
S1 Modified Analytically Upscaled Microphysics

Equations

The analytically upscaled (to grid-box size) form of the Khairoutdinov and Kogan (2000,
hereafter KK) microphysics equations were first derived in Larson and Griffin (2013). KK
is warm scheme that predicts rr and Nr. It contains equations for the warm process rates
of accretion, autoconversion, and evaporation, as well rain drop mean volume radius, that
are written as power laws of two-or-three variables. The modifications to the PDF in Sec-
tion 2 of the associated article require modifications to the analytically upscaled microphysics
equations. The upscaled microphysics calculates the grid-box mean values of microphysics
process rates by integrating over the product of the microphysics function and the PDF.

S1.1 Accretion rate

The KK rate of production of rr over time, t, due to the process of accretion is of the form

∂rr
∂t

∣

∣

∣

∣

accr

= Caccr r
α
c r

β
r , (S1)

where Caccr = 67, α = 1.15, and β = 1.15. Upscaling is accomplished by integrating over
Eq. (S1), and in the process, using rc = χH (χ) (Eq. (3) of the associated article) as a
substitution. This produces the following equation for mean accretion rate

∂rr
∂t

∣

∣

∣

∣

accr

= Caccr

n
∑

i=1

ξ(i)ACCR(i)

= Caccr

n
∑

i=1

ξ(i)

∞
∫

−∞

∞
∫

0

χα (H (χ))α rβrP(i) (χ, rr) drr dχ,

(S2)

where P(i) (χ, rr) is the bivariate marginal PDF of χ and rr in the ith PDF component.
Since α > 0, ACCR(i) can be rewritten

ACCR(i) =

∞
∫

0

∞
∫

0

χαrβr
(

fp(i)PNL(i) (χ, rr) +
(

1− fp(i)
)

PN(i) (χ) δ (rr)
)

drr dχ, (S3)

where PNL(i) (χ, rr) is the ith component bivariate PDF involving one normal variate and one
lognormal variate, and where PN(i) (χ) is a normal distribution in the ith PDF component.
This equation is integrated, solving for ACCR(i),

ACCR(i) = fp(i)
1√
2π

σα
χ(i) exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (−ς) , (S4)

where Dν (x) is the parabolic cylinder function of order ν, and where ς is given by

ς =
µχ(i)

σχ(i)

+ ρ̃χ,rr(i)σ̃rr(i)β.
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The within-precipitation mean of ln rr in the ith PDF component is µ̃rr(i), and it is given
by

µ̃rr(i) = ln



µrr(i)

(

1 +
σ2
rr(i)

µ2
rr(i)

)

−
1

2



 , (S5)

where µrr(i) and σrr(i) are the within-precipitation mean and within-precipitation standard
deviation, respectively, of rr in the ith PDF component. The within-precipitation standard
deviation of ln rr in the ith PDF component is σ̃rr(i), and it is given by

σ̃rr(i) =

√

√

√

√ln

(

1 +
σ2
rr(i)

µ2
rr(i)

)

. (S6)

The within-precipitation correlation of χ and ln rr in the ith PDF component is ρ̃χ,rr(i), and
it is given by

ρ̃χ,rr(i) =
ρχ,rr(i)
σ̃rr(i)

σrr(i)

µrr(i)

, (S7)

where ρχ,rr(i) is the within-precipitation correlation of χ and rr in the ith PDF component.
The evaluated integral for ACCR(i) given in Eq. (S4) is for a fully-varying PDF in the ith

component (σχ(i) > 0 and σrr(i) > 0). There are times when a variable may have a constant
value in a PDF sub-component. When this happens, the PDF of the constant variable is a
delta function at the ith PDF sub-component mean. When σχ(i) > 0 and σrr(i) = 0, χ varies
in ith component but rr is constant within precipitation. The PDF PNL(i) (χ, rr) becomes
PN(i) (χ) δ

(

rr − µrr(i)

)

. The integral is solved and the equation for ACCR(i) becomes

ACCR(i) = fp(i)
1√
2π

σα
χ(i)µ

β
rr(i)

exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(

−µχ(i)

σχ(i)

)

. (S8)

For the remaining forms of ACCR(i), σχ(i) = 0. When µχ(i) ≥ 0, the air is entirely
saturated and accretion occurs. In this scenario, when σrr(i) > 0,

ACCR(i) = fp(i)µ
α
χ(i) exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2

}

, (S9)

and when σrr(i) = 0,

ACCR(i) = fp(i)µ
α
χ(i)µ

β
rr(i)

. (S10)

Otherwise, when σχ(i) = 0 and µχ(i) < 0, the air is entirely subsaturated, accretion does not
occur, and ACCR(i) = 0.

S1.2 Autoconversion rate

The KK autoconversion rate of rr is of the form

∂rr
∂t

∣

∣

∣

∣

auto

= Cauto r
α
c N

β
c , (S11)
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where constant Cauto = 1350 (10−6ρd)
β
, and where ρd is the density of dry air. Additionally,

α = 2.47 and β = −1.79. In the manner similar to accretion rate, upscaling is accomplished
by integrating over Eq. (S11), and in the process, using rc = χH (χ) and Nc = NcnH (χ)
(Eq. (3) and Eq. (4) of the associated article) as substitutions. This produces the following
equation for mean autoconversion rate

∂rr
∂t

∣

∣

∣

∣

auto

= Cauto

n
∑

i=1

ξ(i)AUTO(i)

= Cauto

n
∑

i=1

ξ(i)

∞
∫

−∞

∞
∫

0

χαNβ
cn (H (χ))α+β P(i) (χ,Ncn) dNcn dχ.

(S12)

Since α + β > 0, AUTO(i) can be rewritten

AUTO(i) =

∞
∫

0

∞
∫

0

χαNβ
cn PNL(i) (χ,Ncn) dNcn dχ. (S13)

This equation is integrated, solving for AUTO(i) in the scenario of a fully-varying PDF
(σχ(i) > 0 and σNcn(i) > 0),

AUTO(i) =
1√
2π

σα
χ(i) exp

{

µ̃Ncn(i)β +
1

2
σ̃2
Ncn(i)β

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (−ς) , (S14)

where ς is given by

ς =
µχ(i)

σχ(i)

+ ρ̃χ,Ncn(i)σ̃Ncn(i)β.

The values of µ̃Ncn(i), σ̃Ncn(i), and ρ̃χ,Ncn(i) are calculated analogously to the same variables
for rr in Eq. (S5), Eq. (S6), and Eq. (S7), respectively.

There are many case specifications that require a constant cloud droplet concentration
within cloud, Nc 0. The RICO, DYCOMS-II RF02, and LBA cases described in Section 4
of the associated article all use a constant cloud droplet concentration within cloud. In
CLUBB’s PDF, this is easily accomplished by setting N ′ 2

cn = 0, which causes σNcn(1) = 0 and
σNcn(2) = 0. Additionally, µNcn(1) = µNcn(2) = Ncn = Nc 0 (where Nc 0 has units of kg−1) in
this scenario.

When σχ(i) > 0 and σNcn(i) = 0, χ varies in ith component but Ncn is constant. The
integral is solved and the equation for AUTO(i) becomes

AUTO(i) =
1√
2π

σα
χ(i)µ

β
Ncn(i)

exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(

−µχ(i)

σχ(i)

)

. (S15)

For the remaining forms of AUTO(i), σχ(i) = 0. When µχ(i) ≥ 0, the air is entirely
saturated and autoconversion occurs. In this scenario, when σNcn(i) > 0,

AUTO(i) = µα
χ(i) exp

{

µ̃Ncn(i)β +
1

2
σ̃2
Ncn(i)β

2

}

, (S16)
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and when σNcn(i) = 0,

AUTO(i) = µα
χ(i)µ

β
Ncn(i)

. (S17)

Otherwise, when σχ(i) = 0 and µχ(i) < 0, the air is entirely subsaturated, autoconversion
does not occur, and AUTO(i) = 0.

The mean KK autoconversion rate ofNr is found by dividing the mean KK autoconversion
rate of rr by a constant. The constant is (4πρl/3) r

3
0, where r0 is the assumed initial size of

rain drops and is set to its recommended value of 25× 10−6 m.

S1.3 Evaporation rate

The KK equation set contains an equation for condensation or evaporation of rr. CLUBB
treats all liquid water in excess of saturation as cloud water and does not allow rain water
to increase by condensational growth. The KK equation for evaporation of rr is of the form

∂rr
∂t

∣

∣

∣

∣

evap

= 3 cevap∗G (T, p)

(

4

3
πρl

)γ

(S H (−S))α rβrN
γ
r , (S18)

where α = 1, β = 1/3, and γ = 1− β = 2/3, and where T is temperature, p is pressure, ρl is
the density of liquid water, and the function G (T, p) is coefficient in the drop radius growth
equation (Rogers and Yau, 1989, Eq. 7.17). The constant cevap∗ is the ratio of raindrop
mean geometric radius to raindrop mean volume radius, and is set by KK to a value of
0.86. Supersaturation, S, is positive when the air is saturated and negative when the air is
subsaturated, and S + 1 is the ratio of water vapor pressure to saturation vapor pressure
with respect to liquid water.

Upscaling is accomplished by integrating over Eq. (S18). This requires a substitution that
relates S to χ (Larson and Griffin, 2013, Eq. 49). Additionally, G (T, p) is approximated as

G
(

Tl, p
)

, where liquid water temperature, Tl = θl (p/p0)
Rd/cpd , and where Rd is the gas

constant for dry air, cpd is the specific heat of dry air at constant pressure, and p0 is a
reference pressure of 1× 105 Pa. This is a good approximation because T = Tl when the air
is subsaturated and G (T, p) is slowly varying with regards to temperature. The resulting
G
(

Tl, p
)

is a constant and can be pulled outside the integral.
This produces the following equation for mean evaporation rate

∂rr
∂t

∣

∣

∣

∣

evap

= Cevap

n
∑

i=1

ξ(i)EVAP(i)

= Cevap

n
∑

i=1

ξ(i)

∞
∫

−∞

∞
∫

0

∞
∫

0

χα (H (−χ))α rβrN
γ
r P(i) (χ, rr, Nr) dNr drr dχ,

(S19)

where P(i) (χ, rr, Nr) is the trivariate marginal PDF of χ, rr, Nr in the ith PDF component.
The constant Cevap is given by

Cevap = 3 cevap∗G
(

Tl, p
)

(

4

3
πρl

)γ
(

1 + Λ
(

Tl

)

rsw
(

Tl, p
)

rsw
(

Tl, p
)

)α

, (S20)
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where rsw
(

Tl, p
)

is the saturation mixing ratio with respect to liquid water. Additionally,

Λ
(

Tl

)

=
Rd

Rv

(

Lv

RdTl

)(

Lv

cpdTl

)

, (S21)

where Rv is the gas constant for water vapor and Lv is the latent heat of vaporization.
Since α > 0, EVAP(i) can be rewritten

EVAP(i) =

0
∫

−∞

∞
∫

0

∞
∫

0

χαrβrN
γ
r

(

fp(i)PNLL(i) (χ, rr, Nr)

+
(

1− fp(i)
)

PN(i) (χ) δ (rr) δ (Nr)
)

dNr drr dχ,

(S22)

where PNLL(i) (χ, rr, Nr) is the ith component trivariate PDF involving one normal variate
and two lognormal variates. When the PDF is fully-varying in the ith PDF component
(σχ(i) > 0, σrr(i) > 0, and σNr(i) > 0), the integrated equation for EVAP(i) is

EVAP(i) = fp(i)
1√
2π

(

−σχ(i)

)α
exp

{

µ̃rr(i)β + µ̃Nr(i)γ
}

× exp

{

1

2

(

1− ρ̃2χ,rr(i)
)

σ̃2
rr(i)β

2 +
1

2

(

1− ρ̃2χ,Nr(i)

)

σ̃2
Nr(i)γ

2

+
(

ρ̃rr,Nr(i) − ρ̃χ,rr(i)ρ̃χ,Nr(i)

)

σ̃rr(i)βσ̃Nr(i)γ

}

× exp

{

1

4
ς2 − µχ(i)

σχ(i)

ς +
1

2

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1) (ς) ,

(S23)

where
ς =

µχ(i)

σχ(i)

+ ρ̃χ,rr(i)σ̃rr(i)β + ρ̃χ,Nr(i)σ̃Nr(i)γ.

The values of µ̃Nr(i), σ̃Nr(i), and ρ̃χ,Nr(i) are calculated analogously to the same variables
for rr in Eq. (S5), Eq. (S6), and Eq. (S7), respectively. Additionally, the within-precipitation
correlation of ln rr and lnNr in the ith PDF component is ρ̃rr,Nr(i), and it is given by

ρ̃rr,Nr(i) =

ln

(

1 + ρrr,Nr(i)

σrr(i)σNr(i)

µrr(i)µNr(i)

)

σ̃rr(i)σ̃Nr(i)

, (S24)

where ρrr,Nr(i) is the correlation of rr and Nr in the ith PDF component.
Just as with accretion and autoconversion, when one of the variables is constant in the

ith PDF sub-component, the equation simplifies. In the scenario when σχ(i) > 0, σrr(i) = 0,
and σNr(i) > 0,

EVAP(i) = fp(i)
1√
2π

(

−σχ(i)

)α
µβ
rr(i)

× exp

{

µ̃Nr(i)γ +
1

2
σ̃2
Nr(i)γ

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (ς) ,

(S25)
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where
ς =

µχ(i)

σχ(i)

+ ρ̃χ,Nr(i)σ̃Nr(i)γ;

when σχ(i) > 0, σrr(i) > 0, and σNr(i) = 0,

EVAP(i) = fp(i)
1√
2π

(

−σχ(i)

)α
µγ
Nr(i)

× exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (ς) ,

(S26)

where
ς =

µχ(i)

σχ(i)

+ ρ̃χ,rr(i)σ̃rr(i)β;

and when σχ(i) > 0, σrr(i) = 0, and σNr(i) = 0,

EVAP(i) = fp(i)
1√
2π

(

−σχ(i)

)α
µβ
rr(i)

µγ
Nr(i)

× exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(

µχ(i)

σχ(i)

)

.

(S27)

For the remaining forms of EVAP(i), σχ(i) = 0. When µχ(i) ≤ 0, the air is entirely
subsaturated and evaporation occurs. In this scenario, when σrr(i) > 0 and σNr(i) > 0,

EVAP(i) = fp(i)µ
α
χ(i) exp

{

µ̃rr(i)β + µ̃Nr(i)γ +
1

2
σ̃2
rr(i)β

2

+
1

2
σ̃2
Nr(i)γ

2 + ρ̃rr,Nr(i)σ̃rr(i)βσ̃Nr(i)γ

}

;

(S28)

when σrr(i) = 0 and σNr(i) > 0,

EVAP(i) = fp(i)µ
α
χ(i)µ

β
rr(i)

exp

{

µ̃Nr(i)γ +
1

2
σ̃2
Nr(i)γ

2

}

; (S29)

when σrr(i) > 0 and σNr(i) = 0,

EVAP(i) = fp(i)µ
α
χ(i)µ

γ
Nr(i)

exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2

}

; (S30)

and when σrr(i) = 0 and σNr(i) = 0,

EVAP(i) = fp(i)µ
α
χ(i)µ

β
rr(i)

µγ
Nr(i)

. (S31)

Otherwise, when σχ(i) = 0 and µχ(i) > 0, the air is entirely saturated, evaporation does not
occur, and EVAP(i) = 0.

The KK evaporation rate of Nr is related to the evaporation rate of rr by

∆Nr|evap
Nr

=

(

∆rr|evap
rr

)ν∗

, (S32)
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where ∆Nr|evap is the change in Nr due to evaporation, ∆rr|evap is the change in rr due to
evaporation, and ν∗ is a tunable parameter in KK that is set to its recommended value of 1.
CLUBB does not handle microphysics process rates in a sequential manner, but rather in a
parallel manner. However, the microphysics process rates are explicit terms in the predictive
equation set, so the change in a hydrometeor due to a microphysics process is related to the
rate of change by

∆rr|evap =
∂rr
∂t

∣

∣

∣

∣

evap

∆t and ∆Nr|evap =
∂Nr

∂t

∣

∣

∣

∣

evap

∆t, (S33)

where ∆t is the duration of one model timestep. Substituting Eq. (S33) into Eq. (S32) and
solving for the rate of change of Nr due to evaporation results in

∂Nr

∂t

∣

∣

∣

∣

evap

= (∆t)ν∗−1 Nr

r ν∗
r

(

∂rr
∂t

∣

∣

∣

∣

evap

)ν∗

. (S34)

The mean Nr evaporation rate is calculated in the same way as the mean rr evaporation rate
with α replaced by αν∗, β replaced by (β − 1) ν∗, and γ replaced by γν∗ + 1. Additionally,
the constant Cevap is taken to the ν∗ power and the result is multiplied by (∆t)ν∗−1. When
ν∗ is set to its recommended value of 1, the mean Nr evaporation rate is more simply solved
the same way as the mean rr evaporation rate with β replaced by β − 1 and γ replaced by
γ + 1.

S1.4 Mean volume radius of rain drops

The KK mean volume radius of rain drops (in meters), Rvr, is of the form

Rvr = Cmvrr r
α
r N

β
r , (S35)

where Cmvrr = (4πρl/3)
β, α = 1/3, and β = −α = −1/3. Upscaling is accomplished by

integrating over Eq. (S35), producing the following equation for mean volume radius

Rvr = Cmvrr

n
∑

i=1

ξ(i)MVRR(i)

= Cmvrr

n
∑

i=1

ξ(i)

∞
∫

0

∞
∫

0

rαrN
β
r P(i) (rr, Nr) dNr drr,

(S36)

where P(i) (rr, Nr) is the bivariate marginal PDF of rr and Nr in the ith PDF component.
Additionally, MVRR(i) can be rewritten

MVRR(i) =

∞
∫

0

∞
∫

0

rαrN
β
r

(

fp(i)PLL(i) (rr, Nr) +
(

1− fp(i)
)

δ (rr) δ (Nr)
)

dNr drr, (S37)
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where PLL(i) (rr, Nr) is the ith component bivariate PDF involving two lognormal variates.
When the PDF is fully-varying in the ith PDF component (σrr(i) > 0 and σNr(i) > 0), the
integrated equation for MVRR(i) is

MVRR(i) =fp(i) exp

{

µ̃rr(i)α + µ̃Nr(i)β +
1

2
σ̃2
rr(i)α

2

+
1

2
σ̃2
Nr(i)β

2 + ρ̃rr,Nr(i)σ̃rr(i)ασ̃Nr(i)β

}

.

(S38)

In the scenario when σrr(i) = 0 and σNr(i) > 0,

MVRR(i) = fp(i)µ
α
rr(i) exp

{

µ̃Nr(i)β +
1

2
σ̃2
Nr(i)β

2

}

, (S39)

when σrr(i) > 0 and σNr(i) = 0,

MVRR(i) = fp(i)µ
β
Nr(i)

exp

{

µ̃rr(i)α +
1

2
σ̃2
rr(i)α

2

}

, (S40)

and when σrr(i) = 0 and σNr(i) = 0,

MVRR(i) = fp(i)µ
α
rr(i)µ

β
Nr(i)

. (S41)

The upscaled mean volume radius is used to calculate mean sedimentation velocity of rr
and Nr. The mean sedimentation velocity of rr is Vrr = min

(

−0.012
(

106 Rvr

)

+ 0.2, 0
)

, and

the mean sedimentation velocity of Nr is VNr
= min

(

−0.007
(

106 Rvr

)

+ 0.1, 0
)

.
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