
Response to Reviewer #1:

The authors would like to thank Reviewer #1 for taking the time to write such helpful, thorough and
constructive comments. The comments have been taken into consideration in the revised manuscript.
We answer them individually as follows:

1 General comments:

Sometimes they refer with adJULES to the adjoint of JULES and sometimes to the
whole optimisation system. The two are certainly very di↵erent and as such should also
be clearly distinguished in the manuscript.

This has now been clarified, adJULES is used to refer to the whole optimisation scheme. The bracket
containing ‘called adJULES’ was removed from page 4, line 6, which we believe was the source of this
confusion.

There is an established terminology in the data assimilation community and it would
improve the readability if the authors would use this terminology, e.g. ‘posterior’ instead
of ‘new’ parameter.

This has been addressed, the text has been changed in places where established terminology would
improve readability, for example in section 3.2.1 ‘Assessment of PFT-specific optimal parameters’.

The authors claim that any residual di↵erences between the observations and model
output using the optimised parameter vector are due to structural errors in the model
and not to the parameter values. This may be true if they have really identified the best
possible fit, i.e. if they have found the global cost function minimum. Since with such
complex models the cost function usually has a multimodal structure it is not clear that
a gradient-based optimisation approach finds the global minimum. The authors need to
comment on that in the manuscript. In fact, the manuscript would benefit from including
some posterior diagnostics, such as the final cost function and gradient values. It is not
clear if they’ve always found a minimum, and if so if that is the global minimum.

It is true that the limitations of a gradient-based optimisation approach is missing from the manuscript.
The following text has been added to the conclusion to address this omission and to reduce the emphasis
placed on model structure errors

“ A limitation of gradient descent methods, such as the optimisation scheme used in this study, is the
fact that sometimes a local minimum in found instead of the global minimum. However, as discussed
in section [..] Kuppel et al (2014)’s hypothesis that the cost function becomes smoother with additional
sites may be a solution in avoiding local minima. Alternative methods, including ensemble methods,
could avoid this issue, but are more computationally costly.”

The study also lacks some independent validation. The authors only calculate the im-
provement in RMSE for the same data streams they also assimilate. A careful validation
against independent data is especially important because by calibrating the model param-
eters against a specific data set the model’s performance may be deteriorated compared
to other independent data.

Given the small number of sites available to us, we decided to use all available sites in finding the
multisite parameters sets. Sites used in this study required at least two consecutive years, one to
spin-up the model and one to calibrate against. Re-examining the data, we found that the majority of
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the sites had more than two years and so a di↵erent year could be used to validate the optimised set
of parameters. The year used for validation was chosen to be the second most complete, the first most
complete having been used in the calibration. The results of the validation, which are very positive,
are now shown in the results section alongside the results for the calibration.

2 Specific comments:

P3 L3: The term ‘adJULES’ should be defined before using it.

Corrected: now defined on P2 L31.

P4 Eq 1: The cost function is missing the factor 1/2. The omission of this factor in the
calculations leads to a wrong estimation of the posterior uncertainties.

Factor added.

P4 L17: What do you mean by ‘observed covariance in the error (m-o)’? How can you
observe this?

Removed “observed” from the sentence.

P4 L19: How does lambda enter Eq 1?

An explanation has been added.

P4 L28/29: This sentence needs to be reformulated. It is not clear how reverse and
forward mode relate to the adjoint. The adjoint calculates the derivative in reverse
mode.

Removed part of the sentence: “in ‘reverse mode’ (rather than ‘forward mode’) for computational
e�ciency”, and the following text was added: “Automatic di↵erentiation relies on using the chain
rule, the choice of forward or reverse mode refers to the order in which the derivatives are computed.”

P5 Fig 1: Essentially the figure is incomprehensive and does not show an interative loop.

There are two iterative loops in our system, one found within the minimisation scheme itself (BFGS)
and one created by re-feeding zin the system. This second loop is need since the covariance matrix R
is dependent on ~z. This fact has now been explained more explicitly in the text. Eq(1) now reads:
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n
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t=1(m(~̂z)t � ot)(m(~̂z)t � ot)T denotes the error cross product matrix produced by

a JULES run with parameter value ~̂z. In an optimisation, ~z and ~̂z are updated separately in nested
loops, having both been initialised to the default JULES parameter value ~z0. In the inner loop, ~z is
varied to minimise the cost function (termination criterion: rf ⇡ 0) for the current value of ~̂z. In
the outer loop, ~̂z is reset to the new value of ~z from the inner loop (termination criterion: change in
~̂z negligible). At the end of an optimisation, therefore, the matrix R conveys information about the
error correlation structure in a JULES run with optimal parameter values.

The figure has also been amended, removing the criterion rf ⇡ 0 from the question box, since it was
incorrectly referring to the BFGS terminating condition and not the z terminating condition.

P6 L1: The data selection criteria should be specified exactly. What does ‘significant
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gaps’ mean. There is also the danger of introducing biases by certain data selection
criteria. This should be taken into account.

Sites with data gaps of more than 50% during the growing season or missing input variables were
excluded from the analysis. This has been clarified in the text replacing “significant gaps” with “data
gaps of more than 50%”.

P6 L3: Why does one require NEE and LE fluxes to model photosynthesis? Please
clarify.

Sentence rephrased: “To constrain photosynthetic parameters, Net Ecosystem Exchange (NEE) and
Latent Heat flux (LE), among other fluxes, are helpful.”

P6 L5: The eddy covariance technique measures the net exchange flux and not GPP.
The net flux is partitioned into GPP and respiration by a model. So essentially, in this
study the authors calibrate the JULES model against another model, which is used to
obtain GPP from eddy covariance measurements. This needs to be discussed.

Text added: “GPP data are model-derived estimates, which could introduce an additional uncertainty
into the results. This is kept in mind during the analysis.”

P6 L6/7: This procedure may lead to inconsistencies between the actual vegetation at a
given site and the vegetation structure and soil type used in the model. This should be
discussed in the manuscript.

Sentence added: “This could lead to inconsistencies between the actual vegetation at a given site and
the vegetation structure and soil type used in the model. This is kept in mind during the analysis.”

P6 L8: Please provide a reference for the LAI product. Here again, this may lead to
another inconsistency, see point above.

Reference for MODIS data added: “Myneni, R.B., Ho↵man, S., Knyazikhin, Y., Privette, J.L.,
Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R. and Lotsch, A., 2002. Global
products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote
sensing of environment, 83(1), pp.214-231.”

L31/32: Please rephrase. The adjoint does not find the second derivative.

Rephrased: “The second derivative of the cost function found by di↵erentiation of the adjoint code...”

P6 L33: How did you determine the weights? What do you mean by ‘low enough’?

Text added to the Experiment setup section, explaining the tuning of lambda for the multisite cases:

“Preliminary experiments showed very narrow uncertainties whilst running the optimisation scheme
over multiple sites i.e. the background term was found to dominate the cost function. In previous
multisite studies (Kuppel et al., 2012, 2014), the prior range was also used to defined the background
covariance matrix B. The range was variously further multiplied by a factor of 40% (Kuppel et al.,
2012) and 1/6 (Kuppel et al., 2014). Experiments were run to find a similar factor to use in this
study (the constant of proportionality in Eq. 5). In each of the multisite experiments, the lowest value
of such that the Hessian is positive definite at the optimal parameter value was used. This allows
uncertainties to be generated around each parameter and prevents the gradient descent algorithm from
reaching the boundaries of the prescribed prior range.”

P7 Ll11-17: This is an interesting way to calculate the posterior parameter uncertainties,
but it is not clear why and what exactly you do there. What is the advantage of using

3



this method over calculating the posterior uncertainties from the inverse of the Hessian
directly? When you calculate the full Hessian you also get the full error covariance
matrix! Do you get a semi-definite Hessian (see also general comment on obtaining a
minimum)?

The adJULES system is run using box constraints on the prior, giving it a (multivariate) top-hat
distribution. The methodology was picked due to the fact the posterior PDFs will be truncated
multivariate normal distributions due to the prescribed prior bounds given to each of the parameters.
Text added on L11 to clarify this:

“... Hessian is used to generate samples from the posterior distribution.This is a truncated multivariate
normal distribution because of the box constraints placed on the prior. ”

Sect 2.5.2: What is the advantage of the metric you define here over calculating the rel-
ative uncertainty reduction with respect to the prior? This also provides and assessment
of the quality of the fit and is a common diagnostic in data assimilation. It is also not
clear how a complete mismatch looks like.

This metric was chosen because not only does it show the improvement made by the optimised pa-
rameter vectors but could also be used to see how di↵erent sites performed compared to each other.
The metric has been amended slightly to define the fraction of variance unexplained, which is more
intuitive. Paragraph added to this e↵ect on line 19:

“This metric was chosen to show not only the improvement made by the optimal parameter vectors at
each site but also to show how each site performed relative to others.”

P8 L5: This is not a validation, but rather an assessment of the how good the fit against
the data is. A real validation would be against independent data and not the data used
for assimilation.

The purpose of section 3.2 was to shows that given a set of 5 randomly selected sites, the optimised
parameter vector found by optimising over these sites also improves the rest of the sites not used in
the calibration. This experiment is now obsolete since we have the ability to validate the PFT-specific
parameters properly in our improved result section. As a result, this section has been removed.

P8 L25: Why does JULES not perform very well for C4 grasses. You should elaborate
this.

Text added P8 L26 to the e↵ect: “The original stomatal conductance-photosynthesis model within
JULES was developed based on fluxes measured over C4 grass as part of the FIFE field experiment
(Cox and Huntingford, 1998). However, there are relatively few Fluxnet sites over C4-dominated
landscapes, and only two even in the extended dataset that we use. As a result ,the sensitivity of
stomatal conductance and photosynthesis to environmental factors has been less well tested for C4
grasses. The results presented in this paper therefore highlight the need to reassess JULES and other
land-surface models for predominantly C4 landscapes.”

P8 L 31: What do you mean by the ‘adjoint performs well’? Does it perform well in
terms of e�ciency? And if so, how e�cient is the adjoint?

Sentence changed to: “the adJULES system works well in finding optimal parameter vectors which
improve the performance of JULES at individual sites, regardless of PFT”.

P9 Fig 2: Which sites are you showing and what are the units? On what basis did you
select the shown sites?

The site identification code has been added to the plots and the units moved from the top of the figure
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to the side of each individual panel for clarity. The sites picked were the ones that captured best the
general trends for each of the PFTs. This was done manually.

P9 last sentence: Why didn’t you include these parameters in the optimisation?

As our focus is on the carbon cycle, we choose to only optimised parameters directly relating to the
photosynthesis equations in the JULES model. Given more time and more computing power, more
parameters could be used in the optimisation.

P10 Fig 2 caption: Please remove the extra ‘vector’.

Corrected.

P10 L2: Again, ‘validate’ is the wrong word here. And why only for broadleaf sites?

With the removal of section 3.2, this is no longer relevant.

P10 L4: The sentence need to rephrased.

Similarly, this sentence was removed when section 3.2 was suppressed.

P10 L6: What do you mean by ‘training sets’? This sounds a bit like as if you were
using a neural network approach, which has to be trained.

No longer relevant with the removal of section 3.2.

P10 L8: What are these sets?

No longer relevant with the removal of section 3.2.

P11 L1-3: Why should adding more sites render the cost function more smoothly? It
could also be the opposite, please explain in the manuscript.

With the removal of section 3.2, this is no longer relevant. However, this is a phenomenon hypothesised
in Kuppel et al. (2014) and there are a couple of examples of this happening in figure 6 (old). As a
result, the text on P11 L1-3 has been suppressed and the following text added to page 21:

“For some sites, US-Blo and BW-Ma1 for example, the PFT-generic parameter vector over-performs
the parameter vector found locally. This phenomenon was also noted in Kuppel et al. (2014). The
study further suggested that the added simultaneous constraints placed on the parameters by increasing
the number of sites used in the cost function caused the cost function to become ‘smoother’ and so the
optimisation scheme is less likely to get stuck in local minima.”

P11 Sec 3.3: This section is really only a description of the posterior parameters but they
need to be discussed as well and put in context of a) their prior values, b) their physical
meaning and c) the covariances with respect to the resulting fluxes and a successful
optimisation.

This section has been expanded to include a more thorough analysis of the correlations in the context
of physical interpretation. In order to achieve this, a description of the relevant JULES equations has
been added to section 2.1. This puts the parameters in terms of the equations they govern. These
equations are then used in section 3.2 to explain why some of the parameters vary the way they do.

P11 L9: What do you mean by ‘new uncertainties’?

Sentence changed to: “the prior parameter value is found outside the posterior uncertainty bounds”.
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P11 L12/13: The uncertainties cannot be skewed, it’s the PDF that can be skewed.

Corrected.

P11 L15: What is the 80% confidence interval, how did you calculate this?

The 80% fraction interval was calculated by taking the di↵erence between the 90th and 10th quantile
and dividing by the prescribed range. To make this clearer, this interval has been renamed the 80%
“quantile” interval. The following description is added to section 2.5.1:

“In order to illustrate the parameter uncertainties, error bars are used to represent the 80% quantile
range (10th to 90th percentile) for each optimal parameter.”

P11 L30/31: Why are the correlations related to the number of sites used in the opti-
misation? Please explain in the manuscript.

This was a trend that was observed - the more sites used in the calibration, the more pronounced
the correlations seemed to be. However, there was not enough time to run this experiment fully for
the paper. The higher correlations found between the parameters for the BT and NT compares to
the grass PFTs has now been address in the response to comment P11 Sec 3.3. As a results, this
hypothesis has been removed from the text.

P12 L10/11: What makes the UK-PL3 site di↵erent? Please explain in the manuscript.

Text added: “This UK site is in the Pang/Lambourn catchment, which has chalk soil with macropores
that permit significant lateral subsurface flows of soil moisture. These horizontal flows cannot be
captured in a model like JULES which is essentially one-dimensional in the vertical below the soil
surface.”

P12 Sec 3.3.3: As mentioned in the general comments, the calibrated parameter set
should be evaluated against independent data.

Issue addressed in response to general comments.

P12 L25/26: What do you mean here? Please rephrase the sentence.

The conclusion was been reworded due to the addition of validation to our study.

Fig 4: Please label the rows. Maybe increase the bar size to improve readability.

We have been experiencing issues with some printed version of the PDF, sometimes some of the
information is missing. We will address this. On the online version, the rows are labelled with each
parameter symbol. In order to declutter this figure, the prior and posterior values have been removed
since this values are made explicit in Table B1. This has allowed us to increase the error bar plots.
The lines have been increased to improve readability.

Fig 6: What is the di↵erence between top and bottom panel and what to the vertical
lines denote? What are the outliers that have been removed and why did you remove
them?

As mentioned above, printed versions of this paper may show incomplete plots, the online version
should still contain all the information. The two panels are the same, with Broadleafs and C3 grasses
shown in the top panel, and Needleleafs, Shrubs and C4 grasses shown in the bottom panel. The
vertical lines are there to break up the di↵erent PFTs. The outliers were removed from the plot
because they made plot unreadable with much higher errors than the rest in the plot (x10). The
sites removed are listed in the caption to the figure. With the slightly adjusted metric, as discussed
previously, there are now only 2 such outliers and the data has now been split into 4 panels. An “i.e.”
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was added into the brackets to clarify that this list contains the outliers.
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Response to Reviewer #2:

The authors would like to thank Reviewer #2 for taking the time to write such helpful, thorough and
constructive comments. The comments have been taken into consideration in the revised manuscript.
We answer them individually as follows:

1 General things:

The Abstract is clear, although just reading the Abstract, a question might be asked as
to why the data is not split into training and test data?

We acknowledge that standard practice in data assimilation is to split the data into training and
validation data however, originally, we had thought this not possible. Due to the small number of
sites available to us, especially with regards to Shrubs and C4 grasses, we chose to use all sites in
the calibration to insure the best possible parameters. On closer inspection, the majority of the sites
were found to have extra year of data which we now use to validate the model. The following text has
been added to abstract now that validation in a key part of the study “ ...both at the calibration and
validation stages”

Maybe expand just slightly on “a third of which give similar reduction in errors as site
specific optimisations”. The point being made here is that this suggests parameters
are similar and robust between sites. This is always good news for climate modelling,
suggesting it is possible to reduce to relatively small numbers of PFTs. Maybe stress this
point a bit more? (However, if this is stressed more, then need to explain Groenendijk
et al 2010?).

This is now discussed more thoroughly the conclusion.

Lines 34, page 2 - Lines 3, page 3. This feels as if it undersells the adjoint approach!
I would make a key bullet point that this is a more sophisticated approach (via matrix
inversion) to finding rapidly minima across multiple parameters. It would be almost
impossible to replicate these findings using some sort of brute-force optimisation, with
nested loops over di↵erent parameters.

Text has been added on line 33 to this e↵ect: “The adJULES system uses the adjoint method which
finds minima rapidly across multiple parameters via matrix inversion and has the advantage of repro-
ducibility. Replicating these findings using brute-force optimisation would be prohibitively expensive
computationally.”

Around Eqn (1), line 11. Sentence “A cost function f(z). . .” looks like it has remained
in by accident, and then the correct sentence is the next one. “The cost consists. . ..”
(The second sentence correctly identifies that the z-z0 di↵erences also contribute to cost
function in Eqn(1)).

Sentence starting with “A cost function f(z)...” has been removed and the second sentence rephrased
as follows: “The cost function, f(~z), consists of a weighted sum of squares of the di↵erence between
~mt (the vector of model outputs at time t), and ~ot (the vector of observations at time t), combined
with a term quadratic in the di↵erence between parameter values ~z and initial parameter values ~z0”

Eqn(1) - Has Lambda been accidentally dropped from Eqn (1) . It should multiple the
second term? (I realise line 21 states it is taken as unity, but I?d still put it in Eqn(1),
and state line 21 “All parameters and observations are equally weighted in this cost
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function - i.e. lambda=1”

Lambda added to equation.

Is there a good reason for selecting lambda=1 (or its implications)? Does it imply we
put equal trust in the FLXUNET measurements (left term) as the local measurements
that give the local parameters (right term). A couple of words on this might help the
reader?

The cost function was set up such that both terms are equally weighted. This is used in the single site
experiment. Due to the number of sites, it was not possible to tune the value of � for each individual
site. For the multisite experiments, more time was spent tuning this value. What value � should have
is still something we need to look at, hopefully we will get a chance to understand it properly in further
study. Text added to the Experiment setup section, explaining the tuning of � for the multisite cases:

“Preliminary experiments showed very narrow uncertainties whilst running the optimisation scheme
over multiple sites i.e. the background term was found to dominate the cost function. In previous
multisite studies (Kuppel et al., 2012, 2014), the prior range was also used to defined the background
covariance matrix B. The range was variously further multiplied by a factor of 40% (Kuppel et al.,
2012) and 1/6 (Kuppel et al., 2014). Experiments were run to find a similar factor to use in this
study (the constant of proportionality in Eq. 5). In each of the multisite experiments, the lowest value
of such that the Hessian is positive definite at the optimal parameter value was used. This allows
uncertainties to be generated around each parameter and prevents the gradient descent algorithm from
reaching the boundaries of the prescribed prior range.”

Possibly me being confused, but if B is a diagonal matrix, then this isn’t about covari-
ances? which imply o↵-diagonal terms?

The parameters are assumed to start o↵ uncorrelated. Text added: “...The matrix B describes the
prior covariances assigned to the parameters, and is here chosen to be a diagonal matrix proportional
to the inverse square of the ranges allowed for each parameter. The prior uncertainties are therefore
assumed to be uncorrelated between the parameters.”

Section “Multisite Implementation”. Could tighten slightly to say something like “and
this would introduce a double summation in Eqn(1), over n locations. Hence R and B
become matrices of size [n*s x n*s]?” Is that correct? This would fit with, as stated,
to find “values for a common set of parameters”. This gives single values for each z
parameter. The wording of the last sentence is slightly ambiguous? “Similarly, the first
and second derivative. . ...using the sum of the derivatives at the individual sites”. This
reads as if the derivatives are calculated locally, and then a mean taken. Would in fact
a single sweep across all n*s data points be used, and the derivatives calculated once,
if common parameters are investigated. [Maybe eqn term cancellation implies they are
the same, but. . ...?].

The following equation has been added to the section to clarify the methodology with s denoting
di↵erent sites:
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Somewhere in Section 2.3 or 2.4 ? possibly remind readers that FLUXNET also comes
with the meteorological data. (In other words, it’s not just the fluxes and then something
like NCEP or ECMWF data was used additionally to give met drivers).

Text added to P6 L16: “... using the meteorological forcing data..”
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Section 2.5.2. Would need to be confident that outlier points didn’t do something odd
in Eqn (4)? I guess the initial sweep of data ensures this is OK? (The alternative would
be to normalise with SD of (mi,t)), and then get the percentage of variance explained).

Thank you very much for this suggestion. By normalising with the standard deviation, we realised how
similar our metric was to the fraction of variance unexplained. The fraction of variance unexplained
is a useful metric used in statistical analysis and suits our problem well, therefore was picked has an
alternative. The values are more intuitive, with 0 still representing a perfect match to the observations.
The following text now replaces lines 22-27 on page 7:

“For each data stream i, the fraction of variance unexplained by the model is

✏
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It follows that the mean fraction of variance unexplained across data streams,
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is a single dimensionless measure of model misfit. The fractional error ✏ can than be interpreted as
the typical (root-mean-square) error expressed as a fraction of the (root-mean-square) magnitude of
the observed seasonal cycle. Thus, ✏ = 0 represents a perfect match to the observations, while ✏ = 1
corresponds to the error in a null model whose prediction ~mi,t always equals the observational mean
~

ōi. ”

Figure 3. This is a great figure. However, pictures and captions often get pulled out
of papers and shown in isolation. To ensure information is safely contained, mention in
caption (or across top of plot), these are broadleaf trees only? At first glance, I thought
the y-axis was some sort of physical unit (for LE or NPP). However caption says this is
from the 2.5.2 Section metric. The normalised values are very small, and don’t ever get
near unity. Could this be the outliers mentioned above? Not a problem, but bottom of
page 7 says “1 ? a complete mismatch” Wouldn’t we expect some of the parameters to
perform quite badly, and get a bit nearer to unity? Or - does this mean that in general,
even without parameter fitting, then JULES is an exceptionally good model? Fitting
reduces that last small error down further? Figure 3 mentions training versus validation.
This appears di↵erent to the impression of the Abstract that all data is used to train?

Section 3.2 was put in to asses the multisite methodology. It showed that given a set of 5 randomly
selected sites, the optimised parameter vector found by optimising over these sites also improves the
rest of the sites not used in the calibration. This experiment is now obsolete since we have the ability
to validate the PFT-specific parameters properly in the improved result section. As a result, this
figure has been removed. The altered metric, as described in the previous comment, is now more
intuitive. A value 1 no longer represents a complete mismatch, which was unclear, but corresponds to
the misfit of a null model whose prediction is equal to the mean observation at every time point.

Figure 3. Usual practice is to put the legend inside the plot ? there is space for the 5
symbols, top left hand maybe?

Though Figure 3 no longer exists (see response above), Figure 6 is very similar and the legend has
been moved inside the plots for this figure.

Figure 4 is great. But on my print out, the vertical lines cannot be seen in many instances.
Thicken them maybe? As always, a matter of style, so just a suggestion. To make Figure
4 less crowded, would it make sense to not put the value of original & optimised as text
annotations as this repeats information in the plots. Then the plots can be made bigger
and bolder? Maybe put units in left column?
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These are nice ideas. In order to declutter this figure, the prior and posterior values have been removed
since this values are made explicit in Table B1. This has allowed us to increase the error bar plots. The
lines have been thickened to improve readability. Units have been left out in order not to re-clutter
the figure.

Section 3.3 and Figure 5. What is so remarkable about Figure 5 is that the strong cor-
relations between parameters are not consistent across the PFTs. Maybe not for this
paper, but some sort of physical interpretation of that would be really interesting. Re-
turning to the governing equations and their scaled amounts might help. Is “correlation”
the best word ? “collinearity” might be more appropriate?

This section has been expanded to include a more thorough analysis of the correlations in the context
of physical meaning. In order to achieve this, a description of the relevant JULES equations has been
added to section 2.1. This puts the parameters in terms of the equations they govern. These equations
are then used in section 3.2 to explain why some of the parameters vary the way they do.

Figure 6 is like Figure 3, but a lot less cluttered. The data on Figure 6, BTs is same as
that on Fig 3, except the “multi-site”. Looking back at Fig 3, need to understand better
the “five sites” algorithm (again, page 10, line 4 - some text accidently deleted?).

As mentioned in response to the comment above Fig 3, the section containing Fig 3 has been suppressed
and only Figure 6 remains.

Figure 6 - I’d make the lower y-axis bound 0.0 (rather than what looks like 0.001)? Gives
a better feel then of the improvement in absolute terms.

With the amended metric, a log scale is now used in this figure. It follows that a fixed vertical
improvement in this figure represents a fixed (multiplicative) reduction in fractional error.

Conclusions - To my eye, Figure 6 says it all, and I would stress far more the real headline
findings that: (!) There is a general reduction in error of around 50% (2) Possibly of
more importance, using cross-PFT parameters, often get very similar improvements than
local fits. This implies robust parameterisations independent of geography - which GCM
modellers always like to see.

The conclusion has been expanded to emphasise this point.

2 Small things:

Maybe get the words “Data Assimilation” used a few times on the paper on page 1 /
Abstract, so it gets picked up for anyone using that expression in an Internet search.
(It?s an older terminology used for this sort of approach, but is still valid).

Added the term “data assimilation” in the abstract.

Abstract: Line 2, maybe mention that JULES is also used comprehensively as an impacts
tool, sometimes forced with known climatologies and/or alternative GCMs in to the
future. So it is not used just coupled to UK Met O�ce models.

Text added to abstract: “JULES is also extensively used o✏ine as a land-surface scheme impacts tool,
sometimes forced with known climatologies into the future.”

Abstract - could “automatically di↵erentiated” be expanded slightly to “automatically
di↵erentiated with respect to JULES parameters. . .. . .”
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Text added.

Maybe line 25, page 1. To make topical post COP21, could add something like: “Any
future decreased ability of the land surface to draw-down atmospheric CO2 could imply
fewer “permissible emissions” in order to stay below key warming thresholds such as two
degrees”

Text added.

Top page 2. Is there a process other than nitrogen cycling that can be mentioned ?
preferably one that has been introduced in to the JULES model version used here?

Canopy light interception has been added to the text as a process modelled in the version 2.2 of
JULES: “..or canopy light interception (Mercado et al., 2009).”

Sentence “Given the small spatial footprint. . ..”. Maybe clarify why this gives overtun-
ing? Presumably because it might be see some anomalous plants in the small footprint,
and that are not representative of PFTs over a broader area?

Text added to clarify this “This over tuning may be due to the fact that a single site may not represent
the full range of a PFT, given di↵erent tree types, ages and aboveground biomass found at each site.
There may be some anomalous plants in the small footprint that are not representative of the PFTs
over a broader area.”

Bottom of page 3. Line 30. Could mention that “available observations” are about
independent large-scale measurements (such as FLUXNET)? These are di↵erent to the
specific process measurements used to calibrate the individual components tha are men-
tioned in line 27.

Text added: “...available observations, such as eddy covariance flux data.”

Page 4, line 5. Possibly: “As used widely in weather forecasting, along with other
disciplines”.

Added.

Page 4, line 14. Maybe: “ . . ..outputs at time 1 <= t <= s” (so defines s).

Since s is not used anywhere in the paper, it has been removed from the sum.

Page 4, line 22. To anyone new to data assimilation, could say: “optimal vector. .
..minimizes the cost function (Eq. 1) via JULES model itself though m=m(z) (left
terms) and directly via z in the right terms”

The sentence has been left unchanged, instead the term ‘m(z)’ has been added to Eq. 1. Hopefully this
addition clarifies that the model time-series part of the cost function changes with di↵erent iterations
of z.

Page 4, line 25. I can understand box constraints = upper or lower bounds. But what
does “limited memory” refer to?

Compared to the full BFGS algorithm which stores a full approximation to the inverse Hessian, the
limited memory version will only store a few vectors to represent the approximation (Bryd et al.,1995).
For optimisation problems with large numbers of variables, this linear memory requirement makes the
L-BFGS the variant of choice. Texted added to line 25: “... to use limited memory, for computational
a↵ordability, and box constraints...”
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On the diagram, Figure 1, right-hand side, maybe word as “Hessian to give uncertainty
bounds”

Text added to picture.

Page 5, line 14. Table A1 has a lot fewer than 500 entries, so quite a lot of data is
rejected?

Of the 500 FLUXNET sites, we were only able to obtain 160. Of those, 50% were rejected. As well as
the criteria listed in this section, sites were also excluded based on number of years available (2 years
minimum in order to perform a spin-up) and whether the sites were dominated by particular PFT
(e.g. more than 50% coverage with the exception of C4 grasses). The crop sites were excluded since
in the newer versions of JULES these are considered separately. These extra exclusions are described
in section 2.4. This is made explicit in the paper using the following text: “Data from 160 sites were
made available for this study by M.Groenendijk.”

Page 7, line 15. “One or two” refers to whether a plot is a standard plot, or a contour
plot in two parameters?

This was referring to both and has hopefully been clarify with the addition of the text below:

“Consequently the optimal parameter values (which are modes of the full high dimensional distribution)
may not coincide with modes of the one- and two-dimensional marginal distributions.”

Page 8, line 5. The analysis here is more testing the concept of common parameters
between sites, rather than testing the methodology?

This sentence has been suppressed with the removal of section 3.2.

Figure 2 is really nice. Just a few small things. Is there are reason black is also
dashed? Style thing, but I’ve have maybe put as the individual panel titles “Broadleaf
LE, Broadleaf GPP”, etc. So across the top of the panels. And then the y-axes, put the
units ? so W/m2 left panels etc. Then possibly not bothered with the labels (a)-(e)?
Maybe make the lines with slightly larger line width? Inside each box, give the site ID
as annotated text, as these are time-series for just single sites.

The black line denotes the observations; each point represents a FLUXNET observation and the
dashed part of connects them. The figure has been changed to include the rest of the suggestions and
the text changed according.

Page 10, line 4. Some text missing from sentence?

No longer relevant with the removal of section 3.2.

References:

Byrd, R., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained
optimization, SIAM Journal on Scientific Computing, 16, 1190?1208, 1995.

Mercado, L.M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M. and Cox, P.M., 2009.
Impact of changes in di↵use radiation on the global land carbon sink. Nature, 458(7241), pp.1014-1017.
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Abstract. Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make

coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-

surface model used in the climate and weather forecast models of the UK Met Office.
::::::
JULES

:
is
::::
also

::::::::::
extensively

::::
used

::::::
offline

::
as

:
a
:::::::::::
land-surface

::::::
impacts

:::::
tool,

:::::
forced

:::::
with

:::::::::::
climatologies

::::
into

:::
the

::::::
future. In this study, JULES is automatically differentiated

::::
with

::::::
respect

::
to

::::::
JULES

::::::::::
parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of5

the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum

parameter sets
:::::::::
parameters by calibrating against observations. This paper describes adJULES

:
in

::
a

:::
data

:::::::::::
assimilation

:::::::::
framework

and demonstrates its ability to improve the model-data fit using eddy covariance measurements of gross primary production

(GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is

used to define new optimised parameter values for the 5 Plant Functional Types (PFTS
::::
PFTs) in JULES. The optimised PFT-10

specific parameters improve the performance of JULES over 90
::
85% of the sites used in the study , a third of which give similar

reduction in errors as site specific optimisations
::::
both

::
at

:::
the

:::::::::
calibration

:::
and

:::::::::
validation

:::::
stages. The new improved parameter set

:::::::::
parameters for JULES is presented along with the associated uncertainties for each parameter.

1 Introduction

Land-surface models (LSMs) have formed an important component of climate models for many decades now (Pitman, 2003).15

First generation land-surface schemes focussed on providing the lower boundary condition for atmospheric models by calcu-

lating the land-atmosphere fluxes of heat, moisture and momentum, and updating the surface state variables that these fluxes

depend on (e.g. soil temperature, soil moisture, snow-cover). In the mid to late 1990s some land-surface modelling groups

began to introduce additional aspects of biology into their schemes, most notably the dynamic control of transpiration by leaf

stomata and the connected rates of leaf photosynthesis (Sellers et al. (1997); Cox et al. (1999)).20

In the early 2000s, climate modelling groups began to use the carbon fluxes simulated by LSMs within first generation

climate-carbon cycle models (Cox et al. (2000), Friedlingstein et al. (2001)). These early results, and a subsequent model inter-

comparison (Friedlingstein et al., 2006), highlighted the uncertainties associated with land carbon-climate feedbacks. The 5th

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5 (Stocker et al., 2013)) for the first time

routinely included models with an interactive carbon cycle (now called Earth System Models or ESMs), confirming that land25

1



responses to climate and CO2 are amongst the largest of the uncertainties in future climate change projections (Arora and Boer

(2005); Brovkin et al. (2013); Jones et al. (2013); Friedlingstein et al. (2013)).
:::
Any

:::::
future

:::::::::
decreased

:::::
ability

:::
of

:::
the

:::
land

:::::::
surface

::
to

:::::::::
draw-down

:::::::::::
atmospheric

::::
CO2:::::

could
:::::
imply

:::::::
smaller

::::::::::
“compatible

:::::::::
emissions"

:::
in

::::
order

::
to
::::

stay
::::::
below

:::
key

::::::::
warming

:::::::::
thresholds

::::
such

::
as

:::
two

:::::::
degrees.

:

Uncertainties in LSMs arise from two major sources: (a) process uncertainty , and (b)
::::::
process

::::::::::
uncertainty

:::
and

:
parameter5

uncertainty. Process uncertainty includes the misrepresentation of land-surface processes and also the neglect of important

processes (such as nitrogen-limitations on plants
::::
plant growth, see for example . Thornton et al. (2007); Zaehle et al. (2010))

:
,

::
or

::::::
canopy

::::
light

::::::::::
interception

:::::::::::::::::::
(Mercado et al., 2009) . The drive to reduce process uncertainty almost invariably leads to increases

in LSM complexity, which typically leads to the introduction of additional internal model parameters. Parameter uncertainty

arises from uncertainty in these internal model parameters. The evolution of LSMs has therefore involved an attempt to reduce10

process uncertainty by increasing model realism/complexity, but at the cost of increasing parameter uncertainty. This paper

concerns the development and application of a technique to reduce parameter uncertainty in the widely used Joint UK Land

Environment Simulator (JULES) LSM (Best et al. (2011); Clark et al. (2011)).

Optimisation techniques come under the umbrella of model-data fusion and range from simple ad-hoc parameter tuning to

rigorous data assimilation frameworks. These approaches have been used in a number of studies, covering various LSM
:::::
LSMs,15

to derive vectors of parameters that improve model-data fit significantly (e.g. Wang et al. (2001, 2007); Reichstein et al. (2003);

Knorr and Kattge (2005); Raupach et al. (2005); Santaren et al. (2007); Thum et al. (2008); Williams et al. (2009); Peng et al.

(2011)). Many of these studies calibrate the model at individual measurement sites. Given the small spatial footprint of each

flux tower, this can often result in over tuning
::::::::::
over-tuning.

::::
This

::::::::::
over-tuning

::::
may

:::::
occur

:::::
when

::
a

:::::
single

:::
site

:::::
does

:::
not

::::::::
represent

::
the

::::
full

:::::
range

::
of

:
a
:::::
PFT,

:::::
given

:::::::
different

::::
tree

:::::
types,

:::
tree

:::::
ages

:::
and

:::::::::::
aboveground

:::::::
biomass

:::::
found

::
at
::::
each

::::
site.

::::::
There

::::
may

::
be

:::::
some20

:::::::::
anomalous

:::::
plants

::
in
::::

the
:::::
small

::::::::
footprint

:::
that

:::
are

::::
not

::::::::::::
representative

::
of

:::
the

:::::
PFTs

::::
over

::
a
:::::::
broader

::::
area. The optimised model

parameters are site-specific and often struggle to perform as well when generalised over other sites (Xiao et al., 2011).

The majority of LSMs group vegetation into a small number of plant functional types (PFTs). Model parameters are assumed

to be generic over each PFT. Through different optimisation techniques, some studies have tried to assess the robustness

of PFT-specific parameters (e.g. (Kuppel et al., 2014)). Medvigy et al. (2009) and Verbeeck et al. (2011) both show that25

parameters derived at one site can perform well on a similar site and , in a later study (Medvigy and Moorcroft (2011) ), over

the surrounding region
:::::::::::::::::::::::::::
(Medvigy and Moorcroft (2011) ). However, a contradictory study by Groenendijk et al. (2010) found

that there was cross-site parameter variability after optimisation within the PFT groupings.

In the last few years, there has been a move towards deriving PFT-specific parameters using data from multiple sites, the

results of which have been generally positive ,
:
(e.g. Xiao et al. (2011) and Kuppel et al. (2012)). Both of these studies used30

data from multiple sites in their optimisation (calling it multisite optimisation) and have commented on the robustness of this

technique,
:
showing that the choice of

:::
the initial parameter vector had little effect on the optimised values.

Kuppel et al. (2012) compared different approaches for finding generic PFT-specific parameters, such as averaging optimised

parameter vectors over PFTs and directly optimising over multiple sites. They found that the latter method was best for finding

2



PFT-specific parameters. The multisite optimisation procedure was refined in Kuppel et al. (2014), extended to other PFTs, and

evaluated at a global scale.

For global modelling, there is a clear need to find generic parameters and associated uncertainties by
::
for

:::::
each PFT, by op-

timising against observations in a reproducible way. This paper presents a model-data fusion framework,
::::::

called
:::::::::
adJULES,

that allows data from multiple sites to be used simultaneously in order to improve the JULES land surface model.
:::
The5

::::::::
adJULES

::::::
system

::::
uses

:::
the

::::::
adjoint

::::::
method

::::::
which

::::
finds

:::::::
minima

::::::
rapidly

:::::
across

:::::::
multiple

::::::::::
parameters

:::
via

:::::
matrix

::::::::
inversion

::::
and

:::
has

::
the

:::::::::
advantage

::
of

:::::::::::::
reproducibility.

::::::::::
Replicating

:::::
these

:::::::
findings

:::::
using

::::::::::
brute-force

::::::::::
optimisation

::::::
would

::
be

:::::::::::
prohibitively

:::::::::
expensive

:::::::::::::
computationally.

:

This paper aims to answer the following questions:

– Can an optimum vector of generic parameters for each of the JULES PFT classes be found?10

– How does the new
::::::
optimal

:
PFT parameter vector compare to parameter vectors found by optimising each site individu-

ally?

– How robust is the adJULES system when optimising over multiple sites?

– What uncertainty is associated with each parameter?

In section 2, methods and data used in the study are described. The JULES land surface model and our new data assimilation15

system (adJULES), are described. The data used , and
:::::::::
introduced,

:::::
along

::::
with

:::
the

::::
data

::::
used

::::
and

:::
the parameters chosen to be

optimised in the study, are also discussed. In section 3, the results are presented. The methodology for optimising over multiple

sites simultaneously is validated, and optimum parameter values are provided for each JULES PFT. The performance of the

new parameter sets is assessed and shown to significantly improve
:::::::
improve

::::::::::
significantly

:
the fit of the JULES model to the

observations. The conclusions are laid out in section 4.20

2 Methods and Data

2.1 The JULES land-surface model

The JULES land-surface model (Best et al., 2011; Clark et al., 2011) simulates the interactions between the land and atmo-

sphere. Originally developed from the Met Office Surface Exchange Scheme (MOSES) (Cox et al., 1999), JULES can be used

‘offline’ with observed atmospheric forcing data, or can be coupled into a global circulation model (GCM). JULES is the land25

surface model used in the UK Met Office Unified Model.

JULES is a mechanistic land surface model including physical, biophysical, and biochemical processes that control the radi-

ation, heat, water, and carbon fluxes in response to time-series of the state of the overlying atmosphere (Best et al., 2011; Clark

et al., 2011). Processes such as photosynthesis, evaporation, plant growth and soil microbial activity are all linked through

mathematical equations that quantify how soil moisture and temperature govern
::::::::::::
environmental

::::::::
conditions

:::::
affect

:
evapotranspi-30

ration, heat balance, respiration, photosynthesis and carbon assimilation (Best et al., 2011; Clark et al., 2011). JULES runs at a

3



given sub-daily step (typically 30 minutes), using meteorological drivers of rainfall, incoming radiation, temperature, humidity
:
,

and windspeed as inputs.

Vegetation in the JULES model is categorised into five plant functional types (PFTs)
::::
PFTs; broadleaf trees (BT), needleleaf

trees (NT), C3 grasses (C3G), C4 grasses (C4G), and shrubs (Sh). Default parameters for these PFT classes are taken from a5

previous ad hoc calibration
:::::
study

::::::::::::::::
(Blyth et al., 2010) .

:

:::
The

::::
eight

::::::::::
parameters

:::
that

:::
are

::::::::
calibrated

::::::
within

:::
this

:::::
study

:::
(see

:::::
Table

::
1)

:::::
relate

::::::::::::
predominantly

::
to

::::::::
leaf-level

:::::::
stomatal

::::::::::
conductance

::
(g)

::::
and

::::::::::::
photosynthesis

::::
(A).

:::::
Four

::
of

:::::
these

:::::::::
parameters

:::::::
control

:::
the

::::::::
responses

::
of

::
g
::::
and

::
A

::
to

::::::::::::
environmental

:::::::::
conditions

::::
such

:::
as

::::::
surface

::::::::::
temperature

:::::
(T

upp

,
::::::
T

low

),
::::
solar

::::::::
radiation

:::
(↵),

::::
and

::::::::::
atmospheric

:::::::
humidity

::::::
deficit

:::::
(dq

c

).
::::
Two

::::
other

:::::::::
calibration

::::::::::
parameters

:::
(f0,

::::
n

l0)
:::::::::
essentially

::::::
control

::
the

:::::::::
maximum

:::::
values

::
of

::
g

:::
and

::
A.

::::
The

::::::::
remaining

::::
two

:::::::::
calibration

:::::::::
parameters

::::::::
influence

::
the

:::::::::::
hydrological10

:::::::::
partitioning

::
at

:::
the

::::::::::
land-surface

::::
and

:::::
relate

::
to

::
the

:::::::
amount

::
of

::::::
rainfall

:::::::::
intercepted

:::
by

:::
the

::::
plant

::::::
canopy

::::::::
(�c/�L),

:::
and

:::
the

::::::::::
“rootdepth”

:::
(d

r

)
:::::
from

:::::
which

::::
each

::::
PFT

:::
can

::::::
access

:::
soil

:::::
water

:::
for

:::::::::::
transpiration.

:::
The

:::::::::
simulated

::::
latent

::::
heat

::::
flux

:::
and

:::::
gross

:::::::
primary

::::::::::
productivity

::::
have

::::
been

:::::
found

::
to

:::
be

::::::::
especially

:::::::
senstive

::
to

:::::
these

:::::::::
parameters

::
in

:::::::
previous

::::::
studies

:
(Blyth et al., 2010).

:::
The

:::
full

:::
set

::
of

::::::::
equations

::::::
within

:::
the

::::::
JULES

::::::
model

:
is
:::::::::::
documented

::
in

:::
the

:::::
papers

:::
by

::::::::::::::::::
Best et al. (2011) and

::::::::::::::::
Clark et al. (2011) ,

:::
but

::
the

::::
key

::::::::
equations

:::
are

::::::::::
highlighted

:::::
below.

::
In
:::::::
JULES

:
,
::::::::
leaf-level

::::::::::::
photosynthesis

::::
and

:::::::
stomatal

::::::::::
conductance

:::
are

::::::
treated

::::
with

::
a15

::::::
coupled

::::::
model

:::::::::::::::
(Cox et al., 1998) .

::::::
Based

::
on

:::
the

:::::::
models

::
of

::::
?? ,

::::::::
leaf-level

::::::::::::
photosynthesis

::
A

::
is

:::::::::
controlled

::
by

:::
the

::::::::::::
carboxylation

:::
rate

::::::
(which

:::::::
depends

:::
on

:::
n0,

::::
T

low

,
:::::
T

upp

)
::::
and

::::::::::
light-limited

:::::::::::::
photosynthesis

::::::
(which

:::::::
depends

::
on

:::
↵).

::
It
:::::::
follows

::::
that:

A = A(n0,↵,T
low

,T
upp

, c
i

,�)

::::::::::::::::::::::::
(1)

:::::
where

::
c
i::

is
:::
the

::::::
internal

:::::
CO2 :::::::::::

concentration
:::::
inside

:::
the

::::
leaf,

::::
and

::
�

::
is

:
a
:::
soil

::::::::
moisture

:::::
stress

:::::
factor

::::::
which

:::::::
depends

::
on

:::
the

:::::::
vertical

:::
soil

:::::::
moisture

::::::
profile

::
✓,

:::
and

:::
the

:::::
plant

::::::::
rootdepth

:::
d

r

:
:

20

� = �(✓,d
r

)

::::::::::
(2)

:::
The

:::::::
internal

::::
CO2::::::::::::

concentration
::
c
i::

is
::::::::

assumed
::
to

:::
be

:::::::::
dependent

:::
on

:::
the

:::::::
external

::::
CO2::::::::::::

concentration
::
c
a::::

and
:::
the

:::::::::::
atmospheric

:::::::
humidity

::::::
deficit

::
�q

::::::::::::::::::
(Cox et al., 1998) via

:::
the

::::::::
equation:

c
i

� c⇤
c
a

� c⇤
= f0

✓
1 � �q

�q
c

◆

::::::::::::::::::::

(3)

:::::
where

:::
c⇤ ::

is
:::
the

:::::
CO2 :::::::::::

compensation
::::::

point,
::::
and

::
f0::::

and
::::
�q

c :::
are

::::::::::
parameters

:::
that

::::
are

::::::::
calibrated

:::
in

::::
this

:::::
study.

::::
The

::::::::
stomatal25

::::::::::
conductance

:::
for

:::::
water

::::::
vapour

::
g
::
is
:::::::::
diagnosed

::
in

:::::::
JULES

::::
from

:::
the

:::::::::
leaf-level

::::::::::::
photosynthesis

::
A
::::

and
:::
the

:::::::
internal

::::
and

:::::::
external

::::
CO2 ::::::::::::

concentrations:
:

g = 1.6
A

c
a

� c
i

::::::::::::

(4)

:::
The

:::::
factor

:::
of

:::
1.6

:::::::
converts

:::
the

::::::::
stomatal

:::::::::::
conductance

:::
for

::::
CO2::::

into
:
a
::::::::
stomatal

::::::::::
conductance

:::
for

:::::
water

:::::::
vapour.

::::
The

:::::::::
scaling-up

::::
from

:::
leaf

::
to
::::::
canoy

::::
level

::
in

:::
this

:::::::
version

::
of

::::::
JULES

::::
uses

::
a

::::::::
“big-leaf"

::::::::
approach

:::::::::::::::
(Cox et al., 1999) .

:
30

4



2.2 Data assimilation system

Even a relatively simplistic land-surface representation such as JULES has over a hundred internal parameters representing

the environmental sensitivities of the various land-surface types and PFTs within the model. In general these parameters are

chosen to represent measurable quantities within the real world
::::
‘real

::::::
world’

::::::::
quantities

:
(e.g. aerodynamic roughness length,

surface albedo, plant root-depth), which .
:::::

This
:
allows observationally-based estimates of these parameters to be made in5

the early stages of the model development process. However, the detailed performance of a land-surface model can be very

sensitive to such internal parameters. It is therefore common for land-surface modellers to calibrate their models against

available observations(e. g. Blyth et al. (2010) ).
:
,
::::
such

::
as

::::
eddy

:::::::::
covariance

::::
flux

::::
data.

:
This is typically carried-out in a rather ad

hoc manner with the modeller varying the parameters that he/she believes are most relevant to the model performance. Such

model tuning is by its very nature subjective, lacks reproducibility, and is often sub-optimal because the modeller is unable to10

explore the full feasible parameter space through such a manual technique.

This paper describes a more objective approach to land-surface model calibration, adopting ideas from the applied mathe-

matics of data assimilation as used widely in weather forecasting
:::
and

::::
other

:::::::::
disciplines, and motivated by pioneering attempts at

carbon cycle data assimilation (Rayner et al. (2005); Kaminski et al. (2013)). It utilises the adjoint of the JULES model(called

adJULES), derived by automatic differentiation, which enables efficient and objective calibration against observations. Im-15

portantly, adJULES also allows the uncertainties in the best-fit parameters to be estimated. Such uncertainties are important

information for model users, and can also form the basis for observation-constrained estimates of prior
:::::::
posterior

:
probability

density functions for the land-surface parameter perturbations used in climate model ensembles (e.g. Booth et al. (2012)).

2.2.1 The theory of adJULES

JULES generates a modelled time-series for a given vector of internal parameters, z. A
::::
The cost function, f(z)is defined as20

:
,
::::::
consists

:::
of a weighted sum of squares of differences between the modelled and the observed time-series. The cost consists

of the difference between the
::::::::
difference

::::::::
between

:::
m

t::::
(the vector of model outputs at time t, m

t

and
:
),
::::
and

::
o

t:
(the vector of

observations at time t, o
t

,
:
),
:
combined with a term quadratic in the difference between

::::::::
parameter

:::::
values

::
z

:::
and

:
initial parameter

values z0and values z:

f(z) =

sX

t=1

(m

t

�o

t

)

T

R

�1
(m

t

�o

t

) + (z � z0)
T

B

�1
(z � z0).25

Here R is the observed covariance in the errors (m
t

�o

t

)and

f (z;

ˆ

z,z0) =

1

2

"
X

t

(m

t

(z) �o

t

)

T

R

�
ˆ

z)

�1
(m

t

(z) �o

t

) + �(z � z0)
T

B

�1
(z � z0

�
#

.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

::::
Here,

::::::::::::::::::::::::::::::::::::::
R(

ˆ

z) =

1
n

P
n

t=1(m(

ˆ

z)

t

�o

t

)(m(

ˆ

z)

t

�o

t

)

T

:::::::
denotes

:::
the

::::
error

:::::
cross

:::::::
product

::::::
matrix

::::::::
produced

:::
by

::
a

::::::
JULES

:::
run

:::::
with

::::::::
parameter

:::::
value

::
ˆ

z.
:::

In
::
an

::::::::::::
optimisation,

::
z

:::
and

::
ˆ

z

:::
are

:::::::
updated

:::::::::
separately

::
in
::::::

nested
::::::
loops,

::::::
having

::::
both

:::::
been

::::::::
initialised

:::
to

:::
the

::::::
default

::::::
JULES

::::::::
parameter

:::::
value

:::
z0.

::
In

:::
the

:::::
inner

::::
loop,

::
z

::
is

:::::
varied

::
to

::::::::
minimise

:::
the

::::
cost

:::::::
function

::::::::::
(termination

::::::::
criterion:

::::::::
rf ⇡ 0)30
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::
for

:::
the

::::::
current

:::::
value

::
of

::
ˆ

z.
::
In

:::
the

:::::
outer

::::
loop,

::
ˆ

z

::
is

::::
reset

::
to

:::
the

:::
new

:::::
value

::
of

::
z

::::
from

:::
the

:::::
inner

::::
loop

::::::::::
(termination

::::::::
criterion:

::::::
change

::
in

:
ˆ

z

::::::::::
negligible).

::
At

:::
the

::::
end

::
of

::
an

:::::::::::
optimisation,

:::::::::
therefore,

:::
the

:::::
matrix

:::
R

:::::::
conveys

::::::::::
information

:::::
about

:::
the

::::
error

:::::::::
correlation

::::::::
structure

::
in

:
a
::::::
JULES

:::
run

::::
with

:::::::
optimal

:::::::::
parameter

::::::
values.

:::
The

::::::
matrix

:
B describes the prior covariances in the parameterswith

:::::::
assigned

:::
to

:::
the

::::::::::
parameters,

::::
and

::
is

::::
here

::::::
chosen

:::
to

::
be

:
a diagonal matrix proportional to the inverse square of the ranges allowed for each parameter. The

::::
prior

:::::::::::
uncertainties5

::
are

::::::::
therefore

::::::::
assumed

::
to

:::
be

::::::::::
uncorrelated

::::::::
between

:::
the

::::::::::
parameters.

::::
The constant of proportionality � , with default value 1,

controls the width of the prior distribution and ultimately the
::::::
controls

:::
the

:
relative importance of the background term .

:::
(i.e.

:::
the

::::::::
right-hand

:::::
term

::
in

:::
Eq.

::
5)

::::
and

:::
the

::::
error

:::::
term

:::
(i.e.

:::
the

::::::::
left-hand

::::
term

:::
in

:::
Eq.

:::
5). Larger values of � help condition the problem

(Bouttier and Courtier, 1999) and force parameter values to be close to the initial value z0 ::::::::::::::::::::::::
(Bouttier and Courtier, 1999) . All

parameters and observations are equally weighted in this cost function.10

The optimal vector of parameters is the vector z that minimises the cost function (Eq. 5). The aim of adJULES is to find this

vector. adJULES minimises the cost function iteratively using the gradient descent algorithm L-BFGS-B (Byrd et al. (1995),

optim: R Development Core Team (2015)). This algorithm is based on the BFGS quasi-Newton method but is modified to use

limited memory,
:::

for
:::::::::::::

computational
::::::::::
affordability,

:
and box constraints, so each parameter is given an upper and lower bound

based on expert opinion or on physical reasoning (Byrd et al., 1995).15

At each iteration, the gradient rf(z) of the cost function f(z) is computed with respect to all parameters, using the adjoint

model of JULES. The adjoint is generated with the automatic differentiator tool TAF (Transformation of Algorithms in Fortran;

see Giering et al. (2005))in ‘reverse mode’ (rather than ’forward mode’) for computational efficiency. Automatic differentiation

relies on using the chain rule, the choice of forward or reverse mode refers to the order in which the derivatives are computed.

Calculating rf(z) is most efficient in reverse mode as only one sweep is needed to generate the derivative with respect to all20

parameters (Bartholomew-Biggs et al., 2000).

Once the cost function reaches the minimum, a locally optimal parameter vector z1 is returned and the second derivative of

the cost function with respect to the parameters can be used to calculate posterior uncertainties. This process is then repeated,

the locally optimised parameters are fed back through JULES, generating a new modelled time-series and hence a new cost

function. The loop is terminates when the modelled time series no longer improves (Fig. 1).25

2.2.2 Multisite Implementation

In its simplest form, adJULES runs at a single grid-point location and so the derived optimal parameter vector is site specific. On

the other hand, multisite optimisation aims to find values for a common set of parameters, using data from multiple locations.

The definition of the cost function (Eq. 5) can be extended to include the observations from all
:
S sites, and its derivative found

in order to use the L-BFGS-B algorithm again. The extended cost function is the sum of the individual cost functions for each30
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Meteorological data

Parameters

Modelled time-series

JULES

z0 = (z1, z2, ..., zn

)

T

0

t

t

Observed time-series

t

Cost

f(z) adjoint
rf(z)

BFGS

Optimal?

N

Y

New parameters

z = (z1, z2, ..., zn

)

T

Optimised time-series

t

Optimal parameters

z1 = (z1, z2, ..., zn

)

T

1

Hessian to give

uncertainty bounds

�2f
�zi�zj

Figure 1. Schematic of the adJULES parameter estimation system starting with the initial parameter vector z0. This is usually based on

default JULES parameter values (Blyth et al., 2010). The optimised parameter vector is denoted z1.

site
:
s. Similarly, the first and second derivatives of this new cost function can be defined using the sum of the derivatives at the

individual sites.

f (z;

ˆ

z,z0) =

1

2

"
X

s

X

t

(m

t,s

(z) �o

t,s

)

T

Rs

�
ˆ

z)

�1
(m

t,s

(z) �o

t,s

) + S�(z � z0)
T

B

�1
(z � z0

�
#

.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

2.3 Eddy covariance flux data

The eddy-covariance flux data used in this study are part of the FLUXNET network
:::::::::
FLUXNET

:
(Baldocchi et al., 2001). The5

FLUXNET database contains more than 500 locations worldwide, and all the data is
::
are

:
processed in a harmonised manner

using the standard methodologies including correction, gap-filling and partitioning (Papale et al., 2006).
::::
Data

::::
from

::::
160

::::
sites

::::
were

:::::
made

::::::::
available

:::
for

:::
this

:::::
study

:::
by

::
M.

::::::::::::
Groenendijk. The sites used in this study were selected based on data availability:

sites with missing input variables or significant data gaps
:::
data

::::
gaps

:::
of

::::
more

::::
than

:::::
50% during the growing the season were

omitted.10

To model photosynthesis
::::::::
constrain

::::::::::::
photosynthetic

::::::::::
parameters, Net Ecosystem Exchange (NEE) and Latent Heat Flux (LE),

among other fluxes, are required
::::::
helpful. The NEE flux, defined as the net flux of CO2, is partitioned into gross primary

production (GPP) and ecosystem respiration (Re
::::
Resp) (Reichstein et al., 2005). In this study this GPP flux is used, along with

the LE flux to constrain the model.
::::
GPP

:::
data

:::
are

::::::::::::
model-derived

:::::::::
estimates,

:::::
which

:::::
could

::::::::
introduce

::
an

:::::::::
additional

:::::::::
uncertainty

::::
into

::
the

:::::::
results.15
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In an attempt to run the experiments as closely to a standard JULES run as possible, input fields of vegetation structure and

soil type were drawn from the UK Met Office ancillary files used in the HadGEM2 configurations. The LAI seasonal cycle used

is derived from a MODIS product
::
(?) from Boston University. The values taken for each of the experiment sites correspond to

the closest grid point with values.
::
at

:::::
which

::::
data

:::
are

::::::::
available.

::::
This

:::::
could

::::
lead

::
to

:::::::::::::
inconsistencies

:::::::
between

:::
the

:::::
actual

:::::::::
vegetation

:
at
::
a
:::::
given

:::
site

:::
and

:::
the

:::::::::
vegetation

::::::::
structure

:::
and

:::
soil

::::
type

::::
used

:::
in

::
the

::::::
model.

:

2.4 Experimental setup5

Version 2.2 of JULES is implemented in the current version of adJULES. This version is set up to calibrate a subset of JULES

soil and vegetation parameters against up to six observables in the vectors m
t

and o

t

(Eq. 5): net ecosystem exchange (NEE),

sensible heat (H), latent heat (LE), surface temperature (T⇤
:s
), gross primary productivity (GPP) and ecosystem respiration

(Resp).

This study aims to improve the parameters used to define PFTs and therefore it concentrates on vegetation parameters. Table10

1 outline
::::::
outlines the parameters chosen.

One year of FLUXNET data is used for each site considered in this study
::
at

:::
the

:::::::::
calibration

::::
stage. Where multiple years are

available, the most complete year was chosen. For each site , the model is spun up to a steady soil moisture and temperature

state. Where possible, the two years of data preceding the year of comparison were repeatedly applied in the spin-up. Where

this was not possible, the first year of data was repeatedly applied. Only sites with at least two years of data are used in this15

study, so that the spin-up year is different from the experiment year. In each case, the model was spun up for at least 50 years.

For deciduous sites and crop sites, leaf area index values are taken from MODIS data for the appropriate year.
:::::
Where

::::::::
possible,

:
a
::::::
second

::::
year

::
of

::::::::::
FLUXNET

::::
data

:::
was

:::::
spun

::
up

::
to

:::
be

::::
used

::
at

:::
the

::::::::
validation

:::::
stage

::
of

::::
this

:::::
study.

::::
This

::::::
second

::::
year

::::
was

::::::
chosen

::
to

::
be

:::
the

::::::
second

::::
most

::::::::
complete

::::
year

:::::
when

::::
more

::::
than

::::
one

::::
year

:::
was

::::::::
available.

:

The sites used in each of the PFT classes are described in Appendix A. The FLUXNET database used in this study did20

not distinguish between the different types of grasslands. Using Met Office ancillary files, the grasslands were partitioned

into C3 grasses and C4 grasses according to fractional cover. In the case of C3 grasses, sites were picked only when the

fractional cover was over 60%. Since the C4 grasses are under represented
:::::::::::::::
under-represented in the FLUXNET database, this

boundary was lowered to include all sites where C4 grass was the dominant PFT. Crops were not included in either grass

class. The photosynthesis model used in JULES is based on scaling up observed processes at the leaf scale to represent the25

canopy. The scaling to canopy level can be done in several ways, in
:
.
::
In

:
this study the simple big leaf approach was adopted

(Clark et al., 2011), although optimisations can also be carried-out
:::::
carried

:::
out

:
for more complex canopy radiation options

::::::::::::::::::
(Mercado et al., 2009) .

All of the sites in each PFT class are used to find the optimal values for the PFT. The second derivative of the cost func-

tion found by
:::::::::::
differentiation

::
of

:
the adjoint code is then used to quantify the uncertainties associated with these new

::::::
optimal30

parameter vectors.

For the multisite experiments, the background term was weighted
::::::::::
Preliminary

::::::::::
experiments

::::::
showed

::::
very

::::::
narrow

:::::::::::
uncertainties

:::::
whilst

:::::::
running

:::
the

::::::::::
optimisation

::::::
scheme

::::
over

::::::::
multiple

::::
sites

:::
(i.e.

:::
the

::::::::::
background

::::
term

::::
was

:::::
found

::
to

::::::::
dominate

:::
the

:::
cost

:::::::::
function).
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::
In

:::::::
previous

::::::::
multisite

::::::
studies

:::::::::::::::::::::::
(Kuppel et al., 2012, 2014) ,

:::
the

::::
prior

:::::
range

::::
was

::::
also

::::
used

::
to

:::::::
defined

:::
the

::::::::::
background

:::::::::
covariance

:::::
matrix

:::
B.

::::
The

:::::
range

::::
was

::::::::
variously

::::::
further

:::::::::
multiplied

::
by

::
a
:::::
factor

:::
of

::::
40%

:::::::::::::::::::::
(Kuppel et al., 2012) and

:

1
6:::::::::::::::::::

(Kuppel et al., 2014) .

::::::::::
Experiments

:::::
were

:::
run

::
to

::::
find

:
a
::::::
similar

::::::
factor

::
to

:::
use

::
in
::::
this

:::::
study

::::
(the

:::::::
constant

::
of

:::::::::::::
proportionality

::
�

::
in

:::
Eq.

:::
5).

::
In

::::
each

:::
of

:::
the

:::::::
multisite

:::::::::::
experiments,

:::
the

:::::
lowest

:::::
value

::
of

::
�
:
such that the problem remained conditioned but low enough for useful

::::::
Hessian

::
is

::::::
positive

:::::::
definite

::
at

:::
the

:::::::
optimal

::::::::
parameter

:::::
value

::::
was

:::::
used.

::::
This

::::::
allows uncertainties to be generated .

::::::
around

::::
each

:::::::::
parameter

:::
and

:::::::
prevents

:::
the

:::::::
gradient

:::::::
descent

::::::::
algorithm

::::
from

::::::::
reaching

:::
the

:::::::::
boundaries

::
of

:::
the

:::::::::
prescribed

::::
prior

::::::
range.5

2.5 Introducing

:::::::
Analysis

:
toolsfor analysis

2.5.1 Different ways to represent parameter

:::::::::
Parameter

:
uncertainty

As well as generating optimal parameter values, adJULES estimates the uncertainty associated with each parameter. The second

derivative (Hessian) of the cost function,

H
ij

=

@2f

@z
i

@z
j

(7)10

where f(z) is given by equation (5), evaluated at the optimal parameter value, yields information about the curvature of the

cost function at the local minimum. A ‘sharp’ cost function, where the cost function is steep either side of the optimal parameter

value
:
, indicates lower parameter uncertainty. This can also be interpreted as meaning that a small deviation from the optimal

parameter value yields a large increase in cost. Conversely, a ‘flat’ cost function indicates higher parameter uncertainty, or little

change in cost caused by deviation from the optimal parameter value.15

In order to generate statistics associated with the curvature of the cost function, the Hessian is used to generate
:::::::
samples

::::
from

:::
the

::::::::
posterior

::::::::::
distribution.

:::::
This

::
is a truncated multivariate normal distribution (Genz et al., 2015)

::::::
because

:::
of

:::
the

::::
box

:::::::::
constraints

::::::
placed

::
on

:::
the

:::::
prior. Using Gibbs sampling (Geman and Geman, 1984), an ensemble of plausible parameter vec-

tors is generated from this distribution, for a statistically satisfactory match between observations and modelled time se-

ries. The multivariate normal parameter distribution allows for marginal density plots to be generated for each parameter.20

When considering these marginal density plots, it is important to remember that they represent only one or two dimension of

an n-dimensional multivariate normal distributions. The
::::::::::
dimensions

::
of

::
a

::::
high

::::::::::
dimensional

::::::::::
multivariate

:::::::
normal

::::::::::
distribution

:::::
which

::
is

:::::::::
truncated.

::::::::::::
Consequently

:::
the

:
optimal parameter values may not correspond to the peak of the one-dimensional

distributionsas a result
::::::
(which

:::
are

::::::
modes

::
of

:::
the

:::
full

:::::
high

::::::::::
dimensional

:::::::::::
distribution)

::::
may

:::
not

:::::::
coincide

::::
with

::::::
modes

::
of
::::

the
::::
one-

:::
and

::::::::::::::
two-dimensional

:::::::
marginal

:::::::::::
distributions.25

Metric
::
In

:::::
order

::
to

:::::::
illustrate

::::
the

::::::::
parameter

::::::::::::
uncertainties,

::::
error

::::
bars

:::
are

:::::
used

::
to

::::::::
represent

:::
the

::::
80%

:::::::
quantile

::::::
range

::::
(10th

:
to

quantify model
:::
90th

:::::::::
percentile)

:::
for

::::
each

:::::::
optimal

:::::::::
parameter.
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2.5.2

:::::::::
Fractional

:::::
error

:
-

::
a

::::::
metric

::
of

::::::::::
model-data fitto data

To measure the improvement exhibited by different parameter vectors, a normalised root-mean-square deviation (✏) is used .

::
the

:::::::
fraction

:::
of

:::::::
variance

::::::::::
unexplained

:::
✏2

::
is

::::
used

::
to

::::::
define

:::
the

::::::::
fractional

:::::
error

:
✏.
:::::

This
:::::
metric

::::
was

::::::
chosen

::
to
:::::

show
:::
not

:::::
only

:::
the30

:::::::::::
improvement

::::
made

:::
by

:::
the

::::::
optimal

:::::::::
parameter

::::::
vectors

::
at

::::
each

::::
site

:::
but

:::
also

::
to
:::::
show

::::
how

::::
each

:::
site

:::::::::
performed

:::::::
relative

::
to

::::::
others.

Given a parameter vector, z, a modelled time series m

i,t

with k data points is generated using JULES, where i denotes

one of the
:::::::::
observable

:::
data

:::::::
streams

:::
(in

::::
this

::::
case LE and GPPdata streams). For each data stream i, the ✏ normalised error is

calculated as follows

✏
i

=

sP
k

t=1(mi,t

�o

i,t

)

2

k
,

and then normalised:5

✏̂
i

=

✏
i

max(m

i,t

,o
i,t

) � min(m

i,t

,o
i,t

)

.

After non-dimensionalising both
::::::
fraction

::
of

:::::::
variance

::::::::::
unexplained

:::
by

:::
the

:::::
model

::
is
:

✏2
i

=

P
k

t=1(oi,t

�m

i,t

)

2

P
k

t=1(oi,t

� ō

i

)

2
, where ō

i

=

1

k

kX

t=1

o

i,t

::::::::::::::::::::::::::::::::::::::::::

(8)

:
It
:::::::
follows

:::
that

:::
the

:::::
mean

:::::::
fraction

::
of

:::::::
variance

::::::::::
unexplained

::::::
across data streams, the final error is given by

✏̂ =

✏̂1 + ✏̂2p
2

.10

This ensures values are between 0 and 1; 0 representing a

✏2 =

✏21 + ✏22
2

,
::::::::::

(9)

:
is
::
a

:::::
single

:::::::::::
dimensionless

::::::::
measure

::
of

:::::
model

:::::
misfit.

::::
The

::::::::
fractional

::::
error

:
✏
::::
can

:::
than

:::
be

:::::::::
interpreted

::
as

:::
the

:::::
typical

::::::::::::::::
(root-mean-square)

::::
error

::::::::
expressed

::
as

::
a
::::::
fraction

:::
of

::
the

::::::::::::::::
(root-mean-square)

:::::::::
magnitude

::
of

:::
the

::::::::
observed

:::::::
seasonal

:::::
cycle.

:::::
Thus,

:::::
✏ = 0

:::::::::
represents

:
a
:
per-

fect match to the observations, 1 a complete mismatch. The closer the value is to 0, the better the set of parameters used is at15

creating modelled time-series resembling the observed time-series
:::::
while

:::::
✏ = 1

::::::::::
corresponds

::
to

:::
the

::::
error

::
in
::
a
::::
null

:::::
model

::::::
whose

::::::::
prediction

::::
m

i,t::::::
always

::::::
equals

:::
the

:::::::::::
observational

:::::
mean

::
ō

i

.

3 Results and discussion

In this section, the site-specific optimisations are first considered. By considering each PFT separately, the misfits between the

model and the observations are discussed and the effect of optimising over each site individually to improve model-observation20

agreement is considered.
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Next, the multisite methodology is validated. This is then used to perform optimisations over each of the PFTs. All of the

sites in a given PFT are optimised simultaneously to find a generic parameter vector appropriate to the PFT. The new optimised

parameter vectors are presented, along with associated uncertainties.
:::::
Some

::
of

:::
the

::::::::::
uncertainties

::::
and

:::::::::
correlations

::::::
found

:::::::
between

:::::::::
parameters

:::
are

::::::::
discussed,

:::::::::
especially

::
in

:::
the

:::::::
context

::
of

:::
the

::::::::
equations

::::::::
described

::
in

:::::::
section

:::
2.1.

:
The rest of the section considers25

the improvement found using these optimised parameter vectors , and discusses some of the uncertainties and correlations

found
:::
both

:::
on

:::
the

:::::::::
calibration

::::
year

:::
and

:::
the

::::::::
validation

::::
year

:::
for

::::
each

:::
of

::
the

:::::
sites.

3.1 Single-site optimisations

First, each of the sites was optimised individually in order to find site-specific parameter vectors. As described in section 2.4,

one year runs at the different sites were optimised against monthly averaged LE and GPP.
:::
The

:::::::
constant

::
of

:::::::::::::
proportionality

::
�5

:
is
:::
set

::
to

::
1
:::
for

::
all

:::::
sites,

::
in

:::::
order

::
to

::::
give

:::::
equal

:::::::::
weighting

::
to

::::
both

:::::
terms

::
in

::::
Eq.

::
5. A site dominated by each PFT was picked to

represent the general improvements made. The main seasonal cycles of latent heat
:::
LE and GPP for the different sites are shown

in Fig. 2.

Most broadleaf sites follow the pattern of
::::::::
illustrated

:
(Fig. 2(a

:
,
:::
top

::::
row). Normally, for broadleaf sites, a standard JULES

run will underestimate GPP. The optimisation does a good job in fixing this, bring the modelled time-series closer to the10

observations. In contrast, LE does not improve as much.

Similarly for the needleleaf sites (Fig. 2(b))
:
,
::::::
second

::::
row), the JULES model output tends to overestimate LE and underes-

timate GPP. The parameter vector found in the optimisation improves the fit of both data streams, most notably GPP. At sites

for which a double peak seasonality is apparent, the optimised model captures this better than the original model.

GPP is also underestimated for the C3 grass sites (Fig. 2(c) )
:
,
::::::
middle

::::
row)

:
and, for the majority of the sites, the optimisation15

does a good job of correcting this. The LE flux tends to be at
:::
have

:
the right magnitude before optimisation, unlike the GPP

flux, but adJULES does not manage to improve this output significantly. In the example shown, the JULES model using the

default parameter
:::::
vector already performs very well, so little improvement is needed, but this is not always the case. The new

set of parameters is also good at simulating multiple peaks in the LE and GPP fluxes, when they are observed.

There are only two C4 grass sites in the set and JULES does not perform very well on these before or after optimisation20

(Fig. 2(e)).

The shrub sites , Fig. 2(f),
:
,
:::::
fourth

:::::
row).

::::
The

:::::::
original

::::::::
stomatal

:::::::::::::::::::::::
conductance-photosynthesis

::::::
model

::::::
within

:::::::
JULES

::::
was

::::::::
developed

:::::
based

:::
on

:::::
fluxes

:::::::::
measured

::::
over

:::
C4

:::::
grass

::
as

::::
part

::
of

:::
the

:::::
FIFE

::::
field

::::::::::
experiment

::::::::::::::::
(Cox et al., 1998) .

::::::::
However,

:::::
there

::
are

:::::::::
relatively

:::
few

::::::::::
FLUXNET

::::
sites

::::
over

::::::::::::
C4-dominated

::::::::::
landscapes,

::::
and

::::
only

:::
two

:::::
even

::
in

:::
the

::::::::
extended

::::::
dataset

::::
used

:::::
here.

:::
As

:
a
:::::
result,

:::
the

:::::::::
sensitivity

::
of

::::::::
stomatal

::::::::::
conductance

::::
and

::::::::::::
photosynthesis

::
to
::::::::::::
environmental

::::::
factors

::::
has

::::
been

::::
less

::::
well

:::::
tested

:::
for

:::
C425

::::::
grasses.

::::
The

::::::
results

::::::::
presented

::
in

::::
this

:::::
paper

:::::::
therefore

::::::::
highlight

:::
the

::::
need

:::
to

:::::::
reassess

::::::
JULES

:::
and

:::::
other

::::::::::
land-surface

:::::::
models

:::
for

::::::::::::
predominantly

::
C4

::::::::::
landscapes.

:

:::
The

:::::
shrub

::::
sites

:
show no general pattern .

::::
(Fig.

::
2,
::::::

fourth
:::::
row).

:
Some sites overestimate LE, whilst others underestimated

:::::::::::
underestimate

:
it, and similarly for GPP. The levels

:::
level

:
of improvement varies over sites. For some of the sites in this PFT,

11



the magnitude of GPP fails to get close to the magnitude of the observations, both before and after optimisation. However, it is30

hard to pick out a general pattern for this PFT, since there are only 5 sites in this set.

Overall, the adjoint performs well in improving
::::::::
adJULES

::::::
system

::::::
works

::::
well

::
in

::::::
finding

:::::::
optimal

:::::::::
parameter

::::::
vectors

::::::
which

:::::::
improve the performance of JULES at individual sites, regardless of PFT. The systematic underestimation of GPP in default

JULES , improves the most. This larger improvement in GPP fit reflects the larger set of optimised parameters that are exclu-

sively related to the carbon cycle. Different parameters may need to be incorporated, for example some soil ones, for the LE

flux to improve further.

3.2 Multisite Validation

:::::::::::
PFT-specific

:::::::
optimal

::::::::::
parameter

:::::
values

Broadleaf sites were used to validate the multisite methodology. This PFT is the best represented in the FLUXNET network,

though since the broadleaf set is large and spans a wide range of climatologies, only deciduous sites were considered.5

Optimisation was performed four randomly selected sets of five sites were. The optimal parameter vectors were then tested

at the remaining sites. The results are shown in Fig. ??.

The effect of parameter vectors z vectors on the overall model-data fit at each of the sites tested, using the metric described in

section 2.5.2. Original default JULES parameters (⇤), site-specific optimal parameters (⇤), and the multisite parameters found

by optimising over each set of five sites (,• ⇤ 0�,,• ⇤ 0�), denoted set 1, set 2, set 3, set 4respectively. Sites in the training set10

(filled circles), sites in validation set (open circles).

The optimised parameter vectors generally perform well, both on the sites used in the training sets and the sites used in the

validations sets. Indeed 15/18 of the sites improve no matter which of the optimised parameter vectors are used. The parameter

vector optimised over set 3 performs even better than the individual optimisations for some of the sites. JULES performed

worse on just two sites (UK-PL3, US-Ha1) using these parameter values compared to the default JULES parameters. These15

two sites also start off with relatively small errors, so even with the slight increase in errors they are still among the best

performing sites in the set. UK-PL3 does not improve with any of the 5-site parameter sets, but observations from this site

appears to be somewhat unusual (e.g. it has a very different seasonality to the rest of the sites for this PFT).

It seems likely that the adding more sites to a multisite optimisation smooths the cost function and makes it less likely for

the optimisation to get stuck in local minima. This may be one of the reasons that some of the 5-site optimisation works better20

than the single-site optimisation for certain sites.

Overall the results are promising, showing that the optimised parameters, even when calibrated from a small subset of sites,

can be generalised over the rest of the set.

3.3 New PFT parameter values

Optimisations were performed over all available sites for each of the PFTs simultaneously. The optimised model parameters25

for each of the PFTs are presented in Fig. 3.

For half of the parameters, the original parameter value is found outside the new
::::
prior

:::::::::
parameter

:::::
value

:::
lies

:::::::
outside

:::
the

:::::::
posterior

:
uncertainty bounds. The �c

�l

parameter, which determines the efficiency of rainfall interception by the plant canopy,
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does not change much from its original value for any of the PFTs. The uncertainty bounds are relatively tight and symmetrical.

The rest of the parameters show more variation. As described in section 2.5.1, the optimal values need not be in the centre of30

the uncertainty range, the uncertainties
::::
PDF can be skewed. Most

::
of the PFTs display high uncertainty in at least one of the

the parameters optimised; for the optimised broadleaf set for example, dq
c

is highly unconstrained. For C4 grasses, d
r

is so

unconstrained , even
:::
that the optimal value found is outside of

::
lies

:::::::
outside the 80% confidence interval. C3 grasses shows

::::
show

large uncertainty in n0 and for shrubs, the parameter with the largest uncertainty is ↵.

The uncertainties shown in Fig. 3 are one-dimensional marginal distributions. To understand further how the parameters are

correlated, consider the two-dimensional representation in Fig. 4. For all
:
of

:
the PFTs, the new

:::::::
posterior parameter uncertainties

exclude a large part of the prior ranges. The cloud of plausible points tends to be restrictive and tight for most parameters.5

The majority of the broadleaf parameters, shown in Fig. 4(a), are highly correlated with each other. The d
r

and �c

�l

parameters

are the only ones to be uncorrelated with other parameters. Similarly, the needleleaf parameters (Fig. 4(b)) are all highly

correlated, either positively or negatively, except for Tlow, which is completely uncorrelated with any of the other parameters.

For C3 grasses, (Fig.4(c)), the parameters which show no correlation between themselves and any other parameters are Tlow

:::
Fig.

::
4

:::::
shows

:::::
clear

:::::::::
correlation

::
of

:::::
some

::::::::::
parameters,

::::::::
especially

:::
for

:::
the

:::
tree

::::::
PFTs.

:::::
Many

::
of

:::::
these

::::::::::
correlations

:::
can

::
be

::::::::::
understood10

::
in

:::::
terms

::
of

:::
the

:::::::::
underlying

::::::::
structure

::
of

:::
the

:::::::
JULES

:::::
model

::::::::
(Section

::::
2.1).

:::
For

::::::::
example,

:::
the

:::::::
positive

:::::::::
correlation

:::
of

:::
n0 ::::

with
:::
f0,

:::
and

:::
the

:::::::
negative

:::::::::
correlation

:::
of

::
n0::::

with
::::
dq

c

,
:::
are

:::::::::
consistent

::::
with

::::::::
adJULES

:::::::::
attempting

::
to

::
fit

:::
the

::::::::
stomatal

::::::::::
conductance

::
g,

::::::
which

::::::
controls

:::
the

:::::::::::
transpiration

::::
flux

::::
from

:::::
taller

:::::::::
vegetation.

:::
The

::::::::
stomatal

::::::::::
conductance

:::
has

:::
the

:::::::::::
approximate

::::
form

:

g ⇡ 1.6
A

c
a

 
1

(1 � f0) + f0
dq

dqc

!

:::::::::::::::::::::::::

(10)

:
if
::
it

::
is

:::::::
assumed

:::
that

:::::::
c⇤ ⌧ c

i:
and �c

�l

. The d
r

parameters shows varying levels of correlations with the other parameters. The rest15

of the parameters are highly correlated.
:::::::
c⇤ ⌧ c

a

.

All the C4 grass parameters (Fig. 4(d)) are completely uncorrelated, with the exception of of the parameter pair d
r

and dq
c

,

which covary. For the shrub optimised parameters (
::::
The

::::::::
maximum

::::
rate

::
of

::::
leaf

::::::::::::
photosynthesis

::
is

:::::::::
controlled

::::::
largely

::
by

:::
the

::::
leaf

:::::::
nitrogen

::::::
content

:::
n0,

:::::::::
especially

::
in

:::
this

:::::::
big-leaf

::::::
version

:::
of

::::::
JULES

::::
(Cox

::
et
:::
al.,

::::::
1999).

::::
The

:::
best

:::
fit

:::::::::
parameters

:::
for

:::
tree

:::::
PFTs

::::
also

::::
seem

::
to

:::::
imply

::::
that

:::
the

::::::
second

::::
term

::
in

:::
the

::::::::::
denominator

:::::::::
dominates

::::
over

:::
the

::::
first.

:::
As

:
a
:::::
result,

::::::::::
maintaining

::
a
:::::::
realistic

:
g
:::::
value,

::::
and20

:::::::
therefore

::
a

:::::::
realistic

:::::
latent

:::
heat

:::::
flux,

:::
will

::::::
require

::::
that

:::
n0 :::

and
:::
f0 ::::

vary
::::::::::::
proportionally,

:::
and

::::
that

:::
n0 :::

and
:::
dq

c::::::
values

:::
are

:::::::::
negatively

::::::::
correlated.

:::::
This

::
is

::::::::
consistent

::::
with

:
Fig. 4(e) ) , n0 is negatively correlated with f0 and dq

c

. The rest of the parameters are not

correlated.
::
a)

:::
and

:::
(b).

:

The parameter vectors showing the highest correlations belong to the broadleaf and the needleleaf optimisations, for which

there are more measurement sites. Such a high correlation between parameters may therefore be related to the number of25

sites used in the optimisation
::::
Such

:::::::::
correlation

::
of

:::::::::
parameters

::
is
::::
less

:::::::
obvious

:::
for

:::
the

::::
grass

::::::
PFTs,

::::::
because

::::::::::::::::
evapotranspiration

::
is

::::::::
controlled

::::
less

::
by

:::::::
stomatal

:::::::::::
conductance

:::
and

::::
more

:::
by

:::
the

::::::
smaller

:::::::::::
aerodynamic

:::::::::::
conductances

:::::::::
associated

::::
with

::::::
shorter

::::::::
vegetation.
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3.2.1 The performance

::::::::::
Assessment

:
of the new PFT

:::::::::::
PFT-specific

:::::::
optimal parameters

The performance of the PFT-specific parameters are
:
is
::::
now

:
compared to the default JULES values and the results of the model

optimised
::
to

:::
the

:::::::::
parameters

::::::
found

::
by

:::::::::
optimising

:
independently at each measurement site. This is shown in

:::
For

::::
each

::::
site,

:::
the30

::::::::
fractional

::::
error

::
in

::::
both

:::
the

:::::::::
calibration

::::
year

:::
and

:::
the

:::::::::
validation

::::
year

:
is
:::::::::
displayed Fig. 5. The lower the error, the better the model

fits the observations, and so the better performing the parameter vector is.

All sites are improved using the locally optimised parameter vectors.

::
By

:::::::::
definition,

:::
the

::::::::
fractional

::::
error

::
in

:::::::::
calibration

:::::
years

::::::::
decreases

::::
when

:::::::
moving

::::
from

::::::
default

::
to

::::::::::
site-specific

:::::::
optimal

:::::::::
parameters

::
in

:::
the

:::::::::
calibration

:::::
years.

:::::::::::
Remarkably,

:::
the

::::::::::
site-specific

:::::::
optimal

:::::::::
parameters

::::
also

:::::::
improve

:::
the

::::::::::
model-data

::
fit

::
in

:::::::::
validation

:::::
years

::
for

::::::
59/64

::
of

::::
sites

:::::
(over

:::::
92%).

:::::::::
Similarly,

:::
the

:::::::::::
PFT-specific

::::::
optimal

:::::::::
parameter

::::::
vector

::::::::
improves

:::
the

::
fit

:::
(in

::::
both

:::::::::
calibration

::::
and

::::::::
validation

:::::
years)

:::
for

::::
85%

::
of
:::
the

:::::
sites;

:::::
75/79

::::
sites

:::
for

:::
the

:::::::::
calibration

:::::
years

:::
and

:::::
55/64

::::
sites

:::
for

:::
the

::::::::
validation

::::::
years.5

:::::::
Consider

::::
first

:::
the

::::::::
broadleaf

::::
sites

::::
(Fig.

::
5,
:::
top

::::
two

::::::
rows). For the majority of sites , this decrease in error is substantial. Only

the outliers, which start with large initial errors, and the C4 grass site show little improvement. For the C4 grass sites, the initial

error is low due to the fact these sites have incomplete data.

The new
::::::::
displayed

::
in

:::
the

::::
top

::::::::
broadleaf

::::::
panel,

:::
the

::::::::
reduction

:::
in

::::::::
fractional

:::::
error

::
in

:::::::
moving

:::::
from

::::::
default

::
to
:::::::::::

site-specific

::::::
optimal

:::::::::
parameters

::
is
::::::::::
substantial

:::
and

:::::::::
sometimes

::
as

:::::
much

:::
as

:
a
:::::
factor

:::
of

::
2.

::
In

:::
the

:::::::::
calibration

:::::
year,

:::
the PFT-specific parameter10

vectors improve JULES performance over 92% of the sites used in this study. The new broadleaf parameter vector significantly

improves 25 of the 28 broadleaf sites , and a further two
::::::
optimal

:::::::::
parameter

:::::
vector

::::::::
improves

::
26

:::
of

:::
the

::
27

::::::::
broadleaf

::::
sites

::::::
shown

:::::::
although

:::
one

:
of the sitesgive errors similar to when the default parameters are used. Only ,

:::::::
IT-Lec,

:::
the

::
fit

:::::
shows

:::
no

::::::
change.

::::
The

:::::::::::
improvement

:
is
::::::::
typically

:::::
about

::::
half

::
as

::::
good

:::
(on

::
a
:::
log

:::::
scale)

::
as

:::
the

:::::::::::
improvement

:::::
using

:::
the

::::::::::
site-specific

:::::::
optimal

::::::::::
parameters.

::
In

::::
other

::::::
words,

:::
the

::::::::
reduction

::
in

::::::::
fractional

::::
error

:::::::
moving

::::
from

::::::
default

::
to
:::::::::::
PFT-specific

::::::
optimal

::::::::::
parameters

::
is

:::::::::
sometimes

::
as

:::::
much

::
as15

:
a
:::::
factor

::
of

::::

p
2.

::::::::
Amongst

::::::::
broadleaf

:::::
sites,

::::
only UK-PL3 gets notably worse. Considering this site more closely, it can be seen

to behave
:::::::::::
Investigation

:::::
shows

::::
that

:::
this

::::
site

:::::::
behaves differently from the rest of the sites in the set, both in

::
the

:
magnitude of

the fluxes and seasonality.
::::
This

:::
UK

::::
site

:
is
::
in
:::
the

::::::::::::::
Pang/Lambourn

:::::::::
catchment,

:::::
which

:::
has

:::::
chalk

::::
soil

::::
with

::::::::::
macropores

:::
that

::::::
permit

::::::::
significant

::::::
lateral

:::::::::
subsurface

:::::
flows

::
of

::::
soil

::::::::
moisture.

:::::
These

:::::::::
horizontal

::::
flows

::::::
cannot

:::
be

:::::::
captured

::
in
::
a
:::::
model

::::
like

::::::
JULES

::::::
which

:
is
:::::::::
essentially

::::::::::::::
one-dimensional

::
in

:::
the

:::::::
vertical

:::::
below

:::
the

:::
soil

:::::::
surface.

:
20

The needleleaf sitesimprove greatly when using the new needleleaf parameter values, with
::::::
Similar

:::::
levels

::
of

:::
fit

:::
and

:::::
error

::::::::
reduction

:::
can

:::
be

::::
seen

::
in
::::

the
::::::::
validation

:::::
years

:::
in

:::
the

::::::::
Broadleaf

::::
set.

:::::
Only

::::::
IT-Col

:::
and

:::::::::
US-MMS

:::::
show

:::
no

::::::::::::
improvement,

:::
the

::::::::::
PFT-specific

:::::::
optimal

:::::::::
parameter

:::::
vector

:::::
does

:::
not

::::::
worsen

::::
the

::
fit

::
at

:::::
these

::::::::
locations.

::::
For

::::::::
AU-Tum,

:::
the

:::::::::::
PFT-specific

:::::::::
parameter

:::::
vector

::::::::::
outperforms

:::
the

::::::::::
site-specific

::::::
vector.

::::
This

::::::::
illustrates

:::
that

:::
the

::::::::::
PFT-specific

::::::
vector

:::
can

::
be

::::::
robust,

:::::::
whereas

:::
the

::::::::::::::
locally-optimised

::::::
vectors

:::::
might

::::::::
over-tune

::
to

:::
the

:::::::
specific

::::::::
behaviour

::
of

:::
the

:::::::::
calibration

:::::
year.25

::::::
Results

:::
are

::::::
similar

:::
for

:::
the

:::::::::
Needleleaf

:::::
sites,

:::
the

:::::::
majority

:::
of

:::
the

::::
sites

::::
show

:::::::::
noticeable

::::::::::::
improvements

::
in
:::::
both

:::
the

:::::::::
calibration

:::
and

:::::::::
validation

::::
years

::::::
when

:::::
using

::::::::::
site-specific

:::::::
optimal

::::::::
parameter

:::::::
vectors.

::::
For

::::
over

:
a third of the sites nearly performing as

well as the single-site optimisations. The only site this new parameter vector
:
in

::::
this

::::
PFT,

:::
the

::::::::::::
improvement

:::::
when

:::::
using

:::
the

::::::::::
PFT-specific

:::::::::
parameter

:::::
vector

::
is

::::::
similar

::
to

:::
that

::::::::
obtained

::::
with

:::
the

::::::::::
site-specific

::::::::
parameter

::::::
vector.

::::
This

:::::::::
illustrates

:::
that

:::::
these

::::
sites
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::
fit

::::
well

:::::::
together

::
as

:
a
::::::
single

::::
PFT.

:::
For

:::::
these

::::
sites,

:::
the

:::::::::::
PFT-specific

:::::
vector

:::::::::
sometimes

:::::::::::
outperforms

:::
the

::::::::::
site-specific

:::::
vector

:::
on

:::
the30

::::::::
validation

:::::
years.

:::::
Some

::::
sites

::
in

:::
the

:::::::::
Needleleaf

::::
PFT

::::::
remain

:::::::::
unchanged

:::::::::
regardless

::
of

:::
the

::::::::
parameter

:::::
vector

:::::
used.

::::::::::
Anomalous

::::
sites

:::
that

::::::
should

::
be

::::::
noted

:::
are

:::::::
CA-Qcu,

::::::::
CA-SF3

:::
and

:::::::
US-Blo.

::::
The

::::::::
CA-Qcu

:::
site

::
is

:::
the

::::
only

::::
one

::
in

:::
this

::::
PFT

::::
that

:
does not improve

is CA-Qcu, which was one of the sites with the lowest initial error. As with averaging, sites with the best fitmay have to be

sacrificed to achieve a generic parameter set across the PFT.
:::::
when

:::::
using

:::
the

::::::::::
PFT-specific

::::::
vector,

:::
for

:::::
either

:::
the

:::::::::
calibration

:::
or

::::::::
validation

:::::
years.

::::
This

::::
site

:::
has

:
a
:::::
lower

::::::
annual

:::::
cycle

::
of

::::
GPP

::::
than

:::
the

:::
rest

::
in
::::
this

:::
set.

::::
The

:::::::
CA-SF3

:::
site

::::::::
improves

:::::
when

:::::
using

:::
the35

::::::::::
site-specific

::::::::
parameter

:::::
vector

::
in
:::
the

:::::::::
validation

::::
year,

:::
but

:::
not

:::::
using

:::
the

::::::::::
PFT-specific

::::::
vector. The new error still remains relatively

low.
::::::
US-Blo

:::
site

::::::::
improves

:::
in

:::
the

:::::::::
calibration

::::
year,

:::
but

:::::
when

::::::::::
confronted

::::
with

:::
the

::::::::
validation

:::::
year,

::::
both

:::
the

::::::::::
site-specific

::::::
vector

:::
and

::::::::::
PFT-specific

::::::
vector

::::::
worsen

:::
the

:::
fit.

::::
This

::::::::
validation

::::
year

:::
has

:::::::::
unusually

::::
high

:::
LE

:::::
which

:::::
might

:::
be

::::::
causing

::::
this

::::::::::
discrepancy.

For
:::
For

:::::
some

:::::
sites,

::::
(e.g.

:::::::
US-Blo

:::
and

::::::::::
BW-Ma1),

:::
the

:::::::::::
PFT-specific

::::::::
optimum

::::::::::
outperforms

:::
the

::::::::::
site-specific

::::::::
optimum

:::
in

:::
the

:::::::::
calibration

::::
year.

::::
This

:::::::::::
phenomenon

::::
was

::::
also

:::::
noted

:::
by

::::::::::::::::::
Kuppel et al. (2014) ,

::::
who

:::::::
suggest

::::
that

:::
the

:::::
added

::::::::::
constraints

::::::
placed5

::
on

:::
the

::::::::::
parameters

:::
by

::::::::
increasing

::::
the

:::::::
number

::
of

::::
sites

::::::
causes

:::
the

::::
cost

::::::::
function

::
to

:::::::
become

::::::::::
’smoother’.

::::
This

:::::
may

::::::
render

:::
the

::::::::::
optimisation

::::::
scheme

::::
less

:::::
likely

::
to

:::::::
become

::::::
trapped

::
in
:::::
local

:::::::
minima.

:::
The

::::
last

:::::
panel

::
of

::::
Fig.

::
5

:::::
shows

:
the C3 grass site, there is a reduction in error for 9 of the 11 sites when using the new

parameters. The last two sitesin the set act similarly to when the default parameters were used.
::::
sites,

:::
the

:::
C4

::::
grass

::::
sites

::::
and

:::
the

:::::
Shrub

::::
sites.

::::
For

:::
the

::
C3

:::::
grass

:::::
sites,

:::
the

:::::::
majority

::
of

:::
the

:::::::::
validation

::::
years

::::
have

::
a
:::::
better

::
fit

::::
with

:::
the

:::::::::::
PFT-specific

::::::::
parameter

::::::
vector10

:::
than

:::::
with

::::::::::
site-specific

::::::::
parameter

::::::
vector.

::::
This

:::::::
suggests

::::
that

:::
the

:::::::
seasonal

:::::
cycle

:::::
differs

::::
over

:::
the

::::::::
different

::::
years

::
at
:::::
these

::::
sites.

:
For

the C4 grass sites, which started with relatively low
::::
high errors, the new parameter vector improves

:::::
vectors

::::::::
improve the sites

slightly . However, the
:::
for

:::
the

:::::::::
calibration

::::
year

:::
but

::::::
hardly

::
at

:::
all

:::
for

:::
the

::::::::
validation

:::::
year.

::::
This

:
set of two sites is too small to

draw any proper conclusion about the C4 grass parameters. There is a clear need for more data from C4 grass sites. Finally, the

Shrubs can be seen to improve for all the sites.15

In the case of the outliers, the new
:::
For

:::
the

:::::
Shrub

:::::
sites,

::::
both

:::
the

::::::::::
site-specific

:::
and

:::
the PFT-specific parameter vectors improves

JULES performance even relative to the single-site optimisations. A further 9 sitesof the whole set of sites improve to a

greater extend than the local optimisations.
::::::
provide

:
a
::::::

better
::
fit

::
of

:::
the

::::::
model

::
to

:::
the

:::::::::::
observations

::
of

:::
the

:::::::::
calibration

:::::
year.

::::
The

:::::::::::
improvement

:
is
::::::
minor

:::
for

::::
these

:::::
sites,

:::::
except

:::
for

:::::::
CA-Mer

::::::
which

:::::
halves

:::
its

::::::::
fractional

:::::
error.

:::::
When

:::::::::
confronted

::::
with

:::::::::::
observations

::::
from

:::
the

::::::::
validation

:::::
years,

:::
the

::::::
model

:::
also

::::::::
improves

:::
the

::
fit

::
of
:::::
these

::::
sites

:::
for

::::
both

::::::::::
site-specific

:::
and

:::::::::::
PFT-specific

:::::::::
parameters

:::::
(with20

::
the

:::::::::
exception

::
of

:::::::
US-Los,

::::::
where

:::
the

::::::::::
site-specific

::::::
optimal

::::::
vector

::::::::
increases

::::
error

:::
but

:::
the

:::::::::::
PFT-specific

:::::
vector

:::::::
reduces

:::
it).

::::
This

::
is

::::::
another

:::::::
example

::
of

:::
the

:::::::::::
PFT-specific

::::::::
parameter

::::::
vector

:::::
being

::::
more

::::::
robust.

:

4 Conclusions

adJULES

::::
This

:::::
study

::::::::
introduces

::::
the

::::::::
adJULES

:::::::
system,

:::::
which

:::
has

:::::
been

::::::::
developed

:::
to

::::
tune

:::
the

:::::::
internal

:::::::::
parameters

::
of

:::
the

:::::::
JULES

::::
land25

::::::
surface

::::::
model.

::::::::
adJULES

:
enables objective calibration of JULES against observational data, providing best fit internal param-

eters and the associated uncertainty ranges. The adJULES fits of JULES against

15



:::
For individual FLUXNET sitesshow significant improvements in the performance of JULES compared to default parameters,

typically in both the simulation of ,
:::::::::

adJULES
:::
has

::::
the

::::::
ability

::
to

::::
find

:::::
local

:::::::::::
(site-specific)

:::::::
optimal

:::::::::
parameter

:::::::
vectors

::::
that

::::::::::
significantly

:::::::
improve

:::
the

:::::::::::
performance

:::
of

:::
the

::::::
JULES

::::::
model

:::::::::
compared

::
to

::::
runs

::::::::
generated

::::::
using

:::
the

::::::
default

::::::::::
parameters.

::::
The30

:::
data

:::::::
streams

::::
used

::
in

:::
the

::::::::::
calibration, LE and GPP. All

:
,
:::
are

::::
both

::::::::
modelled

::::
more

:::::::::
accurately

::::
with

:::
the

::::::
optimal

:::::::::
parameter

:::::::
vectors,

::::
with

::
the

::::
GPP

::::
flux

:::::::::
improving

::
the

:::::
most.

::::
The

::::::
greater

:::::::::::
improvement

::
in

:::
the

::::
GPP

:::
flux

::
is

:::
due

::
to

:::
the

:::
fact

::::
that

::
the

::::::::::
parameters

:::::::::
considered

::
in

:::
this

:::::
study

:::
are

::::::
mainly

:::::
related

::
to
:::::::::::::
photosynthesis.

::::
For

::
the

:::
LE

::::
flux

::
to

:::::::
improve

::::
more

:::::::::::
significantly,

:::::
more

:::::
water

:::
and

::::::
energy

::::::
related

:::::::::
parameters

:::::
would

:::::
need

::
to

::
be

:::::::::
considered

::
in

:::
the

:::::::::::
optimisation.

:

:::::
When

::::::::
optimised

:::::::
locally

::
to

::::
find

::::::::::
site-specific

::::::::::
parameters,

:::
all

:
of the sites in this study improve when optimised locally ,

with the GPP flux improving most significantly.
:::
the

:::::::::
model-data

::
fit

:::
for

:::
the

:::::::::
calibration

:::::
year.

::
In

::::::::
addition,

::::
when

::::::::::
confronted

::::
with

::::::::::
independent

::::
data

::::
from

:
a
:::::::::
validation

::::
year,

:::
the

::::::
locally

:::::::::
optimised

::::::::
parameter

::::::
vectors

:::::::::
decreased

:::
the

::::
error

::
in

::::::::::
model-data

::
fit

:::
for

::::
92%

::
of

:::
the

::::
sites.

::::
This

::::::::
validation

:::
of

::
the

::::::::::
site-specific

:::::::::
parameter

::::::
vectors

::
is

:::::::::
promising,

:::
and

::::::::
suggests

:::
that

:::
the

::::::::
adJULES

::::::
system

::
is

::::::
robust.5

:
It
::::
also

:::::
gives

:::::::::
confidence

:::
that

:::
the

:::::::::
parameter

::::::
vectors

:::::
found

:::
can

:::
be

:::::::::
generalised

::::
over

::::::::
different

::::::::
locations.

The study is partially motivated
::::
This

:::::
study

::
is

::::::::
motivated

:::::
partly

:
by the desire to improve the performance of JULES within

the Hadley Centre’s Earth System Models, which means needing to find best fit parameters for a relatively small number of

PFTs. This is achieved by
::::
The

::::::::
adJULES

::::::
system

:::
has

:::
the

::::::
ability

::
to

:::::::
calibrate

::::::::
multiple

:::::::
locations

:::::::::::::
simultaneously

::
in

:::::
order

::
to

::::
find

::::::
best-fit

:::::::::
parameters.

:::::
This

::::::::
‘multisite’

:::::::::::
optimisation

::
is

:
a
::::::::

relatively
::::

new
::::::
feature

:::
in

::::::::
terrestrial

::::
data

:::::::::::
assimilation.

::
By

:
classifying the10

FLUXNET sites into groups dominated by each JULES PFT (BT, NT, C3G, C4G, Sh)and using adJULES
:
,
::::::::
adJULES

::::
was

::::
used

to find the best fit parametersfor each of these PFT groupings.
::::::
optimal

:::::::::::
PFT-specific

:::::::::
parameters.

:

Although the PFT-specific parameters inevitably do not
::::::
optimal

:::::::::
parameters

:::
do

:::
not

::::::
always fit the data as well as site-specific

::::::
optimal

:
parameters, they still offer significant improvements of

::::
over the default JULES parameters. For over 90

::
85% of the

sites, the new PFT-specific parameters are
::::::
optimal

:::::::::
parameters

:::::::
perform

:
better than default parameters giving closer model-data15

fit.

For some PFTs (notably C4G and Shrubs)there are insufficient FLUXNET sites to determine optimal parameters satisfactorily.

Additional data and sites for these PFTs are therefore urgently required
::::
when

::::::::::
confronted

::::
with

:::::::::::
independent

::::::::
validation

:::::
data.

:::
For

::::
50%

::
of

::::
the

::::
sites,

:::
the

:::::::::::
PFT-specific

:::::::
optimal

:::::::::
parameters

:::::::
perform

::
at
:::::

least
::
as

::::
well

:::
as

::::::::::
site-specific

:::::::
optimal

::::::::::
parameters.

::::
This

::::::
implies

:::
that

:::
the

::::::::
multisite

:::::::::::
methodology

::
is

:::
less

::::::::::
susceptible

::
to

::::::::::
over-tuning,

::::
both

::
in

:::::
terms

:::
of

::::::::
variablity

:::::
across

::::
sites

::::
(e.g.

::::::::
different20

:::::::::
overground

:::::::
biomass

::::
and

:::
tree

:::::::
ranges),

::::
and

::
in

:::::
terms

::
of

:::::::::
variability

:::::::
through

::::
time

::::
(e.g.

:::::::::
unusually

::::
high

::::::
rainfall

::
in
::::

the
:::::::::
calibration

:::::
year).

:::
The

:::::::::::
PFT-specific

:::::::::
parameters

:::::
found

::
in

::::
this

::::
study

::::::::
represent

::
a
:::::::::
significant

:::::::::::
improvement

::
on

:::
the

::::::
default

:::::
ones.

::::
The

:::
fact

::::
that

::::
such

:::::::::
parameters

:::::
could

::
be

:::::
found

::::::
implies

::::::
robust

::::::::::::::
parameterisations

:::::::::::
independent

::
of

:::::::::
geography.

::::
This

:::::::
supports

:::
the

::::
idea

:::
that

::
it
::
is

:::::::
possible

::
to

:::::::
represent

::::::
global

:::::::::
vegetation

::::
with

:
a
::::::::
relatively

:::::
small

:::::::
number

::
of

:::::
PFTs.25

:
A
:::::::::
successful

::::
and

:::::
robust

::::::::
multisite

::::::::::
optimisation

:::::::
assumes

::::
that

::::
sites

:::
can

:::
be

:::::::
grouped

:::
and

:::::::::
parameter

:::::
values

::::
can

:::::
apply

::
to

::::::
several

::::
sites

::
at

:::::
once.

::::::
Whilst

:::
the

::::::::::
PFT-specific

::::::::::
parameters

:::::
show

::::
great

::::::::::::
improvement,

:::::::
agreeing

:::::
with

:::
the

:::
use

::
of

::::
five

:::::
PFTs

::
in

:::::::
JULES,

::
it

:::::
would

::
be

:::::::
possible

::
to
:::::::
rethink

:::
the

:::
PFT

:::::::::
definitions

::::
and

:::::
group

::::
sites

:::::::::
differently.

::::
This

:::::
could

::
be

:::::
done

:::::
either

::
by

:::::::
looking

:::::
more

::::::
closely

16



:
at
:::

the
::::

site
:::::::
specifics

:::::::
detailed

::
in
:::

the
::::::::::

FLUXNET
::::::::
database,

::
or
:::

by
::::::::::
considering

:::::::::
single-site

:::::::::::
optimisations

::::
and

:::::::::
performing

::
a
::::::
cluster

::::::
analysis

::
in
:::::::::
parameter

:::::
space

::
to

:::::::
identify

::::
PFTs

::::::::::
empirically.30

It is , however ,
:::::::
however clear that there are some limitations to the success of the optimisation results. Certain

:::::
Some sites

still show significant differences between model output and observations. These issues indicate
:::
This

:::::::
suggests

:
that improvement

to model physics may be necessary in order to produce better model output. This is because adJULES produces the
:::::::
(locally)

best possible fit to observations, given the existing model physics and the prescribed driving data. If the fit is still inadequate, it

is down
:::
this

::::
may

::
be

::::
due to the model and data themselves, rather than parameter values. adJULES therefore also enables

:::
can35

:::::::
therefore

:::
be

::::
used

::
in

:::
the

:::::::::::
identification

::
of model structural errorsto be identified.

A successful and robust multisite optimisation assumes that sites can be grouped and parameter values can apply to several

sites at once. Whilst the PFT generic parameters show great improvement, agreeing with the general 5-PFTs definition found

in JULES, there is a possibility to rethink the PFT definitions and group sites differently. This could be done either by looking

more closely at the site specifics detailed by the FLUXNET database, or by considering the single-site optimisations and5

performing a cluster analysis to empirically identify PFTs .
:::::::
Another

::::::
reason

:::
for

:::::::::
inadequate

:::
fit

::::
may

:::
be

:::
due

:::
to

:::
the

:::::::
method

::::
used.

::
A

:::::::::
limitation

::
of

:::::::
gradient

:::::::
descent

:::::::
methods,

:::::
such

::
as

:::
the

::::::::::
optimisation

:::::::
scheme

::::
used

::
in
::::
this

:::::
study,

::
is

::::
that

:::::::::
sometimes

:
a
:::::
local

::::::::
minimum

::
is

:::::
found

::::::
instead

::
of

:::
the

:::::
global

:::::::::
minimum.

::::::::
However,

::
as

:::::::::
discussed

::
in

::::::
section

:::
??,

:::
the

:::
fact

::::
that

::
the

::::
cost

:::::::
function

::::::::
becomes

:::::::
smoother

:::::
with

:::::::::
additional

::::
sites

::::
may

:::
be

::
a

:::::::
solution

::
to

:::::::::
becoming

:::::::
trapped

::
in

:::::
local

:::::::
minima

::::::::::::::::::
(Kuppel et al., 2014) .

::::::::::
Alternative

:::::::
methods,

::::::::
including

:::::::::
ensemble

::::::::
methods,

:::::
could

:::::
avoid

:::
this

:::::
issue,

:::
but

:::
are

:::::
more

::::::::::::::
computationally

:::::
costly.

::::
For

:::::
some

::::
PFTs

::::::::
(notably10

::::
C4G

:::
and

:::::::
Shrubs)

:::::
there

:::
are

::::::::::
insufficient

:::::::::
FLUXNET

:::::
sites

::
to

::::::::
determine

:::::::
optimal

::::::::::
parameters

:::::::::::
satisfactorily.

:::::::::
Additional

::::
data

::::
and

::::
sites

::
for

:::::
these

:::::
PFTs

:::
are

:::::::
therefore

::::::::
urgently

:::::::
required.

:

Code availability

The source code of the adJULES data assimilation system is available at http://adjules.ex.ac.uk/.
:::
The

:
JULES land surface model

is freely available to any researcher for non-commercial use. Version 2.2 used in this study can be requested at jules.jchmr.org.15

The main documentation for the JULES system can also be found at this site. The adjoint of the JULES model has been

generated using commercial software TAF (sect. 2.2.1). For licensing reasons, the recalculation of the adjoint following code

changes can only be done by us here at
::
be

::::
done

::::
only

:::
by

::
the

:::::::
authors

::
at

:::
the

:::::::::
University

::
of Exeter.
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Table 1. Parameters in optimisation vector, with descriptions.

Symbol Name in code Description Units

n0 nl0 Top leaf nitrogen concentration kg N (kg C)�1

f0 f0 Maximum ratio of internal to external

CO2

-

dr rootd_ft Root depth m

↵ alpha Quantum efficiency mol CO2 per mol PAR photons
�c
�l dcatch_dlai Rate of change of canopy interception

capacity with LAI

kg m�2

Tlow tlow Lower temperature for photosynthesis �C

Tupp tupp Upper temperature for photosynthesis �C

dqc dqcrit Humidity deficit at which stomata close kgkg�1
:::::::
kg kg�1
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Figure 2. Time-series plots for
:::::::
illustrative

:::::::::
site-specific

:::::::::
validations

::::::
showing

:
LE (left) and GPP (right) for a single site in each of the different

PFTs. Observations (black) are compared to the original JULES runs
::::
using

::::::
default

::::::::
parameters

:
(red) and the runs using the

:::::::::
site-specific

optimal parameters found at each individual site locally
::::::::
paremeters

:
(blue).
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Figure 3.

:::::::
Summary

::
of

::::::::::
PFT-specific

:::::
optimal

:
JULES parameters optimised

:::::
found in this study (Table 1). Initial values for each PFT are given,

and below in bold are optimised values. The error bars show the uncertainty ranges given as a
::
an 80% confidence

::::::
quantile interval. The range

of the
:::
each

:
box is the allowed

:::
prior

:
range of the parameterswere allowed to vary over. Highlighted in red are the error bars for which the

prior values (dotted
:::::
vertical

:
line) are found outside the new

::::::
posterior

:
uncertainty bounds. A numerical version of this table exists

::::
figure

::
is

::::
given in Appendix B

::::
Table

::
B1.
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Figure 4. The correlations between the optimised parameters found at each of the PFTs
::
for

::::::::::
PFT-specific

::::::::
parameter

::::::::::
optimisations. Each

subfigure shows a two-dimensional correlation mapand with each subfigure,
:::::
within

:::::
which each box is a 2-D marginal plot. Bar graphs show

1-D marginal distributions of the
::
for individual parameters. The dimensions of the boxes represent the allowed

::::
prior range of each parameter.

Red points/dashed lines represent initial parameter values. Blue points/dashed lines represent the new optimised parameter valuesand the

blue .
::::
Blue contours define

::::::
illustrate

:
the cloud of possible parameter values

:::::::
posterior

::::::::
distribution.

(a) Broadleaf

(b) Needleleaf

1
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(c) C3 grasses

(d) C4 grasses

2

Figure 4. continued
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(e) Shrubs

3

Figure 4. continued
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three z vectors tested: the original default JULES parameters (⇤), the parameter vector found by optimising at the individual sites (⇤), the

new PFT-specific parameter vector found by optimising over the given PFT (•). Outliers with very large initial errors have been removed

from the plot shown (Broadleaf: BR-Sa3, IT-Lec, Needleleaf: CA-NS2, SE-Sk2, IT-Yat, IT-Lav).

Figure 5.

::::::::
Calibration

:::
and

::::::::
validation

::
of

::::::::
site-specific

:::
and

::::::::::
PFT-specific

:::::::
parameter

::::::::::
optimisation

:
at
:::::::::
FLUXNET

::::
sites,

::::
using

:::
the

:::::
metric

:::::::
described

::
in

:::::
section

:::::
2.5.2.

:::::::
Fractional

::::
error

:::::
shown

:::
for:

:::::
default

::::::
JULES

::::::::
parameters

:
(
:
⇤
:
),
:::::::::
site-specific

::::::
optimal

::::::::
parameters

:
(
:
⇤
:
),
::::::::::
PFT-specific

:::::
optimal

:::::::::
parameters

:
(
:
•

:
).

:::::
Results

:::
are

:::::
shown

::::
both

:::
for

:::
the

::::::::
calibration

:::
year

::::
(⇥,

::
on

:::
left)

::::
and

::
for

:::
the

::::::::
validation

:::
year

:::
(⇤,

::
on

:::::
right).

:::
No

::::::::
validation

:::
year

::::
was

:::::::
available

::
for

::::
some

::::
sites

:::::::::
(Broadleaf:

::::::
FR-Fon,

::::::::
UK-Ham,

:::::::
UK-PL3,

:::::::
US-Bar,

::::::
ID-Pag,

:::::
IT-Lec,

:::::::
PT-Mi1,

:::::::::
Needleleaf:

::::::
SE-Sk2,

:::::::
UK-Gri,

:::::::
US-Me4,

:::::::
US-SP1,

::::::
Shrubs:

::::::
DE-Gri,

:::::::
DK-Lva,

::::::
PL-wet).

::::
Sites

::::
with

:::
very

::::
large

:::::
initial

:::::
errors

:::
have

::::
been

:::::::
removed

::::
from

::
the

::::
plot

::::::::
(Broadleaf:

:::::::
BR-Sa1,

::::::
Shrubs:

::::::
IT-Pia).
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Figure 5. continued.
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Table A1. Sites
:::::::::
FLUXNET

:::
sites

:
used in this study, the name code is made from the

:::::
labelled

:::
by

:
a country

:::
code (first two letters) and site

name (last three letters). The period corresponds to the available years of data for each of the sites.

Site Period Experiment
:::::::
Calibration

:
Year

:::::::
Validation

:::
Year

:
Latitude Longitude

Broadleaf sites (BT)

DE-Hai (2000,2006) 2005 51.0793
::::
2004

:::::
51.079 10.452

DK-Sor (1996,2006) 2006 55.4869
::::
2004 11.6458

:::::
55.487

:::::
11.646

FR-Fon (2005,2006) 2006 48.4763
:
- 2.78015

:::::
48.476

::::
2.780

FR-Hes (1997,2006) 2003 48.6742
::::
1998 7.06462

:::::
48.674

::::
7.065

IT-Col (1996,2006) 2005 41.8494
::::
2001 13.5881

:::::
41.849

:::::
13.588

IT-LMa (2003,2006) 2006 45.5813
::::
2004 7.15463

:::::
45.581

::::
7.155

IT-Non (2001,2006) 2002 44.6898
::::
2003 11.0887

:::::
44.690

:::::
11.089

IT-PT1 (2002,2004) 2003 45.2009
::::
2004 9.06104

:::::
45.201

::::
9.061

IT-Ro1 (2000,2006) 2006 42.4081
::::
2005 11.93

:::::
42.408

:::::
11.930

IT-Ro2 (2002,2006) 2004 42.3903
::::
2006 11.9209

:::::
42.390

:::::
11.921

UK-Ham (2004,2005) 2005 51.1208
:
- -0.86083

:::::
51.121

::::
-0.861

UK-PL3 (2005,2006) 2006 51.45
:
- -1.26667

:::::
51.450

::::
-1.267

US-Bar (2004,2005) 2005 44.0646
:
- -71.28808

:::::
44.065

:::::
-71.288

US-Ha1 (1991,2006) 1996 42.5378
::::
1998 -72.1715

:::::
42.538

:::::
-72.171

US-MMS (1999,2005) 2002 39.3231
::::
2003 -86.4131

:::::
39.323

:::::
-86.413

US-MOz (2004,2006) 2006 38.7441
::::
2005 -92.2

:::::
38.744

:::::
-92.200

US-UMB (1999,2003) 2003 45.5598
::::
2002 -84.7138

:::::
45.560

:::::
-84.714

US-WCr (1999,2006) 2005 45.8059
::::
2000 -90.0799

:::::
45.806

:::::
-90.080

AU-Tum (2001,2006) 2003 -35.6557
::::
2005

:::::
-35.656 148.152

AU-Wac (2005,2007) 2006
:
- -37.429 145.187

BR-Sa1 (2002,2004) 2003 -2.85667
::::
2004 -54.9589

:::::
-2.857

:::::
-54.959

BR-Sa3 (2000,2003) 2002 -3.01803
::::
2003 -54.9714

:::::
-3.018

:::::
-54.971

FR-Pue (2000,2006) 2006 43.7414
::::
2005 3.59583

:::::
43.741

::::
3.596

ID-Pag (2002,2003) 2003
:
- 2.345 114.036

IT-Cpz (1997,2006) 2004 41.7052
::::
2006 12.3761

:::::
41.705

:::::
12.376

IT-Lec (2005,2006) 2006 43.3046
:
- 11.2706

:::::
43.305

:::::
11.271

PT-Esp (2002,2004) 2004 38.6394
::::
2003 -8.6018

:::::
38.639

::::
-8.602

PT-Mi1 (2003,2005) 2005 38.5407
:
- -8.0004

:::::
38.541

::::
-8.000

C3 grasses sites (C3G)

DE-Gri (2005,2006) 2006 50.9495
:
- 13.5125

:::::
50.950

:::::
13.512

DK-Lva (2005,2006) 2006 55.6833
:
- 12.0833

:::::
55.683

:::::
12.083

ES-LMa (2004,2006) 2006 39.9415
::::
2005 -5.77336

:::::
39.941

::::
-5.773

HU-Bug (2002,2006) 2006 46.6911
::::
2005 19.6013

:::::
46.691

:::::
19.601

HU-Mat (2004,2006) 2006 47.8469
::::
2005

:::::
47.847 19.726

IT-Amp (2002,2006) 2006 41.9041
::::
2005 13.6052

:::::
41.904

:::::
13.605

PL-wet (2004,2005) 2005 52.7622
:
- 16.3094

:::::
52.762

:::::
16.309

PT-Mi2 (2004,2006) 2006 38.4765
::::
2005 -8.02455

:::::
38.477

::::
-8.025

US-Bkg (2004,2006) 2006 44.3453
::::
2005 -96.8362

:::::
44.345

:::::
-96.836

US-FPe (2000,2006) 2002 48.3079
::::
2004

:::::
48.308 -105.101

US-Goo (2002,2006) 2006 34.25
::::
2004 -89.97

:::::
34.250

:::::
-89.970
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Table A1. continued

Site Period Experiment
:::::::
Calibration

:
Year

:::::::
Validation

:::
Year

:
Latitude Longitude

Needleleaf sites (NT)

CA-Man (1997,2003) 2001 55.8796
::::
2002 -98.4808

::::
55.880

::::
-98.481

CA-NS1 (2002,2005) 2004 55.8792
::::
2003 -98.4839

::::
55.879

::::
-98.484

CA-NS2 (2001,2005) 2002 55.9058
::::
2004 -98.5247

::::
55.906

::::
-98.525

CA-NS3 (2001,2005) 2004 55.9117
::::
2002 -98.3822

::::
55.912

::::
-98.382

CA-NS4 (2002,2004) 2004 55.9117
::::
2003 -98.3822

::::
55.912

::::
-98.382

CA-NS5 (2001,2005) 2004 55.8631
::::
2002

::::
55.863 -98.485

CA-Qcu (2001,2006) 2005 49.2671
::::
2006 -74.0365

::::
49.267

::::
-74.037

CA-Qfo (2003,2006) 2006 49.6925
::::
2005 -74.3421

::::
49.693

::::
-74.342

CA-SF1 (2003,2005) 2004
::::
2005 54.485 -105.818

CA-SF2 (2003,2005) 2004 54.2539
::::
2005

::::
54.254 -105.878

CA-SF3 (2003,2005) 2005 54.0916
::::
2004

::::
54.092 -106.005

DE-Bay (1996,1999) 1999 50.1419
::::
1998 11.8669

::::
50.142

::::
11.867

DE-Har (2005,2006) 2006 47.9344
:
-

::::
47.934 7.601

DE-Tha (1996,2006) 2005 50.9636
::::
2004 13.5669

::::
50.964

::::
13.567

DE-Wet (2002,2006) 2006 50.4535
::::
2004 11.4575

::::
50.453

::::
11.457

ES-ES1 (1999,2006) 2005
::::
2000 39.346 -0.31881

::::
-0.319

FI-Hyy (1996,2006) 2006 61.8474
::::
2004 24.2948

::::
61.847

::::
24.295

FR-LBr (2003,2006) 2006 44.7171
::::
2005 -0.7693

::::
44.717

::::
-0.769

IL-Yat (2001,2006) 2005
::::
2006 31.345 35.0515

::::
35.051

IT-Lav (2000,2002) 2001 45.9553
::::
2002 11.2812

::::
45.955

::::
11.281

IT-Ren (1999,2006) 2005 46.5878
::::
2006 11.4347

::::
46.588

::::
11.435

IT-SRo (1999,2006) 2006 43.72786
::::
2005 10.28444

::::
43.728

::::
10.284

NL-Loo (1996,2006) 2006 52.1679
::::
2003 5.74396

::::
52.168

:::
5.744

RU-Fyo (1998,2006) 2005 56.46167
::::
2006 32.92389

::::
56.462

::::
32.924

RU-Zot (2002,2004) 2003 60.8008
::::
2004 89.3508

::::
60.801

::::
89.351

SE-Fla (1996,1998) 1998 64.1128
::::
1997 19.4569

::::
64.113

::::
19.457

SE-Nor (1996,1999) 1997
::::
1999 60.086 17.480

SE-Sk2 (2004,2005) 2005 60.12967
:
- 17.84006

::::
60.130

::::
17.840

UK-Gri (1997,1998) 1998 56.60722
:
- -3.79806

::::
56.607

::::
-3.798

US-Blo (1997,2006) 2006 38.8952
::::
2000

::::
38.895 -120.633

US-Ho1 (1996,2004) 2004 45.2041
::::
2003 -68.7403

::::
45.204

::::
-68.740

US-Me4 (1996,2000) 2000 44.4992
:
-

::::
44.499 -121.622

US-SP1 (2000,2001) 2001 29.7381
:
- -82.2188

::::
29.738

::::
-82.219

US-SP2 (1998,2004) 2001 29.7648
::::
2004 -82.2448

::::
29.765

::::
-82.245

US-SP3 (1999,2004) 2001 29.7548
::::
2002 -82.1633

::::
29.755

::::
-82.163

Shrubs sites (Sh)

CA-Mer (1998,2005) 2004 45.4094
::::
2005 -75.5186

::::
45.409

::::
-75.519

CA-NS6 (2001,2005) 2003 55.9167
::::
2004 -98.9644

::::
55.917

::::
-98.964

CA-NS7 (2002,2005) 2003 56.6358
::::
2004 -99.9483

::::
56.636

::::
-99.948

IT-Pia (2002,2005) 2003 42.5839
::::
2004 10.0784

::::
42.584

::::
10.078

US-Los (2001,2005) 2005 46.0827
::::
2003 -89.9792

::::
46.083

::::
-89.979

C4 grasses sites (C4G)

BW-Ma1 (1999,2001) 2000 -19.9155
::::
2001 23.5605

:::::
-19.916

::::
23.561

ZA-Kru (2001,2003) 2002 -25.0197
::::
2003 31.4969

:::::
-25.020

::::
31.497
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Table B1. Parameters of
:::::::::
PFT-specific

:
JULES

::::::::
parameters

:
optimised in this study as described in table

:::::
(Table 1

:
). The prior values

:::
and

:::::
ranges

for each PFT are givenalong with the initial ranges allowed. Below in bold are the optimised values and
:::::::
posterior uncertainty ranges given as

a
::
an 80% confidence interval (in parentheses). Optimised values for which the prior values are found

::
lie outside the new uncertainty

:::::::
posterior

range
:::
are highlighted by (*)

:
.
:
A
:::::::
graphical

::::::
version

::
of

:::
this

::::
table

::
is

:::::
shown

::
in

:::::
Figure

:
3.

BT NT C3 C4 Sh

n0 0.046 0.033 0.073 0.06 0.06

(0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2)

0.061 0.065* 0.07 0.051* 0.041

(0.034,0.066) (0.059,0.07) (0.018,0.145) (0.043,0.056) (0.006,0.066)

↵ 0.08 0.08 0.12 0.06 0.08

(0.001,0.999) (0.001,0.999) (0.001,0.999) (0.001,0.999) (0.001,0.999)

0.131* 0.096 0.179* 0.118* 0.102

(0.087,0.14) (0.021,0.167) (0.155,0.209) (0.075,0.141) (0.063,0.763)

f0 0.875 0.875 0.9 0.8 0.9

(0.5,0.99) (0.5,0.99) (0.5,0.99) (0.5,0.99) (0.5,0.99)

0.765* 0.737* 0.817 0.765* 0.782*

(0.655,0.787) (0.713,0.758) (0.727,0.944) (0.752,0.793) (0.735,0.848)

Tlow 0 -10 0 13 0

(-50,40) (-50,40) (-50,40) (-50,40) (-50,40)

1.203 -8.698 -1.985* 11.37 -5.208*

(-0.555,9.492) (-10.98,-6.342) (-3.877,-0.13) (7.522,14.072) (-10.855,-2.106)

Tupp 36 26 36 45 36

(25,50) (25,50) (25,50) (25,50) (25,50)

38.578* 34.721* 36.242 44.897 35.385

(38.157,40.698) (33.214,36.365) (33.087,38.599) (44.201,46.426) (26.339,40.216)

dr 3 1 0.5 0.5 0.5

(0.1,4) (0.1,4) (0.1,4) (0.1,4) (0.1,4)

3.009 1.425* 0.991* 0.404* 0.411*

(2.901,3.052) (1.159,1.672) (0.901,1.101) (0.5,3.623) (0.324,0.473)

�c
�l 0.05 0.05 0.05 0.05 0.05

(0.001,0.1) (0.001,0.1) (0.001,0.1) (0.001,0.1) (0.001,0.1)

0.047* 0.045* 0.05 0.05 0.048

(0.046,0.049) (0.042,0.048) (0.047,0.052) (0.046,0.054) (0.04,0.055)

dqc 0.09 0.06 0.1 0.075 0.1

(0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2)

0.048 0.036 0.086 0.046* 0.077

(0.02,0.183) (0.008,0.066) (0.07,0.109) (0.045,0.053) (0.024,0.118)

33


