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1 Responses to Reviewer Comments

We would like to thank all reviewers again for their input. This response is given to comments
on the first revision by reviewer 3. This iteration has allowed us to correct some errors in the
reporting of Courant numbers for the combined method presented in this paper and we are
grateful for the opportunity to address these.5

1.1 Reviewer 3 - Revised Manuscript Comments

1. Specific details on the resolution of the self convergence tests added to the caption of
Figure 20. We note in the text (first paragraph of section 5.5) that convergence rates are
limited by the perturbation function for bubble tests.

2. We updated section 5.5 and Table 3 to first correct the Courant numbers corresponding10

exactly to the explicit method outlined in section 4.3 and compare theoretical limits us-
ing spectral elements on scalar advection equations. Our resulting maximum timesteps
approach the limiting values for explicit methods used within Strang.

3. Sound waves are not filtered or damped from the computations and are present throughout
all simulations. The governing equations also explicitly include acoustic terms. Propaga-15

tion of acoustic waves is controlled solely by the linearly implicit component of the time
integration.

4. We include a reference to the very preliminary results of Table 4. A more thorough perfor-
mance/scaling evaluation will be made on the appropriate hardware once data structures
and algorithms are optimized.20

Abstract

Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler
equations. Two major differences between hydrostatic models and a full non-hydrostatic de-
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scription lies in the vertical velocity tendency and numerical stiffness associated with sound
waves. In this work we introduce a new arbitrary-order vertical discretization entitled the Stag-
gered Nodal Finite Element Method (SNFEM). Our method uses a generalized discrete deriva-
tive that consistently combines the Discontinuous Galerkin and spectral element methods on
a staggered grid. Our combined method leverages the accurate wave propagation and conser-5

vation properties of spectral elements with staggered methods that eliminate stationary (2∆x)
modes. Furthermore, high-order accuracy also eliminates the need for a reference state to main-
tain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means
of improving simulation quality at relatively coarse resolution. We choose a test case suite that
spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the Large10

Eddy regime. Our results show that there is a distinct benefit in using the high-order vertical
coordinate at low resolutions with the same robust properties of the low-order alternative.

2 Introduction

The accurate representation of vertical wave motion is essential for models of the atmosphere.
The vertical coordinate for the non-hydrostatic fluid equations has traditionally been discretized15

in the Eulerian frame via a second-order Charney-Phillips (Charney and Phillips, 1953) or
Lorenz grid (Arakawa and Moorthi, 1988), or via Lagrangian layers, such as in Lin (2004).
However, little work has been undertaken to develop high-order vertical discretizations due to a
number of outstanding issues. First, higher-order generalizations must somehow incorporate the
no-flux boundary conditions at the model bottom and top without loss of accuracy, especially20

near the surface where accurate treatment of dynamics is paramount. Second, as observed by
Thuburn and Woollings (2005), Thuburn (2006) and Toy and Randall (2007) the choice of verti-
cal coordinate (whether height-based, mass-based or entropy-based) implies an optimal vertical
staggering of prognostic variables for maintaining correct behavior for wave motions relevant to
the atmosphere. Third, unstaggered discretizations (that is, discretizations where all prognostic25

variables are stored on model levels) possess stationary computational modes which represent
gross errors in the dispersion properties of the solution (Melvin et al., 2012; Ullrich, 2014b).
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As in the horizontal, unstaggered FEM leads to waves with zero phase speed in the limit as the
wavelength tends to 2∆x, where ∆x is the average grid spacing between degrees of freedom.
However, unlike the horizontal, these wave modes can be dramatically enhanced by an implicit
treatment of the vertical at high Courant number.

This paper describes a new discretization for the vertical that combines the accuracy of fi-5

nite element methods with the desirable wave propagation properties of staggered methods.
This method of vertical discretization was originally described in Ullrich and Guerra (2015),
but tested using a modified set of equations and validated with a single test case. Here we ex-
tend this approach, referred to as the Staggered Nodal Finite Element Method (SNFEM), in a
similar framework. Notably, this formulation is sufficiently general to be compatible with es-10

sentially any form of the fluid equations. The SNFEM discretization can be easily composed in
differential form using interpolation and differentiation operators built in accordance with the
discontinuous Galerkin and spectral element discretizations that arise from the flux reconstruc-
tion method of Huynh (2007) (see Table 1).

Our staggered method is similar to the mixed finite element formulations of Cotter and J.15

(2012) and Cotter and J. (2014) where different functional spaces are used on the prognostic
fields in order to achieve desirable wave propagation and conservation properties. The SNFEM
utilizes different polynomial spaces based on continuous and discontinuous grids to achieve
staggered configurations. The use of SNFEM is natural for vertical discretizations, as no-flux
conditions are easily imposed on top and bottom boundaries in the general finite element frame-20

work (Zienkiewicz et al., 2005) without loss of accuracy. Further, SNFEM inherits the mimetic
properties of the spectral element method so the vertical operator will automatically conserve
both mass and discrete linear energy. The objectives of this paper are as follows:

1. To introduce our approach for the construction of a generalized, staggered, variable order-
of-accuracy, finite element vertical discretization. We emphasize discretization of the non-25

conservative differential form of the Navier-Stokes equations (in vector invariant or so-
called Clark form), which is independent of coordinate system.
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2. To validate the implementation of this discretization within the Tempest framework using
a selection of test cases in Cartesian geometry through a range of horizontal scales from
1 to 1000 km.

3. To determine the qualitative and quantitative effect of vertical order of accuracy on solu-
tions by conducting validation experiments at coarse resolutions relative to finer reference5

solutions. We consider the effects of Lorenz (LOR) and Charney-Phillips (CPH) stagger-
ing both in the interior flow and at the lower boundary.

4. To determine whether a high-order vertical discretization greatly improves the simulation
quality, and consequently to recommend whether there is an optimal order-of-accuracy
that provides the best tradeoff between accuracy and computational cost.10

To assess the performance of SNFEM, this discretization has been implemented in the spec-
tral element Tempest model (Ullrich, 2014a) and run through a suite of mesoscale test cases.
The test cases are as follows: Baroclinic instability in a 3D Cartesian channel of Ullrich et al.
(2015), uniform flow over the mountain of Schär et al. (2002), the density current of Straka
et al. (1993), and rising thermal convective bubble tests as given in (Giraldo and Restelli, 2008).15

While not exhaustive, this validation suite is intended to show the treatment of waves, non-linear
vertical transport, and near boundary dynamics corresponding to a high-order vertical coordi-
nate with and without the influence of topography. Therefore, the objectives of this paper are as
follows:

We will show that a high-order vertical discretization at coarse resolution more accurately20

approximates the reference solution relative to the low vertical order alternative when total
count of degrees of freedom is kept constant. Since the interpolation and derivative operators
in the finite element approach are easily expressed as linear matrix operators, there is minimal
cost in adjusting the order-of-accuracy. We will present control experiments 5 where only the
resolution and vertical order-of-accuracy vary. We leave the rigorous analysis of staggered wave25

modes and discrete energy conservation using the interpolation/differentiation operators for a
subsequent work.

5



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

The remainder of this manuscript is as follows: Section 3 describes the non-hydrostatic equa-
tions of fluid motion on an arbitrary coordinate frame. Section 4 describes the discrete form
of these equations, including the spectral element horizontal discretization, the operators used
by the SNFEM vertical discretization and the time-stepping scheme employed. In section 5,
we describe the test case suite and discuss the corresponding model results. The summary and5

conclusions follow in section 6.

3 The non-hydrostatic equations of fluid motion

In an arbitrary coordinate frame (α,β,ξ), the vector velocity can be written as

u = uαgα +uβgβ +uξgξ, (1)

where gi (i ∈ {α,β,ξ}) are the local coordinate basis vectors and ui are the contravariant ve-10

locity components. The associated covariant components are

uα = u ·gα, uβ = u ·gβ, uξ = u ·gξ. (2)

Covariant components can be obtained in terms of contravariant components via contraction
with the covariant metric gij = gi ·gj ,15

ui = giαu
α + giβu

β + giξu
ξ. (3)

The reverse operation uses the contravariant metric gij , defined as the matrix inverse of the
covariant metric. Contraction of the covariant components with the contravariant metric returns
the contravariant vector components,20

ui = giαuα + giβuβ + giξuξ. (4)

The volume element J is computed in terms of the covariant metric as

J =
√

detgij . (5)
6
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Using covariant horizontal velocity components, vertical velocity, potential temperature θ
and dry air density ρ as prognostic variables, the Euler equations with shallow-atmosphere
approximation can be written an arbitrary coordinate frame as

∂uα
∂t

=− ∂

∂α
(K + Φ)− θ∂Π

∂α
+ (η×u)α , (6)

∂uβ
∂t

=− ∂

∂β
(K + Φ)− θ∂Π

∂β
+ (η×u)β , (7)5 (

∂r

∂ξ

)
∂w

∂t
=− ∂

∂ξ
(K + Φ)− θ∂Π

∂ξ
+ (η×u)ξ (8)

∂θ

∂t
=−uα ∂θ

∂α
−uβ ∂θ

∂β
−uξ ∂θ

∂ξ
, (9)

∂ρ

∂t
=− 1

J

∂

∂α
(Jρuα)− 1

J

∂

∂β
(Jρuβ)− 1

J

∂

∂ξ
(Jρuξ). (10)

The vertical velocity w is closely related to uξ via10

w = |gξ|−1uξ, (11)

The specific Kinetic energy is

K =
1

2

(
uαu

α +uβu
β +uξu

ξ
)
, (12)

while the geopotential function Φ is given by the product of gravitational acceleration (constant)
with the elevation coordinate r(ξ).15

Π = cp

(
p0

p

)Rd/cp

= cp

(
Rdρθ

p0

)Rd/cv

. (13)

Here p0 denotes the constant reference pressure, Rd is the ideal gas constant and cv and cp
refer to the specific heat capacity at constant volume and pressure, respectively. The absolute

7
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vorticity vector is given by

η = ζ+ω, (14)

where the relative vorticity vector is

ζ =
1

J

[(
∂uξ
∂β
− ∂uβ

∂ξ

)
gα +

(
∂uα
∂ξ
− ∂uξ
∂α

)
gβ +

(
∂uβ
∂α
− ∂uα

∂β

)
gξ

]
, (15)

5

and, under the shallow-atmosphere approximation, the planetary vorticity vector is

ω = f(∂r/∂ξ)−1gξ. (16)

Consequently, the rotational terms in the equation of motion take the form

(η×u)α = J
[
uβ(ωξ + ζξ)−uξζβ

]
, (17)

(η×u)β = J
[
uξζα−uα(ωξ + ζξ)

]
, (18)10

(η×u)ξ = J
[
uαζβ −uβζα

]
. (19)

Note that this formulation does not specify a coordinate system. Consequently, these equa-
tions can be used for either Cartesian or spherical geometry. To account for topography, terrain-
following σ-coordinates are imposed by defining the radius r = r(α,β,ξ) so that r(α,β,0) is15

coincident with the surface. For example, Gal-Chen and Somerville (1975) coordinates arise
from the choice

r(α,β,ξ) = ξ [rtop− rs(α,β)] + re + rs(α,β), (20)

where rtop denotes the model height and rs(α,β) denotes the surface elevation from the mean
Earth radius re. In Cartesian coordinates r simply maps to the elevation z while neglecting the20

8
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mean radius re in (20). The symmetric covariant and contravariant metric tensors in the (α,β,r)
Cartesian system are written as

gij =


1 0 −

(
∂r
∂ξ

)−1 (
∂r
∂α

)
1 −

(
∂r
∂ξ

)−1(
∂r
∂β

)
(
∂r
∂ξ

)−2
[
1 +

(
∂r
∂α

)2
+
(
∂r
∂β

)2
]

 : i, j = (α,β,ξ) (21)

and

gij =


[
1 +

(
∂r
∂α

)2] ∂r
∂α

∂r
∂β

∂r
∂α

∂r
∂ξ[

1 +
(
∂r
∂β

)2
]

∂r
∂β

∂r
∂ξ(

∂r
∂ξ

)2

 : i, j = (α,β,ξ) (22)5

We note that in this framework, the discretization is decoupled from the grid definition. As
such, Tempest is designed to target flows on the sphere and in Cartesian domains simultane-
ously with or without terrain. This is convenient in the analysis, implementation, and validation
of the numerical techniques that follow. We focus our validation on Cartesian cases and will
address test cases on the sphere in a subsequent publication based on the same discretization10

framework. Lastly, derivatives of the vertical coordinate in α and β are evaluated using the dis-
crete derivative operators developed in the next section while the vertical gradient of coordinate
surfaces can easily be obtained analytically from (20).

9
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4 Discretization

4.1 Horizontal Discretization

The horizontal discretization of (6)-(10) follows the continuous element formulation of Ullrich
(2014a), which is analogous to earlier efforts with spectral elements (Giraldo and Rosmond,
2004; Taylor and Fournier, 2010; Dennis et al., 2011; Giraldo et al., 2013) with coordinate5

information completely contained in the definition of the metric tensors (21) and (22).

4.2 Vertical Discretization

Each vertical column consists of nve nodal finite elements, indexed a ∈ {0, . . . ,nve−1}. Through-
out this manuscript, all vertical indices are assumed to increase with altitude. Within each ele-
ment, levels are placed at the nvp Gaussian quadrature nodes and interfaces at nvp + 1 Gauss-10

Lobatto quadrature nodes, leading to a staggering of levels and interfaces. With vertical coordi-
nate ξ, the location of model levels denoted ξa,k with k ∈ {0, . . . ,nvp−1} and model interfaces
denoted ξ̃a,k with k ∈ {0, . . . ,nvp}. Each finite element is then bounded within the interval
[ξ̃a,0, ξ̃a,nvp ] with two associated sets of basis functions – one over model levels, denoted by the
set φa = {φa,j |j = 0, . . . ,nvp− 1} that includes characteristic polynomials of degree nvp− 1,15

and one over model interfaces, denoted by the set φ̃a = {φ̃a,j |j = 0, . . . ,nvp− 1} that includes
characteristic polynomials of degree nvp. A depiction of the vertical staggering associated with
levels and interfaces is given in Fig. 1, along with basis functions in each case. A scalar field
q(ξ, t) can then be written approximately, either as a linear combination of basis functions on
levels,20

q(ξ, t)≈
nve−1∑
a=0

nvp−1∑
j=0

qa,j(t)φa,j(ξ), (23)

10
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or on interfaces,

q(ξ, t)≈
nve−1∑
a=0

nvp∑
j=0

q̃a,j(t)φ̃a,j(ξ). (24)

For the remainder of this manuscript we will use script n to denote variables stored on model
levels and script i to denote variables stored on interfaces.

4.2.1 Interpolation Operators5

Note that (23) and (24) are not equivalent discretizations since (23) cannot represent polynomi-
als of degree nvp and (24) cannot represent fields that are discontinuous at element interfaces.
Nonetheless, we can define interpolation operators between these fields via Ini , representing in-
terpolation from levels to interfaces, and Iin, representing interpolation from interfaces to nodes.
First, interpolation from interfaces to levels is defined as10

(Iinq̃)a,k =

nvp∑
j=0

q̃a,j(t)φ̃a,j(ξa,k). (25)

To define the interpolant from levels to interfaces, a two-step procedure is employed. Since
basis functions on levels are discontinuous, we define the left and right interpolants at element
boundaries as15

(InLq)a,0 =

nvp−1∑
j=0

qa,jφa,j(ξ̃a,0), (InRq)a,nvp−1 =

nvp−1∑
j=0

qa,jφa,j(ξ̃a,nvp−1) (26)

11
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and then define the total interpolant as

(Ini q)a,k =



nvp−1∑
j=0

qa,jφa,j(ξ̃a,k) if 0< k < nvp,

1
2(InRq)a−1,nvp−1 + 1

2(InLq)a,0 if k = 0,

1
2(InRq)a,nvp−1 + 1

2(InLq)a+1,0 if k = nvp.

(27)

These interpolation operators can also be obtained from equivalence via the variational (weak)
form. At model interfaces, the accuracy of (27) degrades for unequally spaced finite elements.5

For the case of stacked finite elements with unequal thickness ∆ξa = ξ̃a,nvp − ξ̃a,0, a more ac-
curate formula can be obtained from

(Ini q)a,0 =
∆ξ

nvp
a (InRq)a−1,nvp−1 + ∆ξ

nvp

a−1(InLq)a,0

∆ξ
nvp
a + ∆ξ

nvp

a−1

, (28)

which arises on noting that the one-sided interpolant has error O(∆ξ
nvp
a ).10

4.2.2 Differentiation Operators

Differentiation is required for all combinations of model levels and interfaces: Dii represents
differentiation from interfaces to interfaces, Din represents differentiation from interfaces to
levels, Dnn denotes differentiation from levels to levels and Dni denotes differentiation from
levels to interfaces. A depiction of the behavior of these derivative operators is shown in Fig. 2.15

Differentiation from interfaces to levels is obtained by simply differentiating (25),

(Dinq)a,k =

nvp∑
j=0

q̃j
∂φ̃j
∂ξ

(ξa,k). (29)

This works in practice as there is an exact mapping from derivatives of the continuous polyno-
mial space (over interfaces) to the discontinuous polynomial space (over levels).

12
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Differentiation from levels to levels is computed via the composed operator

Dnnq =DinIni q, (30)

where boundary conditions, such as the no flux condition (uξ = 0) at the top and bottom, are
enforced after application of the interpolation operator.

Differentiation from interfaces to interfaces requires averaging the one-sided derivatives at5

element interfaces, but is otherwise simply the derivative of (25) on the element interior,

(Diiq)a,k =



1

2

nvp∑
j=0

q̃a,j
∂φ̃a,j
∂ξ

(ξ̃a,k) +

nvp∑
j=0

q̃a−1,j
∂φ̃a−1,j

∂ξ
(ξ̃a,k)

 if k = 0,

nvp∑
j=0

q̃a,j
∂φ̃a,j
∂ξ

(ξ̃a,k) if 0< k < nvp,

1

2

nvp∑
j=0

q̃a,j
∂φ̃a,j
∂ξ

(ξ̃a,k) +

nvp∑
j=0

q̃a+1,j
∂φ̃a+1,j

∂ξ
(ξ̃a,k)

 if k = nvp.

(31)

Differentiation from levels to interfaces (Dni ) should not be defined via the compositionDiiIni
since this procedure would introduce a non-zero null space that can trigger an unphysical com-
putational mode in the discrete equations. Instead we define Dni using the robust differentiation10

technique discussed in Ullrich (2014a), based on the flux reconstruction methods of Huynh
(2007). This strategy leads to the discrete operator

(Dni q)a,k = (D̂ni q)a,k +
1

2

dGR
dξ

(ξ̃a,k) [(InLq)a+1,k− (InRq)a,k]

+
1

2

dGL
dξ

(ξ̃a,k) [(InRq)a−1,k− (InLq)a,k] , (32)
15

13
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where

(D̂ni q)a,k =



1

2

nvp−1∑
j=0

qa,j
∂φa,j
∂ξ

(ξ̃a,k) +

nvp−1∑
j=0

qa−1,j
∂φa−1,j

∂ξ
(ξ̃a,k)

 if k = 0,

nvp−1∑
j=0

qa,j
∂φa,j
∂ξ

(ξ̃a,k) if 0< k < nvp,

1

2

nvp−1∑
j=0

qa,j
∂φa,j
∂ξ

(ξ̃a,k) +

nvp−1∑
j=0

qa+1,j
∂φa+1,j

∂ξ
(ξ̃a,k)

 if k = nvp,

(33)

and GL and GR are the local flux correction functions, which are chosen to satisfy

GL(ξa,0) = 1, GL(ξa,nvp−1) = 0, GR(ξa,0) = 0, GR(ξa,nvp−1) = 1, (34)5

and otherwise approximate zero throughout [ξa,0, ξa,nvp−1].
There is some flexibility in the discretization that depends on the specific choice of flux

correction functions. Huynh (2007) gives a family of flux correction functions on the interval
[−1,1] denoted by Gk for k = 1,2, . . .. In particular, we are interested in G1 (the Radau poly-10

nomials) and G2, which have the special property that dG2/dx= 0 at all Gauss-Lobatto points.
Although either choice of flux correction function leads to a valid discretization for nvp > 1,
when nvp = 1 a consistent differential operator is recovered only with G2. Hence, for the re-
mainder of this text we will adopt the flux correction function G2. For this choice, the flux
correction function satisfies15

∂G2

∂x
=

(nvp + 1)
[
Pnvp+1(x)−xPnvp(x)

]
2(x− 1)

, . (35)

where PN (x) is the Legendre polynomial of order N . In the limit as x approaches the bound-
aries of the reference element, a simplified expression emerges:

lim
x→+1

∂G2

∂x
= nvp(nvp + 1). (36)20

14
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On the interval [ξ̃j,0, ξ̃j,nvp−1] we have

∂GR
∂ξ

(ξ) =
1

∆ξa

∂G2

∂x

[
2(ξ− ξj,0)

∆ξa
− 1

]
,
∂GL
∂ξ

(ξ) =− 1

∆ξa

∂G2

∂x

[
2(ξj,nvp−1 − ξ)

∆ξa
− 1

]
. (37)

4.2.3 Second Derivative Operators in the Vertical

The second derivative operators are used in viscosity and hyperviscosity calculations. They are5

obtained as approximations to the equation

L(ν)q≈ ν ∂
2q

∂ξ2
, (38)

subject to Neumann (no-flux) boundary condition

∂q

∂ξ
= 0 at ξ = 0 and ξ = 1. (39)

For the viscous operator from interfaces to interfaces, the discretization is obtained from the10

variational (weak) formulation. Specifically, from (38) and integration by parts,

1∫
0

(Liiq)b,nφ̃a,kdξ =
∂q

∂ξ
φ̃a,k

∣∣∣∣1
0

−
1∫

0

∂q

∂ξ

∂φ̃a,k
∂ξ

dξ. (40)

Then using (24), (39) and the assumption of orthogonality of basis functions φ̃ under quadrature,

(Liiq)a,k =− 1∫ 1
0 φ̃

2
a,kdξ

nve−1∑
b=0

nvp∑
n=0

q̃b,n

1∫
0

∂φ̃a,k
∂ξ

∂φ̃b,n
∂ξ

dξ. (41)15

For model interfaces on Gauss-Lobatto nodes, the integral is discretized via Gauss-Lobatto
quadrature.
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The viscous operator from levels to levels is derived in a similar manner, although the non-
differentiability of q at interfaces in the discontinuous basis means that we must rely on differ-
entiation via (32). Consequently, the weak form

ξ̃a,vnp∫
ξ̃a,0

(Liiq)b,nφa,kdξ =
∂q

∂ξ
φa,k

∣∣∣∣ξ̃a,vnp

ξ̃a,0

−
ξ̃a,vnp∫
ξ̃a,0

∂q

∂ξ

∂φa,k
∂ξ

dξ. (42)

5

then leads to discrete operator

(Lnnq)a,k =
1∫ ξ̃a,nvp

ξ̃a,0
φ2
a,kdξ

[
(L̂nnq)a,k + (Dni q)a,vnpφ(ξ̃a,vnp)− (Dni q)a,0φ(ξ̃a,0)

]
, (43)

where

(L̂nnq)a,k =−
nve−1∑
b=0

nvp−1∑
n=0

qb,n

ξ̃a,nvp∫
ξ̃a,0

∂φa,k
∂ξ

∂φb,n
∂ξ

dξ. (44)10

For model levels on Gauss nodes, the integral is discretized directly via Gaussian quadrature.
Note that the boundary condition implies that we must impose

(Dni q)0,0 = 0 and (Dni q)vne−1,vnp = 0. (45)

4.2.4 Flow-dependent vertical hyperviscosity15

The basic spectral element method is an energy conservative scheme (Taylor and Fournier,
2010) that allows for the accumulation of energy at the shortest wavelengths. Following Ullrich
(2014a) and Dennis et al. (2011), we impose explicit dissipation in the horizontal using a con-
stant coefficient hyperviscosity. In the vertical, a constant coefficient hyperviscosity would have
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a rapid and adverse affect on hydrostatic balance in the absence of a hydrostatic reference state
(Giraldo and Restelli, 2008). Consequently, in this paper we apply a localized hyperviscosity in
the vertical column that is weighted by the contravariant vertical flow velocity uξ,

∂q

∂t
= · · ·+ νz|uξ|

∂2kq

∂ξ2k
, (46)

5

where q ∈ {uα,uβ,w,θ,ρ} and k is a positive integer. The motivation for using uξ stems from
the observation that advective transport in the vertical occurs with speed uξ, and so this would
be the corresponding wave speed that would enter into, for example, the Rusanov Riemann
solver in the context of discontinuous Galerkin or finite volume methods. In this sense, the
flow-dependent hyperviscosity is a generalization of advective up-winding if applied simulta-10

neously with the vertical advective operator. The Riemann solver interpretation also yields an
appropriate estimate for the value of νz ,

k = 2 : νz = (1/2)(∆ξ)−1,

k = 4 : νz =−(1/12)(∆ξ)−3, (47)

k = 6 : νz = (1/60)(∆ξ)−5,15

where ∆ξ = 1/(anvp) is the average spacing between nodes in the vertical direction.

4.2.5 The Staggered Nodal Finite Element Method (SNFEM)

The interpolation and differentiation operators given in the previous sections provide a frame-
work for constructing staggered vertical grids in the context of the nonlinear system (6)-(10).20

Furthermore, the SNFEM allows for discretizations of arbitrary order-of-accuracy via adjust-
ments in nvp. For the present work, we investigate unstaggered (on interfaces), Lorenz (LOR)
(u,v,ρ,θ on levels, w on interfaces), and Charney-Phillips (CPH) (u,v,ρ on levels, w,θ on in-
terfaces) configurations. The two key diagnosed variables, Π and uξ are co-located with ρ and
w respectively. Table 1 provides a reference nomenclature for the various discrete derivative25
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operators that arise in the SNFEM corresponding to the terms treated implicitly. In general,
we will use subscripts and superscripts i and n denote quantities computed on “interfaces” or
“levels” respectively. When needed, the contravariant α and ξ velocity are computed via

(uj) = gjα(uα) + gjβ(uβ) + gjξ|gξ|w, (48)
5

where j ∈ {α,ξ} and all covariant velocities are first interpolated to levels or interfaces (whereever
uj is needed) prior to evaluation.

For example, applying the discrete derivative operators with Lorenz staggering to (6)-(10)
and neglecting flow in the β direction gives:

∂(uα)n
∂t

=−Dα(Kn + Φn)− θnDα(Πn)− (uξ)n
[
Dnnuα−DαIin(uξ)i

]
, (49)10 (

∂r

∂ξ

)
i

∂wi
∂t

=−Dni (Kn + Φn)−Ini θn (Dni Πn) + (uα)iDinuα−Ini
[
(uα)nDαIin(uξ)i

]
(50)

∂θn
∂t

=−(uα)n (Dαθn)−
[
Iin(uξ)i

]
(Dnnθn), (51)

∂ρn
∂t

=− 1

Jn
Dα [Jnρn(uα)n]− 1

Jn
Din[Ji(Ini ρn)(uξ)i]. (52)

Here the vertical interpolation operators are defined in section 4.2.1, the derivative operators15

are defined in section 4.2.2, and the horizontal derivative operator Dα represents the standard
co-located spectral element derivative operator.

It is important to note the great deal of flexibility available in the computation of spatial terms
in eqs. (49) - (52). In particular, covariant/contravariant velocity components (needed in the
advection of θ) and the specific kinetic energy K may be composed with different interpolation20

sequences and preliminary experiments have suggested that stability of the method may depend
on such variations, particularly in the presence of steep topography.
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4.3 Temporal Discretization

Many options are available for the temporal discretization of the semi-discrete equations, in-
cluding several fully explicit and implicit-explicit schemes (Ascher et al., 1997). One simple
temporal discretization is investigated here, which utilizes Strang splitting for the dynamics and
operator splitting for the hyperviscosity. The equations (6)-(10) are written in the form5

∂ψ

∂t
− f(x,ψ) = g(x,ψ), (53)

where f(x,ψ) denotes terms associated with non-stiff modes, i.e. horizontally-propagating
modes and vertical advection of horizontal velocity. The function g(x,ψ) denotes geometrically
stiff terms associated with all vertical derivatives except for vertical advection of horizontal ve-
locity. The model follows the approach of Ullrich and Jablonowski (2012) by treating non-stiff10

terms using an explicit temporal operator and stiff terms using an implicit operator. For the cur-
rent study, the terms highlighted in red in eqs. (49) - (52) are treated implicitly in order to avoid
timestep limitations due to vertically propagating sound waves.

For the first time step, an implicit update is applied,

ψ(0) = ψn + ∆t
2 (I − ∆t

2 DG(ψn))−1G(ψn), (54)15

where G(ψn) represents the discretization described in section 4.2 and DG(ψn) = ∂G/∂ψn.
For later time steps, the implicit update is instead obtained from a stored tendency,

ψ(0) = ψn + ∆t
2 ψ. (55)

Explicit terms are evolved using a Runge-Kutta method which supports a large stability bound
for spatial discretizations with purely imaginary eigenvalues. This particular scheme is based20
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on Kinnmark and Gray (1984a,b) and takes the form

ψ(1) = ψ(0) + ∆t
5 f(ψ(0)),

ψ(2) = ψ(0) + ∆t
5 f(ψ(1)),

ψ(3) = ψ(0) + ∆t
3 f(ψ(2)), (56)

ψ(4) = ψ(0) + 2∆t
3 f(ψ(3)),5

ψ(5) =−1
4ψ

(0) + 5
4ψ

(1) + 3∆t
4 f(ψ(4)).

Hyperviscosity is then applied in accordance with Ullrich (2014a), with scalar hyperviscosity
used for all scalar quantities and vector hyperviscosity used for the horizontal velocity field.
Mathematically, the update takes the form,10

ψ(6)
s = ψ(5)

s + ∆tH(ν)H(1)ψ(5)
s , (57)

u(6) = u(5) + ∆tH(νd,νv)H(1,1)u(5), (58)

where ψs ∈ {θ,w,ρ}.
When active, Rayleigh friction is applied via backward Euler to relax all prognostic variables15

to a specified reference state,

ψ(7) = γψ(6) + (1− γ)ψref, (59)

where γ = [1 + νr(x)∆t]−1 is in terms of the Rayleigh friction strength νr(x).
In accordance with Strang splitting, a final implicit update is applied,20

ψ = (I − ∆t
2 DG(ψ(7)))−1G(ψ(7)), (60)

ψn+1 = ψ(7) + ∆t
2 ψ. (61)
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5 Validation

In this section we present a set of test cases with the purpose of investigating the performance of
the SNFEM for mesoscale atmospheric modeling. Our emphasis is on a wide range of resolu-
tions from the global scale (200 km) to the large eddy scale (5 m). These scales transition from
hydrostatic to scales where all non-linear terms in the equations (6) - (10) become significant.5

For our experiments we will hold the following components of the computations constant:

(1) The horizontal discretization is kept as a standard 4th order spectral element formulation
for all simulations, as outlined in section 4.1.

(2) The time integration scheme is based on Strang-split IMplicit EXplicit (IMEX) outlined
in section 4.3.10

(3) Vertical terms ∂
∂z are integrated implicitly using the generalized minimal residual method

(GMRES) with no preconditioner. Efforts are underway to determine the most efficient
preconditioner for this system. We have also implemented an analytical Jacobian for the
vertical solve, which appears to be the most computationally efficient option.

(4) Reference solutions employ consistent 4th order vertical and horizontal discretizations at15

a resolution at least twice as fine as experiments

(5) The total number of vertical levels in each test is kept constant. Only the vertical order
of accuracy is changed and consequently the distribution of grid spacing according to the
locations of element nodes.

For these tests, we investigate the effect of a relatively high-order nvp = 10 vertical coordi-20

nate on flow results at resolutions coarser than the reference solutions. Our hypothesis is that
flow structures and measures of interest will be better approximated using the high-order dis-
cretization. We consider the properties of our arbitrary order methods in the context of meshes
with mixed grid resolutions such as static and adaptive variable resolution experiments. A pri-
mary benefit of using the higher order SNFEM is improved accuracy even with a coarser vertical25

grid.
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Reference results are computed with a consistent spatial (horizontal and vertical) discretiza-
tion or order “O4”. Experiments done at coarser resolutions with varying vertical order of ac-
curacy are titled “VO#”.

5.1 Steady-state geostrophically balanced flow in a channel

The first test represents steady-state geostrophically balanced flow in a channel and is based5

on a new test case defined by Ullrich et al. (2015). The domain is a channel of dimensions
Lx×Ly ×Lz with periodic boundaries in the x direction and no-flux conditions at all other
interfaces. In this case we choose Lx = 30000 km, Ly = 6000 km and Lz = 30 km. The shorter
zonal width compared with that of Ullrich et al. (2015) was chosen for reasons of computa-
tional efficiency and did not affect the final solution. The initial flow is comprised of a zonally-10

symmetric mid-latitudinal jet, defined so that the wind is zero at the surface and along the
y-boundary. Hyperviscosity is applied in the horizontal and vertical at 4th order as well as a
Rayleigh layer at the top and longitudinal boundaries. The Rayleigh layers are used to prevent
the accumulation of standing wave reflections in the flow. This formulation can either be on an
f -plane or β-plane, which have Coriolis parameters15

f = f0, and β = f0 +β0(y− y0), (62)

respectively, where f0 = 2Ωsinϕ0 and β0 = 2a−1Ωcosϕ0 at latitude ϕ0 = 45◦N. Here, the ra-
dius of the Earth is a= 6371.229× 103 m, its angular velocity is Ω = 7.292× 10−5 s−1 and
y0 = Ly/2 is the center point of the domain in the y-direction.

The simulation is performed for the original β-plane configuration outlined in Ullrich et al.20

(2015) where the jet is perturbed directly by a “bump” in the zonal wind that is vertically
uniform where up = 1.0 m s−1 centered at xc = 2000 km and yc = 2500 km.

u′(x,y) = up exp

[
−
(

(x−xc)2 + (y− yc)2

L2
p

)]
(63)

The grid spacing for the reference solution is ∆x= 50 km, ∆y = 50 km, ∆z = 0.75 km
and ∆t= 30 s. Experiments are conducted at vertical order 2, 4 and 10 at a resolution of ∆x=25
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200 km, ∆y = 200 km, ∆z = 1.5 km and ∆t= 240 s. The 4th order scalar and vector (vorticity
and divergence separately) diffusion coefficients are given by

νscalar = 1.0× 1014

(
∆x

Lref

)3.2

m4s−1, (64)

νvorticity = 1.0× 1014

(
∆x

Lref

)3.2

m4s−1, (65)

νdivergence = 1.0× 1014

(
∆x

Lref

)3.2

m4s−1. (66)5

where ∆x is the element length in the x direction and Lref = 11.0× 105 m is the reference
length used for this test case. For this test, vertical flow-dependent viscosity is disabled since it
did not have a clear impact on the solution.

The baroclinic instability is a primary mechanism for the development of mid-latitude storm10

systems and so it is important that an atmospheric modeling platform reproduce these phenom-
ena accurately. We present a reference solution of the baroclinic wave shown in Fig. 3 that is
approaching the transition into the non-hydrostatic regime. We are interested in estimates of ver-
tical motion where the reference solution shows maxima on the order of 2 cm s−1. Regions of
strong vertical motion correspond to strong horizontal gradients in the vorticity and temperature15

fields and we expect that non-hydrostatic effects will be locally significant.
The reference solution for temperature and vorticity at 500m elevation shown here can be

compared at day 10 with the original results from Ullrich et al. (2015) produced with MCore
Ullrich and Jablonowski (2012) to verify that Tempest is computing a consistent solution. In
particular we expect that vertical motion will be under-predicted in coarser models at a given20

order of accuracy.
The vorticity field at coarse resolution (Fig. 4) is largely unaffected by changes in vertical

order. However, the vertical velocitiy (Fig. 5), and by association the horizontal divergence (not
shown), shows a substantial increase in magnitude as order increases. This increase aligns the
vertical velocity more closely with the reference solution magnitiude (greater than 1 cm s−1)25
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using the 10th order vertical coordinate as shown in Fig. 5. We conclude that although the higher
order vertical coordinate does not substantially impact the horizontal character of the solution,
it does better capture the magnitude of vertical velocity, particularly in frontal regions. We
note that the coarse resolution chosen here is nearly double that of current operational climate
modeling systems and well within the hydrostatic regime.5

5.2 Schär mountain

Atmospheric flows are strongly influenced by the lower boundary, where topographically-induced
waves transport momentum and energy vertically. Schär et al. (2002) describes a uniform zonal
flow field over orography that leads to the generation of a stationary mountain response, con-
sisting of a linear combination of hydrostatic and non-hydrostatic waves. The atmosphere is10

initially under uniform stratification with constant Brunt-Väisälä frequencyN = 0.01 s−1. The
temperature and pressure are p0 = 1000 hPa and T0 = 280 K at z = 0 m. To trigger the standing
waves, an initial uniform mean flow of u= 10 m s−1 is prescribed over the topographic profile
given by

hT (x) = hc exp

[
−
(
x

ac

)2
]

cos2
(πx
λ

)
, (67)15

with parameters hc = 250 m, λ= 4000 m and ac = 5000 m. The simulation domain is (x,z) ∈
[−30,30]× [0,25] km with a no-flux boundary specified along the bottom surface. Free-flow
boundary conditions are prescribed at the top and lateral boundaries with a Rayleigh layer 10 km
wide along the lateral boundaries and 10 km deep at the model top. Note that the domain bounds
differ from Schär et al. (2002) to minimize the effect of the Rayleigh layers on the flow interior.20

Also, the Rayleigh layer is applied to progressively and smoothly increase in strength up to the
boundaries. The simulation is run to t= 10 h, when the solution has reached a quasi-steady
state. For these simulations, no explicit dissipation is applied in either the horizontal or vertical
and Coriolis forcing is set to zero throughout.
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To validate that Tempest produces the correct mountain wave response, the Schär mountain
test was performed until t= 10h with a relatively fine resolution of ∆x= 100 m, ∆z = 100 m
and ∆t= 0.2 s. As shown in Fig. 6 (left) Tempest accurately reproduces the vertical velocity
field at the reference resolution (for comparison with another numerically derived solution, see
Giraldo and Restelli (2008)). We also show the analytical solution based on linear mountain5

theory following Klemp et al. (2003); Smith (1979) overlaid in dotted contours. As pointed
out by Klemp et al. (2003), an inconsistent treatment of the topographic metric terms in this
formulation can lead to the generation of spurious waves which is not observed in this case.

As discussed in Thuburn and Woollings (2005) and Thuburn (2006), staggering is necessary
to eliminate stationary computational modes that arise in collocated discretizations. To better10

understand the impact of staggering, Fig. 7 demonstrates the use of the collocated or unstag-
gered configuration which shows a highly-oscillatory stationary mode that pollutes the solution
relative to the Lorenz configuration at the same resolution. The plots show errors in the vertical
velocity near the bottom boundary condition and errors throughout the flow field due to the
vertical mode. This artifact is conspicuously absent from both LOR and CPH runs.15

Because our model makes use of a terrain-following coordinate, it is expected that a hydro-
statically balanced rest state is not exactly preserved over topography. Imbalance will arise as a
consequence of inexact cancellation of the terrain-following and vertical pressure gradient terms
in the discrete equations. Experiments carried out with zero background flow in the presence
of topographic features shown in Fig. 8 indicate that errors in vertical velocity are dominated20

by the horizontal discretization. We note that improvements with vertical order of accuracy are
apparent when going from 2nd order to 4th order, but differences are small at higher orders of
accuracy. These errors can be removed completely with a vertical reference state (Giraldo and
Restelli, 2008), but such a state is difficult to utilize for global simulations and so may not be
desirable in practice.25

Experiments are conducted at vertical order 2, 4, 10, and 40 (in the limit where the polyno-
mial order is equal to the total number of levels, denoted ST) at a relatively coarse resolution
of ∆x= 500 m, ∆z = 500 m and ∆t= 0.4 s. Results are depicted in Fig. 9 and the difference
against the reference solution in Fig. 10. The 2nd order results show substantial disagreement
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with the reference solution that is enhanced at altitude. This result appears to be associated
with an overestimation of the vertical wavelength of the mountain response that arises from
the lower order discretization. At 4th order the upper atmosphere does not show substantial
errors, and most differences are instead constrained to the near-surface. These near-surface er-
rors generally show consistent improvement as the vertical order-of-accuracy is increased. The5

discrepancy that appears at the highest peak of the Schär mountain (x= 0) is associated with
slight differences in resolving the topography at coarser horizontal resolution than the reference
solution.

We further compare the resulting profiles of momentum flux for all experiments in the Lorenz
configuration (Fig.11). We observe that the flux profile for the 2nd-order method has the greatest10

error, as expected from dispersion errors typical of low-order centered schemes (particularly in
the upper atmosphere and near the surface). The higher-order methods show improvements in
the structure and magnitude of the profiles (especially at the near-surface, when compared to
the reference profile in black), but again appear to be influenced by the lower-order horizontal
discretization. Furthermore, the results are strongly influenced by the Rayleigh layer showing a15

pronounced deviation in the flux profiles throughout the domain. The Rayleigh layer approxi-
mation to a free-flow boundary condition clearly introduces deficiencies that are exacerbated in
the flux provides.

5.3 Straka density current

The density current test case of Straka et al. (1993) considers a cold bubble that sinks and20

spreads across the bottom boundary, driving the development of Kelvin-Helmholtz rotors. The
original experiments by Straka et al. (1993) sought a converged solution through the use of
2nd order uniform diffusion applied to all prognostic variables. A value of ν = 75 m2 s−1 was
chosen so that a horizontal resolution of ∆x= 25 m was sufficient for convergence. No-flux
conditions are applied on all boundaries and Coriolis forcing set to zero.25

The initial state consists of a hydrostatically balanced state with a uniform potential tem-
perature of θ = 300 K. A standard pressure of p0 = 1000 hPa is assumed. The cold bubble
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perturbation is applied to the θ field and is given by

θ′ =

{
0 if r > 1.0,
− θc

2 [1 + cos(πr)] if r ≤ 1.0,
(68)

where θc =−15 K and

r =

√(
x−xc
xr

)2

+

(
z− zc
zr

)2

. (69)

The domain is an enclosed box (x,z) ∈ [−25600,25600]× [0,6400] m with t ∈ [0,900] s. The5

cold bubble is initially located at (xc,zc) = (0,3000) m with radius (xr,zr) = (4000,2000) m.
The 4th order horizontal hyperdiffusion coefficients for all fields are given by

νscalar = 5.0× 1012

(
∆x

Lref

)3.2

m4s−1, (70)

νvorticity = 2.0× 1014

(
∆x

Lref

)3.2

m4s−1, (71)

νdivergence = 2.0× 1014

(
∆x

Lref

)3.2

m4s−1, (72)10

where ∆x is the element length in the x direction and Lref = 51200.0 m is the reference length
used for this test case.

For the experiments with vertical flow-dependent hyperviscosity, the viscous coefficients are
given by (47). The uniform Laplacian diffusion requires further stabilization via the addition of15

4th order scalar hyperviscosity in the horizontal and 4th order vertical flow-dependent diffusion
on all variables. This added diffusivity is necessary to control a horizontal stationary mode
in the scalar fields and fast moving vertical modes that are a consequence of sound waves
accumulating energy at the grid scale. However, the highly scale-selective nature of the high
degree operators does not significantly affect the structure of the reference solution as shown in20

Fig. 12.
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The grid spacing for the reference solution is ∆x= 25 m and ∆z = 25 m with ∆t= 0.01 s.
Experiments are further conducted at vertical order 2 and 10 at a resolution of ∆x= 200 m and
∆z = 200 m with ∆t= 0.01 s.

For the density current, we emphasize results from the Lorenz (LOR) staggering. Under
Charney-Phillips (CPH) staggering, the vertical advection term for potential temperature (see5

Table 1) on the bottom-most and top-most interfaces is exactly zero within our formulation.
Consequently, within our formulation there is no mechanism to transport θ vertically from these
interfaces leading to the development of a discontinuity in θ along the lower boundary. These
gradients then enhance vertical heat fluxes above the surface, slowing the propagating cold pool
as momentum is transported vertically. This inconsistency is counteracted by the application10

of uniform diffusion, which provides a mechanism by which θ can be exchanged with the bot-
tom interface. However, flow-dependent vertical diffusion, which is weighted by |uξ|, does not
permit exchange with the interface and so leads to inconsistency between the LOR and CPH
staggerings. In Fig. 12, the CPH staggering with flow-dependent diffusion leads to a relatively
slow density current that is more convective near the boundary. Nonetheless, a better choice of15

flow-dependent coefficient could be made to mitigate this issue. Note that this issue with CPH
can be counteracted by rewriting the vertical advection term as

uξ
∂θ

∂ξ
=

∂

∂ξ
(uξθ)− θ∂u

ξ

∂ξ
, (73)

although this form tends to be more unstable in practice
We often desire diffusion to be as weak as possible while still preserving the stability of20

the underlying method. However, as can be seen here, the structure of the density current is
also strongly dependent on the dissipation mechanisms employed in the simulation. Here we
present the reference solution equivalent to Straka et al. (1993) at the converged resolution.
We also compare solutions with different diffusion mechanisms in Fig. 12 with corresponding
cross sections in Figs. 14. The 1200 m cross sections indicate that experimental coarse resolu-25

tions are not converged in the case of reference uniform damping. In Table 2 it is apparent the
reference solutions are sensitive to diffusion and differ significantly in structure, but the wave
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front positions compare with good precision to the solution given by Straka et al. (1993). This
would indicate that momentum fluxes are comparable, but close inspection of the eddy struc-
ture suggests significant differences exist throughout, as noted above, and with the appearance
of detached eddies when the high-order flow-dependent viscosity is used exclusively.

From Table 2 it is apparent our coarse-resolution experimental solutions are slow with refer-5

ence damping and 2nd order flow-dependent viscosity, but are closer to the reference solution
with 4th order diffusion. Both low- and high-order simulations show wave front positions that
accurately approximate the reference results. However, the structure of the Kelvin-Helmholtz
rotors changes significantly with vertical order-of-accuracy and dissipation method shown in
Fig. 13. The more scale-selective 4th order flow-dependent viscosity shows greater detail in the10

structure of the rotors. In general, it is not recommended to use hyperdiffusion with a higher
order than the dynamical discretization (bottom left) since more derivatives would be required
than the polynomial space allows.

The use of flow-dependent hyperviscosity in 2nd and 4th derivative order changes the struc-
ture of coarse experiments tending toward a 3-rotor flow field shown in the reference solution as15

shown in Fig. 15. Curiously, the 10th order vertical discretization with 4th order flow-dependent
viscosity produces a flow that more closely approximates the reference solutions at a resolution
that would otherwise be considered too poor for the dynamical features considered. However,
the authors have not found a dynamical reason for correlation involving high-order vertical dis-
cretization coupled with high-order dissipation schemes and the reference solution with uniform20

damping.
Moreover, Fig. 15 indicates that magnitudes are significantly different for high-order dissipa-

tion cases. Wave front position at the −1.0 ◦C contour further given in 2 confirm that momen-
tum fluxes are also captured more accurately as these are associated to the propagation speed of
the wave front.25

5.4 Rising thermal bubble

Thermal bubble experiments have become a standard in the development of non-hydrostatic
mesoscale modeling systems. At very fine resolutions (< 10 m) we test the ability to reproduce
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the simplest form of convection. This is a precursor to simulations of real atmospheric phenom-
ena such as thunderstorms and other convective systems. A positive, symmetric perturbation
to the potential temperature (buoyancy imbalance) causes a vertical acceleration that moves
the bubble upward. Subsequently, shearing and compensating subsidence leads to two primary
symmetrical eddies that further break down as the simulation progresses. We are interested in5

the evolution of the flow in terms of structure and conservative properties on θ.
We present two flow scenarios: a) the bubble rises and is allowed to interact with the top

and lateral boundaries and b) the so-called Robert smooth bubble experiment (as outlined in
Giraldo and Restelli (2008)) that are a variation of the experiments of Robert (1993). In the
former, the bubble will meet the boundaries and develop shear instabilities and in the Robert10

bubble, shear instabilities develop in the interior of the flow. For these experiments, 4th order
viscosity is applied in the horizontal and vertical to the potential temperature and horizontal
velocity fields. Furthermore, at finer resolutions we observe more fine-scale features of the
thermal bubble, including tighter winding of the trailing edges at later times and sharper spatial
gradients. Nonetheless, our comparisons for this test case are purely qualitative but remain15

consistent with previous results.
The background consists of a constant potential temperature field θ = 300 K, with a small

perturbation of the form

θ′ =

{
0 for r > rc,
θc
2

[
1 + cos

(
πr
rc

)]
for r ≤ rc, (74)

where20

r =
√

(x−xc)2 + (z− zc)2. (75)

Here we choose the amplitude and radius of the perturbation to be θc = 0.5 K and rc = 250 m,
respectively. The domain consists of a rectangular region (x,z) ∈ [0,1000]× [0,1000] m for the
thermal bubble and (x,z) ∈ [0,1000]× [0,1500] m for the Robert bubble with t ∈ [0,1200]s.
The center-point of the bubble is located at xc = 500 m and zc = 350 m for the thermal bubble25
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and zc = 260 m for the Robert bubble. The boundary conditions are no-flux over all boundaries.
No Rayleigh layer is used, and Coriolis forces are set to zero.

The reference grid spacing is ∆x= 5 m and ∆z = 5 m respectively with ∆t= 0.005 s. This
is considered the reference resolution following Giraldo and Restelli (2008). Experiments are
conducted at a relatively coarser resolution of ∆x= 10 m and ∆z = 10 m with ∆t= 0.01 s.5

The 4th order scalar and vector (vorticity and divergence separately) diffusion coefficients in
are given by

νscalar = 1.0× 106 m4s−1, νvorticity = 1.0× 106 m4s−1, νdivergence = 1.0× 106 m4s−1. (76)

The 4th order scalar and vector (vorticity and divergence separately) diffusion coefficients in10

are given by

νscalar = 1.0× 106

(
∆x

Lref

)3.2

m4s−1, (77)

νvorticity = 1.0× 106

(
∆x

Lref

)3.2

m4s−1, (78)

νdivergence = 1.0× 106

(
∆x

Lref

)3.2

m4s−1. (79)
15

where ∆x is the element length in the x direction and Lref = 1000.0 m is the reference length
used for this test case.

Rising bubble experiments show the non-linear dynamics of dry 2D convection. The classic
thermal bubble test shown in Fig. 16 shows potential temperature being advected conservatively
throughout the domain at the reference resolution. These results use a dissipation mechanism20

that combines 4th order hyperdiffusion of θ for horizontal modes and scale-adaptive 4th order
flow-dependent hyperviscosity of θ for vertical modes. In this case, no diffusion is needed in
the velocity or density fields to obtain a stable simulation.

The rising thermal bubble experiment is typically carried out and compared at 700 seconds
precisely before the convective bubble interacts with the top boundary of the domain. We present25
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this result for comparison with previous results in Fig. 18. However, it is also important to eval-
uate the conservative properties of the method and we carry out the simulation to 1200 seconds.
Since (9) is a strict statement of constant potential temperature following fluid parcels, the re-
sults of Fig. 18 compared to Fig. 16 demonstrate that our method is stable and approximates
conservation of θ closely when a high-order vertical discretization is used.5

The Robert smooth bubble experiment extends the vertical domain allowing for the onset of
Kelvin-Helmholtz instabilities in the flow. The solution at the reference resolution is shown in
Fig. 17. The exact time and manner in which the instabilities arise is strongly dependent on
the vertical order and dissipation method used in the simulation. In the reference solution, the
onset of unstable eddies begins at approximately 900 s with the flow transitioning into vigorous10

mixing in the region of the primary rotors.
High-order vertical discretizations are typically associated with strong oscillations (Gibbs

ringing) that can induce perturbations that can amplify turbulence, particularly if stabilization
(such as upwinding or diffusion) is weak. The net effect is that a high-order vertical discretiza-
tion, given the same horizontal discretization, changes the local mixing characteristics of the15

flow. This effect is seen clearly in Fig. 19. The 10th order simulation has a structure that more
closely approximates the reference result in Fig. 17. In the context of studies that seek to rep-
resent convective processes, we would expect entrainment fluxes to be improved at a coarser
resolution with the higher-order vertical discretizations.

5.5 Numerical Characteristics of the Method20

We briefly characterize the combined discretization strategy (horizontal spectral element, ver-
tical SNFEM, and Strang IMEX) described in section 4.3. We use the rising thermal bubble
test (section 5.4) to show that, overall, our method converges at 2nd order in space and time
consistently across different vertical orders of accuracy as shown in Fig. 20. Theoretically, the
maximal convergence rate for this test is at most 2nd order in space since the θ perturbation is25

only continuous in its first derivatives.Nonetheless, we observe sub-2nd order convergence for
the VO2 scheme applied to this test, driven by a loss of one-order of accuracy from the use of
vertical flow-dependent hyperviscosity (see section 4.2.4).
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A numerically computed estimate of the CFL condition (maximum Courant number) as a
function of grid spacing and element aspect ratio is given in Table 3 using the time inte-
gration technique outlined in section 4.3. These results indicate a maximum Courant num-
ber of 1.46

::::
1.95

:
at low order that degrades at higher aspect ratios and with higher vertical

order. A
:::::::::
Moreover,

:::
all

:::::
2-D

:::::
tests

:::::
show

::
a
::::::::::
maximum

::::::::
Courant

:::::::
number

:::
of

:::::
1.95

:::::
while

::::
the

::::
3-D5

:::::::::
Baroclinic

:::::
wave

::::
test

::::
has

::
a
::::::::
Courant

:::::::
number

:::
of

:::::
1.45.

::::
The

::::::::::
theoretical

:::::
CFL

::::::::::
conditions

::::
for

:::
the

:::::::
spectral

:::::::
element

:::::::::::::
discretization

::::
with

:::::::::
temporal

::::::::::::
discretization

::::
(56)

::::
are

::::
2.12

::::
and

::::
1.49

:::
for

::::
1-D

::::
and

:::
2-D

::::::
scalar

:::::::::
advection,

::::::::::::
respectively.

:::::
These

:::::::
results

:::::::
indicate

::::
that

:::
the

::::::::
operator

::::
split

:::::::
method

::
as

::::::
shown

::
in

::::
eqs.

::::::::
(49)-(52)

:::::::::
combined

:::::
with

::::::
Strang

::::::::::
integration

::::::
allows

:::
90

::
to

:::::
95%

::
of

:::
the

::::::::::
maximum

::::
time

::::
step

:::::::
possible

::::::
using

::
a

:::::::::
consistent

::::
4th

::::::
order

:::::
space

::::::::::::::
discretization.

:::::::::
However,

::
a

:
more comprehensive10

evaluation of the theory underlying this CFL condition will be pursued in a future work
:::
due

::
to

:::::::
changes

::::::::
observed

:::::
with

::::::
aspect

::::
ratio

::::
and

:::::::
vertical

:::::
order

:::
of

:::::::::
accuracy.

::::::::::::
Furthermore,

:::
we

::::::
show

:::::::::::
preliminary

:::::::
parallel

::::::::::::
performance

:::::::
scaling

:::
in

::::::
Table

::
4
:::
on

::
a
:::::::
limited

::::::::
multicore

::::::::
system.

::::::
These

::::::
results

::::::::
indicate

::
a

::::
cost

::::::::::
associated

::::
with

:::::::
denser

::::::::
element

:::::::::
operations

:::
as

:::::::
vertical

:::::
order

::
of

::::::::
accuracy

::::::::::
increases.

:::::::::
However,

:::::
more

:::::::::
controlled

:::::::::::
experiments

::::::
using

:
a
::::::::::
distributed15

::::::::
platform

:::
will

:::
be

::::::::::
conducted

::
as

:::
our

::::::::
parallel

::::::::::::::
implementation

::
is

:::::::::
optimized.

Plots of the normalized change in mass and energy, along with integrated zonal and vertical
momentum from the Robert smooth bubble test (section 5.4) are given in Fig. 21. As expected,
total mass is conserved to near-machine precision. Total energy is not explicitly conserved by
this method, so we observe small oscillations of total energy about its initial value. Note that20

although total energy is not nonincreasing, it does not show exponential growth that would be
characteristic of a linear instability, and remains bounded over the duration of the simulation.
To ensure this result held for long-term simulations, the rising thermal bubble experiments were
carried out to 1 hour, and revealed no sign of instability.

Further investigation of this issue seems to suggest roots in the way the stabilization mecha-25

nism interacts with the lateral boundaries, since the purely advective scheme with no stabiliza-
tion shows nearly flat total energy. Consequently, we hypothesize this result may be associated
with the inverse energy cascade from 2d turbulence theory drawing energy from the unresolved
scales in a limited manner. Note that the stabilization mechanisms described by this work (hor-
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izontal and vertical hyperviscosity), which work directly on the u and θ fields, do not act to
explicitly diffuse energy; the strategy is intended to emphasize flow features. A more aggres-
sive diffusion strategy could be implemented to ensure that energy does not increase at the cost
of increased diffusive errors.

For a horizontally symmetric test such as the rising thermal bubble (anti-symmetric in u),5

one would expect that total zonal momentum is equal to zero over the duration of the simu-
lation. However, we clearly observe deviations from symmetry by the end of the simulation.
These violations of symmetry are associated with how the spectral element method is updated
in the horizontal: since horizontal derivatives are computed in an inherently asymmetric man-
ner, namely in the direction of increasing x, small differences on the order of machine epsilon10

appear between the solution x < 500 m versus x > 500 m. The oscillatory signal in the vertical
momentum is attributed to strong vertically propagating sound waves that emerge from the ini-
tial perturbation being reflected by the no-flux boundary condition at the top and bottom of the
model grid. Note that it is not expected that vertical momentum is conserved due to the presence
of gravitational forcing.15

6 Conclusions

The idea of separating the vertical and horizontal dynamics in atmospheric modeling systems
has roots in the scale differences that characterize atmospheric flows. This principle has been
fully exploited in the development of global and mesoscale models, along with the applica-
tion of the hydrostatic approximation. This paper adds to the modern literature on modeling20

atmospheric dynamics by analyzing a novel discretization technique for achieving high-order
accuracy in the vertical while maintaining the desirable properties of staggered methods. We
refer to this technique as the Staggered Nodal Finite Element Method (SNFEM).

The test suite we present in this work is not exhaustive, but it is intended to evaluate the
performance of the numerical schemes under conditions of near hydrostatic synoptic scale flow25

in section 5.1, linear, mesoscale, non-hydrostatic flow with topography in section 5.2, and fully
nonlinear, non-hydrostatic, Large Eddy Simulation (LES) scale, flow in section 5.3 and section

34



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

5.4. As global models progress into into the regime of non-hydrostatic flows, real flow cases will
be characterized by one or more of the properties mentioned, and likely in combination when
variable or adaptive meshing methods are used. More importantly, we expect that uniform or
mixed grids being prepared in research will begin to span the scale range that includes the
transition to non-hydrostatic dynamics and on to large-eddy flows.5

In general, we postulate that a higher-order method based on finite elements will be more
accurate at a given resolution with minimal computational cost relative to a low-order method.
Our results demonstrate that a high-order vertical coordinate approximates well resolved, refer-
ence results at coarser resolutions that would be otherwise considered poorly represented. Our
experiments nonetheless are constrained by the order of horizontal and temporal discretizations.10

Therefore, we restrict our recommendation to the use of 4th order SNFEM as optimum for the
tests given here. In general the combined spatial order of accuracy should be consistent to max-
imize the effect of increased accuracy. The high-order approximation provides an improvement
to the vertical dynamics and so reduces the need for higher vertical resolution. This benefit
would prove effective when variable-grid methods are considered and nesting mesh levels can15

be saved by employing the SNFEM at high-order. The use of staggering in conjunction with
high-order has further benefits, in particular the avoidance of stationary computational modes
that are known to persist with co-located methods.

However, there are some trade offs when increasing the vertical order: 1) for a vertically im-
plicit method, fewer high-order elements lead to a dense matrix structure that is more expensive20

to invert, 2) the oscillatory nature of the polynomial functions that make up the interpolants
within an element have physical consequences (involving nonlinear processes) at the smallest
scales, and 3) higher-order spatial discretizations often require smaller time steps or higher order
temporal discretizations. Fig. 4 shows the times required for computations of varying vertical
order and processor scaling. The results confirm that the relative cost in moving to 4th order is25

indeed modest relative to the use of higher orders.
The first point can be addressed in the construction of the software where parallelization

and correct use of hardware resources minimizes the dense operations that high-order elements
imply. We saw in Fig. 19 that oscillations associated with high-order interpolants helped to
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approximate fine scale structures, but these oscillations can also be harmful depending on the
flow condition. While vertical order of accuracy can be increased up to the total number of
vertical levels, e.g. results from the Schär cases in Fig. 9, increasing computational expense
indicates that intermediate orders of accuracy will generally be most effective. In this study,
many of the results at 4th order sufficiently improve solutions relative to low-order alternatives.5

Furthermore, when physical instabilities arise, a consistent, high-order, and scale selective
dissipation strategy is necessary. In this regard, finite element methods allow for the construc-
tion of diffusion operators for this purpose e.g. section 4.2.3.We can experiment with differ-
ent combinations of diffusion operators including coefficients that are variable in space. While
scale-selective 4th order operators with some grid resoltuion dependence are sufficient for this10

work, we intend to explore a wider range of strategies based on polynomial filtering, variational
multiscale methods, etc. with the goal of eliminating the tuning procedure associated with user-
provided coefficients.

The numerical dissipation strategy implemented here serves two primary goals: 1) stabiliza-
tion of the computations and 2) as a form of closure for the Euler equations solved on a truncated15

grid. The methods we employ allow for the construction of derivative operators of various or-
ders in a consistent manner. Tempest features a system that allows for diffusion to be applied in
a selective manner on variables that is split according to the time integration scheme.

Further experiments are necessary to test the extent of the third point above. For this work,
we used a 2nd order Strang time integration scheme (section 4.3) that was sufficiently robust to20

carry out all of the experiments up to 10th order without overly restricting time step size relative
to the 2nd order simulations.

The authors conclude the following based on the experiments conducted and properties of
the SNFEM:

1. Staggering has been generalized to finite element methods combining continuous and dis-25

continuous formalisms. The result is a method that closely parallels the behavior of stag-
gered finite differences eliminating stationary modes. This is strictly true for the lowest
order finite elements and we restrict ourselves to observe that consistent behavior extends
to high-order staggered elements pending a formal wave analysis.
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2. Variable order of accuracy is an effective strategy that can compensate for limitations
in grid scale resolution. However, the effects at very high order must be understood and
controlled with appropriate stabilization methods. In general, “intermediate” orders (about
4th order) are recommended with consideration for consistency in overall spatial order
given an IMEX partitioned architecture5

We emphasize that, while the equations are formulated in a coordinate-free manner, the re-
sults given all correspond to regular Cartesian coordinates as defined by the metrics in eqs. (22)
and (21). Experiments corresponding to small planet and global domains are left for a subse-
quent work. However, any curved geometry with a terrain-following surface topography can
be applied to the equations since all grid information is held in the metric terms described in10

section 3. As such, the effects of curved geometry and variable vertical order-of-accuracy are
only addressed here in the Schär and Baroclinic wave cases (using the β plane approximation).
From a design perspective, metric terms are precomputed and derivative operators are built in
the natural, local coordinate frame when any grid is used.

Tempest is constructed to provide a unified multi-scale platform for atmospheric simulation.15

Experiments can be carried out readily at all scales of importance from long-term climate sim-
ulations to high-resolution weather prediction. Development is underway to include moisture
transport and phase transformations as well as to further improve time integration performance.
Coupled with highly accurate, efficient, and robust methods to compute dynamics, Tempest
will evolve to produce reliable precipitation forecasts as well as long-term climate simulations20

as part of the greater effort to understand the impending challenges brought on by rapid climate
change.

7 Code and/or data availability

The Tempest codebase used to generate the results in this publication are available through the
following Git repository: https://github.com/paullric/tempestmodel.25
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Choice of Staggering
Variable Term SE (ρi,θi,wi) SNFEM-LOR (ρn,θn,wi) SNFEM-ChP (ρn,θi,wi)

u,v Π Πi(ρi,θi) Πn(ρn,θn) Πn(ρn,Iinθi)

θ uξ
∂θ

∂ξ
(uξi )Diiθi (Iinuξi )(Dnnθ) (uξi )(Diiθi)

w θ
∂Π

∂ξ
θiDiiΠi (Iinθn)(Dni Πn) θi(Dni Πn)

ρ
1

J

∂

∂ξ
(Jρuξ)

1

Ji
Dii(Jiρiuξi )

1

Jn
Din
[
Ji(Ini ρn)uξi

] 1

Jn
Din
[
Ji(Ini ρn)uξi

]
Table 1. Composition of interpolation I and differentiation D operators for several choices of stag-
gering, including co-located spectral elements (SE), SNFEM with Lorenz staggering (SNFEM-LOR)
and SNFEM with Charney-Phillips staggering (SNFEM-ChP). Script i denotes variables defined on in-
terfaces (Gauss-Lobatto nodes) and n represents variables defined on model levels (Gauss nodes). For
operator I and D, the subscript denotes the target (i or n) and the superscript denotes the origin.
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Method-Stagger Vertical Order @ Resolution Diffusion Method Wave Front (km)
SNFEM-LOR 2 @ ∆x= 190 m Reference Damping 14.21
SNFEM-LOR 2 @ ∆x= 190 m Up-wind Order 2 14.59
SNFEM-LOR 2 @ ∆x= 190 m Up-wind Order 4 15.68
SNFEM-LOR 4 @ ∆x= 190 m Reference Damping 14.18
SNFEM-LOR 4 @ ∆x= 190 m Up-wind Order 2 14.58
SNFEM-LOR 4 @ ∆x= 190 m Up-wind Order 4 15.47
SNFEM-LOR 10 @ ∆x= 190 m Reference Damping 14.22
SNFEM-LOR 10 @ ∆x= 190 m Up-wind Order 2 14.61
SNFEM-LOR 10 @ ∆x= 190 m Up-wind Order 4 15.33

FD-Colocated 2 REFC @ ∆x= 25 m Explicit ν0 = 75 m2s−1 15.53
SNFEM-LOR 4 (REF) @ ∆x= 25 m Reference Damping 15.20
SNFEM-LOR 4 (REF) @ ∆x= 25 m Up-wind Order 2 15.77
SNFEM-LOR 4 (REF) @ ∆x= 25 m Up-wind Order 4 15.68

Table 2. Cold wave front position (θ′ =−1.0 K) for all orders of accuracy and diffusion methods. Ref-
erence damping is uniform 2nd order diffusion on all prognostic variables such that ν = 75 m2s−1 com-
bined with horizontal hyperdiffusion on scalars and vertical 4th order up-wind diffusion. The reference
solution wave front position (finite difference method at 25 meter resolution) by Straka et al. (1993) is
shown in bold (REFC) compared to the equivalent result from Tempest.
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Maximum Courant Number Aspect Ratio ∆x : ∆z

Vertical Order 1 10 100
2 1.95 1.95 1.95
4 1.95 1.95 1.86
10 1.61 1.14 0.14

Table 3. Numerically computed estimates of the Courant-Friedrichs-Lewy condition (maximum Courant
number) using Thermal Bubble tests over a wide range of horizontal : vertical aspect ratios. The maxi-
mum wave speed corresponds to the speed of sound given by c=

√
γRdT where γ = 1.4, Rd = 286.07,

and T = 300.5K.
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Computation Time (s) # Cores
Vertical Order 1 2 4

2nd 0.117 0.070 0.061
4th 0.163 0.102 0.082
10th 0.248 0.143 0.106

Table 4. Thermal bubble test (∆x= 20 m) average processor time taken per time step in seconds. Intel
Core i7 4000 series under Linux with 4 compuational cores on die (no interconnect hardware present).
Results show relative scalability for Tempest using MPI architecture and IMEX partitioning with variable
vertical order of accuracy. The implicit equations are solved using the GMRES with no preconditioner.
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Fig. 1. (a) Vertical placement of (left) Gauss-Lobatto nodes and (right) Gauss nodes within a vertical
element with nvp = 3. (b) Basis functions φ̃a,k for Gauss-Lobatto nodes within element a. (c) Basis
functions φa,k for Gauss nodes within element a.
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Fig. 2. A depiction of the derivative operators Di
n and Dn

i , which remap from interfaces to levels and
levels to interfaces, respectively. The gray line depicts a typical field variable within element a that
emerges from the expansion (left) (24) or (center) (23).
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Fig. 3. Baroclinic wave in a 3D Cartesian channel at the reference resolution ∆x= 100 km, ∆y =
100 km, ∆z = 1 km at vertical 4th order accuracy (VO4). From top to bottom, temperature, vorticity,
vertical velocity, and divergence are shown at day 10 (left) and 15 (right) and at an elevation of 500 m.
Contour intervals: Temperature 2K, Vorticity 1.0× 10−5s−1, Divergence 5.0× 10−6s−1, and vertical
velocity 2.0× 10−3m s−1.
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Fig. 4. Baroclinic wave in a Cartesian channel at vertical orders 2, 4 and 10. Vorticity at 500 meters on
days 10 and 15 at the resolution ∆x= 200 km, ∆y = 200 km, ∆z = 1.5 km. Contour interval: 1.0×
10−5s−1
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Fig. 5. Baroclinic wave in a Cartesian channel at vertical orders 2, 4 and 10. Vertical Velocity at 500m
on days 10 and 15 at the resolution ∆x= 200 km, ∆y = 200 km, ∆z = 1.5 km. Contour interval: 2.0×
10−3m s−1
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Fig. 6. Schär flow at steady state (10 hours) vertical velocity in (m/s) at VO4. Reference resolution shown
compared to the analytical solution (dotted contours) from linear mountain wave theory. ∆x= 100 m
and ∆z = 100 m. Contour interval: 0.1m s−1
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Fig. 7. Schär flow at steady state (10 hours). Collocated method (all variables on column levels) result
compared to staggered (Lorenz) solution at the same spatial order and resolution. ∆x= 200 m and ∆z =
200 m. Contour intervals: vertical velocity 0.1m s−1 and vertical velocity difference versus reference
0.0125m s−1
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Fig. 8. Still atmosphere experiment over Schär mountain profile at vertical orders 2, 4, and 10 showing
errors in vertical velocity. ∆x= 500 m and ∆z = 500 m. Contour interval: 2.0× 10−5m s−1.
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Fig. 9. Schär flow at steady state (10 hours) vertical velocity in (m/s) at various vertical orders of accuracy
(2, 4, 10, and ST) where “ST” stands for single column element spectral transform (nve = 1) with Lorenz
(LOR) vertical staggering. Colored contours from Tempest compared to dotted contours for the analytical
solution. ∆x= 500 m and ∆z = 500 m. Contour interval: 0.1m s−1
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Fig. 10. Schär flow steady state (10 hours). Vertical velocity difference with respect to the reference solu-
tion (Fig. 6, left). Results are interpolated to a regular z coordinate with ∆z = 500 m in experiments and
reference solution for differencing. Computations performed at ∆x= 500 m and ∆z = 500 m. Contour
interval: 0.0125m s−1
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Fig. 11. Schär mountain vertical profile of momentum flux for all experiments. The flux profiles are
computed by

∫X

−X {[ρ̄+ ρ′] [ū+u′]w′}dx at t= 10hours where overbars indicate initial condition values
and primes are departures thereof. Results are interpolated to a regular z coordinate with ∆z = 500 m
in experiments and reference solution to compute the integral flux.Results are normalized to the value at
the surface in the reference solution.
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Fig. 12. Straka Density Current test reference solutions at vertical order 4 in two staggering configu-
rations LOR and CPH. Converged resolution of ∆x= 25 m and ∆z = 25 m shown. Vertical flow de-
pendent diffusion in of order 2 and 4 (rows 2 and 3) is compared with the reference solution where an
explicit 2nd order diffusion with ν0 = 75 m2s−1 is used (top row). Contour interval: 1.0K
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Fig. 13. Straka Density Current test at vertical order 2, 4 and 10. Coarse, evaluation resolution of ∆x=
190 m and ∆z = 160 m shown. Vertical flow dependent diffusion of order 2 and 4 (rows 2 and 3) is
compared with the reference solution where an explicit 2nd order diffusion with ν0 = 75 m2s−1 is used
(top row). Results for Lorenz (LOR) staggering shown. Contour interval: 1.0K
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Fig. 14. Straka Density Current test at vertical order 2, 4 and 10. Coarse, evaluation resolution of ∆x=
190 m and ∆z = 160 m with explicit 2nd order diffusion with ν0 = 75 m2s−1 compared at 1200 m with
the reference solution (∆x= 25 m and ∆z = 25 m). Results for Lorenz (LOR) staggering shown.
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Fig. 15. Straka Density Current test at vertical order 2, 4 and 10. Coarse, evaluation resolution of ∆x=
190 m and ∆z = 160 m shown. Vertical flow dependent diffusion of derivative order 2 and 4 compared at
1200 m with the reference solution (∆x= 25 m and ∆z = 25 m). Results for Lorenz (LOR) staggering
shown.
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Fig. 16. Rising thermal bubble potential temperature reference solution at vertical order 4. Reference
resolution ∆x= 5 m and ∆z = 5 m. Flow at 700 and 1200 seconds. Contour interval: 0.05K

Fig. 17. Rising Robert bubble potential temperature reference solution at vertical order 4. Reference
resolution ∆x= 5 m and ∆z = 5 m. Flow at 800 and 1200 seconds. Contour interval: 0.05K
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Fig. 18. Rising thermal bubble potential temperature at vertical orders 2, 4 and 10. Convection bubbles
at 700 and 1200 seconds. Coarse, resolution ∆x= 10 m and ∆z = 10 m. Extrema in θ shown. Contour
interval: 0.05K
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Fig. 19. Rising Robert bubble potential temperature at vertical orders 2, 4 and 10. Convection bubbles
at 800 at 1200 seconds. Coarse, evaluation resoution ∆x= 10 m and ∆z = 10 m. Extrema in θ shown.
Contour interval: 0.05K
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Fig. 21. Observed normalized change in mass and energy (top row), along with zonal and vertical mo-
mentum (bottom row) using the Robert Bubble experiment in section 5.4. The reference solution corre-
sponds to Fig. 17 with 5 m resolution. Evaluation experiments use variable vertical order (VO) SNFEM
at 10 m resolution corresponding to Fig. 19. Total normalized mass and energy change are computed as
(Qt−Qinitial)/Qinitial.
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