

A new subgrid-scale representation of hydrometeor fields using a multivariate PDF

Brian M. Griffin and Vincent E. Larson

University of Wisconsin — Milwaukee, Department of Mathematical Sciences, Milwaukee, WI, USA

Correspondence to: Brian M. Griffin (bmg2@uwm.edu)

Abstract. The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate Probability Density Function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields.

5 Previously, each hydrometeor field was assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced.

The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormal shape, are compared to

10 histograms of data taken from Large-Eddy Simulations (LES) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. Finally, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES.

1 Introduction

- 15 The atmospheric portion of the hydrological cycle depends on the formation and dissipation of precipitation. In a numerical model, precipitation processes are represented by the microphysics process rates. These process rates are highly dependent on the values of hydrometeor fields at any place and time. Hydrometeors (such as rain water mixing ratio) can vary significantly on spatial scales smaller than the size of a numerical model grid box (Boutle et al., 2014; Lebsock et al., 2013). This means
- 20 that a good representation of subgrid-scale variability is important for the parameterization of microphysical process rates.

Subgrid-scale variability (but not spatial organization) can be accounted for through use of a Probability Density Function (PDF). PDFs have been used in atmospheric modeling to account for subgrid variability in moisture and temperature (e.g., Mellor, 1977; Sommeria and Deardorff, 1977;

25 Tompkins, 2002; Naumann et al., 2013) in order to calculate such fields as cloud fraction and mean (liquid) cloud mixing ratio, and have been extended to vertical velocity in order to calculate fields

such as liquid water flux (Lewellen and Yoh, 1993; Lappen and Randall, 2001; Larson et al., 2002; Bogenschutz et al., 2010; Firl and Randall, 2015). PDFs have been used in microphysics to account for subgrid variability in cloud water (Zhang et al., 2002; Morrison and Gettelman, 2008) and in

30 warm hydrometeor fields (Larson and Griffin, 2006, 2013; Cheng and Xu, 2009; Kogan and Mechem, 2014, 2015) in order to calculate warm microphysics process rates. They also have been used to represent cloud ice (Kärcher and Burkhardt, 2008).

Regarding the PDF's functional form, generality is highly desired. For instance, we would like the PDF to be capable of representing interactions among species, such as accretion (collection) of

- 35 cloud droplets by rain drops. In addition, the PDF should be able to represent a variety of cloud types, such as cumulus and stratocumulus. Generality in the PDF's functional form is important because it facilitates the formulation of unified cloud parameterizations (e.g., Lappen and Randall, 2001; Neggers et al., 2009; Sušelj et al., 2013; Bogenschutz and Krueger, 2013; Guo et al., 2015; Cheng and Xu, 2015; Thayer-Calder et al., 2015).
- 40 Cloud Layers Unified By Binormals (CLUBB) is a single-column model that uses a multivariate PDF to account for the subgrid-scale variability of model fields (Golaz et al., 2002a, b; Larson and Golaz, 2005). The original PDF used by CLUBB consisted of only vertical velocity, w, total water mixing ratio (vapor + liquid cloud), r_t , and liquid water potential temperature, θ_l . The PDF is a weighted mixture, or sum, of two multivariate normal functions. Each one of these multivariate normal func-
- 45 tions is known as a PDF component. Although a normal distribution is unskewed, the two-component shape makes it possible to include skewness in model fields.

Larson and Griffin (2013) extended CLUBB's PDF to account for subgrid variability in rain water mixing ratio, r_r , and rain drop concentration (per unit mass), N_r . Each of these hydrometeor species was assumed to follow a single lognormal (SL) distribution on the subgrid domain.

50 This treatment worked well for calculating microphysics process rates in a drizzling stratocumulus case (Griffin and Larson, 2013). Subsequently, CLUBB's PDF was extended to other hydrometeor species involving ice, snow, and graupel.

However, the single lognormal treatment of hydrometeors is less successful when it is applied to a partly cloudy, precipitating case. The problem is that the single lognormal assumes that a hy-drometeor is found (that is, has a value greater than 0) at every point on the subgrid domain. This

is not realistic in a partly cloudy regime, such as precipitating shallow cumulus, which has non-zero precipitation over only a small fraction of the domain.

Consider an example in which rain covers 10% of the grid level. Then the within-precipitation mean of r_r is ten times greater than the grid-mean value. This can cause problems when microphysics

60 process rates are calculated using the SL. The accretion rate of r_r is proportional to the value of r_r inside cloud. In this example, the SL, which distributes the lognormal around the grid mean, would underpredict accretion rate because it causes r_r to be too small in cloud. Likewise, evaporation rate

is proportional to the value of r_r outside cloud. The SL would overpredict evaporation rate because it spreads r_r throughout the domain, including the clear portion.

- 65 The solution to this problem is to account for the non-precipitating region of the subgrid domain. This is done by representing the non-precipitating region of the domain with a delta function at a value of the hydrometeor of 0. The within-precipitation (or "in-precip.") portion of the subgrid domain can still be handled by using a single lognormal distribution to represent subgrid variability in the hydrometeor species. The resulting distribution is called a delta-lognormal (DL). In the above
- 70 example with 10% rain fraction, the (in-precip.) lognormal from the DL PDF would be distributed around the in-precip. mean, as desired, rather than around the grid mean, which is a factor of 10 smaller.

Further improvements in accuracy can be achieved with relatively minor modifications to the PDF. As previously mentioned, CLUBB's PDF contains two components. Each of these components can

75 be easily subdivided into an in-precip. sub-component and an outside-precip. sub-component. The result is a delta-lognormal representation of the hydrometeor field *in each PDF component*. Both delta functions are at 0 and represent the region outside of precipitation, but the within-precipitation hydrometeor values are distributed as two lognormals that may have different means and variances. When the two lognormals differ in some way, the resulting distribution is called a delta-double-lognormal (DDL). Figure 1 illustrates the SL, DL, and DDL hydrometeor PDF shapes.

The main purpose of this paper is to present the formulation of an updated multivariate PDF that extends CLUBB's traditional PDF to include the DL and DDL hydrometeor PDF shapes. Additionally, a new method is derived to divide the *grid-box* mean and variance of a hydrometeor species into *PDF component* means and standard deviations. A secondary purpose of this paper is to present a

- 85 preliminary comparison of the new PDF shapes with PDFs output by large-eddy simulations (LESs). The SL, DL, and DDL hydrometeor PDF shapes are compared to histograms of hydrometeor data taken from precipitating LES. Additionally, microphysics process rates are calculated using each of the idealized PDF shapes and compared to microphysics process rates taken from the LES.
- The remainder of the paper is organized as follows. Section 2 gives a detailed description of the 90 new PDF. Section 3 discusses the PDF parameters and includes the derivation of a new method to divide the grid-box mean and variance into PDF component means and standard deviations for a hydrometeor species. Section 4 describes the LES setup and the test cases, as well as the driving of CLUBB's PDF for the tests. Section 5 presents a comparison of hydrometeors between the LES and the SL, DL, and DDL PDF shapes. The comparison includes plots of PDFs, Kolmogorov-Smirnov
- 95 and Cramer-von Mises scores, and microphysics process rates. Section 6 contains all conclusions.

2 Description of the multivariate PDF

We now describe how the multivariate PDF used by CLUBB is modified to improve the representation of hydrometeors. Perhaps the most important modification is the introduction of precipitation fraction, f_p , to the PDF. Precipitation fraction is defined as the fraction of the subgrid domain that contains any kind of precipitation (where any hydrometeor species has a positive value). In order to

100 contains any kind of precipitation (where any hydrometeor species has a positive value). In order to account for any precipitation-less region in the subgrid domain, the PDF is modified to add a delta function at a value of 0 for all hydrometeor species. Each PDF component contains its own precipitation fraction. Expressed generally for a PDF of n components, the overall precipitation fraction is related to the component precipitation fractions by

105
$$f_p = \sum_{i=1}^{n} \xi_{(i)} f_{p(i)},$$
 (1)

where $f_{p(i)}$ denotes precipitation fraction in the *i*th PDF component, and where $0 \le f_{p(i)} \le 1$ for all $f_{p(i)}$. Additionally

$$\sum_{i=1}^{n} \xi_{(i)} = 1,$$
(2)

where ξ_(i) is the relative weight, or mixture fraction, of the *i*th PDF component, and where 0 <
\$\xi_{(i)} < 1\$ for all ξ_(i). A PDF with more than one component requires that each PDF component have a mixture fraction.

Before writing the form of the multi-component PDF, we digress to discuss a special case, the cloud droplet concentration (per unit mass), N_c . In Larson and Griffin (2013), N_c was introduced to the PDF and was assumed to follow a single lognormal distribution. This assumption for N_c means

- 115 that when any cloud is found at a grid level, $N_c > 0$ at every point on the subgrid domain. This is unphysical in a partly cloudy situation, for cloud droplets would be found at points where cloud water is not found. Additionally, the single lognormal treatment of N_c can cause problems with the microphysics. The grid-level mean of N_c , denoted $\overline{N_c}$ (for the remainder of this paper, an overbar denotes a grid-level mean and a prime denotes a turbulent value), is handed to the PDF by the model,
- 120 and this mean value includes clear air in a partly cloudy situation. This results in a value of $\overline{N_c}$ that is much smaller than the in-cloud values of N_c . Since the single lognormal in N_c is distributed around $\overline{N_c}$, N_c is much too small in cloud for cases with small cloud fraction, leading to an excessive autoconversion (raindrop formation) rate.

In order to distribute N_c where (and only where) cloud water mixing ratio, r_c , is found on the subgrid domain, it cannot use the same method as the other hydrometeors. Hydrometeors such as r_r can be found outside cloud where r_c is not found, or alternatively hydrometeors might be absent inside cloud where r_c is found. Instead the PDF is modified so that a new variable, N_{cn} , replaces N_c in the PDF. The variable N_{cn} is a mathematical construct that can be viewed as an extended cloud droplet concentration or even as a simplified, conservative cloud condensation nuclei concentration.

(4)

1

- 130 N_{cn} is distributed as a single lognormal over the subgrid domain. N_c is set equal to N_{cn} at points where cloud water is found, but otherwise is set to 0 when no cloud water is found (see Eq. (4) below). The value of $\overline{N_{cn}}$ is (at least approximately) the in-cloud mean of N_c , and is based on $\overline{N_c}$ and cloud fraction.
- The PDF includes all the hydrometeor species found in the chosen microphysics scheme with the 135 exception of r_c , which is calculated from other variables in the PDF through a saturation adjustment, and N_c , which is described above. In addition to r_r and N_r , a microphysics scheme may include hydrometeor species such as ice mixing ratio, r_i , ice crystal concentration (per unit mass), N_i , snow mixing ratio, r_s , snowflake concentration (per unit mass), N_s , graupel mixing ratio, r_g , and graupel concentration (per unit mass), N_g . The vector containing all the hydrometeor species included in the
- PDF will be denoted *h*. The full PDF can be written as P (w, r_t, θ_l, N_{cn}, *h*).
 In order to calculate quantities that depend on saturation, such as *r̄_c* and cloud fraction, a PDF transformation is required. The PDF transformation is a change of coordinates. The multivariate PDF undergoes translation, stretching, and rotation of the axes (Larson et al., 2005; Mellor, 1977). Within each PDF component, a separate PDF transformation takes place. The *i*th component PDF,
- 145 $P_{(i)}(w, r_t, \theta_l, N_{cn}, h)$, is transformed to $P_{(i)}(w, \chi, \eta, N_{cn}, h)$, where χ is an "extended" liquid water mixing ratio that, when the air is supersaturated, has a positive value and furthermore is equal to r_c . When the air is subsaturated, χ has a negative value. The variable η is orthogonal to χ . The variables r_c and N_c can now be written as

$$r_c = \chi H(\chi)$$
 and (3)

$$N_c = N_{cn} H(\chi),$$

where H(x) is the Heaviside step function.

The general form of a PDF with n components and D variables (whether D includes all the variables in the PDF or any subset of those variables in a multivariate marginal PDF) can be written as

155
$$P(x_1, x_2, \dots, x_D) = \sum_{i=1}^n \xi_{(i)} P_{(i)}(x_1, x_2, \dots, x_D).$$
 (5)

Of the D variables listed, the first J variables are normally distributed in each PDF component (i.e. w, r_t, and θ_l, or w, χ and η), the next K variables are lognormally distributed (i.e. N_{cn}), and the last Ω variables are the hydrometeor species, such that D = J + K + Ω. The *i*th component of the PDF, P_(i) (x₁, x₂,..., x_D), accounts for both the precipitating and precipitation-less regions, and is given
160 by

$$P_{(i)}(x_1, x_2, \dots, x_D) = f_{p(i)} P_{(J,K+\Omega)(i)}(x_1, x_2, \dots, x_D) + (1 - f_{p(i)}) P_{(J,K)(i)}(x_1, x_2, \dots, x_{J+K}) \left(\prod_{\epsilon=J+K+1}^D \delta(x_\epsilon)\right).$$
(6)

where the subscripts in the *i*th component, e.g., $P_{(J,K)(i)}$, denotes the number of normal variates, e.g. *J*, and the number of lognormal variates, e.g. *K*.

Each original PDF component is split into precipitating and precipitation-less sub-components.

- 165 The component means, variances, and correlations for variables $x_1 \dots x_{J+K}$ do not differ between the precipitating and precipitation-less parts of Eq. (6). This greatly simplifies the procedure for parameterizing the component means and variances, given the grid-level means and variances. Additionally, keeping the component means and variances the same between the within-precipitation and outside-precipitation parts of Eq. (6) allows the PDF to be reduced back to prior versions. For
- 170 instance, the multivariate PDF in Eqs. (5) and (6) reduces to the version given in Larson and Griffin (2013) when all $f_{p(i)} = 1$ and various PDF parameters are chosen appropriately. Furthermore, when microphysics is not used in a simulation, hydrometeors are not found in the PDF. In this scenario, the PDF reduces to the original version found in Golaz et al. (2002a).
- The PDF does not contain a fraction for each hydrometeor species or type, but rather one pre-175 cipitation fraction. Each PDF component is split into two sub-components (within-precipitation and outside-precipitation). Including a fraction for each hydrometeor type (rain, snow, etc.) would cause the number of sub-components to grow exponentially with the number of fractions. Using n_f hydrometeor fractions increases the number of sub-components to 2^{n_f} in each PDF component. This would make setting the PDF parameters associated with each sub-component increasingly difficult.
- 180 The multivariate PDF can be adjusted to account for a situation when a variable has a constant value in a PDF (sub-)component. In that situation, the variable can be reduced to a delta function at the (sub-)component mean value. A good example of this would be setting N_{cn} to a constant value in order to use a constant in-cloud value of cloud droplet concentration. This is also especially useful when dealing with more than one hydrometeor. If one hydrometeor species is found at a grid level,
- 185 but another hydrometeor species is not found at that level, the hydrometeor that is not found can reduce to a delta function at 0 in the precipitating sub-component of Eq. (6).

The general form of the *m*-variate hybrid normal/lognormal distribution in the *i*th PDF component, $P_{(j,k)(i)}(x_1, x_2, ..., x_m)$, which is found in each sub-component of Eq. (6), consists of *j* normal variates and *k* lognormal variates, where m = j + k. The first *j* variables are normally distributed

190 a

and the remaining k variables are lognormally distributed. The multivariate normal/lognormal PDF is given by (Fletcher and Zupanski, 2006)

$$P_{(j,k)(i)}(x_{1}, x_{2}, \dots, x_{m}) = \frac{1}{(2\pi)^{\frac{m}{2}} |\mathbf{\Sigma}_{(i)}|^{\frac{1}{2}}} \left(\prod_{\tau=j+1}^{m} \frac{1}{x_{\tau}}\right) \\ \times \exp\left\{-\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}_{(i)}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{(i)}^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_{(i)}\right)\right\}.$$
(7)

Both x and μ_(i) are m×1 vectors, where x is a vector of the variables (in normal-space) in the PDF and μ_(i) is a vector of the (normal-space) PDF sub-component means. The notation T denotes the
transpose of the vector. The m×m (normal-space) covariance matrix is denoted Σ_(i) and its determi-

nant is denoted $|\Sigma_{(i)}|$ (Fletcher and Zupanski, 2006). The advantage of a *single* multivariate PDF, as opposed to a collection of individual marginal PDFs, is that the multivariate PDF accounts for correlations among the variables in the PDF. This is advantageous when calculating such quantities as rain water accretion rate and rain water evaporation rate.

200

When variables are integrated out of the full multivariate PDF, the result is a multivariate marginal PDF consisting of fewer variables. When all variables but one are integrated out of the PDF, the result is a univariate marginal or individual marginal PDF. For any hydrometeor species, h, found in the full multivariate PDF in Eq. (5), the univariate marginal distribution is

$$P(h) = \sum_{i=1}^{n} \xi_{(i)} \left(f_{p(i)} P_{L(i)}(h) + \left(1 - f_{p(i)} \right) \delta(h) \right), \tag{8}$$

205 where $P_{L(i)}(h)$ is a lognormal distribution in the *i*th PDF component, which is given by

$$P_{L(i)}(h) = \frac{1}{(2\pi)^{\frac{1}{2}} \tilde{\sigma}_{h(i)} h} \exp\left\{\frac{-\left(\ln h - \tilde{\mu}_{h(i)}\right)^2}{2 \, \tilde{\sigma}_{h(i)}^2}\right\}.$$
(9)

The within-precipitation mean of h in the *i*th PDF component is $\mu_{h(i)}$. This is the mean of the *i*th lognormal of h. However, $\tilde{\mu}_{h(i)}$, as in Eq. (9), is the normal-space component mean of h. It is the within-precipitation mean of $\ln h$ in the *i*th PDF component and is given by

210
$$\tilde{\mu}_{h(i)} = \ln\left(\mu_{h(i)}\left(1 + \frac{\sigma_{h(i)}^2}{\mu_{h(i)}^2}\right)^{-\frac{1}{2}}\right),$$
 (10)

where $\sigma_{h(i)}$ is the within-precipitation standard deviation of h in the *i*th PDF component. The quantity $\sigma_{h(i)}$ is the standard deviation of the *i*th lognormal of h. The normal-space component standard deviation of h is $\tilde{\sigma}_{h(i)}$, as found in Eq. (9). It is the within-precipitation standard deviation of $\ln h$ in the *i*th PDF component and is given by

215
$$\tilde{\sigma}_{h(i)} = \sqrt{\ln\left(1 + \frac{\sigma_{h(i)}^2}{\mu_{h(i)}^2}\right)}.$$
(11)

The variables that are distributed marginally as binormals use similar notation. For example, $\mu_{w(i)}$ is the mean of w in the *i*th PDF component, or the mean of the *i*th normal. Likewise, $\sigma_{w(i)}$ is the standard deviation of w in the *i*th PDF component, or the standard deviation of the *i*th normal.

3 PDF parameters

220 This paper will use the phrase "PDF parameters" to refer to the PDF *component* means, standard deviations, and correlations involving variables in the PDF, as well as the mixture fractions and the PDF component precipitation fractions. The PDF parameters are calculated from various gridmean input variables. In this paper, the component means, standard deviations, and correlations involving w, r_t , and θ_l , and the mixture fractions, $\xi_{(1)}$ and $\xi_{(2)}$, are calculated according to the

240

- Analytic Double Gaussian 2 (ADG2) PDF, as described in Appendix (e) of Larson et al. (2002). ADG2 requires as input and does not change the values of the following quantities: the overall (grid-box) mean, variance, and third-order central moment of w (\overline{w} , $\overline{w'^2}$, and $\overline{w'^3}$, respectively), the overall mean and variance of r_t ($\overline{r_t}$ and $\overline{r'_t^2}$, respectively), and the overall mean and variance of θ_l ($\overline{\theta_l}$ and $\overline{\theta'_l^2}$, respectively). Additionally, ADG2 requires and preserves the overall covariance of w and
- 230 $r_t \ (\overline{w'r'_t})$, the overall covariance of w and $\theta_l \ (\overline{w'\theta'_l})$, and the overall covariance of r_t and $\theta_l \ (\overline{r'_t\theta'_l})$. All of the aforementioned quantities are prognosed or diagnosed in CLUBB and are not the subject of this paper.

The individual marginal distribution for N_{cn} is specified to be a single lognormal over the entire subgrid domain. This requires that both PDF component means equal the overall (grid-box) mean 235 $(\mu_{N_{cn}(1)} = \mu_{N_{cn}(2)} = \overline{N_{cn}})$. Likewise, this requires that both PDF component standard deviations equal the overall standard deviation $(\sigma_{N_{cn}(1)} = \sigma_{N_{cn}(2)} = \overline{N_{cn}^{\prime 2}}^{1/2})$.

When no hydrometeor species are found at a grid level (h = 0), $f_p = f_{p(1)} = f_{p(2)} = 0$. Otherwise, if any hydrometeor species in h is found at a grid level (has a value greater than 0), $f_p|_{tol} \le f_p \le 1$, where $f_p|_{tol}$ is the minimum value allowed for precipitation fraction when hydrometeors are present. We now describe how CLUBB parameterizes $f_{p(1)}$ and $f_{p(2)}$, given f_p . First, we note that

$$f_p = \xi_{(1)} f_{p(1)} + \xi_{(2)} f_{p(2)}.$$
(12)

A tunable parameter, v_* (where the * subscript denotes a tunable or adjustable parameter), is introduced and is defined as the ratio of $\xi_{(1)}f_{p(1)}$ to f_p , where $0 \le v_* \le 1$. The precipitation fraction of PDF component 1 is solved by

245
$$f_{p(1)} = \min\left(\frac{v_* f_p}{\xi_{(1)}}, 1\right).$$
 (13)

The PDF component 2 precipitation fraction can now be solved by

$$f_{p(2)} = \min\left(\frac{f_p - \xi_{(1)}f_{p(1)}}{\xi_{(2)}}, 1\right).$$
(14)

When $f_{p(1)}$ calculated by Eq. (13) is small enough to force $f_{p(2)}$ calculated by Eq. (14) to be limited at 1, the value of $f_{p(1)}$ is recalculated (with $f_{p(2)} = 1$) and is increased enough to satisfy Eq. (12).

250 3.1 Hydrometeor PDF parameters

A mean-and-variance-preserving method is used to calculate the within-precipitation means of the hydrometeor field in the two PDF components, $\mu_{h(1)}$ and $\mu_{h(2)}$, and the within-precipitation standard deviations of the hydrometeor field in the two PDF components, $\sigma_{h(1)}$ and $\sigma_{h(2)}$. The fields that need to be provided as inputs are the overall (grid-box) mean of the hydrometeor, \overline{h} , the overall variance

255 of the hydrometeor, $\overline{h'^2}$, the mixture fraction in each PDF component, $\xi_{(1)}$ and $\xi_{(2)}$, the overall precipitation fraction, f_p , and the precipitation fraction in each PDF component, $f_{p(1)}$ and $f_{p(2)}$.

Given these inputs, the within-precipitation mean of the hydrometeor, \overline{h}_{ip} , can be calculated by

$$\overline{h}|_{\rm ip} = \frac{\overline{h}}{f_p},\tag{15}$$

and the within-precipitation variance of the hydrometeor, $\overline{h|'^2_{ip}}$, can be calculated by

260
$$\overline{h}_{\rm ip}^{\prime 2} = \frac{\overline{h'^2} + \overline{h}^2 - f_p \overline{h}_{\rm ip}^2}{f_p}.$$
 (16)

The grid-level mean value of any function that is written in terms of variables involved in the PDF can be found be integrating over the product of that function and the PDF. For example,

$$\overline{h} = \int_{0}^{\infty} h P(h) \, \mathrm{d}h \qquad \text{and} \qquad \overline{h'^2} = \int_{0}^{\infty} \left(h - \overline{h}\right)^2 P(h) \, \mathrm{d}h. \tag{17}$$

After integrating, the equation for \overline{h} expressed in terms of PDF parameters is

265
$$\overline{h} = \xi_{(1)} f_{p(1)} \mu_{h(1)} + \xi_{(2)} f_{p(2)} \mu_{h(2)}.$$
 (18)

Likewise, the equation for $\overline{h'^2}$ expressed in terms of PDF parameters is

$$\overline{h'^2} = \xi_{(1)} f_{p(1)} \left(\mu_{h(1)}^2 + \sigma_{h(1)}^2 \right) + \xi_{(2)} f_{p(2)} \left(\mu_{h(2)}^2 + \sigma_{h(2)}^2 \right) - \overline{h}^2.$$
(19)

When the hydrometeor is not found at a grid level, $\overline{h} = \overline{h'^2} = 0$ and the *component* means and standard deviations of the hydrometeor also have a value of 0. When the hydrometeor is found at a

- 270 grid level, $\overline{h} > 0$. Precipitation may be found in only PDF component 1, only PDF component 2, or in both PDF components. When precipitation is found in only PDF component 1, $\mu_{h(2)} = \sigma_{h(2)} = 0$ and $\mu_{h(1)}$ and $\sigma_{h(1)}$ can easily be solved by Eq. (18) and Eq. (19). Likewise, when precipitation is found in only PDF component 2, $\mu_{h(1)} = \sigma_{h(1)} = 0$ and $\mu_{h(2)}$ and $\sigma_{h(2)}$ can easily be solved by the same equation set.
- 275 When there is precipitation found in both PDF components, further information is required to solve for the two component means and the two component standard deviations. The variable R is introduced such that

$$R \equiv \frac{\sigma_{h(2)}^2}{\mu_{h(2)}^2}.$$
(20)

In order to allow the ratio of $\sigma_{h(1)}^2$ to $\mu_{h(1)}^2$ to vary, the parameter ζ_* is introduced, such that

280
$$R(1+\zeta_*) = \frac{\sigma_{h(1)}^2}{\mu_{h(1)}^2},$$
 (21)

where $\zeta_* > -1$. When $\zeta_* > 0$, then $\sigma_{h(1)}^2/\mu_{h(1)}^2$ increases at the expense of $\sigma_{h(2)}^2/\mu_{h(2)}^2$, which decreases in this variance-preserving equation set. When $\zeta_* = 0$, then $\sigma_{h(1)}^2/\mu_{h(1)}^2 = \sigma_{h(2)}^2/\mu_{h(2)}^2$.

When $-1 < \zeta_* < 0$, then $\sigma_{h(2)}^2/\mu_{h(2)}^2$ increases at the expense of $\sigma_{h(1)}^2/\mu_{h(1)}^2$, which decreases. Combining Eq. (19), Eq. (20), and Eq. (21), the equation for $\overline{h'^2}$ can be rewritten as

285
$$\overline{h'^2} = \xi_{(1)} f_{p(1)} \left(1 + R \left(1 + \zeta_* \right) \right) \mu_{h(1)}^2 + \xi_{(2)} f_{p(2)} \left(1 + R \right) \mu_{h(2)}^2 - \overline{h}^2.$$
(22)

Both the variance of each PDF component and the spread between the means of each PDF component contribute to the within-precipitation variance of the hydrometeor $(\overline{h|_{ip}^{\prime 2}})$. At one extreme, the standard deviation of each component could be set to 0 and the within-precipitation variance could be accounted for by spreading the PDF component (within-precip.) means far apart. The value of *R*

290 in this scenario would be its minimum possible value, which is 0. At the other extreme, the means of each component could be set equal to each other and the in-precip. variance could be accounted for entirely by the PDF component (in-precip.) standard deviations. The value of R in this scenario would be its maximum possible value, which is R_{max} .

In order to calculate the value of R_{\max} , set $\mu_{h(1)} = \mu_{h(2)} = \overline{h}|_{ip}$ and $R = R_{\max}$. Eq. (22) becomes

295
$$\overline{h'^2} + \overline{h}^2 = \overline{h|_{\text{ip}}}^2 \left(\xi_{(1)} f_{p(1)} \left(1 + R_{\max} \left(1 + \zeta_* \right) \right) + \xi_{(2)} f_{p(2)} \left(1 + R_{\max} \right) \right).$$
 (23)

When Eq. (16) is substituted into Eq. (23), $R_{\rm max}$ is solved for and the equation is

$$R_{\max} = \left(\frac{f_p}{\xi_{(1)}f_{p(1)}(1+\zeta_*) + \xi_{(2)}f_{p(2)}}\right) \frac{\overline{h|_{\text{ip}}^{\prime 2}}}{\overline{h}|_{\text{ip}}^2}.$$
(24)

In the scenario that $\zeta_* = 0$ the equation for R_{max} reduces to the ratio of $\overline{h|'_{\text{ip}}^2}$ to $\overline{h|_{\text{ip}}^2}^2$.

In order to calculate the value of R, a parameter is used to prescribe the ratio of R to its maximum 300 value, R_{max} . The prescribed parameter is denoted o_* , where

$$R = o_* R_{\max},\tag{25}$$

and where $0 \le o_* \le 1$. Both R and R_{\max} are known functions of the inputs and tunable parameters. When $o_* = 0$, the standard deviation of each PDF component is 0, and $\mu_{h(1)}$ is spread far from $\mu_{h(2)}$. When $o_* = 1$, then $\mu_{h(1)} = \mu_{h(2)}$, and the standard deviations of the PDF components account for

all of the in-precip. variance. At intermediate values of o_* , the means of each PDF component are somewhat spread apart and each PDF component has some width. The new equation for hydrometeor variance becomes

$$\overline{h'^2} = \xi_{(1)} f_{p(1)} \left(1 + o_* R_{\max} \left(1 + \zeta_* \right) \right) \mu_{h(1)}^2 + \xi_{(2)} f_{p(2)} \left(1 + o_* R_{\max} \right) \mu_{h(2)}^2 - \overline{h}^2.$$
(26)

The two remaining unknowns, μ_{h(1)} and μ_{h(2)}, can be solved by a set of two equations, Eq. (18)
310 for h
 and Eq. (26) for h
^{'2}. All other quantities in the equation set are known quantities. To find the solution, Eq. (18) is rewritten to isolate μ_{h(2)} such that

$$\mu_{h(2)} = \frac{\overline{h} - \xi_{(1)} f_{p(1)} \mu_{h(1)}}{\xi_{(2)} f_{p(2)}}.$$
(27)

The above equation is substituted into Eq. (26). The resulting equation is rewritten in the form

$$Q_a \mu_{h(1)}^2 + Q_b \mu_{h(1)} + Q_c = 0, (28)$$

315 so the solution to the quadratic equation for $\mu_{h(1)}$ is

$$\mu_{h(1)} = \frac{-Q_b \pm \sqrt{Q_b^2 - 4Q_a Q_c}}{2Q_a},\tag{29}$$

where:

$$Q_{a} = \xi_{(1)} f_{p(1)} \left(1 + o_{*} R_{\max} \left(1 + \zeta_{*} \right) \right) + \frac{\xi_{(1)}^{2} f_{p(1)}^{2}}{\xi_{(2)} f_{p(2)}} \left(1 + o_{*} R_{\max} \right),$$

$$Q_{b} = -2 \frac{\xi_{(1)} f_{p(1)}}{\xi_{(2)} f_{p(2)}} \left(1 + o_{*} R_{\max} \right) \overline{h}, \text{ and}$$

$$Q_{c} = -\left(\overline{h'^{2}} + \left(1 - \frac{1 + o_{*} R_{\max}}{\xi_{(2)} f_{p(2)}} \right) \overline{h}^{2} \right).$$
(30)

The value of Q_a is always positive and the value of Q_b is always negative. The value of Q_c can 320 be positive, negative, or zero. Since $(1 - (1 + o_* R_{\max}) / (\xi_{(2)} f_{p(2)})) \overline{h}^2$ is always negative and $\overline{h'^2}$ is always positive, the sign of Q_c depends on which term is greater in magnitude.

When $\overline{h'^2}$ is greater, the sign of Q_c is negative. This means that $-4Q_aQ_c$ is positive, which in turn means that $\sqrt{Q_b^2 - 4Q_aQ_c}$ is greater in magnitude than $-Q_b$. If the subtraction option of the \pm were to be chosen, the value of $\mu_{h(1)}$ would be negative in this scenario. At first glance, it might appear natural to always choose the addition option. However, this set of equations was derived with 325 the condition that $\mu_{h(1)}$ equals $\mu_{h(2)}$ when $o_* = 1$. When $\zeta_* \ge 0$, this happens when the addition option is chosen, but not when the subtraction option is chosen. However, when $\zeta_* < 0$, this happens when the subtraction option is chosen, but not when the addition option is chosen. So, the equation for $\mu_{h(1)}$ becomes

$$\mu_{h(1)} = \begin{cases} \frac{-Q_b + \sqrt{Q_b^2 - 4Q_a Q_c}}{2Q_a}, & \text{when } \zeta_* \ge 0; \text{ and} \\ \frac{-Q_b - \sqrt{Q_b^2 - 4Q_a Q_c}}{2Q_a}, & \text{when } \zeta_* < 0. \end{cases}$$

$$(31)$$

330

The value of $\mu_{h(2)}$ can now be solved for through Eq. (27). After $\mu_{h(1)}$ and $\mu_{h(2)}$ have been solved, $\sigma_{h(1)}$ and $\sigma_{h(2)}$ can be solved by plugging Eq. (25) back into Eq. (21) and Eq. (20), respectively.

As the value of $\overline{h_{\rm ip}^{\prime 2}}/\overline{h_{\rm ip}}^2$ increases and as the value of o_* decreases (narrowing the in-precip. standard deviations and increasing the spread between the in-precip. means), one of the component means may become negative. This happens because there is a limit to the amount of in-precip. 335 variance that can be represented by this kind of distribution. In order to prevent out-of-bounds values of $\mu_{h(1)}$ or $\mu_{h(2)}$, a lower limit is declared, called $\mu_h|_{\min}$, where $\mu_h|_{\min}$ is a small, positive value that is typically set to be two orders of magnitude smaller than \overline{h}_{ip} . The value of $\mu_{h(1)}$ or $\mu_{h(2)}$ will be limited from becoming any smaller (or negative) at this value. From there, the value of the other

340 hydrometeor in-precip. component mean is easy to calculate. Then, both values will be entered into the calculation of hydrometeor variance in Eq. (22), which will be rewritten to solve for R. Then, both the hydrometeor mean and hydrometeor variance will be preserved with a valid distribution.

When the value of $\zeta_* \ge 0$, the value of $\mu_{h(1)}$ tends to be larger than the value of $\mu_{h(2)}$. Likewise when the value of $\zeta_* < 0$, the value of $\mu_{h(2)}$ tends to be larger than the value of $\mu_{h(1)}$. Since most cloud water and cloud fraction tends to be found in PDF component 1, it is appropriate and

most cloud water and cloud fraction tends to be found in PDF component 1, it is appropriate and advantageous to have the larger in-precip. component mean of the hydrometeor also found in PDF component 1. The recommended value of ζ_* is a value greater than or equal to 0.

This method of closing the hydrometeor PDF parameter equation set produces a DDL hydrometeor PDF shape when 0 < o_{*} < 1 or when ζ_{*} ≠ 0. The DL hydrometeor PDF shape is produced
simply by setting o_{*} = 1 and ζ_{*} = 0. These settings force μ_{h(1)} = μ_{h(2)} and σ_{h(1)} = σ_{h(2)}, which result in a single lognormal within the precipitating portion of the subgrid domain. Furthermore, if, in addition to setting o_{*} = 1 and ζ_{*} = 0, one simply sets f_{p(1)} = f_{p(2)} = 1, then precipitation is found everywhere within the subgrid domain, producing the SL hydrometeor PDF shape. Hence it is very easy to change between DDL, DL, and SL hydrometeor PDF shapes. Additionally, it should be noted that there is only one o_{*} and only one ζ_{*} applied to all the hydrometeor species in h.

In limited testing, the value of the tunable parameter ζ_* did not affect the results much for CLUBB's DDL PDF shape. The value of ζ_* has been left at 0, effectively eliminating a tunable or adjustable parameter from the scheme. When $\zeta_* = 0$, the DDL shape approaches the DL shape as o_* approaches 1. As o_* approaches 0, the DDL shape approaches a double-delta in-precip. (in

- addition to the delta at 0). Additionally, when $0 < o_* < 1$, the within-precipitation skewness of the hydrometeor field is influenced by v_* . As v_* approaches 0, the within-precipitation distribution becomes more highly (positively) skewed. In Gaussian space (see Section 5), the in-precip. distribution is positively skewed. As v_* approaches 1, the within-precipitation distribution is less (positively) skewed. In Gaussian space, the in-precip. distribution is negatively skewed. For the results presented
- in this paper for the DDL hydrometeor PDF shape, the remaining two tunable parameters have been set to the values $o_* = 0.5$ and $v_* = 0.55$.

4 Model setup and testing

There is insufficient data from observations to calculate all the fields that need to be input into CLUBB's PDF. However, this data can be supplied easily and plentifully by a LES. In this paper,

370 LES output of precipitating cases is simulated by the System for Atmospheric Modeling (SAM) (Khairoutdinov and Randall, 2003). SAM uses an anelastic equation set that predicts liquid water static energy, total water mixing ratio, vertical velocity, and both the south-north and west-east components of horizontal velocity. Additionally, it predicts hydrometeor fields as directed by the chosen microphysics scheme. A predictive 1.5-order subgrid-scale turbulent kinetic energy clo-

- 375 sure is used to compute the subgrid-scale fluxes (Deardorff, 1980). SAM uses a fixed, Cartesian spatial grid and a third-order Adams-Bashforth time-stepping scheme. It uses periodic boundary conditions and a rigid lid at the top of the domain. The second-order MPDATA (multidimensional positive definite advection transport algorithm) scheme is used to advect the predictive variables (Smolarkiewicz and Grabowski, 1990).
- 380 In order to assess the generality of the different hydrometeor PDF shapes for different cloud regimes, SAM was used to run three idealized test cases a precipitating shallow cumulus case, a drizzling stratocumulus case, and a deep convective case. The use of cases from differing cloud regimes help avoid overfitting the parameterizations of PDF shape. The setup for the precipitating shallow cumulus test case was based on the Rain in Cumulus over the Ocean (RICO) LES intercom-
- 385 parison (van Zanten et al., 2011). The horizontal resolution was 100 m, and 256 grid boxes were used in each horizontal direction. The vertical resolution was a constant 40 m and 100 grid boxes were used in the vertical. The model time step was 1 s and the duration of the simulation was 72 hours. A vertical profile of level-averaged statistics was output every minute and a three-dimensional snapshot of hydrometeor fields was output every hour.
- 390 The RICO simulation was run with SAM's implementation of the Khairoutdinov and Kogan (2000, hereafter KK) warm microphysics scheme. KK microphysics predicts both r_r and N_r . SAM's implementation of KK microphysics uses a saturation adjustment to diagnose r_c , and cloud droplet concentration is set to a constant value (which is 70 cm⁻³ for RICO).

The setup for the drizzling stratocumulus test case was taken from the LES intercomparison based

- 395 on research flight two (RF02) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field experiment (Ackerman et al., 2009). The horizontal resolution was 50 m and 128 grid boxes were used in each horizontal direction. An unevenly-spaced vertical grid was used containing 96 grid boxes and covering a domain of 1459.3 m. The model time step was 0.5 s and the duration of the simulation was six hours. A vertical profile of level-averaged statistics was output
- 400 every minute and a three-dimensional snapshot of hydrometeor fields was output every 30 minutes. The DYCOMS-II RF02 simulation was also run with SAM's implementation of KK microphysics and used a constant cloud droplet concentration of 55 cm^{-3} .

The setup for the deep convective test case was taken from the LES intercomparison based on the Large-Scale Biosphere-Atmosphere (LBA) experiment (Grabowski et al., 2006). The horizontal

- 405 resolution was 1000 m, and 128 grid boxes were used in each horizontal direction. An unevenlyspaced vertical grid was used, containing 128 grid boxes and covering a domain of 27500 m. The model time step was 6 s and the duration of the simulation was six hours. A vertical profile of levelaveraged statistics was output every minute and a three-dimensional snapshot of hydrometeor fields was output every 15 minutes for the final 3.5 hours of the simulation.
- 410 The LBA case requires a microphysics scheme that can account for ice-phase hydrometeor species. The LBA simulation was run with Morrison et al. (2005) microphysics, which predicts the mixing

ratio and number concentration (per unit mass) of rain, cloud ice, snow, and graupel. SAM's implementation of Morrison microphysics diagnoses r_c using a saturation adjustment right before the microphysics is called and then allows microphysics to update the value of r_c , which in turn is used to update the value r_t . Cloud droplet concentration was set to a constant value of 100 cm^{-3} .

- CLUBB's hydrometeor PDF shapes will be compared to histograms of hydrometeors produced by SAM LES data. Our goal is to isolate errors in the PDF shape itself. In order to eliminate sources of error outside of the PDF shape and provide an "apples-to-apples" comparison of CLUBB's PDF shapes to SAM data, we drive CLUBB's PDF using SAM LES fields, rather than perform interactive

Additionally, covariances that involve at least one hydrometeor are added to the above list and are used to calculate the PDF component correlations of the same two variables. These covariances are $\overline{r'_tr'_r}$, $\overline{\theta'_tr'_r}$, $\overline{r'_tN'_r}$, $\overline{\theta'_tN'_r}$, and $\overline{r'_rN'_r}$. Please see Appendix A for more details on the calculation of PDF component correlations. The values of the component correlations do not affect the individual

430 marginal PDFs of the hydrometeors. They are included for the calculation of microphysics process rates (see section 5.2).

Owing to differences between the KK and Morrison microphysics schemes in SAM, f_p used by CLUBB's PDF is computed slightly differently depending on which microphysics scheme is used by SAM. The differences are due to the number of hydrometeor species involved in the microphysics,

- 435 the thresholding found internally in the microphysics codes, and the variables that are output to statistics by SAM. KK microphysics contains only rain, and SAM's implementation of KK microphysics clips any value of r_r (and with it N_r) below a threshold value in clear air. Therefore, it is simple to set f_p to the fraction of the domain occupied by non-zero values of r_r and N_r . Morrison microphysics predicts rain, ice, snow, and graupel. For each of these species, SAM outputs a frac-
- 440 tion. To provide an apples-to-apples comparison with CLUBB, f_p is approximated as the greatest of these four fractions at any particular grid level.

5 Results

We first evaluate the shape of the idealized PDFs directly against LES. Histograms of SAM LES data are generated from the three-dimensional snapshots of hydrometeor fields. One histogram is generated at every vertical level for each hydrometeor field. A histogram of a SAM hydrometeor

field is compared to the CLUBB marginal PDF of that hydrometeor field at the same vertical level and output time. The comparison is done with each of the SL, DL, and DDL PDF shapes.

Figure 2 compares marginal PDFs involving r_r and N_r for the RICO case at an altitude of 380 m and a time of 4200 min. For the plot of the PDF of r_r in Fig. 2a, the delta function at r_r = 0 has been
omitted. The SAM data is divided into 100 bins, equally-sized in r_r, that range from the largest value of r_r to the smallest positive value of r_r. (In what follows, all histograms use 100 equal-size bins, arranged from smallest to largest value.) The SL hydrometeor PDF shape significantly overpredicts the PDF at small values of r_r and significantly underpredicts it at large values of r_r. These errors are

an expected consequence of the single lognormal's attempt to fit the precipitation-less area. The DLand DDL PDF shapes provide a much closer match to the SAM data.

Each of the CLUBB hydrometeor PDF shapes has a lognormal distribution within precipitation in each PDF component. Taking the natural logarithm of every point of a lognormal distribution produces a normal distribution, and so the plot of the PDF of $\ln r_r$ in Fig. 2b is a normal distribution in each PDF component for each of the DDL, DL, and SL PDF shapes. The plot of the PDF of $\ln r_r$

460 (hereafter referred to as the PDF of r_r in Gaussian space) complements the aforementioned plot of the PDF of r_r (Fig. 2a). The plot of the PDF of r_r is log-scaled on the y-axis, accentuating the small values of $P(r_r)$ that are found at large values of r_r . The plot of the PDF of $\ln r_r$ accentuates the PDF at small values of r_r .

The plot of the PDF of $\ln r_r$ is a plot of only the within-precipitation portion of the distribution, omitting all zero-values. The in-precip. portion of the PDF is divided by f_p , which allows the area under the curve to integrate to 1. The PDF shown in Fig. 2b is the Gaussianized form of Eq. (32).

Figure 2b shows that the SL hydrometeor PDF shape significantly misses the mark, for its peak is located too far to the left of the bulk of the SAM LES data. This shift of the peak to excessively small values is to be expected of a continuous PDF shape that tries to include a delta function at

- 470 zero. The DL PDF shape is far too peaked in comparison to the SAM LES data, which is spread out broadly in Gaussian space. The DDL PDF shape is able to achieve a spread-out shape because it has two different means within precipitation. This allows it to better fit the more platykurtic shape of the SAM LES data in Gaussian space.
- The plot of the PDF of RICO N_r is found in Fig. 2c and the Gaussian-space plot of N_r is found in Fig. 2d. Similar to r_r , the SL shape overpredicts the PDF at small values of N_r and underpredicts it at large values of N_r . In Gaussian space, it is easy to see that SL's peak is located too far to the left. The DDL shape provides a better fit than the DL shape to SAM LES data in Fig. 2c. Again, the DL shape is too peaked in Fig. 2d, whereas the bimodal DDL is able to spread out, which provides a better match to SAM LES data.
- Figure 3 contains scatterplots that show the bivariate PDF of r_r and N_r for both SAM LES and CLUBB's PDF in RICO at the same altitude and time as Fig. 2. The CLUBB PDF scatterpoints were generated by sampling the DDL PDF using an unweighted Monte Carlo sampling scheme.

495

This demonstrates the advantages of the multivariate nature of CLUBB's PDF. The hydrometeor fields are correlated the same way in CLUBB's PDF as they are in SAM LES.

- Figure 4 compares marginal PDFs involving r_r and N_r for the DYCOMS-II RF02 case at an altitude of 400 m and a time of 330 min. All three hydrometeor PDF shapes provide a decent match to the SAM LES data. In Fig. 4a and Fig. 4c, the SL and DL PDF shapes dip a little below the SAM LES line in the middle of the data range for r_r and N_r , respectively. The DDL PDF shape stays closer to the SAM LES line in this region. Additionally, the SL PDF shape overestimates the
- 490 SAM LES line close to the y-axis. In Fig. 4b and Fig. 4d, the Gaussian-space plots show that the two components of the DDL shape superimpose more than they did for the RICO case, owing to the reduced within-precipitation variance in the drizzling stratocumulus case.

Figure 5 compares marginal PDFs involving r_r and N_r for the LBA case at an altitude of 2424 m and a time of 330 min. Compared to SAM's PDF, the DDL hydrometeor PDF shape is too bimodal, but it still provides the best match of the three hydrometeor PDF shapes to SAM data.

- To indicate whether the three PDF shapes work for ice-phase hydrometeors, we compare marginal PDFs involving r_i and N_i for the LBA case at an altitude of 10500 m and a time of 360 min (Figure 6). Similar to the r_r and N_r plots for RICO and LBA, Fig. 6a and Fig. 6c show that the SL PDF shape overpredicts the PDF at small values of r_i and N_i and underpredicts it at large values of r_i
- and N_i . The DL shape provides a better fit than the SL, and the DDL has a slightly better fit than the DL. The Gaussian-space plots in Fig. 6b and Fig. 6d show that the SAM LES distribution of $\ln r_i$ and $\ln N_i$ is again platykurtic. The SL PDF shape has a peak that is shifted to the left. The DDL hydrometeor PDF shape is able to spread out the most to cover the platykurtic shape of the LES in Gaussian space.
- 505 Why does the DDL PDF shape match LES output better than the DL shape in the aforementioned figures? The PDFs (in Gaussian space) for the LES of RICO and LBA show a broad, flat distribution of hydrometeor values from the LES. The DL shape is too peaked in comparison to the LES data. The DDL shape is able to spread out the component means and thereby handle the platykurtic shape better.
- 510 Why does SAM LES data have a platykurtic shape in Gaussian space in these cases? One possible cause is the partly cloudy (and partly rainy) nature of these cases. In these partly rainy cases, a relatively high percentage of the precipitation occurs in "edge regions" near the non-precipitating region. These regions usually correspond to the edge of cloud or outside of cloud. Evaporation (or less accretion) occurs in these regions, increasing the area occupied by smaller amounts of rain. Yet,
- 515 there is also an area of more intense precipitation near the center of the precipitating region, which produces larger amounts of rain. Collectively, the areas of small and large rain amount produce the large spread in the hydrometeor spectrum.

The DYCOMS-II RF02 PDFs from the LES tend not to share the platykurtic shape seen in the other cases. The RF02 case is overcast, so there are not as many "edge" regions of precipitation as

520 found in partly rainy cases. There is much less in-precip. variance in the RF02 case. The simpler PDF shape is easier to fit by all the PDF shapes (SL, DL, and DDL). To further illuminate the physics underlying the PDF shapes produced by LES, further study would be needed.

5.1 Quality of fit: general scores

While a lot can be learned by looking at plots of the hydrometeor PDFs, they are anecdotal and
cannot tell us how well the idealized PDF shapes work generally. To obtain an *overall* quantification of the quality of the fit, we calculate the Kolmogorov-Smirnov (K-S) and the Cramer-von Mises (C-vM) scores.

Both the K-S and C-vM tests compare the cumulative distribution function (CDF) of the idealized distribution to the CDF of the empirical data (in this case, SAM LES data). Both tests require that the

530 CDFs be continuous. Therefore, the scores are calculated using only the within-precipitation portion of the hydrometeor PDF in Eq. (8). The DDL, DL, and SAM LES data all have the same precipitation fraction. The in-precip. portion of the PDF is normalized by dividing by precipitation fraction so that it integrates to 1. The equation for the in-precip. portion of the marginal PDF, $P(h)|_{ip}$, is

$$P(h)|_{\rm ip} = \xi_{(1)} \frac{f_{p(1)}}{f_p} P_{L(1)}(h) + \xi_{(2)} \frac{f_{p(2)}}{f_p} P_{L(2)}(h), \qquad (32)$$

535 where $P_{L(i)}$ is given by Eq. (9).

The K-S score is the greatest difference between the empirical in-precip. CDF, $C_e(h)|_{ip}$, and the idealized in-precip. CDF, $C(h)|_{ip}$, at any point in h > 0. In order to run the tests, the SAM LES data from the requested level and time was sorted in the order of increasing value. This was done only for points where the requested hydrometeor was found. The K-S score is given by (Stephens, 1970)

$$\operatorname{KS} = \max_{h} \left| C_{e}(h) \right|_{\operatorname{ip}} - C(h) \right|_{\operatorname{ip}} = \max\left(\operatorname{KS}^{+}, \operatorname{KS}^{-} \right), \quad \text{where}$$
540
$$\operatorname{KS}^{+} = \max_{1 \le \kappa \le n_{p}} \left(\frac{\kappa}{n_{p}} - C(h_{\kappa}) \right|_{\operatorname{ip}} \right) \quad \text{and} \quad \operatorname{KS}^{-} = \max_{1 \le \kappa \le n_{p}} \left(C(h_{\kappa}) \right|_{\operatorname{ip}} - \frac{\kappa - 1}{n_{p}} \right). \tag{33}$$

The number of data points in SAM LES where the hydrometeor is found is denoted n_p , and h_{κ} is the value of the hydrometeor at SAM LES ordered data point κ .

Unlike the K-S test, which only considers the greatest difference between the CDFs, the C-vM test is based on an integral that includes the differences between the CDFs over the entire distribution. 545 The integral is (Anderson, 1962)

$$\omega^{2} = \int \left(C_{e}(h)|_{ip} - C(h)|_{ip} \right)^{2} dC(h)|_{ip}.$$
(34)

The C-vM score is calculated by (Anderson, 1962; Stephens, 1970)

$$CVM = \omega^2 n_p = \frac{1}{12n_p} + \sum_{\kappa=1}^{n_p} \left(\frac{2\kappa - 1}{2n_p} - C(h_\kappa) |_{ip} \right)^2.$$
(35)

The K-S and C-vM test scores are produced at every LES vertical level and three-dimensional 550 statistical output time for every hydrometeor species. This results in a large number of scores. We

desire that each hydrometeor species have a single K-S score and a single C-vM score in order to more easily compare the DDL, DL, and SL hydrometeor shapes. We calculate this score by averaging the individual level scores over multiple levels and multiple output times. For K-S this is simple, and the result is $\langle KS \rangle$ (where angle brackets denote an average over multiple levels and times). The

- 555 C-vM test score in Eq. (35) is dependent on the number of precipitating grid points. This number changes between vertical levels and output times, so the C-vM scores cannot simply be averaged. Rather, they are normalized first by dividing CVM by n_p to produce ω^2 at every level and time. Those results are averaged to calculate $\langle \omega^2 \rangle$.
- After inspecting profiles of SAM LES results for mean mixing ratios in height and time, regions
 were identified in height and time where the mean mixing ratio of a species was always at least 5.0 × 10⁻⁶ kg kg⁻¹. Averaging of the scores was restricted to these regions in order to eliminate from consideration levels that do not contain the hydrometeor or contain only small amounts of the hydrometeor with a small number of samples. RICO test scores for r_r and N_r were averaged from the surface through 2780 m. and from 4200 min. through 4320 min. DYCOMS-II RF02 test scores for r_r and N_r were averaged from 277 m. through 808 m. and from 300 min. to 360 min.

The LBA case contains both liquid and frozen-phase hydrometeor species. LBA test scores for r_r and N_r were averaged from the surface through 6000 m and from 285 min through 360 min. The test scores for r_g and N_g were averaged from 4132 m through 9750 m and from 315 min through 360 min. The test scores for r_s and N_s were averaged from 5026 m through 9000 m and from 345 min

- 570 through 360 min. Finally, the test scores for r_i and N_i were averaged from 10250 m through 11750 m at 360 min. For the LBA case, the value of f_p used by CLUBB's PDF was based on the greatest value of SAM output variables for rain fraction, ice fraction, snow fraction, and graupel fraction. Each of these statistics is the fraction of the SAM domain occupied by values of the relevant mixing ratio of at least 1.0×10^{-6} kg kg⁻¹. In order to keep the comparison of the PDF shapes to SAM data
- 575 consistent, values lower than this threshold were omitted from the calculations of the individual level-and-time scores for K-S and C-vM.

The results of $\langle KS \rangle$ are listed in Table 1 for every hydrometeor species in every case. The DDL PDF shape has the lowest average score for every case and hydrometeor species except for one. The DL PDF shape edges out the DDL in the DYCOMS-II RF02 N_r comparison. The SL PDF

- shape has the highest average score for every case and hydrometeor species, except for the LBA r_r comparison, where it has the second-lowest score and the DL has the highest score. The results of $\langle \omega^2 \rangle$ are listed in Table 2. The DDL PDF shape has the lowest average score for every case and hydrometeor species, the DL shape has the second-lowest average score, and the SL shape has the highest average score.
- 585 We note the important caveat that, as compared to DL, DDL has more adjustable parameters. A parameterization with more free parameters would be expected to provide a better fit to a training data set. Therefore, although DDL matches the LES output more closely than does DL, we can-

620

not be certain, based on the analysis presented here, that DDL will outperform DL on a different validation dataset. For a deeper analysis, one could use a model selection method that penalizes parameterizations with more parameters. We leave such an analysis for future work.

5.2 Microphysical process rates

A primary reason to improve the accuracy of hydrometeor PDFs is to improve the accuracy of the calculation of microphysical process rates. In this section, we compare the accuracy of calculations of microphysical process rates based on the SL, DL, and DDL PDF shapes.

- 595 In the simulations of RICO and DYCOMS-II RF02, both SAM LES and CLUBB use KK microphysics. The process rates output are the mean evaporation rate of r_r , the mean accretion rate of r_r , and the mean autoconversion rate of r_r . Also recorded is rain drop mean volume radius, which is important for sedimentation velocity of rain. In order to account for subgrid variability in the microphysics, the KK microphysics process rate equations have been upscaled (to grid-box scale) using
- 600 analytic integration over the PDF (Larson and Griffin, 2013; Griffin and Larson, 2013). The updates to the multivariate PDF (see Section 2) require updates to the upscaled process rate equations. The updated forms of these equations are listed in the Supplement.

Figure 7 shows profiles of RICO mean microphysics process rates. The mean evaporation rate profile in Fig. 7a shows that all three shapes over-evaporate at higher altitudes, but that SL and DL

- over-evaporate more than DDL. It should be noted that the reason for the over-evaporation at higher altitudes in the RICO case is the marginal PDF of χ produced by ADG2. While it provides a good match between CLUBB and SAM LES in the fields of cloud fraction and $\overline{r_c}$, the value of $\sigma_{\chi(1)}$ is far too large. When χ and r_r (or N_r) are distributed jointly, this results in too many large values of r_r (or N_r) being placed in air that is far too dry. RICO mean evaporation rate could benefit from an
- 610 improved ADG2 in order to produce a better marginal distribution of χ , but that is beyond the scope of this paper.

Figure 7b shows that both the DL and DDL PDF shapes match the LES mean accretion rate profile much better than does the SL shape. The mean autoconversion rate depends on χ and N_{cn} but not hydrometeor variables, and so the autoconversion rate is the same for all three PDF shapes

615 (not shown). The overall mean microphysics rate — i.e., the sum of the evaporation, accretion, and autoconversion rates — is fit best by the DDL shape and worst by the SL shape. Both DDL and DL are a much better match to the SAM profile of rain drop mean volume radius than SL (Fig. 7d).

Figure 8 shows that all three hydrometeor PDF shapes provide a good match to SAM LES for DYCOMS-II RF02. In Fig. 8d, the SL PDF shape deviates more strongly from SAM LES than does DL or DDL near the bottom of the profile of rain drop mean volume radius.

In the simulation of LBA, Morrison microphysics was used in both the SAM LES and CLUBB. In order to account for subgrid variability in the microphysics, sample points from the PDF are produced at every grid level using the Subgrid Importance Latin Hypercube Sampler (SILHS) (Raut and Larson,

2015; Larson and Schanen, 2013; Larson et al., 2005). For the LBA case, 128 sample points weredrawn. Morrison microphysics is then called using each set of sample points, and the results are averaged to calculate the mean microphysics process rates.

Figure 9 shows the same mean microphysics process rates as in previous figures, but here for LBA. The profile of mean evaporation rate in Fig. 9a shows that DDL is the best match to SAM LES. The profile of mean accretion rate in Fig. 9b shows that DDL is the best match to SAM, followed by DL

and then SL. The overall (autoconversion + accretion + evaporation) warm microphysics process rate profile is best matched by the DDL hydrometeor PDF shape, followed by the DL shape, which in turn is followed by the SL shape (Fig. 9c).

6 Conclusions

The multivariate PDF used by CLUBB has been updated to improve the subgrid representation of hydrometeor species. The most important update is the introduction of precipitation fraction to the PDF. The precipitating fraction contains any non-zero values of any hydrometeor species included in the microphysics scheme. The remainder of the subgrid domain is precipitation-less and is represented by a delta function where every hydrometeor species has a value of zero. When a hydrometeor is found at a grid level, its representation in the precipitating portion of the subgrid domain is a lognor-

640 mal or double lognormal distribution. The introduction of precipitation fraction increases accretion and decreases evaporation in cumulus cases, allowing more precipitation to reach the ground.

Additionally, a new method has been developed to calculate the within-precipitation mean and standard deviation of a hydrometeor species in each component of CLUBB's two-component PDF. This method preserves the grid-box mean and variance of the hydrometeor species. By simply chang-

645 ing the values of tunable parameters, CLUBB's marginal PDF for a hydrometeor can be changed from a delta-double-lognormal (DDL) to a delta-lognormal (DL) or to a single-lognormal (SL) shape.

In order to compare the effectiveness of the three hydrometeor PDF shapes, three simulations – a precipitating shallow cumulus case (RICO), a drizzling stratocumulus case (DYCOMS-II RF02),

- 650 and a deep convective case (LBA) were run using SAM LES. Statistical output values from the LES for the grid-level mean and turbulent fields were used to drive the PDF for each hydrometeor PDF shape. The idealized PDF shapes were compared to the SAM LES results. The DDL PDF shape produced the lowest average K-S and average normalized C-vM scores when compared to SAM LES results, followed by the DL PDF shape. Both produced lower scores than the original SL PDF shape.
- 655 However, for DYCOMS-II RF02, all three PDF shapes were in almost equal agreement with SAM LES results.

The DL and DDL PDFs possess three important properties: 1) they are multivariate, and hence can represent interactions among multiple hydrometeor species; 2) they admit a precipitation-less

region, which is necessary to permit realistic process rates in cumulus cloud layers; and 3) they have realistic tails, as evidenced by the comparisons with LES shown here. Because of these three properties, the DL and DDL PDFs may be general enough and accurate enough to adequately represent hydrometeor variability over a range of important cloud types, including shallow cumulus, deep cumulus, and stratocumulus clouds. This generality, in turn, may help enable parameterization of these clouds types in a more unified way. Indeed, an early version of the DDL PDF has already been used

- 665 to represent hydrometeor subgrid variability in some interactive simulations with a unified cloud parameterization. Namely, the DDL PDF was used in the interactive single-column simulations of these cloud types by Storer et al. (2015) and in the global simulations by Thayer-Calder et al. (2015). Further testing would be required, however, to better understand the limits of the DL and DDL PDFs. Better understanding is particularly desirable in, for instance, mixed-phase and glaciated clouds. This
- 670 has been left for future work.

680

Appendix A: Back-solving PDF component correlations

In Section 5, mean microphysics process rates were calculated either by using the analytical integration of a local microphysics scheme or by using SILHS to sample the PDF in order to drive a local microphysics scheme. Both methods require information on the PDF component correlations.

675 These correlations can be back-solved when given the overall (grid-box) covariance of the necessary variables.

A1 PDF component correlation of a binormal variate and a hydrometeor

The PDF *component* correlation of a binormal variate (using r_t as an example) and a hydrometeor can be back-solved when their covariance, $\overline{r'_t h'}$, is provided. Their covariance can be written in terms of PDF parameters by integrating over the PDF, such that

$$\overline{r'_t h'} = \int_{-\infty}^{\infty} \int_{0}^{\infty} (r_t - \overline{r_t}) \left(h - \overline{h}\right) P(r_t, h) \,\mathrm{d}h \,\mathrm{d}r_t,\tag{A1}$$

where $P(r_t, h)$ is the bivariate marginal PDF of r_t and h in the *i*th PDF component. This equation can be rewritten as

$$\overline{r'_t h'} = \sum_{i=1}^n \xi_{(i)} \int_{-\infty}^{\infty} \int_0^{\infty} (r_t - \overline{r_t}) \left(h - \overline{h}\right) \left(f_{p(i)} P_{NL(i)} \left(r_t, h\right) + \left(1 - f_{p(i)}\right) P_{N(i)} \left(r_t\right) \delta(h)\right) \mathrm{d}h \,\mathrm{d}r_t, \tag{A2}$$

685 where $P_{NL(i)}(r_t, h)$ is the *i*th component bivariate PDF involving one normal variate and one lognormal variate, and where $P_{N(i)}(r_t)$ is a normal distribution in the *i*th component. This equation is

integrated and reduced, resulting in

$$\overline{r'_t h'} = \sum_{i=1}^n \xi_{(i)} f_{p(i)} \left(\mu_{r_t(i)} - \overline{r_t} + \tilde{\rho}_{r_t, h(i)} \sigma_{r_t(i)} \tilde{\sigma}_{h(i)} \right) \mu_{h(i)},$$
(A3)

where $\mu_{r_t(i)}$ and $\sigma_{r_t(i)}$ are the mean and standard deviation, respectively, of r_t in the *i*th PDF component.

The variable that needs to be solved for is $\tilde{\rho}_{r_t,h(i)}$, which is the within-precipitation correlation of r_t and $\ln h$ in the *i*th PDF component. This is the normal-space correlation that is required for use in the microphysics. It is related to the *i*th component within-precipitation correlation of r_t and h, $\rho_{r_t,h(i)}$, by

695
$$\rho_{r_t,h(i)} = \tilde{\rho}_{r_t,h(i)}\tilde{\sigma}_{h(i)}\frac{\mu_{h(i)}}{\sigma_{h(i)}}.$$
 (A4)

The covariance $\overline{r'_t h'}$ given by Eq. (A3) can be written in terms of CLUBB's two-component PDF (n = 2) as

$$\overline{r'_t h'} = \xi_{(1)} f_{p(1)} \left(\mu_{r_t(1)} - \overline{r_t} + \tilde{\rho}_{r_t,h(1)} \sigma_{r_t(1)} \tilde{\sigma}_{h(1)} \right) \mu_{h(1)} \\
+ \xi_{(2)} f_{p(2)} \left(\mu_{r_t(2)} - \overline{r_t} + \tilde{\rho}_{r_t,h(2)} \sigma_{r_t(2)} \tilde{\sigma}_{h(2)} \right) \mu_{h(2)}.$$
(A5)

The overall covariance is provided, so the component correlation can be back-solved by setting 700 $\tilde{\rho}_{r_t,h(1)} = \tilde{\rho}_{r_t,h(2)} (= \tilde{\rho}_{r_t,h})$. The result is

$$\tilde{\rho}_{r_t,h} = \frac{\overline{r'_t h'} - \xi_{(1)} f_{p(1)} \left(\mu_{r_t(1)} - \overline{r_t} \right) \mu_{h(1)} - \xi_{(2)} f_{p(2)} \left(\mu_{r_t(2)} - \overline{r_t} \right) \mu_{h(2)}}{\xi_{(1)} f_{p(1)} \sigma_{r_t(1)} \tilde{\sigma}_{h(1)} \mu_{h(1)} + \xi_{(2)} f_{p(2)} \sigma_{r_t(2)} \tilde{\sigma}_{h(2)} \mu_{h(2)}},\tag{A6}$$

where $-1 \leq \tilde{\rho}_{r_t,h} \leq 1$.

The equation for $\overline{r'_t h'}$ given in Eq. (A5) is for a fully-varying PDF in both components ($\sigma_{r_t(i)} > 0$ and $\sigma_{h(i)} > 0$). A variable may have a constant value in a PDF sub-component. When this happens, the PDF of the constant variable is a delta function at the *i*th sub-component mean. When $\sigma_{r_t(i)} > 0$ and $\sigma_{h(i)} = 0$, r_t varies in *i*th component but *h* is constant within precipitation. The PDF $P_{NL(i)}(r_t, h)$ becomes $P_{N(i)}(r_t) \delta (h - \mu_{h(i)})$. There also may be situations where $\sigma_{r_t(i)} = 0$ but $\sigma_{h(i)} > 0$, or even where $\sigma_{r_t(i)} = 0$ and $\sigma_{h(i)} = 0$.

When $\sigma_{r_t(1)}\sigma_{h(1)} > 0$ but $\sigma_{r_t(2)}\sigma_{h(2)} = 0$, the equation for $\overline{r'_t h'}$ is written as

710
$$\overline{r'_t h'} = \xi_{(1)} f_{p(1)} \left(\mu_{r_t(1)} - \overline{r_t} + \tilde{\rho}_{r_t,h(1)} \sigma_{r_t(1)} \tilde{\sigma}_{h(1)} \right) \mu_{h(1)} + \xi_{(2)} f_{p(2)} \left(\mu_{r_t(2)} - \overline{r_t} \right) \mu_{h(2)}.$$
(A7)

The above equation can be rewritten to solve for $\tilde{\rho}_{r_t,h(1)}$, such that

$$\tilde{\rho}_{r_t,h(1)} = \frac{\overline{r'_t h'} - \xi_{(1)} f_{p(1)} \left(\mu_{r_t(1)} - \overline{r_t} \right) \mu_{h(1)} - \xi_{(2)} f_{p(2)} \left(\mu_{r_t(2)} - \overline{r_t} \right) \mu_{h(2)}}{\xi_{(1)} f_{p(1)} \sigma_{r_t(1)} \tilde{\sigma}_{h(1)} \mu_{h(1)}},\tag{A8}$$

while $\tilde{\rho}_{r_t,h(2)}$ is undefined and irrelevant to the microphysics. When $\sigma_{r_t(1)}\sigma_{h(1)} = 0$ but $\sigma_{r_t(2)}\sigma_{h(2)} > 0$, the equation for $\overline{r'_t h'}$ is analogous to Eq. (A7). An equation analogous to Eq. (A8) solves for

715 $\tilde{\rho}_{r_t,h(2)}$, while $\tilde{\rho}_{r_t,h(1)}$ is undefined. In a scenario where $\sigma_{r_t(1)}\sigma_{h(1)} = 0$ and $\sigma_{r_t(2)}\sigma_{h(2)} = 0$, the equation for $\overline{r'_t h'}$ is

$$\overline{r'_t h'} = \xi_{(1)} f_{p(1)} \left(\mu_{r_t(1)} - \overline{r_t} \right) \mu_{h(1)} + \xi_{(2)} f_{p(2)} \left(\mu_{r_t(2)} - \overline{r_t} \right) \mu_{h(2)}.$$
(A9)

When this is the case, both $\tilde{\rho}_{r_t,h(1)}$ and $\tilde{\rho}_{r_t,h(2)}$ are undefined.

This method of back-solving for the component correlations was used to calculate the PDF component correlations of r_t and r_r , r_t and N_r , θ_l and r_r , and θ_l and N_r . These were the only correlations 720 of this type that were necessary to produce the microphysics process rates used in the comparison.

A2 PDF component correlation of two hydrometeors

The PDF component correlation of two hydrometeors, h_x and h_y , can be back-solved when their covariance, $\overline{h'_{x}h'_{y}}$, is provided. Their covariance can be written in terms of PDF parameters by integrating over the PDF, such that

725

$$\overline{h'_x h'_y} = \int_0^\infty \int_0^\infty \left(h_x - \overline{h_x} \right) \left(h_y - \overline{h_y} \right) P(h_x, h_y) \, \mathrm{d}h_y \, \mathrm{d}h_x, \tag{A10}$$

where $P(h_x, h_y)$ is the bivariate marginal PDF of h_x and h_y in the *i*th PDF component. This equation can be rewritten as

$$\overline{h'_x h'_y} = \sum_{i=1}^n \xi_{(i)} \int_0^\infty \int_0^\infty \left(h_x - \overline{h_x} \right) \left(h_x - \overline{h_y} \right) \left(f_{p(i)} P_{LL(i)} \left(h_x, h_y \right) + \left(1 - f_{p(i)} \right) \delta \left(h_x \right) \delta \left(h_y \right) \right) \mathrm{d}h_y \mathrm{d}h_x, \tag{A11}$$

730 where $P_{LL(i)}(h_x, h_y)$ is the *i*th component bivariate PDF involving two lognormal variates.

This equation is integrated and reduced, resulting in

$$\overline{h'_{x}h'_{y}} = -\overline{h_{x}} \,\overline{h_{y}} + \sum_{i=1}^{n} \xi_{(i)} f_{p(i)} \left(\mu_{h_{x}(i)} \mu_{h_{y}(i)} + \rho_{h_{x},h_{y}(i)} \sigma_{h_{x}(i)} \sigma_{h_{y}(i)} \right), \tag{A12}$$

where $\rho_{h_x,h_y(i)}$ is the within-precipitation correlation of h_x and h_y in the *i*th PDF component. When the PDF is fully-varying in both components ($\sigma_{h_x(i)} > 0$ and $\sigma_{h_y(i)} > 0$), the covariance $\overline{h'_x h'_y}$ given 735 by Eq. (A12) can be written in terms of CLUBB's two-component PDF as

$$\overline{h'_{x}h'_{y}} = \xi_{(1)}f_{p(1)}\left(\mu_{h_{x}(1)}\mu_{h_{y}(1)} + \rho_{h_{x},h_{y}(1)}\sigma_{h_{x}(1)}\sigma_{h_{y}(1)}\right) + \xi_{(2)}f_{p(2)}\left(\mu_{h_{x}(2)}\mu_{h_{y}(2)} + \rho_{h_{x},h_{y}(2)}\sigma_{h_{x}(2)}\sigma_{h_{y}(2)}\right) - \overline{h_{x}}\,\overline{h_{y}}.$$
(A13)

The overall covariance is provided, so the component correlation is solved by setting $\rho_{h_x,h_y(1)} =$ $\rho_{h_x,h_y(2)} (= \rho_{h_x,h_y})$. The result is

$$\rho_{h_x,h_y} = \frac{\overline{h'_x h'_y} + \overline{h_x} \ \overline{h_y} - \xi_{(1)} f_{p(1)} \mu_{h_x(1)} \mu_{h_y(1)} - \xi_{(2)} f_{p(2)} \mu_{h_x(2)} \mu_{h_y(2)}}{\xi_{(1)} f_{p(1)} \sigma_{h_x(1)} \sigma_{h_y(1)} + \xi_{(2)} f_{p(2)} \sigma_{h_x(2)} \sigma_{h_y(2)}}.$$
(A14)

740 When $\sigma_{h_x(1)}\sigma_{h_y(1)} > 0$ but $\sigma_{h_x(2)}\sigma_{h_y(2)} = 0$, the equation for $\overline{h'_x h'_y}$ is written as

$$\overline{h'_x h'_y} = \xi_{(1)} f_{p(1)} \left(\mu_{h_x(1)} \mu_{h_y(1)} + \rho_{h_x, h_y(1)} \sigma_{h_x(1)} \sigma_{h_y(1)} \right) + \xi_{(2)} f_{p(2)} \mu_{h_x(2)} \mu_{h_y(2)} - \overline{h_x} \ \overline{h_y}.$$
(A15)

The above equation can be rewritten to solve for $\rho_{h_x,h_y(1)}$, such that

$$\rho_{h_x,h_y(1)} = \frac{\overline{h'_x h'_y + \overline{h_x} h_y} - \xi_{(1)} f_{p(1)} \mu_{h_x(1)} \mu_{h_y(1)} - \xi_{(2)} f_{p(2)} \mu_{h_x(2)} \mu_{h_y(2)}}{\xi_{(1)} f_{p(1)} \sigma_{h_x(1)} \sigma_{h_y(1)}},$$
(A16)

while $\rho_{h_x,h_y(2)}$ is undefined and irrelevant to the microphysics. When $\sigma_{h_x(1)}\sigma_{h_y(1)} = 0$ but $\sigma_{h_x(2)}\sigma_{h_y(2)} > 0$

745 0, the equation for $\overline{h'_x h'_y}$ is analogous to Eq. (A15). An equation analogous to Eq. (A16) solves for $\rho_{h_x,h_y(2)}$, while $\rho_{h_x,h_y(1)}$ is undefined. In a scenario where $\sigma_{h_x(1)}\sigma_{h_y(1)} = 0$ and $\sigma_{h_x(2)}\sigma_{h_y(2)} = 0$, the equation for $\overline{h'_x h'_y}$ is

$$\overline{h'_x h'_y} = \xi_{(1)} f_{p(1)} \mu_{h_x(1)} \mu_{h_y(1)} + \xi_{(2)} f_{p(2)} \mu_{h_x(2)} \mu_{h_y(2)} - \overline{h_x} \,\overline{h_y}.$$
(A17)

When this is the case, both $\rho_{h_x,h_y(1)}$ and $\rho_{h_x,h_y(2)}$ are undefined.

The variable that needs to be solved for is $\tilde{\rho}_{h_x,h_y(i)}$, which is the within-precipitation correlation of $\ln h_x$ and $\ln h_y$ in the *i*th PDF component. This is the normal-space correlation that is required for use in the microphysics, and it is given by

$$\tilde{\rho}_{h_x,h_y(i)} = \frac{\ln\left(1 + \rho_{h_x,h_y(i)} \frac{\sigma_{h_x(i)} \sigma_{h_y(i)}}{\mu_{h_x(i)} \mu_{h_y(i)}}\right)}{\tilde{\sigma}_{h_x(i)} \tilde{\sigma}_{h_y(i)}},\tag{A18}$$

where $-1 \leq \tilde{\rho}_{h_x,h_y(i)} \leq 1$.

This method of back-solving for the component correlations was used to calculate the PDF component correlation of r_r and N_r . This was the only correlation of this type that was necessary to produce the microphysics process rates used in the comparison.

Code availability

The CLUBB code is freely available for non-commercial use after registering for an account on the website http://clubb.larson-group.com. The specific version of CLUBB used in this paper is available in the SVN repository located at http://carson.math.uwm.edu/repos/clubb_repos/tags/Hydromet_PDF_shapes. In the repository is a file README_Hydromet_PDF_shapes which gives instructions for generating the results found in this paper.

Acknowledgements. The authors gratefully acknowledge financial support from the National Science Founda tion under Grant No. AGS-0968640 and the Office of Science (BER), U. S. Department of Energy under Grant
 No. DE-SC0008323 (Scientific Discoveries through Advanced Computing, SciDAC). Some simulations presented here were performed on the Avi high-performance computer cluster at the University of Wisconsin —
 Milwaukee.

References

- 770 Ackerman, A. S., van Zanten, M. C., Stevens, B., Savic-Jovcic, V., Bretherton, C. S., Chlond, A., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Krueger, S. K., Lewellen, D. C., Lock, A., Moeng, C.-H., Nakamura, K., Petters, M. D., Snider, J. R., Weinbrecht, S., and Zulauf, M.: Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer, Mon. Wea. Rev., 137, 1083–1110, doi: 10.1175/2008MWR2582.1, 2009.
- 775 Anderson, T. W.: On the Distribution of the Two-Sample Cramer-von Mises Criterion, Ann. Math. Statist., 33, 1148–1159, 1962.

Bogenschutz, P. A. and Krueger, S. K.: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv. Model. Earth Syst., 5, doi:10.1002/jame.20018, 2013.

Bogenschutz, P. A., Krueger, S. K., and Khairoutdinov, M.: Assumed Probability Density Functions for Shallow
and Deep Convection, J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.10, 2010.

Boutle, I., Abel, S., Hill, P., and Morcrette, C.: Spatial variability of liquid cloud and rain: Observations and microphysical effects, Quarterly Journal of the Royal Meteorological Society, 140, 583–594, 2014.

Cheng, A. and Xu, K.-M.: A PDF-Based Microphysics Parameterization for Simulation of Drizzling Boundary Layer Clouds, J. Atmos. Sci., 66, 2317–2334, 2009.

785 Cheng, A. and Xu, K.-M.: Improved Low-cloud Simulation from the Community Atmosphere Model with an Advanced Third-order Turbulence Closure, Journal of Climate, 28, doi:http://dx.doi.org/10.1175/JCLI-D-14-00776.1, 2015.

- Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Layer Meteor., 18, 495–527, 1980.
- 790 Firl, G. J. and Randall, D. A.: Fitting and Analyzing LES Using Multiple Trivariate Gaussians, J. Atmos. Sci., 72, 1094–1116, doi:10.1175/JAS-D-14-0192.1, 2015.

Fletcher, S. J. and Zupanski, M.: A hybrid multivariate Normal and lognormal distribution for data assimilation, Atmos. Sci. Lett., 7, 43–46, doi:10.1002/asl.128, 2006.

- Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-based model for boundary layer clouds. Part I: Method
 and model description, J. Atmos. Sci., 59, 3540–3551, 2002a.
 - Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-based model for boundary layer clouds. Part II: Model results, J. Atmos. Sci., 59, 3552–3571, 2002b.

Grabowski, W. W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C., Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao, W. K., Wong, R., Wu, X., and Xu, K. M.: Daytime convective development over land: A model intercomparison based on LBA observations, Quart. J. Roy. Meteor. Soc., 132, 317–344, 2006.

- 800 model intercomparison based on LBA observations, Quart. J. Roy. Meteor. Soc., 132, 317–344, 2006. Griffin, B. M. and Larson, V. E.: Analytic upscaling of local microphysics parameterizations, Part II: Simulations, Quart. J. Royal Met. Soc., 139, 58–69, 2013.
 - Guo, H., Golaz, J.-C., Donner, L., Wyman, B., Zhao, M., and Ginoux, P.: CLUBB as a unified cloud parameterization: opportunities and challenges, Geophysical Research Letters, doi:10.1002/2015GL063672, 2015.
- 805 Kärcher, B. and Burkhardt, U.: A cirrus cloud scheme for general circulation models, Quart. J. Royal Met. Soc., 134, 1439–1461, doi:10.1002/qj.301, 2008.

Khairoutdinov, M. and Kogan, Y.: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus, Mon. Wea. Rev., 128, 229–243, 2000.

Khairoutdinov, M. and Randall, D. A.: Cloud Resolving Modeling of the ARM Summer 1997 IOP: Model
Formulation, Results, Uncertainties, and Sensitivities, J. Atmos. Sci., 60, 607–624, 2003.

Kogan, Y. L. and Mechem, D. B.: A PDF-Based Microphysics Parameterization for Shallow Cumulus Clouds, J. Atmos. Sci., 71, 1070–1089, doi:10.1175/JAS-D-13-0193.1, 2014.

Kogan, Y. L. and Mechem, D. B.: A PDF-based formulation of microphysical variability in cumulus congestus clouds, J. Atmos. Sci., doi:10.1175/JAS-D-15-0129.1, 2015.

815 Lappen, C.-L. and Randall, D. A.: Towards a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model, J. Atmos. Sci., 58, 2021–2036, 2001.

Larson, V. E. and Golaz, J.-C.: Using probability density functions to derive consistent closure relationships among higher-order moments, Mon. Wea. Rev., 133, 1023–1042, 2005.

Larson, V. E. and Griffin, B. M.: Coupling microphysics parameterizations to cloud parameterizations, in:
 Preprints, 12th Conference on Cloud Physics, Madison, WI, American Meteorological Society, 2006.

Larson, V. E. and Griffin, B. M.: Analytic upscaling of local microphysics parameterizations, Part I: Derivation, Quart. J. Royal Met. Soc., 139, 46–57, 2013.

Larson, V. E. and Schanen, D. P.: The Subgrid Importance Latin Hypercube Sampler (SILHS): a multivariate subcolumn generator, Geosci. Model Dev., 6, 1813–1829, doi:10.5194/gmdd-6-1813-2013, 2013.

825 Larson, V. E., Golaz, J.-C., and Cotton, W. R.: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions, J. Atmos. Sci., 59, 3519–3539, 2002.

Larson, V. E., Golaz, J.-C., Jiang, H., and Cotton, W. R.: Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling, J. Atmos. Sci., 62, 4010–4026, 2005.

Lebsock, M., Morrison, H., and Gettelman, A.: Microphysical implications of cloud-precipitation covariance

830 derived from satellite remote sensing, Journal of Geophysical Research: Atmospheres, 118, 6521–6533, 2013.

Lewellen, W. S. and Yoh, S.: Binormal model of ensemble partial cloudiness, J. Atmos. Sci., 50, 1228–1237, 1993.

Mellor, G. L.: The Gaussian cloud model relations, J. Atmos. Sci., 34, 356-358, 1977.

835 Morrison, H. and Gettelman, A.: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and numerical tests, J. Climate., 21, 3642–3659, 2008.

Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description, J. Atmos. Sci., 62, 1665–1677, 2005.

- 840 Naumann, A. K., Seifert, A., and Mellado, J. P.: A refined statistical cloud closure using double-Gaussian probability density functions, Geosci. Model Dev., 6, 1641–1657, doi:10.5194/gmd-6-1641-2013, 2013.
 - Neggers, R. A. J., Köhler, M., and Beljaars, A. C. M.: A Dual Mass Flux Framework for Boundary Layer Convection. Part I: Transport, J. Atmos. Sci., 66, 1465–1488, 2009.

Raut, E. K. and Larson, V. E .: A Flexible Importance Sampling Method for Integrating Subgrid Processes,

Geosci. Model Dev. Discuss., 8, 9147–9191, doi:10.5194/gmdd-8-9147-2015, 2015.
 Smolarkiewicz, P. K. and Grabowski, W. W.: The multidimensional positive definite advection transport algorithm: nonoscillatory option, J. Comput. Phys., 86, 355–375, doi:10.1016/0021-9991(90)90105-A, 1990.

Sommeria, G. and Deardorff, J. W.: Subgrid-scale condensation in models of nonprecipitating clouds, J. Atmos. Sci., 34, 344–355, 1977.

- 850 Stephens, M. A.: Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics Without Extensive Tables, J. Roy. Statist. Soc. Ser. B, 32, 115–122, 1970.
 - Storer, R. L., Griffin, B. M., Höft, J., Weber, J. K., Raut, E., Larson, V. E., Wang, M., and Rasch, P. J.: Parameterizing deep convection using the assumed probability density function method, Geoscientific Model Development, 8, 1–19, 2015.
- 855 Sušelj, K., Teixeira, J., and Chung, D.: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization, J. Atmos. Sci., 70, 1929–1953, 2013.

Thayer-Calder, K., Gettelman, A., Craig, C., Goldhaber, S., Bogenschutz, P. A., Chen, C.-C., Morrison, H., Höft, J., Raut, E., Griffin, B. M., Weber, J. K., Larson, V. E., Wyant, M. C., Wang, M., Guo, Z., and Ghan, S. J.: A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Commu-

860 nity Atmosphere Model, Geoscientific Model Development, 8, 3801–3821, doi:10.5194/gmdd-8-3801-2015, http://www.geosci-model-dev.net/8/3801/2015/, 2015.

Tompkins, A. M.: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover, J. Atmos. Sci., 59, 1917–1942, 2002.

van Zanten, M., Stevens, B., Nuijens, L., Siebesma, A., Ackerman, A., Burnet, F., Cheng, A., Couvreux,
F., Jiang, H., Khairoutdinov, M., Kogan, Y., Lewellen, D., Mechem, D., Nakamura, K., Noda, A., Shipway, B., Slawinska, J., Wang, S., and Wyszogrodzki, A.: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO, J. Adv. Model. Earth Syst., 3, M06 001, doi:10.1029/2011MS000056, 2011.

Zhang, J., Lohmann, U., and Lin, B.: A new statistically based autoconversion rate parameterization for use in
large-scale models, J. Geophys. Res., 107, Article No. 4750, doi:10.1029/2001JD001484, 2002.

Table 1. Kolmogorov-Smirnov statistic averaged over multiple grid levels and statistical output timesteps comparing each of DDL, DL, and SL hydrometeor PDF shapes to SAM LES results. The best (lowest) average score for each case and hydrometeor species is listed in bold. The DDL has the lowest average score most often, and the DL has the second-lowest average score most often.

Average Kolmogorov-Smirnov Statistic				
Case-Species	$\langle {\rm KS} \rangle$ DDL	$\left< {\rm KS} \right> {\rm DL}$	$\left< {\rm KS} \right> SL$	
RICO r_r	0.223	0.373	0.496	
RICO N_r	0.182	0.263	0.634	
RF02 r_r	0.131	0.133	0.148	
RF02 N_r	0.152	0.150	0.170	
LBA r_r	0.152	0.240	0.201	
LBA N_r	0.142	0.187	0.295	
LBA r_g	0.197	0.307	0.429	
LBA N_g	0.165	0.222	0.566	
LBA r_s	0.177	0.267	0.432	
LBA N_s	0.173	0.238	0.492	
LBA r_i	0.212	0.282	0.614	
LBA N_i	0.122	0.210	0.647	

Table 2. Normalized Cramer-von Mises statistic averaged over multiple grid levels and statistical output timesteps comparing each of DDL, DL, and SL hydrometeor PDF shapes to SAM LES results. The best (low-est) average score for each case and hydrometeor species is listed in bold. The DDL has the lowest average score every time, and the DL has the second-lowest average score every time.

Average Normalized Cramer-von Mises Statistic				
Case-Species	$\left< \omega^2 \right>$ DDL	$\left< \omega^2 \right>$ DL	$\left< \omega^2 \right>$ SL	
RICO r_r	0.0187	0.0508	0.1255	
RICO N_r	0.0100	0.0238	0.1872	
RF02 r_r	0.0041	0.0049	0.0094	
RF02 N_r	0.0064	0.0070	0.0136	
LBA r_r	0.0078	0.0231	0.0282	
LBA N_r	0.0081	0.0145	0.0537	
LBA r_g	0.0159	0.0351	0.1092	
LBA N_g	0.0129	0.0194	0.1576	
LBA r_s	0.0107	0.0240	0.1072	
LBA N_s	0.0089	0.0174	0.1261	
LBA r_i	0.0126	0.0246	0.1968	
LBA N_i	0.0046	0.0134	0.2046	

Figure 1. A schematic of the single lognormal (SL), delta-lognormal (DL), and delta-double-lognormal (DDL) hydrometeor PDF shapes. The SL PDF shape is precipitating over the entire subgrid domain, whereas the DL and DDL shapes are not. In all three plots of the PDFs (where each PDF is a function of a hydrometeor species, such as r_r), the weighted PDF from each PDF component is shown (black dashes and black dots). The sum of the two are the SL (solid magenta), the DL (solid green), and the DDL (solid blue). The SL does not contain a delta at 0, and the mean and variance of each PDF component are the same. Each component of the DL has a delta at 0 (upward pointing black arrows on the y-axis). The sum of the two component deltas forms the DL's delta at 0 (upward pointing green arrow). The mean and variance of each DL PDF component are the same within precipitation. Each component of the DDL also has a delta at 0 (upward pointing black arrows). The sum of the two component deltas forms the DDL's delta at 0 (upward pointing black arrows). The sum of the two component deltas forms the DDL's delta at 0 (upward pointing black arrows). The mean and/or variance differ between DDL PDF components within precipitation.

Figure 2. PDFs of rain in the RICO precipitating shallow cumulus case at an altitude of 380 m and a time of 4200 min. The SAM LES results are in red, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of r_r with the delta at $r_r = 0$ omitted. (b) The marginal distribution of $\ln r_r$ using the "in-precip. PDF." This is the within-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of N_r with the delta at $N_r = 0$ omitted. (d) The marginal distribution of $\ln N_r$ using the "in-precip. PDF." Again, this is the in-precip. marginal PDF in Gaussian space. The DDL provides a better fit to SAM LES than the DL, which in turn provides a better fit than the SL.

Figure 3. Joint PDF of r_r and N_r in the RICO precipitating shallow cumulus case at an altitude of 380 m and a time of 4200 min. SAM LES results are the red scatterpoints. CLUBB PDF scatterpoints were generated by sampling the DDL PDF using an unweighted Monte Carlo scheme. The SAM LES domain is 256×256 grid points, so to provide for the best comparison of LES points to CLUBB PDF sample points, 65536 CLUBB PDF sample points were used. The light blue scatterpoints are from PDF component 1 and the dark blue scatterpoints are from PDF component 2. Every 10th point was plotted from both SAM LES and CLUBB's PDF. The joint nature of the PDF allows r_r and N_r to correlate the same way in CLUBB as they do in SAM.

Figure 4. PDFs of rain in the DYCOMS-II RF02 drizzling stratocumulus case at an altitude of 400 m and a time of 330 min. The SAM LES results are in red, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of r_r with the delta at $r_r = 0$ omitted. (b) The marginal distribution of $\ln r_r$ using the "in-precip. PDF." This is the within-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of N_r with the delta at $N_r = 0$ omitted. (d) The marginal distribution of $\ln N_r$ using the "in-precip. PDF", which is the in-precip. marginal PDF in Gaussian space. Owing to relatively low within-precipitating variance, the three hydrometeor PDF shapes are all a close match to SAM LES.

Figure 5. PDFs of rain in the LBA deep convective case at an altitude of 2424 m and a time of 330 min. The SAM LES results are in red, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of r_r with the delta at $r_r = 0$ omitted. (b) The marginal distribution of $\ln r_r$ using the "in-precip. PDF." This is the within-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of N_r with the delta at $N_r = 0$ omitted. (d) The marginal distribution of $\ln N_r$ using the "in-precip. PDF", which is the in-precip. marginal PDF in Gaussian space. Again, the DDL provides the best fit to SAM LES.

Figure 6. PDFs of ice in the LBA deep convective case at an altitude of 10500 m and a time of 360 min. The SAM LES results are in red, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of r_i with the delta at $r_i = 0$ omitted. (b) The marginal distribution of $\ln r_i$ using the "in-precip. PDF." This is the within-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of N_i with the delta at $N_i = 0$ omitted. (d) The marginal distribution of $\ln N_i$ using the "in-precip. PDF." Again, this is the in-precip. marginal PDF in Gaussian space. The method works for frozen hydrometeor species as well, as the DDL provides a better fit to SAM LES than the DL, which in turn provides a better fit than the SL.

Figure 7. Profiles of mean microphysics process rates in the RICO precipitating shallow cumulus case timeaveraged over the last two hours of the simulation (minutes 4200 through 4320). The SAM LES results are red solid lines, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The mean evaporation rate of r_r . (b) The mean accretion rate of r_r . (c) The overall mean microphysics tendency for r_r . (d) The mean volume radius of rain drops. Overall, the DDL provides a better fit to SAM LES than the DL, which in turn provides a better fit than the SL.

Figure 8. Profiles of mean microphysics process rates in the DYCOMS-II RF02 drizzling stratocumulus case time-averaged over the last hour of the simulation (minutes 300 through 360). The SAM LES results are red solid lines, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The mean evaporation rate of r_r . (b) The mean accretion rate of r_r . (c) The overall mean microphysics tendency for r_r . (d) The mean volume radius of rain drops. All hydrometeor PDF shapes provide a good fit to SAM LES.

Figure 9. Profiles of mean warm microphysics process rates in the LBA deep convective case time-averaged over the last hour of the simulation (minutes 300 through 360). The SAM LES results are red solid lines, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are magenta dasheddotted lines. (a) The mean evaporation rate of r_r . (b) The mean accretion rate of r_r . (c) The overall mean microphysics tendency for r_r . Again, the DDL provides a better fit to SAM LES than the DL, which in turn provides a better fit than the SL.