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Abstract.

Stochastic methods are increasingly used in global coupled model climate forecasting systems to

account for model uncertainties. In this paper, we describe in more detail the stochastic dynamics

technique introduced by Batté and Déqué (2012) in the ARPEGE-Climate atmospheric model. We

present new results with an updated version of CNRM-CM using ARPEGE-Climate v6.1, and show5

that the technique can be used both as a means of analysing model error statistics and accounting for

model inadequacies in a seasonal forecasting framework.

The perturbations are designed as corrections of model initial tendency
::::
drift

:
errors estimated

from a preliminary
:::::
weakly

:
nudged re-forecast run over an extended reference period of 34 bo-

real winter seasons. Perturbations are then drawn randomly in forecast mode, but consistently for10

all three prognostic variables perturbed. Statistical
::
A

:::::::
detailed

::::::::
statistical

:
analysis of these model

corrections show
:::::::::
corrections

::
is

::::::::
provided,

:::
and

::::::
shows that they are mainly made of intra-month vari-

ance, justifying the use of these corrections
:::::::
therefore

::::::::
justifying

::::
their

::::
use as in-run perturbations of

the model in seasonal forecasts. However, the inter-annual and systematic error correction terms can-

not be neglected. We explore therefore the impact of using monthly mean perturbations throughout a15

given forecast month in a first ensemble re-forecast SMM. Time correlation of the errors is limited,

but some consistency is found between the errors of two or
::
up

::
to three consecutive days. This leads

us to explore the

:::::
These

:::::::
findings

:::::::::
encourage

:::
us

::
to

::::
test

::::::
several

:::::::
settings

:::
of

:::
the

:::::::
random

:::::
draws

:::
of

:::::::::::
perturbations

:::
in

:::::::
seasonal

:::::::
forecast

:::::
mode.

:::::::::::
Perturbations

::::
are

:::::
drawn

::::::::
randomly

:::
but

:::::::::::
consistently

::
for

:::
all

:::::
three

:::::::::
prognostic20

:::::::
variables

:::::::::
perturbed.

:::
We

::::::
explore

:::
the

::::::
impact

::
of

:::::
using

:::::::
monthly

:::::
mean

:::::::::::
perturbations

:::::::::
throughout

::
a
:::::
given

::::::
forecast

::::::
month

::
in

:
a
::::
first

::::::::
ensemble

:::::::::
re-forecast

:::::::
(SMM),

::::
and

:::
test

:::
the use of five-day sequences of per-

turbations in a second ensemble re-forecast
:
(S5D). Both experiments are compared in the light of a

REF reference ensemble with initial perturbations only.

A comprehensive forecast quality analysis is then provided. Results
::::::
Results

::
in
:::::

terms
:::

of
:::::::
forecast25

::::::
quality are contrasted depending on the region and variable of interest, but very few areas exhibit

a clear degradation of forecasting skill with the introduction of stochastic dynamics. We highlight
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some positive impacts of the method, mainly on Northern Hemisphere extra-tropics. The 500 hPa

geopotential height bias is reduced, and improvements seem to project onto the representation of

North Atlantic weather regimesin S5D. A modest impact on ensemble spread is found over most30

regions, which suggests that this method could be complemented by other stochastic perturbation

techniques in seasonal forecasting mode.

1 Introduction

Handling uncertainties in seasonal predictions with numerical models is an issue of the utmost im-

portance. These uncertainties arise from two main sources: initial conditions of the different variables35

describing the evolution of the atmosphere, ocean, and land surface, and approximations made in the

modelling process. The first source is addressed by using ensemble predictions, to sample the error

on the initial state by running several integrations of a given season. The second source is now in-

creasingly tackled in coupled global circulation models (GCMs) with several approaches developed

over the last decades. Multi-model forecasts are now issued routinely by the EUROSIP consortium40

(Vitart et al., 2007), the United States National Multi-Model Ensemble (Kirtman et al., 2013) or the

APEC Climate Center (Wang et al., 2009). Pooling several models together provides a first rough

estimate of the uncertainties related to choices in parameterizations of sub-grid processes or nu-

merical approximations in the individual models (e.g. discretization in time and space). Numerous

studies in the framework of international research projects based on retrospective seasonal forecasts45

(or "re-forecasts") have illustrated the gain in terms of forecast skill when using a multi-model en-

semble versus a single model (see Hagedorn et al., 2005; Doblas-Reyes et al., 2009; Alessandri et al.,

2011; Batté and Déqué, 2011). Further calibration of these forecasts (by weighting each individual

model contribution using a separate training period) can improve this effect (Rodrigues et al., 2013;

Doblas-Reyes et al., 2005).50

Simultaneously to these multi-model studies, other techniques to account for model inaccuracies

were developed in the climate modelling framework. Multi-parameter (Collins et al., 2006) or multi-

physics techniques (Watanabe et al., 2012) generate ensemble simulations with different physics

parameter settings and physics schemes for the sub-grid scales, respectively. Over the last twenty

years, stochastic perturbations have also been tested as a means of introducing noise in numerical55

weather prediction (NWP) models and components of GCMs. Most studies have focused on the

atmospheric component, building on methods perturbing parameterization tendencies (Buizza et al.,

1999) or scattering kinetic energy dissipated by the model at the sub-grid scale back to larger scales

(Shutts, 2005).

Stochastic perturbations in the atmosphere have been shown to improve the skill, reliability and60

mean state of seasonal forecasting systems (see e.g. Weisheimer et al., 2011, 2014; Berner et al.,

2008; Batté and Doblas-Reyes, 2015). An increasing number of studies report results from intro-
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ducing stochastic perturbations in the other components of the climate system, such as the ocean

(Brankart, 2013; Brankart et al., 2015), land-surface (MacLeod et al., 2015) or sea ice models (Ju-

ricke et al., 2013). Berner et al. (2015) provides a review of some of the latest advances in stochastic65

parameterization for NWP and climate models.

At CNRM-GAME, an alternative method to the stochastic physics techniques was designed to

perturb the atmospheric component of the coupled climate model in a seasonal forecasting frame-

work (Batté and Déqué, 2012). Past studies (Yang and Anderson, 2000; Barreiro and Chang, 2004;

Guldberg et al., 2005) had suggested that systematically correcting model tendency errors in GCMs70

could impact the model mean state and in some cases improve the model prediction skill. D’Andrea

and Vautard (2000) had showed in a quasi-geostrophic model framework that correcting in-run flow-

dependent model errors based on flow analogues could improve the model mean state. In this method

::
the

:::::::
method

::::::::
presented

:::::
here, dubbed "stochastic dynamics", we apply additive perturbations to the

prognostic variables of the model drawn from a sample of model error corrections estimated in a75

preliminary run, instead of a systematic correction. In Batté and Déqué (2012), we showed a reduc-

tion of systematic error in the extra-tropical geopotential height fields for boreal winter re-forecasts

over an extended period with CNRM-CM5. Since then, the method has been more thoroughly as-

sessed in subsequent versions of the coupled model in a seasonal re-forecasting framework. Different

choices in the frequency and strength of perturbations have been extensively tested. Building on the80

conclusions from these assessments and operational constraints, a version of stochastic dynamics

was introduced in the operational seasonal forecasting system 5 at Météo-France in 2015.

The aim of the present paper is twofold: first of all, illustrate that the stochastic dynamics technique

can be used as a means of estimating and assessing model error. We then wish to provide a more

thorough
::
to

::::::
provide

:::
an

::::::::
in-depth

:::::::::
assessment

:::
of

:::
this

:::::::::
approach

::::
with

::
a

:::::
more

:::::
recent

:::::::
version

::
of

::::
the85

::::::
coupled

:::::::
climate

::::::
model

::::::::::
CNRM-CM.

::::::
Based

:::
on

:
a
:::::::::
statistical analysis of the technique

:::::
model

::::::
errors

::::::::
estimated

::::
with

:::::::::::
atmospheric

::::::::
nudging,

:::
we

:::::::
examine

::::
two

::::::::
different

:::::
ways

::
of

:::::::::
sampling

:::
and

::::::::
drawing

::
the

::::::::::::
perturbations

:
in a seasonal forecasting frameworkwith a more recent version of the coupled

climate model CNRM-CM and two possible choices of perturbation frequencies and sampling.
::::

We

:::
then

::::::
detail

:::
the

::::::
impact

::
of

:::
the

::::::::
technique

:::
on

::::::::
seasonal

::::::
forecast

:::::::
quality

::
in

:::::
terms

::
of

::::::
model

:::::
mean

:::::
state,90

:::::::::
variability,

::::::::
ensemble

:::::
spread

::::
and

::::::::
prediction

::::
skill.

Section 2 describes the CNRM-CM model
:::
and setup for seasonal re-forecasts and provides more

details on the stochastic dynamics technique. A statistical analysis of the model errors estimated from

the nudged re-forecast run is led in section 3. Section 4 examines the impact of using corrections of

these model errors in two stochastic dynamics seasonal
::::::
winter re-forecasts, using a reference unper-95

turbed run as a benchmark. Common skill and forecast quality metrics will be used, as well as an

analysis of the representation of North Atlantic weather regimes. Section 5 summarizes conclusions

and discusses limitations and future plans for stochastic perturbations in CNRM-CM.
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2 Model and methods

2.1 CNRM-CM100

The CNRM-CM global coupled model used in this study is derived from the CMIP5 version de-

scribed by Voldoire et al. (2013). The ARPEGE-Climate atmosphere component is version 6.1.0,

which benefits from a new prognostic convection scheme (PCMT; Piriou et al. (2007) and Guérémy

(2011)), ozone and quasi-biennal oscillation parameterizations (Cariolle and Déqué, 1986; Lott

and Guez, 2013) and an increased vertical resolution of 91 levels. The
::::::::
horizontal

:::::::::
resolution

:::
in105

::
the

:::::::::::
atmosphere

::
is

:::::
tl127

::::::
(linear

::::::::
triangular

:::::::::
truncation

:::
at

:::::::::::
wavenumber

::::
127,

::::::
which

::::::::::
corresponds

:::
to

::::::::::::
approximately

::
1.4

:::::::
degrees

::
in

::::::
latitude

::::
and

:::::::::
longitude).

:::
The ocean model is NEMO version 3.2 (Madec,

2008)
::
on

:::
the

::::::::::
ORCA1L42

::::
grid

:
as in CNRM-CM5. Land surface is modelled with the ISBA-3L land

surface model (Noilhan and Mahfouf, 1996) included in the SURFEX v7.3 surface modelling plat-

form, and the sea ice component is an updated version of the GELATO sea ice model (Salas y Melia,110

2002).

In this study, several hindcasts were run starting from November 1st 1979 to 2013. Initial conditions

are provided by the ERA-Interim reanalysis for the atmosphere (Dee et al., 2011) , ORA-S4 ocean

reanalysis for the ocean (Balmaseda et al., 2013) , and outputs of a coupled model run nudged

towards ERA-Interim in the atmosphere and ORA-S4 in the ocean to initialize the sea ice and land115

surface components.

2.2 Stochastic dynamics

The stochastic dynamics method was first described in Batté and Déqué (2012). The idea behind

this method is to combine an ad-hoc correction technique with the introduction of in-run random

perturbations in the atmospheric model. It is impossible to know ahead of time the errors the model120

will make at each time step, however, the statistical properties of model errors can be inferred,

provided we have a sufficient sample of past forecasts. Model error corrections can then be drawn at

random in forecast mode. In this method, the estimation of model tendency error corrections relies

on newtonian relaxation (or nudging) as in Guldberg et al. (2005). Random model perturbations

are then drawn from a population of initial tendency
:::::
model

:
error corrections and applied in-run to125

ARPEGE-Climate. The perturbed variables are ARPEGE prognostic variables temperature, specific

humidity and vorticity
::::::::::::
streamfunction.

We chose not to perturb the rotational component of winds to let the model adjust to pertubations,

as suggested by Guldberg et al. (2005). Another prognostic variable we did not nudge was sea-level

pressure, since our philosophy was to let the surface free of perturbations so it could adjust to the130

higher levels in the atmosphere. Nudging of these two additional variables was tested with another

version of the model, and very little difference was found in terms of model skill in seasonal re-

forecast runs using the perturbations for all prognostic fields.
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Equation 1 describes the nudging technique as implemented in ARPEGE-Climate, whereX is the

vector of model prognostic variables, M the atmospheric model operator, and τ the relaxation time.135

∂X

∂t
(t) = M(X(t), t) +

X ref(t)−X(t)

τ
(1)

In this study the prognostic fields T , q and Ψ are weakly constrained towards reference ERA-

Interim data: τ is set to thirty days for each field. The rationale behind this is to let the model adjust

and avoid spin-up problems due to differences between the model climate and ERA-Interim, al-

though the drawback is a slight loss of accuracy on the tendency estimates for the model. A
::::
With

::::
this140

::::::
weaker

:::::::::
constraint,

:::
the

::::::::
estimates

:::::::::
correspond

::
to

:::::::::
long-term

::::
drift

::::::::
estimates

:::::
rather

::::
than

:::::
initial

::::::::
tendency

:::::::
estimates

:::
as

::
in

:::
the

::::::
original

:::::::
version.

:::::::::
However,

:
a
:
too strong relaxation would force the model to stay

too close to the reanalysis data and far from its own attractors in
::::::
climate

:
forecast mode. Granted that

τ is quite large, the same value was chosen for all three prognostic fields. As in Batté and Déqué

(2012), the relaxation coefficients are progressively tuned down to zero in the lower levels of the145

model to avoid shocks at the coupling interface.

Nudging is applied during a preliminary one-member seasonal run for November to February

(NDJF), starting each year from 1979 to 2012. This run serves primarily one purpose: providing the

model tendency error estimates that then make up the population of random corrections from which

perturbations can be drawn. Correction estimates are defined each day following equation 2.150

δX(t) =
X ref(t)−X(t)

τ
(2)

The in-run perturbations in the actual seasonal re-forecasts are applied by drawing a random

date t̃ and adding the corresponding tendency error corrections to the standard model formulation

(following equation 3).

∂X

∂t
(t) = M(X(t), t) + δX(t̃) (3)155

Note that in a retrospective forecast framework, one could theoretically draw the correction cor-

responding to the time for which the model is integrated. Although one would need to draw all the

consecutive corrections for the model to follow closely the reference data, corrections for a given

month and year have an inter-annual component, and Batté and Déqué (2012) showed that drawing

corrections from within the year one is trying to forecast gave significantly higher skill scores. To160

avoid over-estimating model skill, since the re-forecast and nudged run periods are the same, the

technique is applied in cross-validation mode in the re-forecasts discussed in part 4, by systemati-

cally discarding the corrections for the year being forecast from the perturbation population. Ideally,

the corrections should be computed over a completely separate period from the re-forecasts. How-

ever, when evaluating seasonal forecasting systems, a limited number of data points is available in165
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the verification scores and we chose to use an extended re-forecast period to ensure as much robust-

ness in our skill assessments as possible.

2.3
:::::::
Seasonal

::::::::::
re-forecast

::::::::::
experiments

::
To

:::::::
evaluate

::::
the

::::::
impact

:::
of

:::
this

:::::::::::
perturbation

:::::::
method,

:::::::
several

::::::::::
re-forecasts

:::::
were

:::
run

:::::::
starting

:::::
from

::::::::
November

:::
1st

:::::
1979

::
to

::::
2012

::::
and

:::::::
running

:::
for

:::
four

:::::::
months

:::::
(until

:::
end

:::
of

::::::::
February).

::::::
Initial

:::::::::
conditions170

::
are

::::::::
provided

:::
by

:::
the

:::::::::::
ERA-Interim

::::::::
reanalysis

:::
for

:::
the

::::::::::
atmosphere

::::::::::::::::
(Dee et al., 2011) ,

:::::::
ORA-S4

::::::
ocean

::::::::
reanalysis

:::
for

::::
the

:::::
ocean

:::::::::::::::::::::
(Balmaseda et al., 2013) ,

::::
and

:::::::
outputs

:::
of

:
a
:::::::

coupled
::::::

model
::::

run
:::::::
nudged

::::::
towards

::::::::::::
ERA-Interim

::
in

:::
the

::::::::::
atmosphere

::::
and

::::::::
ORA-S4

::
in

:::
the

::::::
ocean

::
to

::::::::
initialize

:::
the

::::
sea

:::
ice

::::
and

:::
land

:::::::
surface

:::::::::::
components.

:::::::::
Re-forecast

::::::::
ensemble

::::
size

::
is

:::
set

::
to

:::
30

::::::::
members.

:::::
Table

::
1

::::::::::
summarizes

:::
the

:::::::::::
characteristics

:::
of

::::
each

::::::::
ensemble.

:
175

:::::
Unlike

:::::::::::::::::::::
Batté and Déqué (2012) ,

::::::
where

:::::::::::
perturbations

::::
were

::::::
drawn

::
at

:::::
daily

:::::::
intervals,

:::
we

::::::
chose

::
to

:::
run

::
an

::::::::
ensemble

:::::
using

::::::::::::
perturbations

::::
from

::
5
::::::::::
consecutive

:::::
days,

:::::
drawn

:::::::::
separately

:::
for

::::
each

::::::::
member

::::
from

:::::
within

:::
the

:::::
other

:::::
years

::
of

:::
the

:::::::::
re-forecast

::::::
period.

::::
This

:::::::::
experiment

::
is

:::::
called

:::::
S5D.

:::::
Every

:::
five

:::::
days,

::::::
another

::::
five

:::
day

:::
set

::
of

::::
δX

:::::
terms

::
is

::::::
picked

::
for

:::::
each

:::::::
member

::::
from

:::
the

:::::
same

::::::::
calendar

:::::
month

:::
as

:::
the

:::::::::
re-forecast.

:::::
Note

:::
that

:::
the

::::
δX

:::::
terms

:::
are

:::::
drawn

:::::::::
according

::
to

:::
the

::::
date

::
of

:::
the

:::::::
nudged

:::::::::
re-forecast

::::
run,180

:::::::
meaning

:::
that

:::::::::::
perturbations

:::
for

:::
the

:::::
three

::::::::
prognostic

:::::
fields

:::
are

:::::::::
consistent

::::
with

:
a
::::::
certain

:::::
model

:::::
error

::
at

:
a
:::::
given

::::
date

:::
and

:::::
time.

:::::
Given

:::
the

::::::
relative

::::::::::
importance

::
of
::::::::::

systematic
::::
error

::::
and

:::::::::
interannual

::::::::
variance

::::
with

::::::
respect

::
to
:::::

total

::::::
squared

:::::
mean

::::::::::::
perturbations

::::
(see

:::
Fig.

::
4
:::::::::
discussed

::
in

::::
part

:::
3),

:::
we

::::
also

:::::
chose

::
to

::::
test

:::
the

::::::
impact

:::
of

::::::::
perturbing

:::::::
without

::::::::::
intra-month

:::::::
variance

::
in

:::
the

:::::::::
corrections

:::::
used.

::
To

:::
do

:::
this

:::
we

:::
ran

:::::::::
experiment

::::::
SMM,185

:::::
where

:::::::
monthly

::::::
means

::
of

:::
δX

:::::
terms

:::::
from

:::
the

::::
same

:::::::
calendar

::::::
month

:::
but

:::::
other

::::
years

:::
of

:::
the

:::::::::
re-forecast

:::::
period

:::
are

::::
used

:::
for

:::::
each

::::::::
ensemble

:::::::
member.

::::
The

::::
year

::::
from

::::::
which

:::::::::::
perturbations

:::
are

::::::
drawn

:::::::
changes

::::
each

:::::
month

::
of

:::
the

::::::::::
re-forecast.

3 Analysis of ARPEGE-Climate model errors

The technique described in this study can be used as both a diagnosis of model errors and a perturba-190

tion method. The first opportunity is explored by deriving standard statistics of the ARPEGE-Climate

model errors in a coupled initialized prediction framework.
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3.1 Spectral analysis

The δX population is originally in spectral space (for a total wavenumber of 127) and was first

analyzed in terms of squared amplitude for each total wavenumber n. For each prognostic variable,195

model level z and re-forecast month mo we compute An(z,mo):

An(z,mo) =

n∑
m=−n

[
1

N

N∑
i=1

δXi(n,m,z,mo)

]2
(4)

where N is the size of the perturbation population {δXi} for month mo, and m is the zonal

wavenumber.

To present information in a synthetic way, these statistics are integrated over 200 hPa deep layers200

of the model. We take into account the influence of lead time on results, since the weak nudging may

allow the model to drift slowly from its initial state. Figure 1 shows results for all three nudged prog-

nostic variables. Amplitude is plotted against the wavenumber on a logarithmic scale for both axes.

The first row shows the amplitude spectra of δX for January corrections integrated over 200 hPa

layers. For humidity (Fig. 1(a)), corrections have (as expected) an amplitude that is several orders of205

magnitude smaller for the upper layers of the atmosphere than for the lower layers. This difference in

amplitude is much less pronounced for temperature and streamfunction. For temperature (Fig. 1(b)),

it is worth mentioning that the slope of decrease in amplitude with wavenumber in log-log space

is more pronounced for the upper layers of the atmosphere than for the lower layers. In the lower

layers, the land-sea contrast in temperature corrections generates small structures in the perturbation210

patterns, increasing the amplitude of the corrections for the higher wavenumbers. Figures 1(d–f)

show the month-by-month results for the mid-troposphere layer (600-800 hPa). For all three vari-

ables, the amplitude of corrections seems to increase with lead time for the smaller wavenumbers,

but a clear difference is found mainly between November and the following months of the nudged

re-forecasts used to derive the correction terms.215

:::::
These

::::::
results

:::
are

::::
most

:::::
likely

:::::::::
dependent

::
on

:::
the

:::::::
strength

:::
of

:::
the

:::::::
nudging

::::
used.

:::::
With

:::::
weak

:::::::
nudging

::
the

::::::
model

:::::
drifts

::::
from

::
its

::::::
initial

::::
state

::::::
despite

::::::::
relaxation

:::::::
towards

::::::::
reference

::::
data.

:::
In

:
a
:::::::
previous

:::::::
version

::
of

:::
the

:::::::
method,

:::::::::
corrections

:::::
were

::
of

::::::::
generally

::::::
higher

:::::::::
amplitude

:::
due

::
to

::::::::
stronger

:::::::
nudging,

::::
with

:::::
finer

:::::
spatial

:::::::::
structures

:::::
which

::::::
would

::::::::
translate

::::
into

::::::
sharper

::::::
slopes

::
of
::::

the
:::::::
spectra.

::::::::
However,

::
a

::::::::
thorough

::::::
analysis

:::
of

:::
the

::::::
impact

::
of

::
τ
:::
on

:::
the

::::::
results

::::::::
presented

::::
here

::::
has

:::
yet

::
to

:::
be

::::
done

::::
with

::::
the

::::
most

::::::
recent220

::::::
version

::
of

:::
the

:::::::::::::::
ARPEGE-Climate

::::::
model.

:

3.2 Gridpoint analysis

The spectral δX fields were then converted to gridpoint space for a spatial analysis of the correction

terms. Again, results are integrated over 200 hPa layers for the sake of clarity. Figure 2 plots the
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December mean (in color) and standard deviation (isolines) for δX specific humidity, temperature225

and streamfunction corrections for these layers.

As shown before, corrections for humidity are several orders of magnitude higher for the lower

levels of the atmosphere than in the stratosphere, whereas temperature and streamfunction correc-

tions are of similar amplitude. Results are consistent with the spectral analysis in Fig. 1, in the sense

that for streamfunction corrections are somewhat larger in the upper layer of the atmosphere, but230

with less small-scale patterns, therefore concentrated on the smaller wavenumbers.

In terms of standard deviation, patterns for temperature and streamfunction are mainly zonal (with

some exceptions due to land-sea contrast in the lower layers for temperature). Standard deviation in-

creases with latitude in the northern and southern hemispheres for both variables, and values are

quite similar between layers. For specific humidity, standard deviation is higher in the tropics and235

around the Equator. Less zonal symmetry is found than for temperature corrections. For temperature,

standard deviation values are of the same order of magnitude as the mean corrections in the trop-

ics, whereas streamfunction and humidity correction standard deviations are higher than the mean

correction in most areas of the globe. The temperature mean correction is mostly negative, implying

that the model is warmer than ERA-Interim over most of the atmospheric column.240

3.3 Temporal analysis

A question we wish to address when studying the perturbation population used in our forecasts is the

consistency in time of the δX terms. Indeed one possibility in the use of the perturbations is to apply

corrections estimated for consecutive days in the nudged run. This would make sense only if some

coherence in time is found between the δX terms. We estimate this by computing the autocorrelation245

of correction terms according to the lag between their corresponding dates in the nudged re-forecast

run. Figure 3 shows autocorrelation at lags of 1, 2 and 3 days of February specific humidity
:::
and

::::::::::
temperature corrections (at approximately 850 hPa) and

::
as

::::
well

::
as streamfunction corrections (circa

500 hPa), computed for all years of the re-forecast period.

Autocorrelation for humidity corrections is generally stronger over land than ocean, and strongly250

decreases between one and two day lags. Some areas of the globe such as the Southern Ocean

exhibit no autocorrelation even at day one. Temperature corrections (center column of Fig. 3) show

higher autocorrelation than humidity corrections for each time lag. The geographical areas of high

autocorrelation at approximately 850 hPa are generally consistent with those of humidity corrections.

For streamfunction, autocorrelation from one day to the next is higher than for humidity and255

temperature (over 0.6 in most parts of the globe), and remains above 0.4 in some areas for a two day

lag. Values are typically the same order as that of humidity with a difference in the lag of one day.

This shows that mid-troposphere streamfunction corrections exhibit more consistency in time than

lower troposphere humidity or temperature. The autocorrelation in the streamfunction correction

is a motive for testing consecutive corrections over the time span of synoptic weather regimes for260
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instance. In this paper we chose to test five day consecutive corrections as will be discussed in the

next section
:
in

::::
one

::
of

:::
the

:::::::
seasonal

:::::::::
re-forecast

::::
runs

::::::::
discussed

::
in

::::
part

:
4.

::
As

::
a
:::::::::::
complement

::
to

:::::
these

::::::
spatial

::::
and

:::::::
temporal

:::::::::
analyses,

::::::::::::
supplementary

::::
fig.

::
S1

:::::::::
illustrates

:::
an

:::::::
example

::
of

:::
five

::::::::::
consecutive

::::
days

::
of

:::::::::
corrections

:::
for

::::::
specific

::::::::
humidity,

::::::::::
temperature

::::
and

::::::::::::
streamfunction

:::::::::
corrections

::
at

:::::::
different

::::::
model

:::::
levels

::::::::::::
(corresponding

::::::::::
respectively

::
to

::::::::::::
approximately

::::
970,

::::
850

:::
and

::::
500265

::::
hPa).

:

3.4 Variance decomposition

When using pseudo-random correction terms as perturbations in an ensemble forecasting frame-

work, we wish to combine two effects: correction of systematic errors the model makes in coupled

seasonal forecasting mode, and introduction of perturbations to account for the model uncertainties270

that cannot be dealt with deterministic methods. Both effects could in some sense cancel each other

out: the introduction of too large purely random terms can move the model too far from its own

equilibrium and induce adverse effects, which could translate into increased systematic errors in cli-

mate forecasts. On the other hand, if the systematic error correction is too strong with respect to the

purely random part of the perturbations added in the model, ensemble members will follow too sim-275

ilar trajectories drawn towards the reference climate. In the following paragraph, we take a deeper

look at the perturbations in terms of variance and mean, so as to estimate the relative importance of

the systematic error term and the interannual and intra-month (more random) variance terms in the

corrections used.

Equations 5–7 show how the mean square correction terms for a given month (lead) of the nudged280

re-forecast can be split into three components: one is the squared mean correction, the other two the

straightforward variance decomposition into inter-annual and intra-month variance. In these equa-

tions, N is the total number of perturbations for a given forecast time (month), y a given year of

the re-forecast period used in the nudged run and ny the number of perturbations for the month of

focus in year y (not the same each year in the case of February). The squared mean term δX
2

can be285

interpreted as the systematic error correction for the variable studied. The variance decomposition

separates the inter-annual signal (which is, to some extent, what one wants to predict with seasonal

forecasts) from intra-month variability which can be approximated as noise on a seasonal time scale.

δX2 =
1

N

N∑
i=1

δX2
i = δX

2
+ Var(δX) (5)

Var(δX) =
1

N

N∑
i=1

(
δXi− δX

)2

=
1

N

∑
y

ny∑
iy=1

(
δX

(y)
iy
− δX(y)

)2

+
∑
y

ny
N

(
δX

(y)− δX
)2

(6)

290

δX2 = δX
2

+ Varinter(y)(δX) + Varintra(y)(δX) (7)
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Figure 4 plots the relative importance of each term in the decomposition, zonally averaged and

integrated over 200 hPa deep layers. The intra-month variance (blue line) is the most important

component of the correction term decomposition for all layers and latitudes, except for near-surface

southern subpolar latitudes in the case of specific humidity and southern polar areas in the case of295

stratospheric streamfunction. In most areas, for all three variables, the intra-month term accounts

for more than 50% of the total squared correction. Red lines show the proportion of inter-annual

variance in the decomposition, which stays below 40% for all latitudes and layers. Although this term

is smaller than the intra-month "noise", it contains valuable information for seasonal forecasts: this

was shown in Batté and Déqué (2012) with a so-called "OPT" experiment where corrections were300

drawn in the current season of the reforecast. The black line shows the proportion of the systematic

correction in the total squared correction term. This term ranges on average between 10 and 30%

depending on the variable and vertical layer. More zonal variability is found than for the inter-annual

term, and the symmetry with the intra-month term is quite striking.

This analysis shows that the corrections used are mostly made of noise (at least at a seasonal305

time scale), although mean corrections and inter-annual variability cannot be neglected. These con-

clusions justify the use of these corrections as possible "pseudo-stochastic" perturbations to the

ARPEGE-Climate atmospheric model in seasonal integrations.

4 Impact of perturbations on CNRM-CM seasonal re-forecasts

The potential of the technique is evaluated in an updated version of CNRM-CM5 for seasonal310

forecasts
:::::::::
re-forecasts

:
over a 34-year hindcast period.

:::
The

:::::::
detailed

:::::
setup

::
of

:::::
these

:::::::::::
experiments

::
is

::::::::
presented

::
in

:::
part

::::
2.3.

4.1 Experimental setting

To evaluate the impact of this perturbation method, several sets of seasonal re-forecasts were run,

starting on November 1st 1979 to 2012 and running for four months (until end of February). Re-forecast315

ensemble size is set to 30 members. Table 1 summarizes the characteristics of each ensemble.

Unlike Batté and Déqué (2012) , where perturbations were drawn at daily intervals, we chose to

run an ensemble using perturbations from 5 consecutive days, drawn separately for each member

from within the other years of the re-forecast period. This experiment is called S5D. Every five days,

another five day set of δX terms is picked for each member from the same calendar month as the320

re-forecast. Note that the δX terms are drawn according to the date of the nudged re-forecast run,

meaning that perturbations for the three prognostic fields are consistent with a certain model error at

a given date and time.

Given the relative importance of systematic error and interannual variance with respect to total

squared mean perturbations (Fig. 4), we also chose to test the impact of perturbing without intra-month325
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variance in the corrections used. To do this we ran experiment SMM, where monthly means of

δX terms from the same calendar month but other years of the re-forecast period are used for

each ensemble member. The year from which perturbations are drawn changes each month of the

re-forecast.

4.1 Mean state330

One key aspect we wish to assess when introducing such a method in a coupled model forecasting

framework is how it affects the mean state of the model. Given the nature of perturbations, the

impact on ensemble spread will also be considered. Although results from section 3.4 suggest that

perturbations are made up mostly of intra-month variance, with a systematic error correction term

accounting for less than 20% of the squared corrections in most cases, atmospheric models are highly335

non-linear, and including these perturbation terms could have adverse effects.

The top row of Fig. 5 shows the mean bias for DJF sea surface temperature (left) and total pre-

cipitation (right) re-forecasts in the REF ensemble. (For areas with sea ice the model SST field is in

fact the ice surface temperature, hence the large negative bias with ERA-Interim reference data.) The

CNRM-CM re-forecasts exhibit typical warm SST biases along the eastern parts of ocean basins, as340

in the Gulf of Guinea and in the Niño 1 and 2 areas. The model also exhibits warm biases over the

Southern Ocean and along the Gulf Stream. Figures 5 (c) and (e) show the sea-surface temperature

relative absolute bias for experiments SMM and S5D, respectively. Blue (red) areas indicate where

bias is reduced (increased) in amplitude, regardless of the sign of the bias of REF re-forecasts. Both

stochastic dynamics methods exhibit strinkingly similar effects on SST bias: bias is increased over345

most of the tropical southern hemisphere ocean basins and decreased over most of the Northern

Hemisphere oceans. The bias is also decreased over the Equatorial Central Pacific. Elsewhere, such

as over the Southern Ocean, very little impact is found.

For precipitation, results in terms of relative bias are quite similar for experiments SMM (Fig. 5

(d)) and S5D (Fig. 5 (f)). Both versions of stochastic dynamics seem to have very little impact or350

slightly decrease precipitation biases (although mainly over oceans), with the exception of the Sahel

and Arctic regions where the bias increases, as well as over areas of the Central and Eastern Tropical

Pacific.

Supplementary Fig. S1
::
fig.

:::
S2 shows the REF biases and SMM and S5D relative biases for the first

month of the re-forecast. SST biases are already present but develop mainly after the first month of355

the forecast, whereas precipitation biases are already as strong in November as for longer lead times.

In terms of relative bias, the stochastic dynamics technique amplifies SST biases in November in

most regions of the Tropics, and seems to have a positive effect on precipitation biases already in the

first month of the re-forecast.

Results for 500 hPa geopotential height are shown in supplementary figures S1
::
fig.

:::
S2 for Novem-360

ber and S2
:::
fig.

:::
S3 for DJF. Except for parts of Eurasia, where biases (which were quite limited in
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REF) are amplified with both stochastic dynamics methods due to a shift of the bias pattern, both

SMM and S5D exhibit lower Z500 biases than REF. Figure 6 shows the Z500 bias in experiments

REF, SMM and S5D over the Northern Hemisphere extra-tropics. This figure can be compared to fig-

ure 1 in Batté and Déqué (2012). With CNRM-CM5.2, DJF Z500 bias was quite different to the bias365

found in REF with a more recent version of the ARPEGE-Climate model. The model now exhibits

a bias quite similar to the North Atlantic Oscillation pattern, and a positive bias over the Arctic re-

gions where the bias was previously negative. However, regardless of this change in sign of the bias,

the stochastic dynamics technique reduces the model bias over the Northern Hemisphere. Results

with the new version of the model suggest that improvements in the representation of North Atlantic370

atmospheric circulation could be found. This aspect will be discussed later on in this manuscript.

::
In

:
a
:::::
linear

:::::::::::::
approximation,

:::
the

::::::
impact

::
of
::::

the
:::::::::::
perturbations

::
on

::::::::
seasonal

:::::::::
re-forecast

::::
bias

::
is

::::::
related

::
to

:::
the

:::::
mean

:::::::::
systematic

::::
error

:::::::::
correction

:::::
term,

:::::
which

:::::::
depends

:::
on

:::
the

::::
bias

::
of

:::
the

:::::::
nudged

:::::::::
re-forecast

:::
run.

::::
The

::::::
nudged

:::::::::
re-forecast

:::::::::::
(one-member

:::::
only)

:::::
from

:::::
which

:::
the

:::::::::::
perturbations

::::
were

:::::::
derived

:::::::
presents

::::::
smaller

:::::
biases

::::
than

:::
the

:::::
REF

::::::::
ensemble

::::
with

::::::
respect

::
to

:::
the

::::::::
reference

::::
data

::::
(not

:::::::
shown),

::::::::
although

:::
the375

:::::
choice

::
of

:::::
weak

:::::::
nudging

::::
does

:::
let

:::::
biases

:::::::
develop

:::::::::
throughout

:::
the

:::::::
seasonal

:::::::::::
integrations.

4.2 Spread and deterministic skill

Ensemble seasonal forecasts with GCMs are often overconfident in the sense that the spread around

the ensemble mean is smaller than the root mean square error of the ensemble mean with respect

to verification data (Shi et al., 2015). This lack of dispersion in ensemble forecasts can incur mis-380

leading unreliable forecasts (Weisheimer and Palmer, 2014). Including stochastic perturbations in

the components of the GCM can help partly correct these flaws, as they tend to increase the en-

semble spread. In this paragraph, we wish to assess how the stochastic dynamics technique impacts

ensemble spread, in the sense that this technique is not a random perturbation technique, but rather

includes model corrections. An increase in spread with the use of this technique is not straightfor-385

ward, although we have shown previously that the variance of the perturbations is mainly composed

of intra-month variance which we assume has a similar effect than adding noise to the system.

Figure 7 shows the ensemble spread (computed as the standard deviation around the ensemble

mean) for DJF near-surface air temperature, precipitation and Z500 in experiment REF as well as

the relative spread for these variables in experiments SMM and S5D. Results in terms of the impact390

of stochastic dynamics on spread depend very little on the frequency and use of sequences of per-

turbations, as both experiments SMM and S5D yield similar results for all three variables studied in

terms of geographical distribution of impacts. Spread for the SMM experiment is generally slightly

higher than for S5D.

For near-surface temperature, the REF ensemble spread is large over the Northern Hemisphere395

extratropics in winter. This could be due to inconsistencies in the surface initial conditions with the

version of the surface model used in this version of the coupled model, but this is beyond the scope
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of this paper. Spread is increased almost everywhere with the introduction of stochastic dynamics,

except over parts of Europe, North America and the Amazon rainforest. However, in most regions

the spread with stochastic dynamics is not significantly larger than without (significance at a 95%400

level is tested with bootstrapping intervals).

In the case of precipitation, the impact is less systematic. Regions in the Northern Hemisphere

high latitudes and the Eastern Tropical Pacific exhibit a significantly higher spread with stochastic

dynamics, but extended regions of North and West Africa show a lower spread in precipitation

(although for these regions precipitation amounts as well as model spread are much more limited).405

The highest impact on 500 hPa geopotential height (Z500) spread is found for the Northern Hemi-

sphere extra-tropics and subpolar regions. Z500 spread is significantly higher east of Greenland with

SMM perturbations. The S5D experiment exhibits similar patterns of spread increase but very few

gridpoints have a significantly higher spread than REF.

These impacts on ensemble spread are limited both in terms of amplitude and geographical re-410

gions, when compared to other stochastic perturbation methods such as SPPT (see for instance fig-

ures 5 and 6 in Batté and Doblas-Reyes (2015) for impact of SPPT on global spread of SST and

precipitation with the EC-Earth v3 GCM).

4.3 Re-forecast skill

In the previous paragraphs, we have shown that stochastic dynamics applied in a seasonal re-forecasting415

framework have non-negligible impacts on the forecast mean state and ensemble spread. The next

step in assessing the impact of this method on forecast quality is comparing the results in terms of

skill over the re-forecast period for the three experiments REF, SMM and S5D.

One common justification for the introduction of stochastic perturbations is the lack of spread of

the ensemble re-forecasts with respect to skill measured as the root mean square error of the ensem-420

ble mean. We have found some (although limited) impact of the method on ensemble spread, it is

therefore worthwhile checking how the spread-skill ratio evolves with the introduction of stochastic

dynamics.

RMSSSi = 1− RMSEi

RMSEREF

The model ensemble root mean square error (RMSE) measures the distance between predicted and425

observed anomalies,
::::::::
therefore

::::::::
removing

:::
the

:::::
mean

::::
bias

::
of

:::
the

::::::
model. Figure 8 shows the RMSE for

REF DJF near-surface temperature, precipitation and Z500 re-forecasts. RMSE values are generally

of the same order of magnitude than the ensemble spread. Supplementary figure S3
:::
fig.

::
S4

:
illustrates

this by plotting the spread-skill ratio for the three variables of interest in experiments REF, SMM

and S5D. For near-surface temperature, RMSE is lower than spread over most oceans, but higher430

over many continental areas. Precipitation re-forecasts are underdispersive over most subpolar and
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polar regions and the Tropical Pacific, but in tropical and mid-latitudes many areas exhibit a higher

RMSE than model spread. In the case of Z500, RMSE is lower than model spread over most areas

of the globe, some exceptions include North America and parts of the North Pacific and Northwest

Atlantic oceans.435

The second and third rows of Fig. 8 show the root mean square skill score, or RMSSS, of experi-

ments SMM and S5D respectively. The RMSSS for experiment i is computed following equation 8,

where RMSEREF is the RMSE of experiment REF.

RMSSSi = 1− RMSEi

RMSEREF
:::::::::::::::::::::

(8)

The idea of this score is to highlight areas where the model RMSE increases (negative RMSSS) or440

decreases (positive RMSSS) with the introduction of stochastic dynamics, by taking the REF RMSE

as a reference. A positive RMSSS indicates an improvement of the model RMSE. A perfect score

would be 1, and negative values can theoretically tend to infinity. Results for near-surface temper-

ature (left column) are quite similar between both versions of stochastic dynamics. Improvements

with both versions are found over the Eastern Tropical Pacific, Northeast Canada and over the Middle445

East for instance. Some improvements are more pronounced in the case of S5D, as over Southeast

Asia and the Horn of Africa region, but it is difficult to say which version of stochastic dynamics

gives the best results. Some areas exhibit an increase in RMSE with stochastic dynamics, such as the

areas of Antarctica, the Indian Ocean east of Madagascar, and the Bering Strait area. Results for pre-

cipitation are quite patchy, although again patterns are similar for both types of stochastic dynamics.450

Areas of consistent improvements include West Africa, the Arabian peninsula and Central America,

but in other areas such as the Eastern Tropical Pacific, the RMSE increases with the introduction

of stochastic dynamics. This area is where the ensemble spread significantly increases as shown in

fig. 7 (e) and (h). In this case the introduction of stochastic perturbations is detrimental to forecast

quality in terms of RMSE, but the model spread-skill ratio is only marginally affected as shown in455

supplementary fig. S3
::
S4. It is worth mentioning that for this region, the REF ensemble is already

slightly over-dispersive before introducing perturbations.

In the case of Z500, results are generally better in the S5D experiment than SMM, with the ex-

ception of the eastern coast of the USA and Australia. For S5D many areas show improvements of

the model RMSE with respect to REF (which translates into a positive RMSSS).460

Overall for these three variables, results show that the stochastic dynamics technique has con-

trasted effects on the model RMSE depending on the region of study. However, for near-surface tem-

perature and Z500, more areas with an increased RMSSS appear. Generally speaking, the stochastic

dynamics technique doesn’t seem to be detrimental for model skill in terms of RMSE. Significance

of the changes in RMSE is very limited (and not shown in the figures), however, provided that both465
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S5D and SMM experiments exhibit similar RMSSS using REF as a reference, we are confident that

these results are not random noise due to a limited ensemble size and re-forecast period.

RMSE is the quadratic distance between forecast and reference observations. Depending on the

amplitude of inter-annual variations of the variable of interest, the RMSE can be low although the

model does not capture its interannual variability. The correlation coefficient measures to what ex-470

tent the different experiments capture interannual variations of seasonal means for the variables of

interest, regardless of the amplitude, giving complementary information on the model skill. Figure 9

shows DJF correlation for near-surface temperature and precipitation in REF, and correlation differ-

ences with REF for experiments SMM and S5D. REF exhibits high and significant correlation for

near-surface temperature over most tropical regions, and over some mid-latitudinal regions such as475

southern Africa, eastern North America and Scandinavia. Areas with significant correlation differ-

ences (assessed following Zou (2007)) are marked by dots. Altough patterns of correlation difference

with REF are similar between both stochastic dynamics experiments, both versions have different

impacts on correlation when looking only at areas of significant skill differences. S5D seems to have

more satisfying results than SMM, in the sense that areas with a significant reduction of correlation480

skill with respect to REF are smaller or become non-significant (as in southwest China and the north

Pacific), whereas some areas such as Central Eurasia, Greenland and northeast Canada, northeast

Africa and the Arabian peninsula exhibit increased skill with S5D when compared to SMM.

Results for significant correlation in REF and impacts of stochastic dynamics on correlation are

much more patchy in the case of precipitation, for which little systematic impact of the method is485

found. As for other state-of-the-art seasonal forecasting systems, skill is much lower than for near-

surface temperature. One interesting feature is a dipole of increase in DJF precipitation re-forecast

skill in the Central Pacific and decrease over the Eastern Equatorial Pacific. This can be related

to the improvements of the spread-skill ratio over the former region, whereas the model is already

over-dispersive over the latter region where spread and model error both increase drastically with490

the inclusion of stochastic dynamics.

The forecast scores shown up to this point evaluate the model ensemble mean re-forecast skill. Us-

ing ensemble forecasts provides the opportunity to derive probabilistic forecasts from the ensemble

members. We investigate the probabilistic skill of the different experiments in the light of two scores,

namely the Brier Score and the continuous ranked probability skill score, or CRPSS. Our probability495

forecasts are very straightforward: the proportion of ensemble members predicting a given event is

the forecast probability of the event. The Brier Score (Brier, 1950) measures the quadratic distance

between forecasts and reference data in probability space. It can be decomposed into three terms

quantifying forecast reliability, resolution and uncertainty (Murphy, 1973). Reliability diagrams for

Niño 3.4 region SST exceeding the second tercile (El-Niño like events) or remaining below the500

first tercile (La Niña like events) are represented in supplementary Fig. S4. These diagrams show

the binned forecast probabilities against the relative observed frequencies corresponding to these
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forecasts. Ideally, points should be aligned along the diagonal to have a reliable system. The size

of the dots are proportional to how frequently such probabilities are issued. For Niño 3.4 SST, the

diagrams and Brier Score decompositions show that stochastic dynamics has a very minor impact505

on probabilistic skill. If anything, the technique is slightly detrimental to model reliability, although

differences are not significant.

Results for near-surface temperature over Europe are shown in supplementary Fig. S5. In this case,

the model exhibits no skill and is (as most seasonal forecast systems) over-confident in its predic-

tions as shown in the reliability diagrams for REF. The stochastic dynamics experiments exhibit an510

improved reliability, especially in the case of warm event re-forecasts. This is however compensated

in the Brier Score by slightly degraded resolution, the SMM and S5D experiments therefore do not

show skill over these regions either.

Figure 10 shows the CRPSS for T2m, precipitation and Z500 for all three experiments.
::::
REF

::::
with

::::::
respect

::
to

::::::::
reference

::::
data,

:::
and

::::::
SMM

:::
and

::::
S5D

::::
with

::::::
respect

::
to

:::::
REF.

::
In

:::
the

::::
case

::
of

::::
REF,

:::
the

:
CRPSS is515

computed at each gridpoint using ERA-Interim (or GPCP for precipitation) data of the other years

of the re-forecast period as a reference (climatology) probability forecast. As for deterministic skill

scores, areas of positive skill are mostly constrained to the tropics, and precipitation forecasts are

very poor. The region dominated by ENSO concentrates the higher skill scores in the case of near-

surface temperature.
:::::::::::
Improvements

:::
(or

:::::::::::
degradation)

::
in

:::::::::::
probabilistic

::::
skill

::
is

:::::::
assessed

:::
by

:::::::::
computing520

::
the

:::::::
CRPSS

:::
for

:::::
SMM

:::
and

::::
S5D

:::::
using

::::
REF

::
as

:
a
:::::::::
reference. Minor improvements in the

:::::::
Tropical

::::::
Pacific

area are obtained in the SMM ensemble for both temperature
:::
both

:::
the

::::::
SMM and

::::
S5D

:::::::::
ensembles

:::
for

::::::::::
temperature,

:::::::
whereas

::::::
results

:::
are

:::::
more

:::::::::
contrasted

:::
in

:::
the

::::
case

::
of

:
precipitation. For Z500, hints of

improvements are found over North
::::::::
Northeast America, alongside a reduction of negative CRPSS

over Europe. However, in most areas, very little change is seen between the three ensembles.
:::
No525

::::
clear

::::::
pattern

::
of

::::::
change

::
in

::::
skill

::
is

:::::
found

:::::::
between

:::
the

::::::::
different

:::::::
variables

::
in
:::::
most

:::::
areas.

Note that the scores presented here were computed based on model anomalies in cross-validation

mode, but without further calibration of the ensemble forecasts (as a quantile-quantile calibration

technique for instance) which can improve results with respect to climatology. The results in terms

of CRPSS are consistent with the minor changes in the model spread-skill ratio and low impact of530

the stochastic methods on model reliability and resolution in the Brier Score evaluations shown in

supplementary figures S4 and S5.

The global evaluation of the stochastic dynamics technique in terms of impact on re-forecast

skill is quite contrasted, with results depending on the regions of study. Furthermore, we face a

recurrent issue in the seasonal to decadal prediction field, which is the limited statistical significance535

of differences in skill between two versions of a system. We stress however that the results presented

here are computed for relatively large ensemble sizes (30 members) and a 34-year re-forecast period,

giving a certain robustness to results presented here. It is also worth mentioning that most significant

impacts found with the stochastic dynamics technique are found for both versions of the method
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discussed in this paper. This could imply that the skill improvements are mostly due to improvements540

in the model mean state due to the non-zero mean term in the perturbations applied in the stochastic

dynamics technique.

Earlier in this paper, we found evidence that the stochastic dynamics technique improved the Z500

bias over the North Atlantic mid-latitudes and the Arctic. The technique also improves the model

spread-skill ratio over Europe (see supplementary Fig. S3
::
fig.

:::
S4

:
for Z500). Figure 11 corroborates545

this: we computed the model spread and RMSE for Z500 averaged over Europe, according to the

lead time, for the three ensembles. The RMSE is reduced with the stochastic dynamics technique in

the first month of the re-forecast, and spread is larger than for REF in both S5D and SMM ensembles

for each re-forecast lead time.

Granted that some improvements are found both in the model mean state and spread-skill ratio550

for Z500 over the region, we examine in the following section the impact of the technique on the

representation of North Atlantic large-scale circulation, both in terms of the re-forecast skill of the

North Atlantic Oscillation (NAO) and representation of the North Atlantic-Europe weather regimes.

4.4 North Atlantic large-scale circulation

4.4.1 North Atlantic Oscillation re-forecasts555

:::
The

:::::
North

:::::::
Atlantic

:::::::::
Oscillation

::
is

:::
the

::::
main

:::::
mode

::
of

::::::::
variability

::::
over

:::
the

::::::::
Northern

::::::::::
Hemisphere

:::::::::::
mid-latitudes

::::
from

:::::::::::
sub-seasonal

::
to

::::::::::
inter-annual

::::
time

::::::
scales.

::
At

::
a
:::::::
seasonal

::::
time

:::::
scale,

::::
skill

::
in

:::::::::
predicting

:::
the

:::::
NAO

:::
can

:::::::
provide

::::::
insight

:::
on

:::
the

:::::
mean

:::::::
position

::
of

::::
the

:::::
North

:::::::
Atlantic

:::::
storm

:::::
track

::::
and

::
in

::::
turn,

::::::::
climatic

::::::::
anomalies

::
in

::::::
surface

:::::::::
conditions

::::
over

::::::
Europe

:::
and

::::::::
Northeast

::::::::
America.

::::
This

:::::
index

:::
has

::::::::
therefore

::::
been

::
in

::
the

::::::::
spotlight

::
of

::::::::::
multi-model

:::::::
seasonal

:::::::::
re-forecast

::::::::::
evaluations

::::::::::::::::::::::::::::::::::::::::::
(e.g. Doblas-Reyes et al., 2003; Butler et al., 2016) .560

::::::
Recent

:::::
works

::::::
suggest

::::
that

::::::
several

:::::::::
operational

::::::::
seasonal

::::::::
prediction

:::::::
systems

::::::
exhibit

:::::::::
significant

::::
skill

::
in

::::::::
predicting

:::
the

:::::
NAO,

::
or

::
its

::::::::::
hemispheric

::::::::::
counterpart,

:::
the

::::::
Arctic

:::::::::
Oscillation

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Scaife et al., 2014; Riddle et al., 2013; Stockdale et al., 2015) ,

:::
and

::::::
further

::::
skill

:::::
may

::
be

::::::::
obtained

:::
by

:::::::::
improving

:::::::::::::::::::::
stratosphere-troposphere

::::::::::
interactions.

:::::::::
However,

:::
skill

:::::::::::
assessments

:::
are

::::::
subject

:::
to

::::::::::::
non-negligible

:::::::::
variability

:::::::::
depending

:::
on

:::
the

:::::::
number

::
of

:::::
years

::::
and

::
the

:::::::::
re-forecast

::::::
period

:::::::::
considered

:::::::::::::::::::::::::::::::
(Shi et al., 2015; Butler et al., 2016) .565

In this study we compute the NAO index as the projection of the DJF Z500 anomaly for a given

year on the leading EOF of 500 hPa geopotential height in ERA-Interim over the North Atlantic - Eu-

rope region defined by Hurrell et al. (2003) over the reference period (in cross-validation mode, e.g.

by removing the year of interest from the 1979–2012 period). This is done both for the ERA-Interim

reference index and each member of the three re-forecast ensembles. Figure 12 shows boxplots of570

the REF, SMM and S5D ensemble re-forecasts of the NAO index, verified against ERA-Interim.

The correlation between the ensemble mean indices and the ERA-Interim index is shown in the

top left corner of the figure. Correlation in REF is reasonably high when compared to coupled pre-

diction systems with similar resolutions over a 30-year re-forecast period (Kim et al., 2012), and

17



significantly above zero. The SMM ensemble exhibits a slightly lower correlation than REF, and575

S5D perturbations seem to improve correlation of the NAO, but differences are not significant when

assessed with a bootstrapping technique. The stochastic dynamics technique has no impact on the

ensemble spread in the NAO index re-forecasts when computed over the entire re-forecast period.

4.4.2 Weather regime statistics

The impact of stochastic dynamics on sub-seasonal variability is assessed, focusing on the North580

Atlantic region where a strong decrease in systematic error was found. We examine how the model

represents the four main winter weather regimes over the region, defined following Michelangeli

et al. (1995) using an EOF decomposition of daily 500 hPa geopotential height anomalies and a

k-means clustering technique. The four centroids of the weather regimes are represented in supple-

mentary Fig. S6. Frequency of attribution to each cluster is shown in the figure.585

As in other standard-resolution climate GCMs (see for instance Dawson et al. (2012)), the seasonal

forecasting system discussed here fails to represent the North Atlantic weather regimes properly.

Moreover, the REF re-forecast exhibits quite strong Z500 biases over the region. We therefore project

model daily 500 hPa geopotential height anomalies for each ensemble member onto the EOFs of the

ERA-Interim anomalies instead of using the model EOFs. Weather regimes are attributed following590

an euclidean distance criterion. In the following, we chose a minimum weather regime duration of

3 days, all days in regimes lasting less than this limit were classified as regime transition days. This

explains the minor differences in climatological frequencies of the ERA-Interim regimes in table 2

and Fig. S6.

Table 2 shows the frequency and mean duration of each weather regime in ERA-Interim and ex-595

periments REF
:
,
:::::
SMM and S5D. Compared to reanalysis data, the REF ensemble underestimates the

frequency of the NAO+ regime by more than 5.5% and overestimates the NAO− regime frequency

by over 4%. The introduction of stochastic dynamics in the atmospheric model tends to correct

at least parts of these errors, as
:::::
SMM

::
or
:

S5D statistics are generally closer to ERA-Interim than

REF. This is also the case for regime duration. The mean duration of each regime is systematically600

improved with S5D
::::::::
stochastic perturbations. In most cases the length of the regimes is not consider-

ably changed, apart from the Blocking regime for which stochastic dynamics in the S5D experiment

make the regime last on average 0.4 days longer. One could think that the introduction of stochastic

perturbations could cause the model to shift from one regime to another more frequently, therefore

shortening the mean length of each regime. Results in table 2 show that this is not the case, as
::::
both605

:::::
SMM

:::
and

:
S5D perturbations tend to increase regime duration when the model under-estimates it.

Another aspect we wish to assess is how the stochastic dynamics technique changes the frequency

of weather regime transitions. Figure 13 shows the frequency of these transitions for ERA-Interim,

REF,
::::::
SMM and S5D. Transitions are defined as follows: we look at the end of a given regime

(which lasts three days or more) which is the following regime. Transitions can therefore be from610
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one regime back into the same one, under the condition that the intermediate days are a transition

(less that three days in another regime). With respect to ERA-Interim over the same period, CNRM-

CM (REF) represents reasonably well the North Atlantic weather regime transition frequencies.

Some frequencies are over-estimated, as the NAO− transition to another NAO− event (27% in REF

versus 16% in ERA-Interim), and the NAO+ to Scandinavian Blocking transition (47% in REF615

versus 35% in ERA-Interim). For these two examples, the S5D experiment
:::::::::
experiments

:
including

stochastic dynamics slightly improves
::::::
improve

:
results. However, this is not always the case, and it is

impossible to conclude as to one experiment exhibiting better weather regime transition frequencies

than another.

These results for North Atlantic weather regimes show that when including perturbations to the620

model dynamics, the intraseasonal variability of the model stays quite consistent with reference data,

and improves in some aspects such as regime frequencies. Adding noise to the model dynamics

does not significantly push the model into favoring some weather regime transitions to others.
:::
As

::::::::
previously

::::::
noted,

::::
little

:::::::::
difference

:
is
::::::
found

:::::::
between

:::
the

:::::
SMM

:::
and

::::
S5D

:::::::::::
perturbation

:::::::
methods.

:

4.4.3 Weather regime frequency re-forecast skill625

Supplementary fig. S7 represents boxplots of the ensemble re-forecasts of the four weather regime

frequencies for DJF 1979–2012 in experiments REF(left)
:
,
:::::
SMM and S5D (

::::
from

:::
left

::
to

:
right). No

striking impact on the ensemble spread of the weather regime frequencies is found with the intro-

duction of stochastic dynamics in CNRM-CM. Table 3 shows the correlation between the ensemble

mean frequency and ERA-Interim for each weather regime (shown by red dots for each year in630

fig. S7). Correlation is generally quite poor for the REF ensemble, as weather regime frequencies

are quite challenging to predict at a seasonal time scale due to internal variability. However, we do

notice a significant
:::::
strong

:
increase in the correlation coefficient for NAO− regime frequency pre-

dictions, consistent with the improvement in the NAO index re-forecasts with S5D suggested earlier.

The ensemble with stochastic dynamics seems to capture some signal for the extreme winter 2009/10635

(Ouzeau et al., 2011), as shown in supplementary fig. S7. For the other three regimes, no significant

change is found. This encouraging result should be interpreted with caution due to the high levels of

uncertainty when dealing with seasonal re-forecasts over mid-latitudes (Shi et al., 2015).

As another way of assessing weather regime forecast quality over the re-forecast period, we com-

puted a score based on the Brier Score over the four weather regimes by comparing the actual640

weather regime frequency to the weather regime probability given by the ensemble forecast. This

score is a distance in probability space and should be as small as possible. A corresponding (posi-

tively oriented) skill score is obtained by computing a corresponding reference distance. We chose

the ERA-Interim frequency of each regime over all other years of the re-forecast period as a reference

forecast. Our REF ensemble has a skill score of -0.011, meaning that using ERA-Interim climatol-645

ogy over the other years of the re-forecast gives a better probability forecast than CNRM-CM of
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weather regime frequencies. When introducing 5-day stochastic dynamics, the skill score is positive

and reaches 0.081. Again, significance of these results is quite limited, but all seem consistent and

lead us to conclude that this technique improves the representation of North Atlantic variability at a

seasonal time scale.650

5 Conclusions

This study has provided details on the stochastic dynamics technique, first developed and described

in Batté and Déqué (2012) and further amended in more recent versions of the CNRM-CM coupled

GCM for seasonal forecasts. A version of this method (similar to the S5D experiment discussed in

this paper) has been implemented in the next operational seasonal forecasting system 5 at Météo-655

France.

Stochastic dynamics is based on an estimation of atmospheric model errors using nudging, and

the introduction of random in-run corrections of these model errors. The statistical analysis of model

errors showed that the amplitude of spectral corrections was highest in the smaller wavenumbers,

and generally increased between the first month and the following months of the nudged re-forecast660

run. Unlike other stochastic perturbation techniques, the perturbations in the stochastic dynamics

technique present by construction a non-zero mean and variability in both space and time which

is specific to each perturbed variable. Some time consistency in perturbations can be sought by

using a sequence of corrections from the nudged run, as was done for experiment S5D. A de-

composition of the mean squared perturbation terms showed that perturbations consisted mainly665

of intra-month variance, but that inter-annual variance and systematic part of the perturbations was

non-neglectable
:::::::::::
non-negligible.

Beyond the analysis presented in Batté and Déqué (2012), the impact of stochastic dynamics was

studied in two boreal winter seasonal re-forecast runs compared to a reference re-forecast with initial

perturbations only. The SMM experiment used monthly mean correction terms drawn seperately and670

each month for each ensemble member, whereas the S5D experiment explored the use of five-day

sequences of perturbations drawn independently every five days for each ensemble member. Results

showed a reduction of precipitation bias over most areas of the globe, as well as improvements in

the model mean Z500 field over the Northern Hemisphere. The reduction of Z500 bias is consistent

with results from Batté and Déqué (2012) although this previous study used an older version of the675

seasonal forecasting system with different biases. In terms of forecast skill, improvements are found

mostly for near-surface temperature due to an overall increase in ensemble spread. For precipitation,

results are patchy and some areas such as the Eastern Tropical Pacific exhibit a decrease in skill with

the introduction of stochastic dynamics.

An evaluation of the representation of variability over the North Atlantic region was then pre-680

sented, looking at both NAO forecasting skill and the representation of North Atlantic weather
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regimes. Encouraging improvements were found in the frequency of weather regimes and some

weather regime transitions, although most differences are most likely non significant. Interestingly,

the introduction of stochastic dynamics does not decrease the length of weather regimes nor sig-

nificantly alter regime transition frequencies. A considerable improvement of the correlation of DJF685

NAO− regime frequency with ERA-Interim was also found with the
:::::
SMM

:::
and S5D experiment

::::::::::
experiments,

although no significant change was found in DJF NAO index correlation skill. Overall, the introduc-

tion of stochastic dynamics perturbations in CNRM-CM seems to benefit the representation of North

Atlantic weather regimes.

Several limitations appear with this method. The perturbations rely on a priori estimations of690

model errors by atmospheric nudging, therefore the method requires a preliminary nudged run con-

sistent with the target season and model version, which can be computationally expensive. How-

ever, the method is quite straightforward to implement once atmospheric nudging is included in

the model. Moreover, this method requires very limited tuning with respect to other stochastic per-

turbation techniques, since only the strength of the relaxation in the preliminary nudged run and695

the frequency of perturbations in forecast mode need to be adjusted.
::::
Most

:::::::::
significant

:::::::
impacts

:::::
found

::::
with

::
the

:::::::::
stochastic

::::::::
dynamics

::::::::
technique

::
as

::::::::
presented

::::
here

:::
are

:::::
found

:::
for

::::
both

::::::::::
perturbation

::::::::::
frequencies

::::::::
discussed

::
in

:::
this

::::::
paper.

::::
This

:::::
could

:::::
imply

::::
that

::::
with

:::
the

:::::::
current

:::::
setting

:::
of

:::
the

:::::::
nudging

::::::::
strength,

:::
the

:::
skill

::::::::::::
improvements

::::
are

::::::
mostly

:::
due

::
to

::::::::::::
improvements

:::
in

:::
the

:::::
model

:::::
mean

::::
state

:::::
(due

::
to

:::
the

::::::::
non-zero

::::
mean

:::::
term

::
in

:::
the

:::::::::::
perturbations

::::::
applied

::
in

:::
the

::::::::
stochastic

:::::::::
dynamics

:::::::::
technique).

:::::
These

::::::
results

:::::::
suggest700

:::
that

::::::
further

:::::::::::
investigation

::
on

:::
the

::::::
impact

::
of

:::
the

:::::::
strength

:::
of

:::
the

::::::::
relaxation

:::
on

:::
the

::::::::
correction

:::::
terms

::::
and

:::::::::
re-forecast

::::
skill

::::::
should

::
be

:::
led

::::
with

::::
this

::::
new

::::::
version

:::
of

:::
the

:::::::::::::::
ARPEGE-Climate

:::::::::::
atmospheric

::::::
model.

:::::
Based

::
on

::::::
results

:::::::::
presented

::::
here,

:::
the

::::::
current

::::::
choice

:::
of

:::
the

::::::::
relaxation

:::::::
strength

::::
may

:::
be

:::
too

:::::
weak

:::
for

:::::
5-day

::::::::::
consecutive

:::::::::
corrections

::
to
:::::

push
:::
the

::::::
model

:::
into

:::::::::::
significantly

::::::::
different

:::::
states

::::
than

:
a
::::::::

monthly

::::
mean

:::::::::
correction

:::::
term.705

On more theoretical grounds, the philosophy behind the stochastic dynamics technique is very

ad hoc in the sense that it uses model error statistics to correct these in forecast mode, instead of

introducing stochasticity in the physical parameterizations of the model. The additive perturbations

to the model dynamics can cause imbalance in the energy and water budgets, although the impact

most likely remains quite limited, as shown by the skill assessments in this study. In terms of inter-710

actions with surface and ocean components in the coupled model, the perturbations are dialed down

to zero in the lowest levels of the atmosphere, but results in terms of SST biases show that these

do have a systematic impact on the surface. This aspect will be further evaluated in specific case

studies. However, our belief based on comprehensive skill evaluations is that the overall influence of

the technique is positive at a seasonal time scale.715

One motivation for introducing stochastic dynamics in the CNRM-CM climate forecasting sys-

tems was to generate ensembles in burst mode instead of lag-average initialization. This evolution

of the initialization technique enables us to use the same configuration for weekly and sub-seasonal
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forecasts, without significantly degrading the skill of several ensemble members by starting from

older initial conditions. This study showed however that the impact of the method on ensemble720

spread (with respect to perturbing only at forecast time 0) depended on the area and variable of inter-

est, and was somewhat limited. The technique could be complemented by other stochastic methods

to perturb the atmospheric physical tendencies, although interactions between this type of pertur-

bations and dynamical nudging in the model should be carefully documented. Developments are

currently underway to include SPPT (Palmer et al., 2009) in the ARPEGE-Climate model.725

An extension of the method considered at CNRM is to introduce flow-dependency in the correc-

tions, based on classification of the correction population depending on the state of the atmosphere,

following the idea explored by D’Andrea and Vautard (2000). Preliminary studies using classifica-

tion of streamfunction fields or based on the state of ENSO gave disappointing results in re-forecast

skill assessments. An interesting perspective to explore this aspect is to take advantage of the long730

reanalysis datasets such as ERA-20C (Compo et al., 2011) and 20CR (Poli et al., 2013), however the

applications in real-time coupled forecasts would be necessarily limited since these reanalyses span

periods for which ocean data are unavailable.
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Table 1. Characteristics of the seasonal re-forecast experiments discussed in this paper.

Name Ensemble size Initial perturbations Stochastic Dynamics Characteristics

REF 30 random δX no -

SMM 30 none yes monthly mean δX terms

S5D 30 none yes five consecutive δX terms

Table 2. Weather regime frequencies and mean duration (in days) for ERA-Interim and experiments REF,
:::::
SMM

and S5D (weather regimes are defined for a duration of 3 days or more, so frequencies don’t sum up to 100%).

NAO+ Blocking NAO− Atl. Ridge

ERA-Interim 32.1% 9.48 24.4% 7.14 18.8% 9.27 16.6% 5.85

REF 26.5% 8.28 23.4% 6.56 24.0% 8.90 16.8% 6.41

::::
SMM

:::::
28.0%

:::
8.36

: :::::
23.8%

:::
6.78

: :::::
21.8%

:::
9.35

: :::::
17.1%

:::
6.38

:

S5D 28.0% 8.35 23.8% 6.97 21.9% 9.16 17.1% 6.38

Table 3. Correlation between ensemble mean DJF North Atlantic-Europe weather regime frequencies in ex-

periments REF
:
,
::::
SMM

:
and S5D and ERA-Interim. Weather regimes are defined for a duration of 3 days or

more.

NAO+ Blocking NAO− Atl. Ridge

REF 0.21 −0.03 0.25 −0.06

::::
SMM

: :::
0.33

: :::::
−0.12

:::
0.41

: :::::
−0.06

:

S5D 0.17 0.00 0.54 −0.01
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Figure 1. Spectral amplitude of corrections for (from left to right) specific humidity, temperature and stream-

function for January 1980–2013 integrated over 200 hPa layers of the atmospheric model (top row), and for

each month of the nudged runs for the 600-800 hPa layer (bottom row). Values are calculated with raw δX

spectral fields (corrections per model time step).
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Figure 2. Mean and standard deviation of December 1979–2012 corrections for (from left to right) specific

humidity, temperature and streamfunction for 200 hPa layers of the atmospheric model (centered from top to

bottom at 100 hPa, 300 hPa, 500 hPa, 700 hPa and 900 hPa respectively). δX values are converted to standard

units per day.
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Figure 3. Autocorrelation for lags (top to bottom) 1 to 3 days of February 850 hPa humidity (left) and temper-

ature (center) corrections and 500 hPa streamfunction corrections (right).
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Figure 4. Decomposition of the zonal mean square correction term for December corrections. Statistics are

computed for 200 hPa layers as in Fig. 2. Black lines represent the squared mean term, red lines the interannual

variance, and blue lines the intra-month variance.
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Figure 5. DJF bias (top row) for REF experiment SST , precipitation and Z500 (from leftto
:
)
:::
and

::::::::::
precipitation

:
(right); corresponding relative absolute bias in experiments SMM and S5D (second and bottom rows, respec-

tively). Bias is computed with respect to ERA-Interim for SST and GPCP for precipitation. Areas in blue

indicate where bias is lower with respect to REF, whereas areas in shades of red show where bias is increased,

regardless of the sign of the bias.
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Figure 6. Mean bias for DJF 500 hPa geopotential height with respect to ERA-Interim (in m) over the Northern

Hemisphere for experiments (from left to right) REF, SMM and S5D.
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Figure 7. DJF spread (top row) for REF experiment near-surface air temperature, precipitation and Z500 (from

left to right); corresponding relative spread in experiments SMM and S5D (second and bottom rows, respec-

tively). Spread is computed as the standard deviation around the ensemble mean. Areas in blue indicate where

spread is lower with respect to REF, whereas areas in shades of red show where spread is increased, and dots

show where differences are significant at a 95% level based on bootstrapping intervals.
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Figure 8. DJF root mean square error (RMSE) for REF (top row) computed against ERA-Interim (GPCP in the

case of precipitation) over the re-forecast period for near-surface air temperature, precipitation and Z500 (from

left to right). Middle and bottom rows: SMM and S5D root mean square skill score (RMSSS) using REF as a

reference forecast. Areas in blue indicate where RMSE is higher than in REF, whereas areas in shades of red

show where the RMSE is lower.
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Figure 9. REF experiment DJF correlation (top row) for near-surface air temperature (left) and precipitation

(right) with respect to ERA-Interim and GPCP, respectively. Areas with correlation significant at a 95% level

are marked by dots. Second (resp. bottom) row: difference in correlation between experiments SMM (resp.

S5D) and REF. Significance of correlation differences (marked by dots) is assessed following Zou (2007).
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Figure 10.
:::
(a-c)

:
DJF continuous ranked probability skill score (CRPSS) for

:::
the REF , SMM and S5D

experiments (top to bottom rows, respectively)
::::::::
experiment

:
near-surface air temperature, precipitation and

Z500(from left to right). Areas in red/blue indicate where the model skill is higher/lower than a reference

forecast using climatology.
::::
(d-f,

:::
g-i)

::::
Same

:::
as

::::
(a-c)

::
but

:::
for

:::::
SMM

:::
and

::::
S5D

:::::::::
experiments

:::::::
(middle

:::
and

::::::
bottom

::::
rows,

::::::::::
respectively)

::::::::
computing

::::::
CRPSS

:::
with

::::
REF

::
as

:
a
::::::::
reference.
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Figure 11. Evolution of spread (dots) and RMSE (lines) with forecast time for 500 hPa geopotential height over

Europe in experiments REF (red), SMM (blue) and S5D (green).

Figure 12. DJF NAO index computed with ERA-Interim 500 hPa geopotential height (black lines) and boxplots

of ensemble re-forecasts REF (gray), SMM (blue) and S5D (red) NAO indices computed by projecting model

anomalies on the ERA-Interim NAO pattern. Anomalies and NAO indices are computed in cross-validation

mode. The correlation between the ensemble mean and ERA-Interim index is shown in the top left corner of

the figure.

39



Figure 13. Frequency of weather regime transitions (in %) computed by discarding regimes shorter than 3 days

(considered as transition days)
:::
over

:::
DJF

:::::::::
1979–2012. Results are shown for ERA-Interim reanalysis

::
(in

:::::
black)

and experiments REF,
:::::
SMM and S5D for DJF 1979–2012

::
(in

::::
grey,

:::
blue

:::
and

::::
red,

:::::::::
respectively).
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