298
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