
Dear Paul,

Our reply to the referees is below. The marked-up version is also included.
Thanks for your efforts with our article.

Best wishes,

Houjun Wang
John Boyd

Response to Referee #1

General comments The authors compare the two methods for computing Hough functions: the
one using normalized associated Legendre functions (ALF) and the other using the Chebyshev
collocation. I don’t see the authors’ contributions either on scientific insights on Hough functions
or on technical improvements for their computation. The manuscript, however, provides a good
review on this subject and MATLAB code provided for the latter method may have educational
value. Therefore, I recommend major revisions to elucidate the value of this paper.
Reply: We thank the referee for his/her constructive comments. We will provide a point-by-
point reply below. And we revise, clarify, and expand the manuscript accordingly.

But it may be helpful to state what we think what our article has made explicit and/or
elaborated on the following points that can be considered as new and useful contribution to
literature on computation of Hough functions:

1. We pointed out a correct way to implement the normalized ALF expansion method, which
was not explicitly stated in the limited previous publications using this method;

2. Although Orszag (1974) stated the importance of including the parity factor for accuracy,
but he didn’t analyze the rate of convergence when the parity factor was omitted. There-
fore, the analysis of convergence rates shown in Fig. 4 of our article represents a new result;
and

3. The connection of the symmetric matrices and completeness of eigenvalues/eigenvectors
are not explicitly stated in the previous publications on Hough functions that we know
of. And here it is made explicit, even though it may be obvious now. But “most research
consists mainly in realizing the obvious and that it is a slow and laborious process” (G.
K. Batchelor, 1959)

Major comments

1. As discussed in the general comments, authors contribution is not clear. What is new from
Boyd (1976)?
Reply: a. Computing speeds have greatly improved. In those days, minimization of floating
point operations was the sole criteria of merit. Today, eigenvalues of a 1000 × 1000 matrix can
be found in half a second on a laptop. For small and medium N where N is the size of the
discretization matrix, ease of use and convenience of programming is more important than pure
speed.

However, the regime of large N is still interesting for some applications. Our paper compares
basis sets on both ease-of-use and floating point speed.
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b. Development of fast algorithms for symmetric tridiagonal matrices has altered the efficiency
questions we show more clearly in the new draft.

In 1976, most computations were performed on the CDC 6600 which had a floating point
speed of 0.6 megaflops when applied to large linear algebra benchmarks. Boyds allocation of
five hours on this machine thus allowed about 10 billion floating point operations. Since the
state of the art eigensolver of those times, QR, had a cost of about O(N3) operations where N
is the size of the matrix, Boyds entire allocation, obtained by writing a short proposal to the
NCAR computing program, would have been exhausted by finding the eigenvalues of a single
matrix of dimension 1000. However, the CDC 6600 couldnt actually do problems of this size.
Its core memory could only store about 50,000 numbers, so a single matrix 200 × 200 exhausts
memory!

In this environment, efficiency triumphed over other considerations.
In 2016, the question of “what is best” no longer has a unique answer. When the goal is to

find thousands of eigenmodes, as might be desirable in Hough function/normal mode analysis
of a global weather forecasting model, efficiency matters. The normalized ALF method, which
yields a symmetric tridiagonal matrix that can be solved in O(N2) operations or less versus
the O(N3) required by the dense matrices generated by the Chebyshev method, the normalized
ALF method is a clear winner.

However, in terms of convenience and ease of use, the collocation method using the parity-
modified Chebyshev [cosine] series is the clear winner.

On a modern laptop, 1010 operations is less than half a second of execution time. Computa-
tional speed is now irrelevant for small N.

2. Discuss advantages and disadvantages of Chebyshev method. Your results clearly show that
the method using normalized ALF is superior. What are the problems with the ALF methods?
Reply: Chebyshev polynomials are really just cosines. Much easier to use than ALF. Can
be summed and interpolated by the FFT. Recursion is stable. ALF recursion is increasingly
unstable as the zonal wavenumber increases, necessitating a bunch of tricks, etc. And the ALF
methods are not as easy to program as the Chebyshev methods. Also see our reply to the
comment #2 of referee #2 below.

3. The ALF method lacks the code and the Chebyshev method lacks the details of computation
(equations).
Reply: We added the MATLAB code using the normalized ALF method. MATLAB func-
tion pmn polynomial value.m (https://people.sc.fsu.edu/~jburkardt/m_src/legendre_
polynomial/pmn_polynomial_value.m) is used to compute normalized associated Legen-
dre polynomials. MATLAB function lgwt.m (http://www.mathworks.com/matlabcentral/
fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes/content/lgwt.m) is
used to compute the Gauss quadrature points. Also considering the cumbersome
programming with the normalized ALF method, in computing the Hough functions
for horizontal wind components, we use the central difference method with MAT-
LAB function central diff.m (http://www.mathworks.com/matlabcentral/fileexchange/
12-central-diff-m/content/central_diff.m).

We also simplified the portion of the MATLAB code for plotting Hough functions.
Chebyshev method is well described in Boyd’s book “Chebyshev and Fourier Spectral Meth-

ods” (as referenced in the article). We added a few remarks and the definition of the Chebyshev
collocation points.

4.a Comparisons deserve a separate section.
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Reply: OK, we made subsections out of them.

4.b Which method is used to compute the reference?
Reply: Doesn’t matter as long as the “exact” answer is vey accurate. Both methods are
exponentially accurate, so we can use either. We actually used both to check one against the
other. We also plot the Chebyshev or ALF coefficients and increase N, the number of degrees of
freedom in our benchmarks, until the coefficients reach a “roundoff plateau”, in the terminology
of Boyd’s book, Chapter 2, at around 10−13.

4.c I believe the ALF method should be used. How do your results compare with previous
studies?
Reply: We agree for large N, but disagree for small N. Also as noted in the article, the advantage
of using normalized ALF method, we get symmetric matrices and with all real eigenvalues; and
the other methods can get a few inaccurate eigenvalues with nonzero imaginary parts. So
an accuracy check, such as by comparing results with different truncations, or with different
methods, is always helpful.

Minor comments

Page 1, Line 7: MATLAB rather than Matlab.
Reply: We did a global replacement.

Page 2, Line -5: This paragraph is not easy to understand before the equations are shown in
the next section.
Reply: Move this paragraph to after the equations are shown.

Page 3, Line 1: What is “x = 1”?
Reply: Changed to µ = 1.

Page 5, Line 5: I suggest to rewrite the sentence in either forms below. We found that form
(6b) rather than (11b) is advantageous ... It is advantageous to use ... Note that “advantage”
is a transitive verb and requires an object. Form (6b) is chosen to advantage what?
Reply: Revised to make it more accurate.

Page 7, Line 19: We can use a general-purpose method to solve eigenvalue problem (in the ALF
methods). I dont understand why the authors refer the Chebyshev method as general-purpose,
implying the ALF methods to be special-purpose or tailored methods.
Reply: What we mean is that the application of Chebyshev collocation methods doesn’t change
very much as problems/equations changed: it is usually straightforward to apply the collocation
methods to different problems/equations. But for the ALF expansion method, as a Galerkin
method, every time the problems/equations changed, such as when the zonal-mean wind is
included, the derivations have to be redone again. To quote from Hesthaven et al. (2007,
Chapter 3; referenced in our article): “The main drawback of the (Fourier-Galerkin) method
is the need to derive and solve a different system of governing ODEs for each problem. This
derivation may prove very difficult, and even impossible.”

But we removed these statements in case they may cause confusion.
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Response to Referee #2

General comments This paper presents implementation of two numerical methods for computing
the eigenvalues and eigenvectors for the Laplace tidal equation, the normalized associated Leg-
endre polynomial expansion and Chebyshev collocation method, which have some advantages
over the commonly used unnormalized associated Legendre polynomial expansion method. The
authors also show results (Fig 4) that demonstrate how the parity factor in the Chebyshev col-
location method affect numerical convergence. A Matlab routine for the Chebyshev method is
included in the paper. The implementation is rather straightforward, and the presentation of
the paper is clear.

Specific comments

1. Parity factor: It will be helpful if the authors could briefly discuss why the parity factor is
dependent on zonal wavenumber.
Reply: We have added an appendix on the parity factor.

2. Number of good eigenvalues (page 6 line 21 and Table 1): what are the percentages of good
values for these modes using the unnormalized ALP method?
Reply: It turns out that, when both the methods are implemented correctly (and the symmetric
and anti-symmetric modes are computed separately, especially for the trickiest DW1 modes), the
percentage of good values using the un-normalized ALP expansion method is the same as that of
the normalized ALP expansion method. This is understandable as the recursive relationship for
the normalized ALP expansion method can be derived directly from the recursive relationship
for the un-normalized ALP expansion method.

However, the factorial factors (that convert the un-normalized ALPs to the normalized ALPs)
grow rapidly with zonal wavenumber s and latitudinal degree, so we suspect that normalized ver-
sus unnormalized differences would appear for larger s and larger Legendre truncations. We can
only say that differences are small in the parameter range for atmospherical tidal applications.

3. Are the computational costs of the two methods comparable? How do they compare with
the unnormalized ALP method?
Reply: The computational costs are all very small, about a second or fractions of a second;
so for most applications this question is of little concern now (also see our response to Major
comment 1 of referee #1).

In addition, we have taken this opportunity to improve and clarify the manuscript in several
places, as can be discerned from the marked-up version.
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Abstract.

Hough functions are the eigenfunctions of
✿✿

the
✿

Laplace’s tidal equation governing fluid motion on a rotating sphere with a

resting basic state. Several numerical methods have been used in the past. In this paper, we compare two of those methods:

normalized associated Legendre polynomial expansion and Chebyshev collocation. Both methods are not widely used, but

both have some advantages over the commonly-used unnormalized associated Legendre polynomial expansion method. Com-5

parable results are obtained using both methods. For the first method we note some details on numerical implementation. The

Chebyshev collocation method was first used for
✿✿✿

the Laplace tidal problem by Boyd (1976) and is relatively easy to use. A

compact Matlab
✿✿✿✿✿✿✿✿✿

MATLAB code is provided for this method. We also illustrate the importance and effect of including a parity

factor in Chebyshev polynomial expansions for modes with odd zonal wavenumbers.

1 Introduction10

Hough functions are the eigenfunctions of the eigenvalue problem of the following form:

F(Θ)+ γΘ= 0, (1)

where F is a linear differential operator, the Laplace’s tidal operator, defined as:

F(Θ)≡
d

dµ

(

1−µ2

σ2
−µ2

dΘ

dµ

)

−

1

σ2
−µ2

[

s

σ

σ2 +µ2

σ2
−µ2

+
s2

1−µ2

]

Θ,

(2)

with µ= sinφ ∈ [−1,1], φ the latitude, s the zonal wavenumber, and σ the dimensionless frequency normalized by 2Ω (Ω the15

earth’s rotation rate), while

γ ≡

4a2Ω2

gh
(3)

is the Lamb’s parameter (Andrews et al., 1987, p. 154), with a the earth’s radius, g the acceleration due to the earth’s gravity,

and h the so-called equivalent depth.
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Several numerical methods have been used to solve the eigenvalue problem for the Laplace tidal equation in the past. Hough

(1898) pioneered the solutions of the Laplace tidal equations using spherical harmonic expansion, or equivalently spherical

harmonic Galerkin method, so eigenfunctions of the eigenvalue problem Eq. (1) that describe the latitudinal dependence are

often called Hough functions (Flattery, 1967; Longuet-Higgins, 1968; Lindzen and Chapman, 1969). The original method of

computing Hough functionsis based on expansion in terms
✿✿✿✿

Each
✿✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿✿

latitude
✿✿✿

and
✿✿✿✿✿✿✿✿

longitude
✿✿

is
✿✿✿✿✿✿✿✿

expanded
✿✿✿

as
✿

a
✿✿✿✿✿✿✿

Fourier5

✿✿✿✿✿

series
✿✿

in
✿✿✿✿✿✿✿✿

longitude
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

usual
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿✿✿

functions,
✿✿✿✿✿✿✿

cos(sλ)
✿✿✿✿

and
✿✿✿✿✿✿✿

sin(sλ),
✿✿✿✿✿

where
✿✿

s,
✿✿✿

an
✿✿✿✿✿✿✿

integer,
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

“zonal
✿✿✿✿✿✿✿✿✿✿✿✿

wavenumber",

✿

λ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

longitude.
✿✿✿✿✿

Each
✿✿✿✿✿✿✿✿✿✿

longitudinal
✿✿✿✿✿✿✿✿✿✿✿✿

trigonometric
✿✿✿✿✿✿✿

function
✿✿

is
✿✿✿✿✿✿✿✿✿

multiplied
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿✿

basis
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

depends
✿✿✿

on

✿✿

the
✿✿✿✿✿

zonal
✿✿✿✿✿✿✿✿✿✿✿

wavenumber
✿✿

s.
✿✿✿✿✿✿

Hough
✿✿✿

and
✿✿✿

his
✿✿✿✿✿✿✿✿✿

successors
✿✿✿✿

used
✿✿

a
✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿✿

basis of unnormalized associated Legendre polynomials

(ALPs). Both Kato (1966) and Flattery (1967) used the method of continued fractions to solve for eigenvalues one by one

with iterations. This is not the most convenient method to work with and some eigenvalues could be missed. Chen and Lu10

(2009) also discussed calculation of Hough functions following the same original formulation without showing any details on

numerical procedures.

Computation of Hough functions based on expansion in terms of normalized ALPs was first used by Dikii (1965). It was

later elaborated in a note by Groves (1981), along with a method of evaluating related wind functions. Jones (1970) used group-

theoretical methods to obtain a matrix representation of Hough functions by expanding in normalized spherical harmonics.15

Although it is closely related to the original method of expansion in terms of unnormalized ALPs, expansion in terms of

the normalized ALPs leads to two symmetric matrices for symmetric and anti-symmetric modes. This has both computational

and conceptual advantages over the original expansion in unnormalized ALPs: 1) the eigenvalue problem of symmetric matrix

can be solved very accurately by Jacobi method (e.g., Demmel and Veselić, 1992), and 2) symmetry guarantees that all of the

“eigenvalues are real and that there is an orthonormal basis of eigenvectors" (Golub and Van Loan, 1996, p. 393).20

There is also another way of computing Hough functions or global normal modes, such as Longuet-Higgins (1968); Kasahara

(1976); Žagar et al. (2015), also using spherical harmonic expansion, in which the equivalent depth is assigned (for each zonal

wavenumber) and the frequency of the normal modes are obtained as the eigenvalues. This is different from eigenvalue problem

for tidal waves in which the wave frequencies and zonal wavenumber are specified and eigenvalues are obtained and used to

compute equivalent depths, just as stated in the original eigenvalue problem Eq. (1).25

The Chebyshev

✿✿✿

The
✿

collocation method was first used by Boyd (1976)to solve the eigenvalue problem for the Laplace tidal equation. It uses

Chebyshev polynomials in the coordinate µ= sinφ,
✿✿✿✿✿✿

applied
✿✿

to
✿✿✿✿✿✿✿

compute
✿✿✿✿✿✿

Hough
✿✿✿✿✿✿✿✿

functions
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

Boyd (1976).
✿✿✿✿

His
✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿✿

basis

✿✿✿✿✿✿✿

functions
✿✿✿✿✿✿✿

replace
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿

Legendre
✿✿✿✿✿✿✿✿

functions
✿✿✿

by
✿✿✿✿✿

cosine
✿✿✿✿✿✿✿✿

functions
✿✿✿

of
✿✿✿✿✿✿✿✿

colatitude
✿✿

ϕ
✿✿✿✿✿✿✿✿✿

multiplied
✿✿

by
✿✿

a
✿✿✿✿✿✿

“parity
✿✿✿✿✿✿

factor"
✿

which is

equivalent to using an ordinary Fourier cosine or sine series in latitude. The Chebyshev collocation method isa general-purpose30

numerical method. Boyd (1976)
✿✿✿✿✿✿

sin(ϕ)
✿✿✿

for
✿✿✿

odd
✿✿✿✿

zonal
✿✿✿✿✿✿✿✿✿✿✿

wavenumber
✿

s
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

constant
✿✿✿✿

one
✿✿✿

for
✿✿✿✿

even
✿✿✿✿✿

zonal
✿✿✿✿✿✿✿✿✿✿✿✿

wavenumbers.
✿✿✿✿

The

✿✿✿✿✿

parity
✿✿✿✿✿

factor
✿✿

is
✿✿✿✿✿✿✿✿

explained
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

C.
✿✿

In
✿✿✿✿✿✿✿

addition,
✿✿✿

the
✿✿✿✿✿✿✿✿

modified
✿✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿✿✿

variable
✿

µ≡ cos(ϕ) = sin(φ) ∈
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[−1,1
✿✿✿✿

]

2



✿

is
✿✿✿✿✿

often
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

analyze
✿✿✿✿

and
✿✿✿✿

solve
✿✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿

equations
✿✿

in
✿✿✿✿✿✿✿✿

spherical
✿✿✿✿✿✿✿✿

geometry.
✿✿✿✿

The
✿✿✿✿✿✿

reason
✿✿

is
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿

trigonometric
✿✿✿✿✿✿✿✿

functions
✿✿✿

are

✿✿✿✿✿✿✿

replaced
✿✿

by
✿✿✿✿✿✿✿

powers
✿✿

of
✿✿✿

µ,
✿✿✿✿✿✿✿✿✿

simplifying
✿✿✿✿✿✿

almost
✿✿✿✿✿✿✿✿✿✿

everything.
✿✿✿✿

And
✿✿✿✿✿✿✿✿

denoting
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿✿

polynomials
✿✿✿

by
✿✿✿✿✿✿

Tn(x),
✿✿✿✿✿✿✿✿✿✿✿

Chebyshev’s

✿✿✿✿✿✿

famous
✿✿✿✿✿✿

identity
✿✿✿✿✿✿

shows
✿✿✿

that
✿

Tn(µ) = Tn(cos(ϕ)) = cos(nϕ), n= 0,1, . . . .
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

✿✿✿✿

Thus
✿

a
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿

cosine
✿✿✿✿✿

series
✿✿

in
✿✿✿✿✿✿✿✿✿

colatitude
✿✿

is,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

coefficients,
✿✿✿✿

also
✿

a
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿✿

polynomial
✿✿✿✿✿

series
✿✿

in
✿✿

µ.
✿
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✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Boyd (1976) and
✿✿✿✿✿✿✿✿✿✿✿✿

Orszag (1974) listed several advantages of Chebyshev polynomial expansion
✿✿✿✿✿✿✿✿

collocation
✿

over spher-

ical harmonic expansion (basis function set becomes simpler and not restricted to spherical domain) as well as

collocationmethod over Galerkin method (numerical quadrature is used to approximate the integrals)
✿✿✿✿✿✿✿

Galerkin
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

approximations.

✿✿✿✿

First,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cosines/Chebyshev
✿✿✿✿✿✿✿✿✿✿✿

polynomials
✿✿✿

are
✿✿✿✿✿

much
✿✿✿✿✿✿✿

simpler
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿✿

Legendre
✿✿✿✿✿✿✿✿✿

functions,
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿

different
✿✿✿

for
✿✿✿✿✿

each

✿✿✿✿✿✿✿

different
✿✿✿✿✿

zonal
✿✿✿✿✿✿✿✿✿✿✿

wavenumber
✿✿

s.
✿✿✿✿✿✿✿

Second,
✿✿✿✿✿✿✿✿✿✿

collocation,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

evaluates
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

interpolates
✿

,
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿

easier
✿✿✿

to
✿✿✿✿✿✿✿

program
✿✿✿✿✿

than
✿✿✿

the10

✿✿✿✿✿✿✿

Galerkin
✿✿✿✿✿✿✿

method,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

integrates. These advantages make it relative easy to work with
✿✿✿✿

much
✿✿✿✿✿✿

easier
✿✿

to
✿✿✿✿✿

apply
✿✿✿

the
✿

Cheby-

shev collocation method than with
✿✿

the
✿

spherical harmonic Galerkin method: derivation is no cumbersome and numerical

implementation is straightforward. See also (Hesthaven et al., 2007, Chapter 3) for a discussion of advantages of Fourier-

collocation methods over the Fourier-Galerkin methods.

A few remarks on unnormalized versus normalized ALP expansion are also in order here. The unnormalized polynomials15

(not just ALPs, but Legendre and Chebyshev and Hermite polynomials too) have survived because the canonical unnormalized

forms have polynomial coefficients that are integers or rational numbers. This is convenient for many applications, such as

when using exact arithmetic in computer algebra. Note that this property carries over to the Galerkin matrix elements for the

Hough differential equation, which are rational functions of r and s in Eq. (6). Also, for some purposes it is very convenient

to use polynomials which are all 1 at x=1, as true for unnormalized Chebyshev and Legendre polynomials. The bad news is20

that unnormalized polynomials generate bigger roundoff errors in all calculations, not just computing matrix eigenvalues. The

Galerkin matrix element formulas are more complicated for normalized polynomials. As we noted above, aparticular advantage

of working with normalized ALPs is that the discretization matrix becomes a symmetric matrix. Spectral discretizations often

generate a few inaccurate eigenvalues with nonzero imaginary parts, but the eigenvalues of a symmetric tridiagonal matrix are

always real.25

In this paper we compare the solution of the eigenvalue problem for the Laplace tidal operator using two numerical methods,

the normalized
✿✿✿✿✿✿✿✿✿

normalized ALP expansion method and the Chebyshev collocation method. Both methods are not widely used,

but both have some advantages over the commonly-used unnormalized ALP expansion. For the first method we note some

details of numerical implementation as the denominators in some terms of matrix entries can become zero. For the second

method a compact Matlab
✿✿✿✿✿✿✿✿

MATLAB code is provided to facilitate its use. We also discuss other related issues and show that30

there is no accuracy penalty in using the Chebyshev collocation method.

2 Computation of Hough functionsusing normalized associated Legendre polynomial expansion
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✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿

section,
✿✿✿

we
✿✿✿✿✿✿✿✿

compare
✿✿✿✿

two
✿✿✿✿✿✿✿

methods
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿✿✿

Hough
✿✿✿✿✿✿✿✿✿

functions:
✿✿✿

one
✿✿✿✿✿

using
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿✿

Legendre

✿✿✿✿✿✿✿✿✿

polynomial
✿✿✿✿✿✿

(ALP)
✿✿✿✿✿✿✿✿✿

expansion,
✿✿✿

the
✿✿✿✿

other
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿✿

method.

2.1
✿✿✿✿✿✿✿✿✿✿✿

Computation
✿✿

of
✿✿✿✿✿✿

Hough
✿✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿✿

Legendre
✿✿✿✿✿✿✿✿✿✿

polynomial
✿✿✿✿✿✿✿✿✿

expansion

The first method uses the expansion in terms of normalized associated Legendre polynomials (ALPs) (e.g., Groves, 1981). To

solve the Laplace’s tidal equation, first expand Θ in terms of the unnormalized associated Legendre polynomials P s
r5

Θ=
∞
∑

r=s

crP
s
r (µ). (4)

Substituting into the Laplace tidal equation Eq. (1), one obtains

Qr−2cr−2+(Mr −λ)cr +Sr+2cr+2 = 0, (r > s), (5)

where

Qr−2 =
(r− s)(r− s− 1)

(2r− 1)(2r− 3)[s/σ− r(r− 1)]
, (6a)10

Mr =
σ2[r(r+1)− s/σ]

r2(r+1)2

+
(r+2)2(r+ s+1)(r− s+1)

(r+1)2(2r+3)(2r+1)[s/σ− (r+1)(r+2)]

+
(r− 1)2(r2 − s2)

r2(4r2 − 1)[s/σ− r(r− 1)]
, (6b)

Sr+2 =
(r+ s+2)(r+ s+1)

(2r+3)(2r+5)[s/σ− (r+1)(r+2)]
, (6c)

and15

λ=
gh

4a2Ω2
=

1

γ
. (7)

These equations were first given by Hough (1898); see also Lindzen and Chapman (1969).

The normalized associated Legendre polynomials Pr,s are defined in terms of the unnormalized associated Legendre poly-

nomials P s
r by

Pr,s =

[

2(r+ s)!

(2r+1)(r− s)!

]

−
1

2

P s
r . (8)20

Expanding Θ in terms of the normalized associated Legendre polynomials Pr,s

Θ=
∞
∑

r=s

arPr,s(µ), (9)

we have (Dikii, 1965; Groves, 1981)

Lr−2ar−2+(Mr −λ)ar +Lrar+2 = 0 (r > s), (10)
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where

Lr =
[(r+ s+1)(r+ s+2)(r− s+1)(r− s+2)]

1

2

(2r+3)[(2r+2)(2r+5)]
1

2 [s/σ− (r+1)(r+2)]
, (11a)

Mr =−

σ2
− 1

(s/σ+ r)(s/σ− r− 1)

+
(r− s)(r+ s)(s/σ− r+1)

(2r− 1)(2r+1)(s/σ+ r)[s/σ− r(r− 1)]

+
(r− s+1)(r+ s+1)(s/σ+ r+2)

(2r+1)(2r+3)(s/σ− r− 1)[s/σ− (r+1)(r+2)]
. (11b)5

Equation (10) can be written in a matrix form for the coefficients vector x= [as,as+1,as+2,as+3, . . .]
T as the matrix eigenvalue

problem F0x= λx, with matrix F0 defined as

F0 =



























Ms 0 Ls 0 0 . . .

0 Ms+1 0 Ls+1 0 . . .

Ls 0 Ms+2 0 Ls+2 . . .

0 Ls+1 0 Ms+3 0 . . .

0 0 Ls+2 0 Ms+4 . . .

...
...

...
...

...
. . .



























. (12)

Or it may be written as, respectively, F1x1 = λ1x1, x1 = [as,as+2, . . .]
T for symmetric modes, with matrix F1 defined as

F1 =















Ms Ls 0 0 . . .

Ls Ms+2 Ls+2 0 . . .

0 Ls+2 Ms+4 Ls+4 . . .

...
...

...
...

. . .















, (13)10

and F2x2 = λ2x2, x2 = [as+1,as+3, . . .]
T for antisymmetric modes, with matrix F2 defined as

F2 =















Ms+1 Ls+1 0 0 . . .

Ls+1 Ms+3 Ls+3 0 . . .

0 Ls+3 Ms+5 Ls+5 . . .

...
...

...
...

. . .















. (14)

These are real symmetric matrices and the eigenvalue problem can be solved accurately using the Jacobi methods (e.g.,

Golub and Van Loan, 1996, Chapter 8). The computed eigenvectors are the expansion coefficients.

A
✿✿✿

few
✿✿✿✿✿✿✿

remarks
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

unnormalized
✿✿✿✿✿✿

versus
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿

ALP
✿✿✿✿✿✿✿✿✿

expansion
✿✿✿

are
✿✿

in
✿✿✿✿✿

order
✿✿✿✿

here.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

unnormalized
✿✿✿✿✿✿✿✿✿✿✿

polynomials
✿✿✿✿

(not15

✿✿✿

just
✿✿✿✿✿✿

ALPs,
✿✿✿

but
✿✿✿✿✿✿✿✿

Legendre
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿

and
✿✿✿✿✿✿✿

Hermite
✿✿✿✿✿✿✿✿✿✿✿

polynomials
✿✿✿✿

too)
✿✿✿✿

have
✿✿✿✿✿✿✿

survived
✿✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿✿✿✿

canonical
✿✿✿✿✿✿✿✿✿✿✿✿

unnormalized

✿✿✿✿✿

forms
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

polynomial
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿

integers
✿✿✿

or
✿✿✿✿✿✿✿

rational
✿✿✿✿✿✿✿✿

numbers.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿

convenient
✿✿✿

for
✿✿✿✿✿

many
✿✿✿✿✿✿✿✿✿✿✿

applications,
✿✿✿✿

such
✿✿✿

as

✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿✿✿

exact
✿✿✿✿✿✿✿✿✿

arithmetic
✿✿

in
✿✿✿✿✿✿✿✿

computer
✿✿✿✿✿✿✿

algebra.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

this
✿✿✿✿✿✿✿✿

property
✿✿✿✿✿✿

carries
✿✿✿✿

over
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

Galerkin
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

elements
✿✿✿

for
✿✿✿

the
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✿✿✿✿✿

Hough
✿✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿

equation,
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿

rational
✿✿✿✿✿✿✿✿

functions
✿✿

of
✿✿

r
✿✿✿

and
✿✿

s
✿✿

in
✿✿✿

Eq.
✿✿✿✿

(6).
✿✿✿✿

Also,
✿✿✿

for
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿

purposes
✿

it
✿✿

is
✿✿✿✿

very
✿✿✿✿✿✿✿✿✿✿

convenient

✿✿

to
✿✿✿

use
✿✿✿✿✿✿✿✿✿✿

polynomials
✿✿✿✿✿✿

which
✿✿✿

are
✿✿

all
✿✿

1
✿✿

at
✿✿✿✿✿

µ= 1,
✿✿

as
✿✿✿✿

true
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

unnormalized
✿✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿

and
✿✿✿✿✿✿✿✿

Legendre
✿✿✿✿✿✿✿✿✿✿✿

polynomials.
✿✿✿✿

The
✿✿✿

bad
✿✿✿✿✿

news
✿✿

is

✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿

unnormalized
✿✿✿✿✿✿✿✿✿✿

polynomials
✿✿✿✿✿✿✿

generate
✿✿✿✿✿✿

bigger
✿✿✿✿✿✿✿

roundoff
✿✿✿✿✿

errors
✿✿

in
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿

calculations,
✿✿✿

not
✿✿✿

just
✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿

eigenvalues.
✿✿✿✿

The

✿✿✿✿✿✿✿

Galerkin
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿

element
✿✿✿✿✿✿✿✿

formulas
✿✿✿

are
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

complicated
✿✿✿

for
✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿✿✿✿✿✿✿✿

polynomials.
✿✿✿

As
✿✿✿

we
✿✿✿✿

noted
✿✿✿✿✿✿

above,
✿

a
✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿✿✿

advantage

✿✿

of
✿✿✿✿✿✿✿

working
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿✿

ALPs
✿✿

is
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿

becomes
✿✿

a
✿✿✿✿✿✿✿✿✿

symmetric
✿✿✿✿✿✿

matrix.
✿✿✿✿✿✿✿

Spectral
✿✿✿✿✿✿✿✿✿✿✿✿

discretizations
✿✿✿✿✿

often5

✿✿✿✿✿✿✿

generate
✿

a
✿✿✿✿

few
✿✿✿✿✿✿✿✿

inaccurate
✿✿✿✿✿✿✿✿✿✿

eigenvalues
✿✿✿✿

with
✿✿✿✿✿✿✿

nonzero
✿✿✿✿✿✿✿✿✿

imaginary
✿✿✿✿✿

parts,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿✿

eigenvalues
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿

symmetric
✿✿✿✿✿✿✿✿✿

tridiagonal
✿✿✿✿✿✿

matrix
✿✿✿

are

✿✿✿✿✿✿

always
✿✿✿✿

real.

✿

A
✿

note on numerical implementation is relevant here, since denominators of terms in Mr can become zero. We found

that form (6b), instead of the form of (11b), of Mr can be usedto advantage
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿

used, even though the two forms are

equivalent. In addition, we should set that last term of (6b) of Mr to zero when it becomes a form of 0/0. Thus, to compute the10

(s= 2,σ = 1) modes or SW2 (semidiurnal, westward propagating, zonal wave number 2) modes, we should set the last term

of (6b) to zero when r = s= 2.

The Fortran 90 source code of the Jacobi eigenvalue algorithm implemented by Burkardt (2013) can be used to solve

the two symmetric matrix eigenvalue problems. It can actually, for the (s= 1,σ = 0.5) modes or DW1 (diurnal, westward

propagating, zonal wave number 1) tide, compute the one infinity
✿✿✿✿✿✿

infinite eigenvalue with P2,1 as the eigemode, “the most15

important odd mode” (Lindzen and Chapman, 1969, p. 151) since P2,1 ∝ sinφcosφ. So in this way we will not miss any

important eigenvalue or eigenfunction; see Section 3 for a discussion on the “missing” modes for the solar diurnal modes and

the completeness of Hough functions. When using Matlab
✿✿✿✿✿✿✿✿

MATLAB, we can set any inf matrix entry to realmax and then

use the Matlab
✿✿✿✿✿✿✿✿

MATLAB
✿

function eig to solve the matrix eigenvalue problem. It is also preferable
✿✿✿✿✿✿✿✿

preferable to compute

eigenvalues for symmetric and anti-symmetric modes separately, especially when there are interior singularities, e.g., for the20

DW1 tide.
✿

A
✿✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

is
✿✿✿✿✿

shown
✿✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

B1.
✿

Using the method of expansions in the normalized associated Legendre polynomials, truncated at rmax = 60 on 94 Gaussian

quadrature points, we compute eigenvalues and eigenfunctions for several important solar tides. We use solar day instead of

sidereal day in our computations. The first several equatorial symmetric and anti-symmetric modes for DW1 are shown in

Fig. 1. The first several equatorial symmetric and anti-symmetric modes for SW2 of scalar fields are shown in Fig. 2(a)-(b).25

The first several equatorial symmetric and anti-symmetric modes for (s= 3,σ = 1.5) modes or TW3 (terdiurnal, westward

propagating, zonal wave number 3) for temperature field are shown in Fig. 3. For completeness, a method of computing Hough

functions for the horizontal wind components by Groves (1981)
✿✿✿✿

(with
✿✿✿✿✿✿✿✿✿

correction)
✿

is presented in Appendix A.
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3 Computation of Hough functions using Chebyshev collocation method

2.1
✿✿✿✿✿✿✿✿✿✿✿

Computation
✿✿

of
✿✿✿✿✿✿

Hough
✿✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿✿

method

The Chebyshev collocation method was first used Boyd (1976) to solve
✿✿✿

the Laplace tidal problem. Expand Θ in terms of the

Chebyshev polynomials Tn(µ):

Θ(µ) = sinmϕ

N
∑

n=0

bnTn(µ), with m=mod(s,2), (15)5

which includes a parity factor sinϕ for the odd zonal wavenumber s (Orszag, 1974; Boyd, 1978), where ϕ is colatitude,

ϕ= π/2−φ. Note that the Chebyshev collocation method uses Chebyshev polynomials in the coordinate of µ= sinφ, which

is equivalent to using an ordinary Fourier cosine or sine series in latitude, albeit on nonuniform distributed Chebyshev grids

clustered near the two boundary points
✿✿✿

See
✿✿✿✿✿✿✿✿

Appendix
✿✿

C
✿✿✿

for
✿✿✿

an
✿✿✿✿✿✿✿✿✿

explanation
✿✿✿

for
✿✿✿✿✿

parity
✿✿✿✿✿✿

factor.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿

points

✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

defined
✿✿

in
✿✿✿✿✿✿✿

different
✿✿✿✿✿

ways.
✿✿✿✿✿

When
✿✿✿

the
✿✿✿✿✿✿✿

interior
✿✿

or
✿✿✿✿✿✿

“roots"
✿✿✿✿✿

points
✿✿✿

are
✿✿✿✿✿

used,
✿✿✿✿

they
✿✿✿

are
✿✿✿✿✿✿

defined
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Boyd, 2001, p. 571):
✿

10

µi = cos

(

(2i− 1)π

2N
✿✿✿✿✿✿✿✿

)

, i= 1, ...,N,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(16)

✿✿✿✿✿

where
✿✿

N
✿✿

is
✿✿✿✿

total
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿

points.
✿✿✿

By
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿

matrices,
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿✿

to
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Chebyshev

✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿✿

methods
✿✿

to
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿

operators. Discussion on property of Chebyshev polynomials and collocation method

can be found in Boyd (2001) and Trefethen (2000). A Matlab
✿✿✿✿✿✿✿✿

MATLAB implementation is shown in Appendix B
✿✿

B2.

Parity requirement is discussed in Orszag (1974). To quote from Orszag (1974) “If parity requirements are violated, then15

differentiability is lost (at the boundaries, i.e., at the poles), possibly resulting in slow convergence of series expansions and

associated Gibbs’ phenomena. It is important that assumed spectral representations not impose an incorrect symmetry on a

solution if infinite-order accurate results are desired" (see also Boyd (1978)).

To show how accuracy is affected by
✿✿

the
✿

parity factor, we compare the eigenfunction expansion coefficients bn computed

with or without parity factor in Fig. 4. For both terdiurnal and pentadiurnal tides, when the parity factor is removed, only limited20

lower-order algebraic convergence rates are achieved: 4th-order for terdiurnal and 7th-order for pentadiurnal. When the parity

factor is included, spectral or exponential convergence is restored. Thus including the parity factor improves the accuracy

dramatically, so solutions are less affected by singularities when they exist. It is important to include the parity factor when

computing eigenvalues and eigenfunctions for DW1 (s= 1,σ = 0.5) modes (see discussion below).
✿✿✿✿✿✿

section
✿✿✿✿

??).
✿✿

A
✿✿✿✿✿✿✿✿✿

theoretical

✿✿✿✿✿✿✿✿✿

justification
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

parity
✿✿✿✿✿✿

factor
✿

is
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

C.
✿

25

The Matlab
✿✿✿✿✿✿✿✿

MATLAB code listed in Appendix B
✿✿✿

B2 includes a parity factor for the odd zonal wavenumber. It also computes

Hough modes for horizontal wind components. The computed eigenvalue in this case is just (negative) γ and from Eq (3) we

can compute the corresponding equivalent depths h. Hough functions are simply the computed eigenvectors, with different

normalization factors that are irrelevant, when Chebyshev differential matrices are used. So the eigenvalue and eigenvector

problem we solve can be viewed as a direct discretization of the original operator eigenvalue problem (1).
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2.2
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿

methods

Table 1 compares the number of good eigenvalues that can be obtained using the two methods. The “good” eigenvalue is

defined as one whose relative error

Erel(λ̂) =
|λ− λ̂|

|λ|

is less than 10−6, where λ is the eigenvalue computed at high truncation N = 160, considered to be accurate for purpose

of comparison.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

definition
✿✿

is
✿✿✿✿✿✿✿✿✿

somewhat
✿✿✿✿✿✿✿

arbitrary,
✿✿✿✿

but
✿✿

is
✿✿✿✿✿

useful
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

comparisons.
✿

It shows that for DW1 about 60% of the

computed eigenvalues are good using the normalized ALP expansion method and about 50% of the computed eigenvalues are5

good using the Chebyshev collocation method; for SW2 a little over 50% of the computed eigenvalues are good using both

methods; and for TW3 the number of good eigenvalues is about 75% for both methods. We note that for DW1 only about 15%

of the computed eigenvalues are good without parity factor, contrasted to 50% with parity factor. This again illustrates the

importance of preserving correct parity.

Considering the “unusual difficulties” in solving the eigenvalue problem of
✿✿

the Laplace tidal equation using general numer-10

ical methods, as remarked by Bailey et al. (1991), it is remarkable that Chebyshev collocation method with a parity factor for

odd zonal wavenumber can be used so successfully in solving the eigenvalue problem of the Laplace tidal equation.

3 A remark on the completeness of Hough functions

Although the completeness of Hough functions for zonal wavenumber s and period T = (s+1)/2 days was questioned earlier

by Lindzen (1965), it
✿✿✿✿✿✿✿✿✿✿✿

completeness was later proved by Holl (1970) , see also
✿✿✿✿

with
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿

analysis
✿✿

by
✿

Homer (1992). Giwa15

(1974) proved by direct computation that, for zonal wavenumber s and period T = (s+1)/2 days, Hough functions for tidal

oscillations are the same as the associated Legendre polynomials P s
s+1 and Hough functions form a complete set of orthogonal

functions.

One advantage in using the normalized associated Legendre polynomials as basis functions, as shown in Section 2.1, is that

the eigenvalue problem becomes an eigenvalue problem for two real symmetric matrices, one for symmetric modes and one20

for anti-symmetric modes. The spectral theory of (Hermitian) symmetric matrices tells us that these real symmetric matrices

have “a complete set of orthogonal eigenvectors, and that the corresponding eigenvalues are real” (e.g., Lax, 2002, Chapter 28).

Thus this approach in a heuristic way shows the completeness of Hough functions.

4 Summary and Conclusions

In this paper, we briefly survey the numerical methods for computing eigenvalues and eigenvectors for the Laplace tidal op-25

erator. In particular we compare two numerical methods: the normalized associated Legendre polynomial (ALP) expansion

and Chebyshev collocation. The normalized ALP expansion method leads to two symmetric matrices which can be solved

very accurately. It also has an advantage in providing another conceptual understanding for the completeness of eigenfunc-
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tions (Hough functions) of
✿✿✿

the Laplace tidal operator. We also note some details on numerical implementation
✿✿✿

and
✿✿✿✿✿✿

provide
✿✿

a

✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿

code.

The Chebyshev collocation method was first used by Boyd (1976) for computing the eigenvalues for the Laplace tidal prob-

lem. Here we compare this method with the ALP expansion and found that both are producing comparable results. Chebyshev5

collocation is a general-purpose numerical method
✿✿✿✿✿✿

method
✿✿✿✿✿

uses
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿

cosine
✿✿✿✿✿

series
✿✿

in
✿✿✿✿✿✿✿✿

colatitude
✿✿✿

as
✿✿✿

the
✿✿✿✿

basis
✿✿✿✿✿✿✿✿

functions
✿

and

is relatively easy to work with. A compact Matlab
✿✿✿✿✿✿✿✿✿

MATLAB code is provided to facilitate the use of Chebyshev collocation

method for
✿✿✿

the Laplace tidal problem.

The Chebyshev polynomial expansion method is merely a Fourier cosine expansion method in disguise (Boyd, 2001). In

using the Chebyshev collocation method, it is important to include a parity factor in Chebyshev polynomial expansion for odd10

zonal wavenumber modes.

Appendix A: Hough functions for the horizontal wind components

Hough function for the horizontal wind components are (Groves, 1981; Lindzen and Chapman, 1969):

Θu =
(1−µ2)

1

2

σ2
−µ2

[

s

1−µ2
−

µ

σ

d

dµ

]

Θ, (A1a)

Θv =
(1−µ2)

1

2

σ2
−µ2

[

(s/σ)µ

1−µ2
−

d

dµ

]

Θ, (A1b)15

for the eastward and northward components respectively. These can be evaluated numerically by discretizing the differential

operators; or evaluated recursively as follows (Groves, 1981). Let

Su = cosφ Θu, Sv = cosφ Θv, (A2)

then from Eqs. (A1) we have

σSu −µSv − (s/σ)Θ = 0, (A3a)20

µSu − σSv − (1/σ)DΘ= 0, (A3b)

where D = (1−µ2)d/dµ. Note that there misses the factor of 1/σ before DΘ in Eq. (40) of Groves (1981). For s> 0, we

expand Su and Sv in terms of the normalized associated Legendre polynomials:

Su =

∞
∑

r=s

urPr,s(µ), Sv =

∞
∑

r=s

vrPr,s(µ), (A4)

and use Eq. (9) for expansions of Θ, as well as the recurrence relations for the normalized associated Legendre functions25

(which can be verified or derived from the recurrence relations for the unnormalized associated Legendre polynomials)

µPr,s = brPr−1,s + br+1Pr+1,s, (A5a)

DPr,s = (r+1)brPr−1,s − rbrPr+1,s, (A5b)
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where

br = [(r2 − s2)/(4r2 − 1)]
1

2 , (A6)

then the coefficients of Pr−1,s give

brur = σvr−1 − br−1ur−25

− (1/σ)[(r− 2)ar−2br−1− (r+1)arbr], (A7a)

brvr = σur−1 − br−1vr−2 − (s/σ)ar−1. (A7b)

The first several equatorial symmetric and anti-symmetric modes for SW2 (s= 2,σ = 1) for the zonal wind components

computed using the above method are shown in Fig. 2(c)-(f). We also used the second-order central finite difference method to

discretize the differential operators in Eqs. (A1a) and (A1b). Comparison of Hough mode computations for wind components10

using the method presented above and the finite difference method showing no visual differences, except at the two end points

where the one-sided finite difference has to be used. The Matlab code for the Chebyshev collocation method also compute

✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿✿

code
✿✿✿✿✿

listed
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

B1
✿✿✿✿

also
✿✿✿✿✿✿✿✿

computes
✿

Hough functions for the horizontal wind components
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿

central

✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

method.

Appendix B: Listing of the Matlab
✿✿✿✿✿✿✿✿✿

MATLAB codes for computing Hough functions15

In this Appendix, we list the Matlab
✿✿✿✿✿✿✿✿

MATLAB
✿

codes that can be used to compute eigenvalue and eigenvectors or Hough

functions for the Laplace tidal equation.
✿✿✿

One
✿✿✿✿

uses
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿

ALP
✿✿✿✿✿✿✿

method
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿

uses
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿✿

collocation

✿✿✿✿✿✿✿

method.
✿

B1
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿

ALP
✿✿✿✿✿✿✿

method

✿✿✿

The
✿✿✿✿✿

first
✿✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿✿

code
✿✿✿✿✿

uses
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿✿

ALP
✿✿✿✿✿✿✿✿

method.
✿✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

pmn_polynomial_value.m
✿

(https://20

people.sc.fsu.edu/~jburkardt/m_src/legendre_polynomial/pmn_polynomial_value.m
✿

)
✿✿✿

is
✿✿✿✿✿✿

used
✿✿✿✿

to
✿✿✿✿✿✿✿✿✿

compute
✿✿✿✿✿✿✿✿✿✿✿

normalized

✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿✿

Legendre
✿✿✿✿✿✿✿✿✿✿✿✿

polynomials.
✿✿✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿

lgwt.m
✿

(http://www.mathworks.com/matlabcentral/fileexchange/

4540-legendre-gauss-quadrature-weights-and-nodes/content/lgwt.m)
✿✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿✿

Gauss
✿✿✿✿✿✿✿✿✿

quadrature
✿✿✿✿✿✿

points.
✿✿✿✿✿

And

✿✿✿✿✿✿✿✿✿

considering
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

cumbersome
✿✿✿✿✿✿✿✿✿✿✿

programming
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿

ALP
✿✿✿✿✿✿✿

method,
✿✿

in
✿✿✿✿✿✿✿✿✿

computing
✿✿✿

the
✿✿✿✿✿✿

Hough
✿✿✿✿✿✿✿

functions
✿✿✿

for
✿✿✿✿✿✿✿✿✿

horizontal

✿✿✿✿

wind
✿✿✿✿✿✿✿✿✿✿✿

components,
✿✿✿

we
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿

central
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

method
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿✿✿

central_diff.m
✿

(http://www.mathworks.com/25

matlabcentral/fileexchange/12-central-diff-m/content/central_diff.m
✿

).

% NALP_HOUGH - Compute Hough functions

% using normalized associated Legendre

% polynomials (ALP)

clear; format long e
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a = 6.370d6; g = 9.81d0;

omega = 2.d0*pi/(24.d0*3600.d0);

%s = 1.d0; sigma = 0.4986348375d0; % DW1

s = 1.d0; sigma = 0.5d0; % DW15

%s = 2.d0; sigma = 1.0d0; % SW2

%s = 3.d0; sigma = 1.5d0; % TW3

N = 62; N2 = N/2; sf = s/sigma;

% define L(r) and M(r)

L = zeros(N,1); M = zeros(N,1);10

for r = s:N+s-1

i = r-s+1;

% define L(r)

L(i) = sqrt((r+s+1)*(r+s+2)*(r-s+1)*(r-s+2))...

/((2*r+3)*sqrt((2*r+1)*(2*r+5))...15

*(sf-(r+1)*(r+2)));

% define M(r)

if (s == 2) && (r == 2)

M(i) = -(sigma^2*(sf-r*(r+1)))...

/((r*(r+1))^2)...20

+(r+2)^2*(r+s+1)*(r-s+1)...

/((r+1)^2*(2*r+3)*(2*r+1)...

*(sf-(r+1)*(r+2)));

else

M(i) = -(sigma^2*(sf-r*(r+1)))...25

/((r*(r+1))^2)...

+(r+2)^2*(r+s+1)*(r-s+1)...

/((r+1)^2*(2*r+3)*(2*r+1)...

*(sf-(r+1)*(r+2)))...

+(r-1)^2*(r^2-s^2)...30

/(r^2*(4*r^2-1)*(sf-r*(r-1)));

end % if

if (M(i) == inf), M(i) = realmax; end

end % for

% build F1 & F2 matix35

f1 = zeros(N2,N2); f2 = zeros(N2,N2);

for i = 1:N2

f1(i,i) = M(2*i-1);

f2(i,i) = M(2*i);

if (i+1 <= N2)40

f1(i,i+1) = L(2*i-1);

f1(i+1,i) = L(2*i-1);

f2(i,i+1) = L(2*i);

f2(i+1,i) = L(2*i);

end % if

11



end % for

% symmetric modes

[v1,d1] = eig(f1); lamb1 = diag(d1);

[~,ii] = sort(-lamb1);5

lamb1 = lamb1(ii); v1 = v1(:,ii);

ht1 = 4.d0*a^2*omega^2/g.*lamb1/1000.d0;

% anti-symmetric modes

[v2,d2] = eig(f2); lamb2 = diag(d2);

[~,ii] = sort(-lamb2);10

lamb2 = lamb2(ii); v2 = v2(:,ii);

ht2 = 4.d0*a^2*omega^2/g.*lamb2/1000.d0;

% Legendre-Gauss quadrature points

nlat = 94; [x,w] = lgwt(nlat,-1,1);

% normalized associated Legendre functions15

prs = pmn_polynomial_value(nlat,N+s,s,x);

% compute Hough modes

h1 = zeros(nlat,N2); h2 = zeros(nlat,N2);

for i = 1:N2

for j = 1:N220

i1 = 2*j+s-1; i2 = 2*j+s;

for ii = 1:nlat

% symmetric modes

h1(ii,i) = h1(ii,i) + v1(j,i)*prs(ii,i1);

% anti-symmetric modes25

h2(ii,i) = h2(ii,i) + v2(j,i)*prs(ii,i2);

end

end

end

% put them together30

lamb = zeros(N,1); hough = zeros(nlat,N);

for i = 1:N2

for j = 1:nlat

i1 = 2*i-1; i2 = 2*i;

lamb(i1) = lamb1(i);35

lamb(i2) = lamb2(i);

hough(j,i1) = h1(j,i);

hough(j,i2) = h2(j,i);

end

end40

[~,ii] = sort(1./lamb);

lamb = lamb(ii); hough = hough(:,ii);

% equivalent depth (km)

h = 4.d0*a^2*omega^2/g.*lamb/1000.d0;

% compute Hough functions for wind components

12



b1 = (sigma^2-x.^2).*sqrt(1.d0-x.^2);

b2 = sqrt(1.d0-x.^2)./(sigma^2-x.^2);

dhdx = central_diff(hough,x);

hough_u = diag(s./b1)*hough ...5

- diag(b2.*x./sigma)*dhdx;

hough_v = diag((s/sigma).*x./b1)*hough ...

- diag(b2)*dhdx;

clf % plot Hough functions

for j = 1:6010

u = hough(:,j); subplot(10,6,j)

plot(x, u,'LineWidth',2), grid on

end

B2
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿✿

method

✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿

MATLAB
✿✿✿✿

code
✿✿✿✿

uses
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Chebyshev
✿✿✿✿✿✿✿✿✿✿

collocation
✿✿✿✿✿✿✿

method. It includes a parity factor for modes with odd zonal wave15

number
✿✿✿✿✿✿✿✿✿✿✿

wavenumbers (s) (Orszag, 1974; Boyd, 1978).

% CHEB_HOUGH - Compute Hough functions

% using Chebyshev collocation methods

clear; format long e

a = 6.370d6; g = 9.81d0;20

omega = 2.d0*pi/(24.d0*3600.d0);

%s = 1.d0; sigma = 0.4986348375d0; % DW1

s = 1.d0; sigma = 0.5d0; % DW1

%s = 2.d0; sigma = 1.0d0; % SW2

%s = 3.d0; sigma = 1.5d0; % TW325

parity_factor = mod(s,2);

N = 62; [D1,D2,x] = cheb_boyd(N,parity_factor);

a2 = (1-x.^2)./(sigma^2-x.^2);

a1 = 2.*x.*(1-sigma^2)./(sigma^2-x.^2).^2;

a0 = -1./(sigma^2-x.^2).*((s/sigma) ...30

.*(sigma^2+x.^2)./(sigma^2-x.^2) ...

+s^2./(1-x.^2));

A = diag(a2)*D2 + diag(a1)*D1 + diag(a0);

[v,d] = eig(A); lamb = real(diag(d));

% sort eigenvalues and -vectors35

[foo,ii] = sort(-lamb);

lamb = lamb(ii); hough = real(v(:,ii));

% equivalent depth (km)

h = -4.d0*a^2*omega^2/g./lamb/1000.d0;

% compute Hough functions for wind components
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b1 = (sigma^2-x.^2).*sqrt(1.d0-x.^2);

b2 = sqrt(1.d0-x.^2)./(sigma^2-x.^2);

hough_u = diag(s./b1)*hough ...

- diag(b2.*x./sigma)*D1*hough;5

hough_v = diag((s/sigma).*x./b1)*hough ...

- diag(b2)*D1*hough;

clf % plot Hough functions

for j = 1:60

u = hough(:,j); subplot(10,6,j)10

plot(x, u,'LineWidth',2), grid on

end

And here is the list of the Matlab
✿✿✿✿✿✿✿✿

MATLAB
✿

codes for computing Chebyshev differential matrices numerically with an option

for including the parity factor.

function [D1, D2, x] = cheb_boyd(N, pf)15

% CHEB_BOYD - Compute differential matrix

% for Chebyshev collocation method;

% It contains an optional parity factor (pf)

t = (pi/(2*N)*(1:2:(2*N-1)))';

x = cos(t); n = 0:(N-1);20

ss = sin(t); cc = cos(t);

sx = repmat(ss,1,N); cx = repmat(cc,1,N);

nx = repmat(n,N,1); tx = repmat(t,1,N);

tn = cos(nx.*tx);

if pf==025

phi2 = tn;

PT = -nx.*sin(nx.*tx);

phiD2 = -PT./sx;

PTT = -nx.^2.*tn;

phiDD2 = (sx.*PTT-cx.*PT)./sx.^3;30

else

phi2 = tn.*sx;

PT = -nx.*sin(nx.*tx).*sx + tn.*cx;

phiD2 = -PT./sx;

PTT = -nx.^2.*tn.*sx ...35

- 2*nx.*sin(nx.*tx).*cx - tn.*sx;

phiDD2 = (sx.*PTT-cx.*PT)./sx.^3;

end

D1 = phiD2 /phi2; % the first derivatives

D2 = phiDD2/phi2; % the second derivatives
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Appendix C:
✿✿✿

The
✿✿✿✿✿✿

parity
✿✿✿✿✿✿

factor
✿✿✿

for
✿✿✿✿

basis
✿✿✿✿✿✿✿✿✿

functions
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

sphere

✿✿✿✿✿✿✿✿✿✿✿✿

Orszag (1974),
✿✿✿✿✿✿✿✿✿✿✿

Boyd (1978),
✿✿✿✿✿

Secs.
✿✿✿✿

18.8
✿✿✿

and
✿✿✿✿

18.9
✿✿

of
✿✿✿✿✿✿✿

Chapter
✿✿

18
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

Boyd (2001),
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Boyd and Yu (2011),
✿✿

all
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿✿

detailed

✿✿✿✿✿✿

analysis
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

“parity
✿✿✿✿✿✿✿

factor",
✿✿✿✿✿✿✿✿✿✿✿✿✿

sin(ϕ)mod(s,2),
✿✿✿✿✿✿✿✿✿

multiplying
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿

basis
✿✿✿✿✿✿✿✿

function.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿

we
✿✿✿✿✿

shall
✿✿✿✿✿✿

content
✿✿✿✿✿✿✿✿

ourselves

✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿

heuristic
✿✿✿✿✿✿✿✿

argument
✿✿✿✿✿

here.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿

here
✿✿✿

is
✿✿✿✿✿✿✿✿

restricted
✿✿

to
✿✿✿✿✿✿✿

scalars;
✿✿✿✿✿✿✿✿✿✿

components
✿✿

of
✿✿✿✿✿✿✿

vectors
✿✿✿

are
✿✿✿✿✿✿✿✿

discussed
✿✿✿

in5

✿✿✿✿✿✿✿✿✿✿✿

Boyd (2001).

✿

If
✿✿✿✿✿✿✿

f(λ,ϕ)
✿✿

is
✿

a
✿✿✿✿✿✿

smooth
✿✿✿✿✿✿✿✿

(infinitely
✿✿✿✿✿✿✿✿✿✿✿✿

differentiable)
✿✿✿✿✿

scalar
✿✿✿✿✿✿✿✿

function,
✿✿✿✿

then
✿

it
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿

when
✿✿✿✿✿✿✿✿

followed
✿✿✿✿✿

along
✿

a
✿✿✿✿✿✿✿✿

meridian

✿✿✿

over
✿✿✿

the
✿✿✿✿✿

pole.
✿✿✿✿✿✿✿✿

However,
✿✿

λ
✿✿✿✿✿

jumps
✿✿✿✿✿✿✿✿✿✿✿✿✿

discontinuously
✿✿

as
✿✿✿

the
✿✿✿✿

poly
✿✿

is
✿✿✿✿✿✿✿

crossed.
✿✿✿✿✿✿✿✿✿

Continuity
✿✿✿✿✿✿✿

requires
✿✿✿✿

that

lim
ϕ→0

f(λ,ϕ) = f(λ+ π,ϕ)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C1)

✿✿

for
✿✿✿

all
✿✿

λ.
✿✿✿

Let
✿✿

us
✿✿✿✿✿✿✿

expand
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿

longitudinal
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿

series10

f(λ,ϕ) =
∞
∑

s=0

as(ϕ) cos(sλ)+ bs(ϕ) sin(sλ)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C2)

✿✿✿✿✿✿✿

Because
✿✿✿

the
✿✿✿✿✿✿

Fourier
✿✿✿✿✿

basis
✿✿✿✿✿✿✿

functions
✿✿✿

are
✿✿✿✿✿✿✿

linearly
✿✿✿✿✿✿✿✿✿✿✿

independent,
✿✿✿✿

each
✿✿✿✿

term
✿✿✿✿✿

must
✿✿✿✿✿✿✿✿✿✿

individually
✿✿✿✿✿

satisfy
✿✿✿

the
✿✿✿✿✿✿✿✿✿

continuity
✿✿✿✿✿✿✿✿✿

condition.
✿✿✿

All

✿✿✿✿

even
✿✿✿✿✿✿✿✿✿✿✿

wavenumbers
✿✿✿✿

have
✿✿✿

the
✿✿✿✿✿✿✿

property
✿✿✿

of
✿✿✿✿✿✿✿✿

invariance
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿✿✿✿

translation
✿✿✿

by
✿

π
✿✿✿✿

and
✿✿✿✿✿✿✿

therefore
✿✿✿

are
✿✿✿✿✿✿✿✿✿

unchanged
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

followed

✿✿✿✿

along
✿✿

a
✿✿✿✿✿✿✿

meridian
✿✿✿✿

over
✿✿

a
✿✿✿✿

pole:
✿

cos(2s
✿✿✿✿✿

[λ+ π
✿✿✿✿

]) = cos(2sλ+2sπ) = cos(2sλ), s= 0,1,2, . . .
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C3)15

✿✿✿✿✿✿✿✿

However,
✿✿

all
✿✿✿✿

odd
✿✿✿✿✿✿✿✿✿✿✿

wavenumbers
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

sign-reversed
✿

:

cos(
✿✿✿

[2s− 1
✿✿✿✿✿

][λ+ π
✿✿✿✿

]) = cos(
✿✿✿✿✿✿

[2s− 1
✿✿✿✿✿

]λ+
✿✿

[2s− 1
✿✿✿✿✿

]π) =−cos(
✿✿✿✿✿✿✿✿✿

[2s− 1
✿✿✿✿✿

]λ), s= 1,2, . . .
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C4)

✿✿

as
✿✿✿✿✿✿✿✿

illustrated
✿✿

in
✿✿✿✿

Fig.
✿✿✿✿

C.1.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

continuity
✿✿✿✿✿✿✿✿

condition
✿✿✿✿✿✿

cannot
✿✿✿

be
✿✿✿✿✿✿✿

satisfied
✿✿✿✿✿✿

unless
✿✿✿

the
✿✿✿✿

limit
✿✿

as
✿✿✿✿✿✿

ϕ→ 0
✿✿

of
✿✿✿

all
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

for

✿✿

all
✿✿✿✿

odd
✿✿✿✿✿✿✿✿✿✿

longitudinal
✿✿✿✿✿✿✿✿✿✿✿

wavenumbers
✿✿

is
✿✿✿

the
✿✿✿✿

only
✿✿✿✿✿

value
✿✿✿

that
✿✿

is
✿✿✿✿✿

equal
✿✿

to
✿✿✿

its
✿✿✿

own
✿✿✿✿✿✿✿✿

negative,
✿✿✿✿

zero,
✿✿✿✿

that
✿✿

is

lim
ϕ→0

a2s−1(ϕ) = 0
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C5)20

✿✿✿✿

(and
✿✿✿✿✿✿✿

similarly
✿✿✿

for
✿✿✿

the
✿✿✿✿

sine
✿✿✿✿✿✿✿✿✿✿✿

coefficients),
✿✿✿

as
✿✿✿✿✿

shown
✿✿✿✿✿✿✿✿✿✿✿✿

schematically
✿✿

in
✿✿✿✿

Fig.
✿✿✿✿

C.2.
✿✿✿✿

The
✿✿✿✿✿

parity
✿✿✿✿✿✿

factor
✿✿✿✿✿✿

sin(ϕ)
✿✿✿✿✿✿✿

enforces
✿✿✿✿

this
✿✿✿✿

zero
✿✿✿

for

✿✿

all
✿✿✿✿

odd
✿✿✿✿✿✿✿✿✿✿✿✿

wavenumbers.
✿✿

It
✿✿

is
✿✿✿✿✿✿✿✿✿✿

unnecessary
✿✿✿✿

for
✿✿✿✿

even
✿✿✿✿✿✿✿✿✿✿

longitudinal
✿✿✿✿✿✿✿✿✿✿✿✿

wavenumbers
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿✿✿✿

trigonometric
✿✿✿✿✿✿✿✿

functions
✿✿

of
✿✿✿✿✿

even
✿✿✿✿✿

zonal

✿✿✿✿✿✿✿✿✿✿

wavenumber
✿✿✿

are
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿

poles
✿✿✿✿✿✿✿✿✿✿✿

automatically.
✿
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Table 1. Number of good eigenvalues of three tidal waves DW1, SW2 and TW3 computed with different trunction N using two different

methods: I - normalized ALP expansion, II - Chebyshev collocation.

N DW1-I DW1-II SW2-I SW2-II TW3-I TW3-II

8 2 0 2 0 3 1

16 6 1 6 5 10 6

24 10 3 10 9 16 13

32 16 9 14 13 22 19

40 22 14 20 18 28 25

48 28 15 24 22 36 32

56 32 24 29 27 42 39

64 38 29 34 32 48 45

72 43 29 38 37 56 52

80 49 39 44 42 62 59

18



Figure 1. The first few symmetric and antisymmetric Hough modes for DW1 (s= 1,σ = 0.5) of scalar fields, computed using the normalized

associated Legendre polynomial (ALP) expansions. Panels (a) and (b) are for symmetric modes, (c) and (d) are for anti-symmetric modes.

The labels are: [ -1 ] for the first negative mode with largest negative eigenvalue, [ +1 ] for the first positive mode with largest positive

eigenvalue, and [ 0 ] for the so-called missing mode with zero eigenvalue or infinite equivalent depth.

19



Figure 2. The first few symmetric and antisymmetric Hough modes for SW2 (s= 2,σ = 1), computed using the normalized associated

Legendre polynomial (ALP) expansions. The left panels are symmetric modes and the right panels are anti-symmetric modes, except panels

(e) and (f) which are reversed. Panels (a) and (b) are for the scalar fields, (c) and (d) for the zonal wind component, (e) and (f) for the

meridional wind component. The labels are conventional.
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Figure 3. The first few symmetric and antisymmetric Hough modes for TW3 (s= 3,σ = 1.5) of scalar fields, computed using the normalized

associated Legendre polynomial (ALP) expansions. The left panels are symmetric modes and the right panels are anti-symmetric modes.
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Figure 4. The absolute value of the expansion coefficients bn in Eq. (15), truncated at N = 150. The left panels are for the terdiurnal tides,

s=3, σ=1.5, for eigenfunction with eigenvalue γ=17.2098: (a) without parity factor, (b) with parity factor; The right panels are for penta-

diurnal tides s=5, σ=2.5, for eigenfunction with eigenvalue γ=22.9721: (c) without parity factor, (d) with parity factor. An empirical fitting

curve is also shown in red dash.
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Figure C.1.
✿✿✿✿✿✿✿✿

Schematic
✿✿✿✿✿✿

isolines
✿✿✿

for
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿

terms
✿✿✿✿✿✿✿✿✿✿✿

as(ϕ)cos(sλ)
✿✿✿

for
✿✿✿✿✿✿

various
✿✿✿✿✿

zonal
✿✿✿✿✿✿✿✿✿✿✿

wavenumbers
✿✿

s,
✿✿✿✿✿✿

shown
✿✿

in
✿✿

a
✿✿✿✿✿

polar
✿✿✿✿✿✿✿✿✿

projection.

✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿✿

isolines
✿✿✿
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✿✿✿✿

solid
✿✿✿✿✿

black
✿✿✿✿

while
✿✿✿✿✿✿✿✿✿✿✿✿

negative-valued
✿✿✿✿✿✿✿

isolines
✿✿

are
✿✿✿

red
✿✿✿✿✿✿

dashed.
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✿✿✿✿
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✿✿✿✿✿✿
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✿✿✿

line
✿✿✿✿✿✿✿
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depict
✿✿

a
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✿✿
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✿✿
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✿✿✿✿✿✿✿

meridian.
✿✿✿
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✿✿✿

odd
✿✿✿✿✿✿✿✿✿✿

wavenumbers
✿✿✿✿✿✿

(upper
✿✿✿✿✿✿

panels),
✿✿

the
✿✿✿✿✿✿

yellow
✿✿✿✿

lines
✿✿✿✿✿✿

connect
✿✿✿✿

solid
✿✿✿✿

black
✿✿✿✿✿✿✿

contours
✿✿

to
✿✿

red
✿✿✿✿✿✿

dashed
✿✿✿✿✿✿

isolines
✿

–
✿✿✿

the
✿✿✿✿✿✿

function
✿✿✿✿✿✿✿

changes

✿✿✿

sign
✿✿✿✿

along
✿✿✿

the
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meridian.
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Figure C.2.
✿✿✿✿✿✿✿✿

Schematic
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

behavior
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

as(ϕ)cos(sλ)
✿✿✿✿

along
✿✿

a
✿✿✿✿✿✿✿

meridian.
✿✿

If
✿✿✿✿✿✿✿✿

as(0) 6= 0,
✿✿✿

the
✿✿✿✿✿✿

Fourier
✿✿✿✿

term
✿✿✿

will
✿✿✿✿

have
✿

a
✿✿✿✿✿

jump
✿✿✿✿✿✿✿✿✿✿

discontinuity

✿✿✿✿

across
✿✿✿

the
✿✿✿✿

pole
✿✿✿✿

(thick
✿✿✿✿✿

black
✿✿✿✿✿

curve)
✿✿✿✿

when
✿✿✿✿✿✿✿

longitude
✿✿✿✿✿

jumps
✿✿

by
✿✿

π.
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