S1 Modified Analytically Upscaled Microphysics
Equations

The analytically upscaled (to grid-box size) form of the Khairoutdinov and Kogan (2000,
hereafter KK) microphysics equations were first derived in Larson and Griffin (2013). KK
is warm scheme that predicts r, and N,. It contains equations for the warm process rates
of accretion, autoconversion, and evaporation, as well rain drop mean volume radius, that
are written as power laws of two-or-three variables. The modifications to the PDF in Sec-
tion 2 of the associated article require modifications to the analytically upscaled microphysics
equations. The upscaled microphysics calculates the grid-box mean values of microphysics
process rates by integrating over the product of the microphysics function and the PDF.

S1.1 Accretion rate
The KK rate of production of r, over time, ¢, due to the process of accretion is of the form
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where Cyeer = 67, « = 1.15, and § = 1.15. Upscaling is accomplished by integrating over
Eq. (S1), and in the process, using r. = xH (x) (Eq. (3) of the associated article) as a
substitution. This produces the following equation for mean accretion rate
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where Py (x, ) is the bivariate marginal PDF of x and r, in the ith PDF component.
Since a > 0, ACCR;) can be rewritten
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where Pypy (X, 77) is the ith component bivariate PDF involving one normal variate and one
lognormal variate, and where Py(; (x) is a normal distribution in the ith PDF component.
This equation is integrated, solving for ACCR;,
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where D, () is the parabolic cylinder function of order v, and where ¢ is given by
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The within-precipitation mean of Inr, in the ith PDF component is /i, ;), and it is given
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where 1, ;) and o, ;) are the within-precipitation mean and within-precipitation standard
deviation, respectively, of r, in the ith PDF component. The within-precipitation standard
deviation of Inr, in the ith PDF component is 7, (;), and it is given by
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The within-precipitation correlation of x and Inr, in the ith PDF component is p, ), and
it is given by Pt Onth
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where p, ;) is the within-precipitation correlation of x and r, in the ¢th PDF component.

The evaluated integral for ACCR;) given in Eq. (S4) is for a fully-varying PDF in the ith

component (o, > 0 and o, ;) > 0). There are times when a variable may have a constant
value in a PDF sub-component. When this happens, the PDF of the constant variable is a
delta function at the ith PDF sub-component mean. When o,;) > 0 and o, ;) = 0, x varies
in 7th component but r, is constant within precipitation. The PDF Py (x, ) becomes
P (x) ¢ (rr — ,u”(i)). The integral is solved and the equation for ACCR; becomes
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For the remaining forms of ACCR;, oyu = 0. When p, ;) > 0, the air is entirely
saturated and accretion occurs. In this scenario, when o, ;) > 0,
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Otherwise, when o,;) = 0 and p,(;) < 0, the air is entirely subsaturated, accretion does not
occur, and ACCRg;) = 0.

S1.2 Autoconversion rate

The KK autoconversion rate of r, is of the form
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where constant Cyuio = 1350 (10*6pd)’8 , and where p, is the density of dry air. Additionally,
a =247 and f = —1.79. In the manner similar to accretion rate, upscaling is accomplished
by integrating over Eq. (S11), and in the process, using r. = xH (x) and N. = N, H (x)
(Eq. (3) and Eq. (4) of the associated article) as substitutions. This produces the following
equation for mean autoconversion rate
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Since a4+ 3 > 0, AUTO;) can be rewritten
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This equation is integrated, solving for AUTO;) in the scenario of a fully-varying PDF
(oy@) > 0 and oy, > 0),
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where ¢ is given by
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The values of fin,, (i), ON..(5), and Py n.,) are calculated analogously to the same variables
for r, in Eq. (S5), Eq. (S6), and Eq. (S7), respectively.

There are many case specifications that require a constant cloud droplet concentration
within cloud, N.g. The RICO, DYCOMS-II RF02, and LBA cases described in Section 4
of the associated article all use a constant cloud droplet concentration within cloud. In
CLUBB'’s PDF, this is easily accomplished by setting N/2 N’2 = 0, which causes ON,.,(1) = 0 and
ON(2) = 0. Addltlonally7 PN (1) = [N (2) = Nen = Nc(] (Where N.o has units of kg™') in
this scenario.

When o,y > 0 and op,,; = 0, x varies in ¢th component but V., is constant. The
integral is solved and the equation for AUTO(; becomes
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For the remaining forms of AUTOg;, o, = 0. When p,; > 0, the air is entirely
saturated and autoconversion occurs. In this scenario, when oy, ) > 0,
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and when oy, ;) = 0,
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Otherwise, when oy ; = 0 and p, ;) < 0, the air is entirely subsaturated, autoconversion
does not occur, and AUTO;) = 0.

The mean KK autoconversion rate of N, is found by dividing the mean KK autoconversion
rate of 7, by a constant. The constant is (4mp;/3) rg, where ry is the assumed initial size of
rain drops and is set to its recommended value of 25 x 107¢ m.

S1.3 Evaporation rate

The KK equation set contains an equation for condensation or evaporation of r,.. CLUBB
treats all liquid water in excess of saturation as cloud water and does not allow rain water
to increase by condensational growth. The KK equation for evaporation of r, is of the form
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where a =1,  =1/3,and v =1— 8 = 2/3, and where T is temperature, p is pressure, p; is
the density of liquid water, and the function G (7', p) is coefficient in the drop radius growth
equation (Rogers and Yau, 1989, Eq. 7.17). The constant Ceyaps is the ratio of raindrop
mean geometric radius to raindrop mean volume radius, and is set by KK to a value of
0.86. Supersaturation, S, is positive when the air is saturated and negative when the air is
subsaturated, and S + 1 is the ratio of water vapor pressure to saturation vapor pressure
with respect to liquid water.

Upscaling is accomplished by integrating over Eq. (S18). This requires a substitution that
relates S to x (Larson and Griffin, 2013, Eq. 49). Additionally, G (T, p) is approximated as
G (T},p), where liquid water temperature, T, = 6, (p/po)Rd/ 4 and where R, is the gas
constant for dry air, c¢,q is the specific heat of dry air at constant pressure, and pg is a
reference pressure of 1 x 10° Pa. This is a good approximation because T = T} when the air
is subsaturated and G (7, p) is slowly varying with regards to temperature. The resulting
G (Tl, p) is a constant and can be pulled outside the integral.

This produces the following equation for mean evaporation rate
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where F;) (X, 7, N;) is the trivariate marginal PDF of x, r,, N, in the ith PDF component.
The constant Ceyap is given by
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where 7, (Tl, p) is the saturation mixing ratio with respect to liquid water. Additionally,
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where R, is the gas constant for water vapor and L, is the latent heat of vaporization.
Since a > 0, EVAP;) can be rewritten
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where Pyrr) (x, 7, N;) is the ith component trivariate PDF involving one normal variate
and two lognormal variates. When the PDF is fully-varying in the ¢th PDF component
(0yG) >0, 0.y > 0, and o, ;) > 0), the integrated equation for EVAP ;) is
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The values of fin, @), On, @), and py n,@) are calculated analogously to the same variables
for r, in Eq. (S5), Eq. (S6), and Eq. (S7), respectively. Additionally, the within-precipitation
correlation of In7, and In IV, in the ith PDF component is g, (), and it is given by
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where p,, n,() is the correlation of r, and N, in the ¢th PDF component.

Just as with accretion and autoconversion, when one of the variables is constant in the
ith PDF sub-component, the equation simplifies. In the scenario when o, > 0, 0,4 = 0,
and oy, > 0,
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when o, > 0, 0,5 > 0, and o, ) =0,
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For the remaining forms of EVAP(;, oy = 0. When p,; < 0, the air is entirely
subsaturated and evaporation occurs. In this scenario, when o, ;) > 0 and oy, ;) > 0,
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Otherwise, when o,;) = 0 and p,(; > 0, the air is entirely saturated, evaporation does not
occur, and EVAP ;) = 0.
The KK evaporation rate of NN, is related to the evaporation rate of r,. by
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where ANT|evap is the change in NV, due to evaporation, Arr|evap is the change in r, due to
evaporation, and v, is a tunable parameter in KK that is set to its recommended value of 1.
CLUBB does not handle microphysics process rates in a sequential manner, but rather in a
parallel manner. However, the microphysics process rates are explicit terms in the predictive
equation set, so the change in a hydrometeor due to a microphysics process is related to the
rate of change by

o,
evap ot

0N,

At and AN pyap = 5

evap

At, (933)

Ar,|

evap

where At is the duration of one model timestep. Substituting Eq. (S33) into Eq. (S32) and
solving for the rate of change of N, due to evaporation results in
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The mean N, evaporation rate is calculated in the same way as the mean r, evaporation rate
with « replaced by av,, [ replaced by (5 — 1) v, and v replaced by v, + 1. Additionally,
the constant Cey,p is taken to the v, power and the result is multiplied by (At)"*fl. When
v, is set to its recommended value of 1, the mean N, evaporation rate is more simply solved
the same way as the mean 7, evaporation rate with § replaced by 8 — 1 and ~ replaced by
v+ 1.
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S1.4 Mean volume radius of rain drops
The KK mean volume radius of rain drops (in meters), R,,, is of the form
Ry = Crne 77 N, (535)

where Coee = (4mpy/3)”, @ = 1/3, and f = —a = —1/3. Upscaling is accomplished by
integrating over Eq. (S35), producing the following equation for mean volume radius
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where F; (r,, N,.) is the bivariate marginal PDF of r. and N, in the ith PDF component.
Additionally, MVRR; can be rewritten
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where Ppr) (7, N;) is the ith component bivariate PDF involving two lognormal variates.
When the PDF is fully-varying in the ith PDF component (o, > 0 and oy, > 0), the
integrated equation for MVRR;) is
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and when o, ;) = 0 and oy, ;) = 0,
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The upscaled mean volume radius is used to calculate mean sedimentation velocity of
and N,. The mean sedimentation velocity of r,. is V. = min (—0.012 (106 RW) + 0.2, 0), and
the mean sedimentation velocity of N, is V_M = min (—0.007 (106 R_W) + 0.1, O).
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