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Abstract.

Hough functions are the eigenfunctions of the Laplace’s tidal equation governing fluid motion on a rotating sphere with a

resting basic state. Several numerical methods have been used in the past. In this paper, we compare two of those methods:

normalized associated Legendre polynomial expansion and Chebyshev collocation. Both methods are not widely used, but

both have some advantages over the commonly-used unnormalized associated Legendre polynomial expansion method. Com-5

parable results are obtained using both methods. For the first method we note some details on numerical implementation. The

Chebyshev collocation method was first used for the Laplace tidal problem by Boyd (1976) and is relatively easy to use. A

compact MATLAB code is provided for this method. We also illustrate the importance and effect of including a parity factor

in Chebyshev polynomial expansions for modes with odd zonal wavenumbers.

1 Introduction10

Hough functions are the eigenfunctions of the eigenvalue problem of the following form:

F(Θ)+ γΘ= 0, (1)

where F is a linear differential operator, the Laplace’s tidal operator, defined as:

F(Θ)≡
d

dµ

(

1−µ2

σ2 −µ2

dΘ

dµ

)

−
1

σ2 −µ2

[

s

σ

σ2 +µ2

σ2 −µ2
+

s2

1−µ2

]

Θ,

(2)

with µ= sinφ ∈ [−1,1], φ the latitude, s the zonal wavenumber, and σ the dimensionless frequency normalized by 2Ω (Ω the15

earth’s rotation rate), while

γ ≡
4a2Ω2

gh
(3)

is the Lamb’s parameter (Andrews et al., 1987, p. 154), with a the earth’s radius, g the acceleration due to the earth’s gravity,

and h the so-called equivalent depth.
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Several numerical methods have been used to solve the eigenvalue problem for the Laplace tidal equation in the past. Hough

(1898) pioneered the solutions of the Laplace tidal equations using spherical harmonic expansion, or equivalently spherical

harmonic Galerkin method, so eigenfunctions of the eigenvalue problem Eq. (1) that describe the latitudinal dependence are

often called Hough functions (Flattery, 1967; Longuet-Higgins, 1968; Lindzen and Chapman, 1969). Each function of latitude

and longitude is expanded as a Fourier series in longitude using the usual Fourier functions, cos(sλ) and sin(sλ), where s, an5

integer, is the “zonal wavenumber", λ is the longitude. Each longitudinal trigonometric function is multiplied by a latitudinal

basis function which depends on the zonal wavenumber s. Hough and his successors used a latitudinal basis of unnormalized

associated Legendre polynomials (ALPs). Both Kato (1966) and Flattery (1967) used the method of continued fractions to

solve for eigenvalues one by one with iterations. This is not the most convenient method to work with and some eigenvalues

could be missed. Chen and Lu (2009) also discussed calculation of Hough functions following the same original formulation10

without showing any details on numerical procedures.

Computation of Hough functions based on expansion in terms of normalized ALPs was first used by Dikii (1965). It was

later elaborated in a note by Groves (1981), along with a method of evaluating related wind functions. Jones (1970) used group-

theoretical methods to obtain a matrix representation of Hough functions by expanding in normalized spherical harmonics.

Although it is closely related to the original method of expansion in terms of unnormalized ALPs, expansion in terms of15

the normalized ALPs leads to two symmetric matrices for symmetric and anti-symmetric modes. This has both computational

and conceptual advantages over the original expansion in unnormalized ALPs: 1) the eigenvalue problem of symmetric matrix

can be solved very accurately by Jacobi method (e.g., Demmel and Veselić, 1992), and 2) symmetry guarantees that all of the

“eigenvalues are real and that there is an orthonormal basis of eigenvectors" (Golub and Van Loan, 1996, p. 393).

There is also another way of computing Hough functions or global normal modes, such as Longuet-Higgins (1968); Kasahara20

(1976); Žagar et al. (2015), also using spherical harmonic expansion, in which the equivalent depth is assigned (for each zonal

wavenumber) and the frequency of the normal modes are obtained as the eigenvalues. This is different from eigenvalue problem

for tidal waves in which the wave frequencies and zonal wavenumber are specified and eigenvalues are obtained and used to

compute equivalent depths, just as stated in the original eigenvalue problem Eq. (1).

The collocation method was first applied to compute Hough functions by Boyd (1976). His latitudinal basis functions replace25

associated Legendre functions by cosine functions of colatitude ϕ multiplied by a “parity factor" which is sin(ϕ) for odd zonal

wavenumber s and the constant one for even zonal wavenumbers. The parity factor is explained in Appendix C. In addition,

the modified latitudinal variable

µ≡ cos(ϕ) = sin(φ) ∈ [−1,1]

is often used to analyze and solve differential equations in spherical geometry. The reason is that trigonometric functions are30

replaced by powers of µ, simplifying almost everything. And denoting the Chebyshev polynomials by Tn(x), Chebyshev’s

famous identity shows that

Tn(µ) = Tn(cos(ϕ)) = cos(nϕ), n= 0,1, . . . .

Thus a Fourier cosine series in colatitude is, with the same coefficients, also a Chebyshev polynomial series in µ.
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Boyd (1976) and Orszag (1974) listed several advantages of Chebyshev polynomial collocation over spherical harmonic

Galerkin approximations. First, cosines/Chebyshev polynomials are much simpler than associated Legendre functions, which

are different for each different zonal wavenumber s. Second, collocation, which evaluates and interpolates, is much easier to

program than the Galerkin method, which integrates. These advantages make it much easier to apply the Chebyshev collo-

cation method than the spherical harmonic Galerkin method. See also (Hesthaven et al., 2007, Chapter 3) for a discussion of5

advantages of Fourier-collocation methods over the Fourier-Galerkin methods.

In this paper we compare the solution of the eigenvalue problem for the Laplace tidal operator using two numerical methods,

the normalized ALP expansion method and the Chebyshev collocation method. Both methods are not widely used, but both

have some advantages over the commonly-used unnormalized ALP expansion. For the first method we note some details of

numerical implementation as the denominators in some terms of matrix entries can become zero. For the second method a10

compact MATLAB code is provided to facilitate its use. We also discuss other related issues and show that there is no accuracy

penalty in using the Chebyshev collocation method.

2 Computation of Hough functions

In this section, we compare two methods for computing Hough functions: one using the normalized associated Legendre

polynomial (ALP) expansion, the other using the Chebyshev collocation method.15

2.1 Computation of Hough functions using normalized associated Legendre polynomial expansion

The first method uses the expansion in terms of normalized associated Legendre polynomials (ALPs) (e.g., Groves, 1981). To

solve the Laplace’s tidal equation, first expand Θ in terms of the unnormalized associated Legendre polynomials P s
r

Θ=
∞
∑

r=s

crP
s
r (µ). (4)

Substituting into the Laplace tidal equation Eq. (1), one obtains20

Qr−2cr−2+(Mr −λ)cr +Sr+2cr+2 = 0, (r > s), (5)

where

Qr−2 =
(r− s)(r− s− 1)

(2r− 1)(2r− 3)[s/σ− r(r− 1)]
, (6a)

Mr =
σ2[r(r+1)− s/σ]

r2(r+1)2

+
(r+2)2(r+ s+1)(r− s+1)

(r+1)2(2r+3)(2r+1)[s/σ− (r+1)(r+2)]
25

+
(r− 1)2(r2 − s2)

r2(4r2 − 1)[s/σ− r(r− 1)]
, (6b)

Sr+2 =
(r+ s+2)(r+ s+1)

(2r+3)(2r+5)[s/σ− (r+1)(r+2)]
, (6c)
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and

λ=
gh

4a2Ω2
=

1

γ
. (7)

These equations were first given by Hough (1898); see also Lindzen and Chapman (1969).

The normalized associated Legendre polynomials Pr,s are defined in terms of the unnormalized associated Legendre poly-

nomials P s
r by5

Pr,s =

[

2(r+ s)!

(2r+1)(r− s)!

]

−
1

2

P s
r . (8)

Expanding Θ in terms of the normalized associated Legendre polynomials Pr,s

Θ=

∞
∑

r=s

arPr,s(µ), (9)

we have (Dikii, 1965; Groves, 1981)

Lr−2ar−2+(Mr −λ)ar +Lrar+2 = 0 (r > s), (10)10

where

Lr =
[(r+ s+1)(r+ s+2)(r− s+1)(r− s+2)]

1

2

(2r+3)[(2r+2)(2r+5)]
1

2 [s/σ− (r+1)(r+2)]
, (11a)

Mr =−
σ2 − 1

(s/σ+ r)(s/σ− r− 1)

+
(r− s)(r+ s)(s/σ− r+1)

(2r− 1)(2r+1)(s/σ+ r)[s/σ− r(r− 1)]

+
(r− s+1)(r+ s+1)(s/σ+ r+2)

(2r+1)(2r+3)(s/σ− r− 1)[s/σ− (r+1)(r+2)]
. (11b)15

Equation (10) can be written in a matrix form for the coefficients vector x= [as,as+1,as+2,as+3, . . .]
T as the matrix eigenvalue

problem F0x= λx, with matrix F0 defined as

F0 =



























Ms 0 Ls 0 0 . . .

0 Ms+1 0 Ls+1 0 . . .

Ls 0 Ms+2 0 Ls+2 . . .

0 Ls+1 0 Ms+3 0 . . .

0 0 Ls+2 0 Ms+4 . . .
...

...
...

...
...

. . .



























. (12)

Or it may be written as, respectively, F1x1 = λ1x1, x1 = [as,as+2, . . .]
T for symmetric modes, with matrix F1 defined as

F1 =















Ms Ls 0 0 . . .

Ls Ms+2 Ls+2 0 . . .

0 Ls+2 Ms+4 Ls+4 . . .
...

...
...

...
. . .















, (13)20
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and F2x2 = λ2x2, x2 = [as+1,as+3, . . .]
T for antisymmetric modes, with matrix F2 defined as

F2 =















Ms+1 Ls+1 0 0 . . .

Ls+1 Ms+3 Ls+3 0 . . .

0 Ls+3 Ms+5 Ls+5 . . .
...

...
...

...
. . .















. (14)

These are real symmetric matrices and the eigenvalue problem can be solved accurately using the Jacobi methods (e.g.,

Golub and Van Loan, 1996, Chapter 8). The computed eigenvectors are the expansion coefficients.

A few remarks on unnormalized versus normalized ALP expansion are in order here. The unnormalized polynomials (not5

just ALPs, but Legendre and Chebyshev and Hermite polynomials too) have survived because the canonical unnormalized

forms have polynomial coefficients that are integers or rational numbers. This is convenient for many applications, such as

when using exact arithmetic in computer algebra. Note that this property carries over to the Galerkin matrix elements for the

Hough differential equation, which are rational functions of r and s in Eq. (6). Also, for some purposes it is very convenient

to use polynomials which are all 1 at µ= 1, as true for unnormalized Chebyshev and Legendre polynomials. The bad news is10

that unnormalized polynomials generate bigger roundoff errors in all calculations, not just computing matrix eigenvalues. The

Galerkin matrix element formulas are more complicated for normalized polynomials. As we noted above, a particular advantage

of working with normalized ALPs is that the discretization matrix becomes a symmetric matrix. Spectral discretizations often

generate a few inaccurate eigenvalues with nonzero imaginary parts, but the eigenvalues of a symmetric tridiagonal matrix are

always real.15

A note on numerical implementation is relevant here, since denominators of terms in Mr can become zero. We found that

form (6b), instead of (11b), of Mr should be used, even though the two forms are equivalent. In addition, we should set that last

term of (6b) of Mr to zero when it becomes a form of 0/0. Thus, to compute the (s= 2,σ = 1) modes or SW2 (semidiurnal,

westward propagating, zonal wave number 2) modes, we should set the last term of (6b) to zero when r = s= 2.

The Fortran 90 source code of the Jacobi eigenvalue algorithm implemented by Burkardt (2013) can be used to solve the two20

symmetric matrix eigenvalue problems. It can actually, for the (s= 1,σ = 0.5) modes or DW1 (diurnal, westward propagating,

zonal wave number 1) tide, compute the one infinite eigenvalue with P2,1 as the eigemode, “the most important odd mode”

(Lindzen and Chapman, 1969, p. 151) since P2,1 ∝ sinφcosφ. So in this way we will not miss any important eigenvalue or

eigenfunction; see Section 3 for a discussion on the “missing” modes for the solar diurnal modes and the completeness of

Hough functions. When using MATLAB, we can set any inf matrix entry to realmax and then use the MATLAB function eig25

to solve the matrix eigenvalue problem. It is also preferable to compute eigenvalues for symmetric and anti-symmetric modes

separately, especially when there are interior singularities, e.g., for the DW1 tide. A MATLAB implementation is shown in

Appendix B1.

Using the method of expansions in the normalized associated Legendre polynomials, truncated at rmax = 60 on 94 Gaussian

quadrature points, we compute eigenvalues and eigenfunctions for several important solar tides. We use solar day instead of30

sidereal day in our computations. The first several equatorial symmetric and anti-symmetric modes for DW1 are shown in
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Fig. 1. The first several equatorial symmetric and anti-symmetric modes for SW2 of scalar fields are shown in Fig. 2(a)-(b).

The first several equatorial symmetric and anti-symmetric modes for (s= 3,σ = 1.5) modes or TW3 (terdiurnal, westward

propagating, zonal wave number 3) for temperature field are shown in Fig. 3. For completeness, a method of computing Hough

functions for the horizontal wind components by Groves (1981) (with correction) is presented in Appendix A.

2.2 Computation of Hough functions using Chebyshev collocation method5

The Chebyshev collocation method was first used Boyd (1976) to solve the Laplace tidal problem. Expand Θ in terms of the

Chebyshev polynomials Tn(µ):

Θ(µ) = sinmϕ

N
∑

n=0

bnTn(µ), with m=mod(s,2), (15)

which includes a parity factor sinϕ for the odd zonal wavenumber s (Orszag, 1974; Boyd, 1978), where ϕ is colatitude,

ϕ= π/2−φ. See Appendix C for an explanation for parity factor. The Chebyshev collocation points can be defined in different10

ways. When the interior or “roots" points are used, they are defined as (e.g., Boyd, 2001, p. 571):

µi = cos

(

(2i− 1)π

2N

)

, i= 1, ...,N, (16)

where N is total number of collocation points. By using the differential matrices, it is straightforward to apply the Chebyshev

collocation methods to any differential operators. Discussion on property of Chebyshev polynomials and collocation method

can be found in Boyd (2001) and Trefethen (2000). A MATLAB implementation is shown in Appendix B2.15

Parity requirement is discussed in Orszag (1974). To quote from Orszag (1974) “If parity requirements are violated, then

differentiability is lost (at the boundaries, i.e., at the poles), possibly resulting in slow convergence of series expansions and

associated Gibbs’ phenomena. It is important that assumed spectral representations not impose an incorrect symmetry on a

solution if infinite-order accurate results are desired" (see also Boyd (1978)).

To show how accuracy is affected by the parity factor, we compare the eigenfunction expansion coefficients bn computed20

with or without parity factor in Fig. 4. For both terdiurnal and pentadiurnal tides, when the parity factor is removed, only

limited lower-order algebraic convergence rates are achieved: 4th-order for terdiurnal and 7th-order for pentadiurnal. When

the parity factor is included, spectral or exponential convergence is restored. Thus including the parity factor improves the

accuracy dramatically, so solutions are less affected by singularities when they exist. It is important to include the parity factor

when computing eigenvalues and eigenfunctions for DW1 (s= 1,σ = 0.5) modes (see section 2.3). A theoretical justification25

for the parity factor is given in Appendix C.

The MATLAB code listed in Appendix B2 includes a parity factor for the odd zonal wavenumber. It also computes Hough

modes for horizontal wind components. The computed eigenvalue in this case is just (negative) γ and from Eq (3) we can

compute the corresponding equivalent depths h. Hough functions are simply the computed eigenvectors, with different normal-

ization factors that are irrelevant, when Chebyshev differential matrices are used. So the eigenvalue and eigenvector problem30

we solve can be viewed as a direct discretization of the original operator eigenvalue problem (1).
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2.3 Comparison of the two methods

Table 1 compares the number of good eigenvalues that can be obtained using the two methods. The “good” eigenvalue is

defined as one whose relative error

Erel(λ̂) =
|λ− λ̂|

|λ|

is less than 10−6, where λ is the eigenvalue computed at high truncation N = 160.This definition is somewhat arbitrary, but

is useful for comparisons. It shows that for DW1 about 60% of the computed eigenvalues are good using the normalized ALP

expansion method and about 50% of the computed eigenvalues are good using the Chebyshev collocation method; for SW2

a little over 50% of the computed eigenvalues are good using both methods; and for TW3 the number of good eigenvalues5

is about 75% for both methods. We note that for DW1 only about 15% of the computed eigenvalues are good without parity

factor, contrasted to 50% with parity factor. This again illustrates the importance of preserving correct parity.

Considering the “unusual difficulties” in solving the eigenvalue problem of the Laplace tidal equation using general numer-

ical methods, as remarked by Bailey et al. (1991), it is remarkable that Chebyshev collocation method with a parity factor for

odd zonal wavenumber can be used so successfully in solving the eigenvalue problem of the Laplace tidal equation.10

3 A remark on the completeness of Hough functions

Although the completeness of Hough functions for zonal wavenumber s and period T = (s+1)/2 days was questioned earlier

by Lindzen (1965), completeness was later proved by Holl (1970) with further analysis by Homer (1992). Giwa (1974) proved

by direct computation that, for zonal wavenumber s and period T = (s+1)/2 days, Hough functions for tidal oscillations are

the same as the associated Legendre polynomials P s
s+1 and Hough functions form a complete set of orthogonal functions.15

One advantage in using the normalized associated Legendre polynomials as basis functions, as shown in Section 2.1, is that

the eigenvalue problem becomes an eigenvalue problem for two real symmetric matrices, one for symmetric modes and one

for anti-symmetric modes. The spectral theory of (Hermitian) symmetric matrices tells us that these real symmetric matrices

have “a complete set of orthogonal eigenvectors, and that the corresponding eigenvalues are real” (e.g., Lax, 2002, Chapter 28).

Thus this approach in a heuristic way shows the completeness of Hough functions.20

4 Summary and Conclusions

In this paper, we briefly survey the numerical methods for computing eigenvalues and eigenvectors for the Laplace tidal op-

erator. In particular we compare two numerical methods: the normalized associated Legendre polynomial (ALP) expansion

and Chebyshev collocation. The normalized ALP expansion method leads to two symmetric matrices which can be solved

very accurately. It also has an advantage in providing another conceptual understanding for the completeness of eigenfunc-25

tions (Hough functions) of the Laplace tidal operator. We also note some details on numerical implementation and provide a

MATLAB code.
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The Chebyshev collocation method was first used by Boyd (1976) for computing the eigenvalues for the Laplace tidal prob-

lem. Here we compare this method with the ALP expansion and found that both are producing comparable results. Chebyshev

collocation method uses Fourier cosine series in colatitude as the basis functions and is relatively easy to work with. A compact

MATLAB code is provided to facilitate the use of Chebyshev collocation method for the Laplace tidal problem.

The Chebyshev polynomial expansion method is merely a Fourier cosine expansion method in disguise (Boyd, 2001). In5

using the Chebyshev collocation method, it is important to include a parity factor in Chebyshev polynomial expansion for odd

zonal wavenumber modes.

Appendix A: Hough functions for the horizontal wind components

Hough function for the horizontal wind components are (Groves, 1981; Lindzen and Chapman, 1969):

Θu =
(1−µ2)

1

2

σ2 −µ2

[

s

1−µ2
−

µ

σ

d

dµ

]

Θ, (A1a)10

Θv =
(1−µ2)

1

2

σ2 −µ2

[

(s/σ)µ

1−µ2
−

d

dµ

]

Θ, (A1b)

for the eastward and northward components respectively. These can be evaluated numerically by discretizing the differential

operators; or evaluated recursively as follows (Groves, 1981). Let

Su = cosφ Θu, Sv = cosφ Θv, (A2)

then from Eqs. (A1) we have15

σSu −µSv − (s/σ)Θ = 0, (A3a)

µSu − σSv − (1/σ)DΘ= 0, (A3b)

where D = (1−µ2)d/dµ. Note that there misses the factor of 1/σ before DΘ in Eq. (40) of Groves (1981). For s> 0, we

expand Su and Sv in terms of the normalized associated Legendre polynomials:

Su =

∞
∑

r=s

urPr,s(µ), Sv =

∞
∑

r=s

vrPr,s(µ), (A4)20

and use Eq. (9) for expansions of Θ, as well as the recurrence relations for the normalized associated Legendre functions

(which can be verified or derived from the recurrence relations for the unnormalized associated Legendre polynomials)

µPr,s = brPr−1,s + br+1Pr+1,s, (A5a)

DPr,s = (r+1)brPr−1,s − rbrPr+1,s, (A5b)

where25

br = [(r2 − s2)/(4r2 − 1)]
1

2 , (A6)
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then the coefficients of Pr−1,s give

brur = σvr−1 − br−1ur−2

− (1/σ)[(r− 2)ar−2br−1− (r+1)arbr], (A7a)

brvr = σur−1 − br−1vr−2 − (s/σ)ar−1. (A7b)

The first several equatorial symmetric and anti-symmetric modes for SW2 (s= 2,σ = 1) for the zonal wind components5

computed using the above method are shown in Fig. 2(c)-(f). We also used the second-order central finite difference method to

discretize the differential operators in Eqs. (A1a) and (A1b). Comparison of Hough mode computations for wind components

using the method presented above and the finite difference method showing no visual differences, except at the two end points

where the one-sided finite difference has to be used. The MATLAB code listed in Appendix B1 also computes Hough functions

for the horizontal wind components using the central difference method.10

Appendix B: Listing of the MATLAB codes for computing Hough functions

In this Appendix, we list the MATLAB codes that can be used to compute eigenvalue and eigenvectors or Hough functions for

the Laplace tidal equation. One uses the normalized ALP method and the other uses the Chebyshev collocation method.

B1 The normalized ALP method

The first MATLAB code uses the normalized ALP method. MATLAB function pmn_polynomial_value.m (https://15

people.sc.fsu.edu/~jburkardt/m_src/legendre_polynomial/pmn_polynomial_value.m) is used to compute normalized as-

sociated Legendre polynomials. MATLAB function lgwt.m (http://www.mathworks.com/matlabcentral/fileexchange/

4540-legendre-gauss-quadrature-weights-and-nodes/content/lgwt.m) is used to compute the Gauss quadrature points. And

considering the cumbersome programming with the normalized ALP method, in computing the Hough functions for horizontal

wind components, we use the central difference method with MATLAB function central_diff.m (http://www.mathworks.com/20

matlabcentral/fileexchange/12-central-diff-m/content/central_diff.m).

% NALP_HOUGH - Compute Hough functions

% using normalized associated Legendre

% polynomials (ALP)

clear; format long e25

a = 6.370d6; g = 9.81d0;

omega = 2.d0*pi/(24.d0*3600.d0);

%s = 1.d0; sigma = 0.4986348375d0; % DW1

s = 1.d0; sigma = 0.5d0; % DW1

%s = 2.d0; sigma = 1.0d0; % SW230

%s = 3.d0; sigma = 1.5d0; % TW3

N = 62; N2 = N/2; sf = s/sigma;

9

https://people.sc.fsu.edu/~jburkardt/m_src/legendre_polynomial/pmn_polynomial_value.m
https://people.sc.fsu.edu/~jburkardt/m_src/legendre_polynomial/pmn_polynomial_value.m
http://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes/content/lgwt.m
http://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes/content/lgwt.m
http://www.mathworks.com/matlabcentral/fileexchange/12-central-diff-m/content/central_diff.m
http://www.mathworks.com/matlabcentral/fileexchange/12-central-diff-m/content/central_diff.m


% define L(r) and M(r)

L = zeros(N,1); M = zeros(N,1);

for r = s:N+s-1

i = r-s+1;

% define L(r)5

L(i) = sqrt((r+s+1)*(r+s+2)*(r-s+1)*(r-s+2))...

/((2*r+3)*sqrt((2*r+1)*(2*r+5))...

*(sf-(r+1)*(r+2)));

% define M(r)

if (s == 2) && (r == 2)10

M(i) = -(sigma^2*(sf-r*(r+1)))...

/((r*(r+1))^2)...

+(r+2)^2*(r+s+1)*(r-s+1)...

/((r+1)^2*(2*r+3)*(2*r+1)...

*(sf-(r+1)*(r+2)));15

else

M(i) = -(sigma^2*(sf-r*(r+1)))...

/((r*(r+1))^2)...

+(r+2)^2*(r+s+1)*(r-s+1)...

/((r+1)^2*(2*r+3)*(2*r+1)...20

*(sf-(r+1)*(r+2)))...

+(r-1)^2*(r^2-s^2)...

/(r^2*(4*r^2-1)*(sf-r*(r-1)));

end % if

if (M(i) == inf), M(i) = realmax; end25

end % for

% build F1 & F2 matix

f1 = zeros(N2,N2); f2 = zeros(N2,N2);

for i = 1:N2

f1(i,i) = M(2*i-1);30

f2(i,i) = M(2*i);

if (i+1 <= N2)

f1(i,i+1) = L(2*i-1);

f1(i+1,i) = L(2*i-1);

f2(i,i+1) = L(2*i);35

f2(i+1,i) = L(2*i);

end % if

end % for

% symmetric modes

[v1,d1] = eig(f1); lamb1 = diag(d1);40

[~,ii] = sort(-lamb1);

lamb1 = lamb1(ii); v1 = v1(:,ii);

ht1 = 4.d0*a^2*omega^2/g.*lamb1/1000.d0;

% anti-symmetric modes
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[v2,d2] = eig(f2); lamb2 = diag(d2);

[~,ii] = sort(-lamb2);

lamb2 = lamb2(ii); v2 = v2(:,ii);

ht2 = 4.d0*a^2*omega^2/g.*lamb2/1000.d0;

% Legendre-Gauss quadrature points5

nlat = 94; [x,w] = lgwt(nlat,-1,1);

% normalized associated Legendre functions

prs = pmn_polynomial_value(nlat,N+s,s,x);

% compute Hough modes

h1 = zeros(nlat,N2); h2 = zeros(nlat,N2);10

for i = 1:N2

for j = 1:N2

i1 = 2*j+s-1; i2 = 2*j+s;

for ii = 1:nlat

% symmetric modes15

h1(ii,i) = h1(ii,i) + v1(j,i)*prs(ii,i1);

% anti-symmetric modes

h2(ii,i) = h2(ii,i) + v2(j,i)*prs(ii,i2);

end

end20

end

% put them together

lamb = zeros(N,1); hough = zeros(nlat,N);

for i = 1:N2

for j = 1:nlat25

i1 = 2*i-1; i2 = 2*i;

lamb(i1) = lamb1(i);

lamb(i2) = lamb2(i);

hough(j,i1) = h1(j,i);

hough(j,i2) = h2(j,i);30

end

end

[~,ii] = sort(1./lamb);

lamb = lamb(ii); hough = hough(:,ii);

% equivalent depth (km)35

h = 4.d0*a^2*omega^2/g.*lamb/1000.d0;

% compute Hough functions for wind components

b1 = (sigma^2-x.^2).*sqrt(1.d0-x.^2);

b2 = sqrt(1.d0-x.^2)./(sigma^2-x.^2);

dhdx = central_diff(hough,x);40

hough_u = diag(s./b1)*hough ...

- diag(b2.*x./sigma)*dhdx;

hough_v = diag((s/sigma).*x./b1)*hough ...

- diag(b2)*dhdx;

11



clf % plot Hough functions

for j = 1:60

u = hough(:,j); subplot(10,6,j)

plot(x, u,'LineWidth',2), grid on

end5

B2 The Chebyshev collocation method

The second MATLAB code uses the Chebyshev collocation method. It includes a parity factor for modes with odd zonal

wavenumbers (s) (Orszag, 1974; Boyd, 1978).

% CHEB_HOUGH - Compute Hough functions

% using Chebyshev collocation methods10

clear; format long e

a = 6.370d6; g = 9.81d0;

omega = 2.d0*pi/(24.d0*3600.d0);

%s = 1.d0; sigma = 0.4986348375d0; % DW1

s = 1.d0; sigma = 0.5d0; % DW115

%s = 2.d0; sigma = 1.0d0; % SW2

%s = 3.d0; sigma = 1.5d0; % TW3

parity_factor = mod(s,2);

N = 62; [D1,D2,x] = cheb_boyd(N,parity_factor);

a2 = (1-x.^2)./(sigma^2-x.^2);20

a1 = 2.*x.*(1-sigma^2)./(sigma^2-x.^2).^2;

a0 = -1./(sigma^2-x.^2).*((s/sigma) ...

.*(sigma^2+x.^2)./(sigma^2-x.^2) ...

+s^2./(1-x.^2));

A = diag(a2)*D2 + diag(a1)*D1 + diag(a0);25

[v,d] = eig(A); lamb = real(diag(d));

% sort eigenvalues and -vectors

[foo,ii] = sort(-lamb);

lamb = lamb(ii); hough = real(v(:,ii));

% equivalent depth (km)30

h = -4.d0*a^2*omega^2/g./lamb/1000.d0;

% compute Hough functions for wind components

b1 = (sigma^2-x.^2).*sqrt(1.d0-x.^2);

b2 = sqrt(1.d0-x.^2)./(sigma^2-x.^2);

hough_u = diag(s./b1)*hough ...35

- diag(b2.*x./sigma)*D1*hough;

hough_v = diag((s/sigma).*x./b1)*hough ...

- diag(b2)*D1*hough;

clf % plot Hough functions

12



for j = 1:60

u = hough(:,j); subplot(10,6,j)

plot(x, u,'LineWidth',2), grid on

end

And here is the list of the MATLAB codes for computing Chebyshev differential matrices numerically with an option for5

including the parity factor.

function [D1, D2, x] = cheb_boyd(N, pf)

% CHEB_BOYD - Compute differential matrix

% for Chebyshev collocation method;

% It contains an optional parity factor (pf)10

t = (pi/(2*N)*(1:2:(2*N-1)))';

x = cos(t); n = 0:(N-1);

ss = sin(t); cc = cos(t);

sx = repmat(ss,1,N); cx = repmat(cc,1,N);

nx = repmat(n,N,1); tx = repmat(t,1,N);15

tn = cos(nx.*tx);

if pf==0

phi2 = tn;

PT = -nx.*sin(nx.*tx);

phiD2 = -PT./sx;20

PTT = -nx.^2.*tn;

phiDD2 = (sx.*PTT-cx.*PT)./sx.^3;

else

phi2 = tn.*sx;

PT = -nx.*sin(nx.*tx).*sx + tn.*cx;25

phiD2 = -PT./sx;

PTT = -nx.^2.*tn.*sx ...

- 2*nx.*sin(nx.*tx).*cx - tn.*sx;

phiDD2 = (sx.*PTT-cx.*PT)./sx.^3;

end30

D1 = phiD2 /phi2; % the first derivatives

D2 = phiDD2/phi2; % the second derivatives

Appendix C: The parity factor for basis functions on the sphere

Orszag (1974), Boyd (1978), Secs. 18.8 and 18.9 of Chapter 18 in Boyd (2001), and Boyd and Yu (2011), all provide a detailed

analysis of the “parity factor", sin(ϕ)mod(s,2), multiplying each latitudinal basis function. Therefore, we shall content ourselves35

with a heuristic argument here. Note that the analysis here is restricted to scalars; components of vectors are discussed in Boyd

(2001).
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If f(λ,ϕ) is a smooth (infinitely differentiable) scalar function, then it should be continuous when followed along a meridian

over the pole. However, λ jumps discontinuously as the poly is crossed. Continuity requires that

lim
ϕ→0

f(λ,ϕ) = f(λ+ π,ϕ) (C1)

for all λ. Let us expand in a longitudinal Fourier series

f(λ,ϕ) =
∞
∑

s=0

as(ϕ) cos(sλ)+ bs(ϕ) sin(sλ) (C2)5

Because the Fourier basis functions are linearly independent, each term must individually satisfy the continuity condition. All

even wavenumbers have the property of invariance with respect to translation by π and therefore are unchanged when followed

along a meridian over a pole:

cos(2s[λ+ π]) = cos(2sλ+2sπ) = cos(2sλ), s= 0,1,2, . . . (C3)

However, all odd wavenumbers are sign-reversed:10

cos([2s− 1][λ+ π]) = cos([2s− 1]λ+ [2s− 1]π) =−cos([2s− 1]λ), s= 1,2, . . . (C4)

as illustrated in Fig. C.1. The continuity condition cannot be satisfied unless the limit as ϕ→ 0 of all Fourier coefficients for

all odd longitudinal wavenumbers is the only value that is equal to its own negative, zero, that is

lim
ϕ→0

a2s−1(ϕ) = 0 (C5)

(and similarly for the sine coefficients), as shown schematically in Fig. C.2. The parity factor sin(ϕ) enforces this zero for15

all odd wavenumbers. It is unnecessary for even longitudinal wavenumbers because trigonometric functions of even zonal

wavenumber are continuous across the poles automatically.
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Table 1. Number of good eigenvalues of three tidal waves DW1, SW2 and TW3 computed with different trunction N using two different

methods: I - normalized ALP expansion, II - Chebyshev collocation.

N DW1-I DW1-II SW2-I SW2-II TW3-I TW3-II

8 2 0 2 0 3 1

16 6 1 6 5 10 6

24 10 3 10 9 16 13

32 16 9 14 13 22 19

40 22 14 20 18 28 25

48 28 15 24 22 36 32

56 32 24 29 27 42 39

64 38 29 34 32 48 45

72 43 29 38 37 56 52

80 49 39 44 42 62 59
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Figure 1. The first few symmetric and antisymmetric Hough modes for DW1 (s= 1,σ = 0.5) of scalar fields, computed using the normalized

associated Legendre polynomial (ALP) expansions. Panels (a) and (b) are for symmetric modes, (c) and (d) are for anti-symmetric modes.

The labels are: [ -1 ] for the first negative mode with largest negative eigenvalue, [ +1 ] for the first positive mode with largest positive

eigenvalue, and [ 0 ] for the so-called missing mode with zero eigenvalue or infinite equivalent depth.
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Figure 2. The first few symmetric and antisymmetric Hough modes for SW2 (s= 2,σ = 1), computed using the normalized associated

Legendre polynomial (ALP) expansions. The left panels are symmetric modes and the right panels are anti-symmetric modes, except panels

(e) and (f) which are reversed. Panels (a) and (b) are for the scalar fields, (c) and (d) for the zonal wind component, (e) and (f) for the

meridional wind component. The labels are conventional.
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Figure 3. The first few symmetric and antisymmetric Hough modes for TW3 (s= 3,σ = 1.5) of scalar fields, computed using the normalized

associated Legendre polynomial (ALP) expansions. The left panels are symmetric modes and the right panels are anti-symmetric modes.
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Figure 4. The absolute value of the expansion coefficients bn in Eq. (15), truncated at N = 150. The left panels are for the terdiurnal tides,

s=3, σ=1.5, for eigenfunction with eigenvalue γ=17.2098: (a) without parity factor, (b) with parity factor; The right panels are for penta-

diurnal tides s=5, σ=2.5, for eigenfunction with eigenvalue γ=22.9721: (c) without parity factor, (d) with parity factor. An empirical fitting

curve is also shown in red dash.
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Figure C.1. Schematic isolines for Fourier terms as(ϕ)cos(sλ) for various zonal wavenumbers s, shown in a polar projection. Positive-

valued isolines are solid black while negative-valued isolines are red dashed. The thick yellow line segments depict a part of a meridian. For

odd wavenumbers (upper panels), the yellow lines connect solid black contours to red dashed isolines – the function changes sign along the

meridian.
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Figure C.2. Schematic of the behavior of as(ϕ)cos(sλ) along a meridian. If as(0) 6= 0, the Fourier term will have a jump discontinuity

across the pole (thick black curve) when longitude jumps by π.

22


