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Abstract. We describe the Max Planck Institute Car-
bon Cycle Data Assimilation System (MPI-CCDAS) built
around the tangent-linear version of the land surface scheme
JSBACH, which is part of the MPI-Earth System Model v1.
The simulated phenology and net land carbon balance were5

constrained by globally distributed observations of the frac-
tion of absorbed photosynthetically active radiation (FAPAR,
using the TIP-FAPAR product) and atmospheric CO2 at a
global set of monitoring stations for the years 2005 to 2009.
When constrained by FAPAR observations alone, the system10

successfully, and computationally efficiently, improved sim-
ulated growing-season average FAPAR, as well as its sea-
sonality in the Northern extra-tropics. When constrained by
atmospheric CO2 observations alone, global net and gross
carbon fluxes were improved, despite a tendency of the sys-15

tem to underestimate tropical productivity. Assimilating both
data streams jointly allowed the MPI-CCDAS to match both
observations (TIP-FAPAR and atmospheric CO2) equally
well as the single data stream assimilation cases, thereby
increasing the overall appropriateness of the simulated bio-20

sphere dynamics and underlying parameter values. Our study
thus demonstrates the value of multiple-data stream assimi-
lation for the simulation of terrestrial biosphere dynamics. It
further highlights the potential role of remote sensing data,
here the TIP-FAPAR product, in stabilising the strongly un-25

derdetermined atmospheric inversion problem posed by at-
mospheric transport and CO2 observations alone. Notwith-
standing these advances, the constraint of the observations on
regional gross and net CO2 flux patterns on the MPI-CCDAS
is limited through the coarse-scale parametrisation of the bio-30

sphere model. We expect improvement through a refined ini-
tialisation strategy and inclusion of further biosphere obser-
vations as constraints.

1 Introduction

Estimates of the net carbon balance of the terrestrial bio- 35

sphere are highly uncertain, because the net balance cannot
be directly observed at large spatial scales (Le Quéré et al.,
2015). Studies aiming to quantify the contemporary global
carbon cycle therefore either infer the terrestrial carbon bud-
get as a residual of the arguably better constrained other com- 40

ponents of the global carbon budget (Le Quéré et al., 2015),
or rely on measurements of atmospheric CO2 and the in-
version of its atmospheric transport (Gurney et al., 2002).
Both approaches have the caveat that they are not able to pro-
vide accurate estimates at high spatial resolution, and cannot 45

utilise the broader set of Earth system observations that pro-
vide information on terrestrial carbon cycle dynamics (Luo
et al., 2012). Further, they are diagnostic by nature, and there-
fore lack any prognostic capacity.

Ecosystem models integrate existing knowledge of the un- 50

derlying processes governing the net terrestrial carbon bal-
ance and have such a prognostic capacity. Since they sim-
ulate all major aspects of the terrestrial carbon cycle, they
can - in principle - benefit from the broader set of Earth sys-
tem observations. However, studies comparing different land 55

surface models show a large spread of estimates of the sea-
sonal and annual net land-atmosphere carbon exchange and



2 Schürmann et al.: MPI-CCDAS

their trends (Piao et al., 2013; Sitch et al., 2015). This uncer-
tainty is one of the primary causes for discrepancies in fu-
ture projections of stand-alone terrestrial biosphere models
(Sitch et al., 2008), and coupled carbon cycle climate mod-
els (Anav et al., 2013; Friedlingstein et al., 2014) for the 21st

5

century. Next to the uncertainty due to different climate forc-
ing (Jung et al., 2007; Dalmonech et al., 2015) and alterna-
tive model formulations (Sitch et al., 2015), the uncertainty
about the parameter values of the mathematical representa-
tion of key carbon cycle processes in these models are an10

important source of the model spread (Knorr and Heimann,
2001; Zaehle et al., 2005; Booth et al., 2012). This parametric
uncertainty can be as large as the differences between mod-
els. The spread among models limits our ability to provide
further constraints of the net terrestrial carbon uptake.15

A potential route to reduce parameter and process-
formulation related uncertainties in the estimates of the ter-
restrial carbon cycle is to systematically integrate the in-
creasing wealth of globally distributed carbon cycle obser-
vations into models through data assimilation methods. A20

broad overview of potential observations and methodolog-
ical choices is given in Raupach et al. (2005). Since com-
putational run time is an important limiting factor in global
carbon cycle data assimilation, the development of a rel-
atively ”fast”, but comprehensive system is advantageous.25

Knorr and Kattge (2005) investigated the use of a Monte-
Carlo approach for data assimilation with global models.
They suggested that the computational burden (i.e. the run
time) is too large to allow its application with a comprehen-
sive land surface model and an appropriate number of pa-30

rameters in the optimisation. Nevertheless, the method has
been successfully applied at global scales for a reduced set of
parameters and limited process representations (Ziehn et al.,
2012). A computationally more efficient method is the use
of gradient-based methods. For instance, approximating the35

gradient with finite differences, Saito et al. (2014) performed
data assimilation of several data streams with the VISIT
model.

An alternative to the finite difference method is to cal-
culate the gradient precisely by a tangent-linear or adjoint40

version of the biosphere model. A prototype of such a car-
bon cycle data assimilation system (CCDAS) based on an
advanced variational data assimilation scheme and a prog-
nostic terrestrial carbon flux model (BETHY; Knorr 1997,
2000) has demonstrated the potential to effectively constrain45

the simulated carbon cycle with observations of atmospheric
CO2 (BETHY-CCDAS; Rayner et al., 2005; Scholze et al.,
2007; Kaminski et al., 2013). Conceptually similar systems
have been built for other, more complex, global biosphere
models. Applications of these alternative systems include, for50

example, constraining the phenology of the JULES model
with the MODIS collection 5 leaf area index product (Luke,
2011) and carbon fluxes in the ORCHIDEE model using
observations from several FLUXNET sites (Kuppel et al.,
2012, 2013). Previous studies with these systems focussed55

on the effect of different (in-situ and satellite) FAPAR ob-
servations at selected sites on simulated phenology with the
ORCHIDEE model (e.g. Bacour et al., 2015) or on the joint
use of site-level carbon flux and FAPAR observations (Kato
et al., 2013). At the global scale, Forkel et al. (2014) inves- 60

tigated the use of long-term FAPAR data to constrain long-
term trends in vegetation greenness simulated by the LPJmL
model, whereas Kaminski et al. (2012) focussed on the joint
assimilation of FAPAR and atmospheric CO2 observations.

Here, we present the development and first application 65

of a variational data assimilation system (Max Planck Insti-
tute Carbon Cycle Data Assimilation System: MPI-CCDAS)
built around the tangent-linear representation of the land sur-
face model JSBACH (Raddatz et al., 2007). JSBACH is a
further development of the BETHY model, providing a more 70

detailed treatment of carbon turnover and storage in the ter-
restrial biosphere, as well as more detailed treatment of land
surface biophysics (Roeckner et al., 2003) and land hydrol-
ogy (Hagemann and Stacke, 2014). JSBACH serves as a
land-surface scheme to the MPI-Earth System Model (MPI- 75

ESM; Giorgetta et al., 2013). Our objective with this devel-
opment is twofold: i) to improve the scope of the original
BETHY-CCDAS by including a larger set of terrestrial pro-
cesses affecting the terrestrial carbon cycle; and ii) to pro-
vide a means to constrain the land carbon cycle projections 80

of JSBACH with several data streams, and thereby poten-
tially also that of the MPI-ESM. Dalmonech et al. (2015)
have shown that the simulated phenology, and its seasonal
and interannual climate sensitivity, as well as the simulated
seasonal net land-atmosphere carbon flux are reasonably ro- 85

bust against climate biases in the MPI-ESM. One can there-
fore expect that improvements of these aspects made with the
MPI-CCDAS driven by observed meteorology will be main-
tained in the coupled Earth system model.

We first provide a technical description of the MPI- 90

CCDAS system. We then demonstrate the capacity of the
MPI-CCDAS system to integrate atmospheric CO2 observa-
tions and the fraction of absorbed photosynthetically active
radiation (FAPAR) recorded from satellites, which constrains
the seasonality of the phenology, and assesses the relative ef- 95

fect of the constraint from these two data streams on parame-
ter values and modelled fluxes. Further, the joint assimilation
of the two data streams demonstrates their mutual benfit to
constrain parameters in JSBACH.

2 Description of the MPI-CCDAS 100

2.1 The CCDAS method

The MPI-CCDAS applies a variational data assimilation ap-
proach to estimate a set of model parameters and initial states
given a range of observations. The variational data assimila-
tion method is described in detail by Kaminski et al. (2013). 105

In the following, we thus only give a brief overview of the
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method. The values and uncertainties for model parameter
values, observations and the model are detailed in the fol-
lowing sub-sections.

To take account of the uncertainty inherent in the descrip-
tion of observed and simulated variables, the method op-5

erates on probability density functions (PDFs), and is con-
veniently formulated in a Gaussian framework. The MPI-
CCDAS uses the combined information provided by the
model M(p) and the observations d to update the PDF
describing the prior state of information on the model’s10

process-related parameters and initial state variables, com-
bined in the model’s control vector p. This prior control
vector is described by the mean ppr and the covariance of
its uncertainty Cpr. The CCDAS method seeks to minimise
the misfit between observed and modelled quantities by min-15

imising the cost function J

J(p) =
1

2
(M(p)−d)

T C−1
d (M(p)−d)

+ (p−ppr)
T C−1

pr (p−ppr)

(1)

where Cd is the covariance of combined uncertainty in the
observations (with mean d) and model simulation. The min-
imum of J , denoted as the posterior control vector ppo, cor-20

responds to the maximum likelihood estimate. ppo thus bal-
ances the misfit between modelled quantities and their ob-
servational counterparts over the entire assimilation window,
while taking independent prior information on the control
vector into account. In other words, the vector d contains25

all observations used in the assimilation procedure, which
act simultaneously to constrain the control vector. In con-
trast to sequential assimilation schemes, the approach ap-
plied here determines a model trajectory through the state
space, which, in particular, ensures conservation of mass and30

energy (Kaminski and Mathieu, 2016).
Technically, J is minimised by a quasi-Newton approach

with so-called Broyden-Fletcher-Goldfarb-Shanno updates
of the Hessian approximation, in the implementation pro-
vided by the Numerical Recipes (Press et al., 1992, dfpmin35

routine). The iterative procedure requires the gradient ∂J
∂p ,

which is evaluated by the so-called tangent-linear version
of the model. This tangent-linear model was generated by
means of the compiler tool Transformation of Algorithms
in Fortran (TAF, Giering and Kaminski 1998) through au-40

tomatic differentiation (Griewank, 1989). This procedure re-
gards the model code that evaluates J(p) as the composition
of a sequence of (very many) elementary operations (such as
“+”, or “exp”) to which it applies the chain rule of calculus.
Being implementations of the chain rule, the derivatives pro-45

vided by the tangent-linear code are as accurate as possible
on a computer, i.e. up to machine precision. This contrasts
the traditional numerical differentiation approach, which de-
rives derivative approximations through a series of perturbed
model runs (for example, so-called finite difference or di-50

vided difference approximations).

2.2 The forward model

The model that is optimised within the MPI-CCDAS is the
land surface model JSBACH (Raddatz et al., 2007; Brovkin
et al., 2009; Reick et al., 2013; Schneck et al., 2013; Dal- 55

monech and Zaehle, 2013). The model considers ten plant
functional types (PFTs: see Table 1). These PFTs are allowed
to co-occur within a grid cell on separate tiles, but nonethe-
less share a common water storage. Compared to the afore-
mentioned JSBACH studies, the MPI-CCDAS does not use 60

land-use change and land-use transition nor dynamic vege-
tation, but uses a multi-layer soil hydrology scheme (Hage-
mann and Stacke, 2014). Appendix A gives a detailed de-
scription of the relevant parts of JSBACH. The model is typ-
ically used within the MPI-ESM (Giorgetta et al., 2013) and 65

calculates the terrestrial storage of energy, water and carbon
and its half-hourly exchanges between the atmosphere and
the land surface. JSBACH is applied here uncoupled from
the atmosphere and forced with reconstructed meteorology
(see Sect. 2.6). 70

The application of gradient-based minimisation proce-
dures is facilitated by a differentiable calculation of J(p).
According the chain rule, this ultimately requires all code
parts of the forward model that depend on the control vari-
ables and impact the cost-function to be differentiable. To 75

improve differentiability, the original phenology scheme that
describes the timing and amount of foliar area based on lo-
gistic growth functions (Lasslop, 2011) was replaced by an
alternative scheme developed explicitly for the needs of dif-
ferentiable codes (Knorr et al., 2010, Appendix A1). Some 80

further minor modifications were necessary to make the code
differentiable. These changes included replacing look-up ta-
bles with their continuous formulations, avoiding division by
zero in the derivative code (e.g. through differentiation of

√
0

in the forward mode leading to 1√
0

in the differentiated code), 85

and reformulating minimum and maximum calculations to
allow a smooth transition at the edge. These modifications
alter the calculations. However, they were implemented such
that the differences in the modelled results compared to the
original code is minimal. 90

2.3 The atmospheric transport model

To map the net land-atmosphere CO2 exchange simulated by
JSBACH to observations of the atmospheric CO2-mole frac-
tion, the computation of atmospheric transport is required,
which is done here by the transport model TM3 (Heimann 95

and Körner, 2003). Specifically, we compute the response
of monthly mean CO2 mole fractions c to monthly mean
surface fluxes f (extending two years back in time). Since
the atmospheric transport of CO2 is linear in the fluxes, the
transport process can be written as: 100

∆c = M ·f (2)
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Table 1. Plant functional types (PFTs) in the JSBACH model and
the limitations that control the phenological behaviour of the re-
spective PFT.

Plant functional type (PFT) Limitations

Tropical evergreen trees (TrBE)
Tropical deciduous trees (TrBS) Water
Raingreen shrubs (RS)

Coniferous evergreen trees (CE) Temperature
Extra-tropical deciduous trees (ETD) and
Coniferous deciduous trees (CD) Daylight

C3-grasses (TeH)
C3-crops (TeCr) Temperature
C4-grasses (TrH) and Water
C4-crops (TrCr)

where M represents the TM3 responses as a transport ma-
trix (Rödenbeck et al., 2003). For our analysis, we used the
Jacobian representation of the TM3 model, version 3.7.24
(Rödenbeck et al., 2003), with a spatial resolution of about
4◦x5◦ (the “fine” grid of TM3), driven by interannually vary-5

ing wind fields of the NCEP reanalysis (Kalnay et al., 1996).
The net exchange f is the sum of the terrestrial fluxes com-
puted by JSBACH and those not computed by JSBACH, i.e.
prescribed ocean and fossil fuel fluxes (Sect. 2.5). Biomass
burning fluxes are not explicitly included (see also discussion10

in Sect. 4.5). During the assimilation of atmospheric CO2,
any information on these latter fluxes in the observations are
consequently mapped to the respiratory fluxes simulated by
JSBACH.

In the MPI-CCDAS, the atmospheric CO2 mole fraction15

at the monitoring stations at the beginning of this simula-
tion is specified as a globally constant offset COoffset2 , one
of the parameters to be estimated. The resulting CO2-mole
fractions can then be directly compared with observed atmo-
spheric CO2. Limiting the system to one global modifier was20

motivated by limitation in the computational run time, while
an inclusion of an offset depending on the observation lo-
cations could be easily implemented. With a spin-up of two
years for the atmospheric transport, we allow the system to
build up the latitudinal gradient of CO2. After the second25

year, there is no visible trend in the difference of observed
CO2 at Mauna Loa and South Pole, leading us to conclude
that two years are sufficient to spin-up the atmosphere.

2.4 Model parameters

For this study, JSBACH parameters related to the phenol-30

ogy, photosynthesis and land carbon turnover (including ini-
tial carbon stocks) were optimised (see Appendix A for a
detailed model description). The default prior value and as-
sumed prior Gaussian uncertainty of each parameter and the

posterior values from the assimilation experiments are given 35

in Table 2. The choice of these parameters was based on an
extensive parameter sensitivity study on a much larger set
of parameters across multiple biomes (Schürmann, unpub-
lished results). We retained those parameters, for which we
found a significant effect on modelled FAPAR and net CO2 40

exchange. In principle, it is possible to add more parameters,
which are decisive for other modelled quantities such as soil
moisture, and which might feed back to our observables. A
brief explanation of the parameters involved in this study is
given in the following. 45

The parameters controlling phenology (Λmax, τl, τw, Tφ,
tc, and ξ) are allowed to take different values for each plant
functional types with the exception of ξ, which is a glob-
ally valid parameter. While Λmax controls the LAI, ξ con-
trols the rate of leaf growth, and τl is the time-scale of leaf 50

senescence. Tφ and tc are temperature and day-length thresh-
olds, respectively, controlling the onset and end of vegetation
activity. The parameter τw controls the shedding of leaves
in response of phenology for drought-deciduous PFTs. Soil
moisture in JSBACH follows a 5-layer scheme (Hagemann 55

and Stacke, 2014) and is coupled to vegetation processes via
the phenology and the photosynthesis by influencing actual
stomatal conductance, and thus evapotranspiration.

The phenological parameter prior values and uncertainties
are taken from Knorr et al. (2010), with the following three 60

exceptions: the water control parameter τw required an adap-
tation to account for the different soil-water formulations in
the MPI-ESM compared to BETHY. τl for the coniferous ev-
ergreen PFT (CE) also has been adapted after preliminary
site-scale studies to allow more flexibility in the seasonal- 65

ity of the evergreen-phenology (Schürmann, unpublished re-
sults). Finally, Λmax is left to its default JSBACH parameter
value for all PFTs, with the exception of the coniferous ever-
green PFT. For CE, a value of Λmax = 1.7m2/m2 has been
used, because preliminary model tests revealed a large bias in 70

modelled FAPAR in CE-dominated regions, which adversely
affected the model results of the carbon cycle.

Calculation of photosynthesis in JSBACH follows Far-
quhar et al. (1980) for C3-plants and Collatz et al. (1992) for
C4-plants, with details as described in Knorr and Heimann 75

(2001) and Knorr (1997). Maximum rates of carboxyla-
tion (V cmax) and electron transport (Jmax) for the calcu-
lation of gross primary production (GPP; see Appendix A)
are allowed to vary per PFT. We assume that the observed
tight correlation between V cmax and Jmax is conserved ir- 80

respective of the precise value for each PFT (Kattge and
Knorr, 2007). Thus, we introduce a single scaling coefficient
fphotos:

V cmax = V cpriormax · fphotos (3)

Jmax = Jpriormax · fphotos (4) 85
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Table 2. Model parameters used in the data assimilation procedure with their prior and posterior values for the different assimilation ex-
periments. Parameters marked with ∗ represent scalars that are multiplied with their respective value in the model, given in Table D1. The
mapping variants are explained in Appendix C: 1: No lower bound; 2: A lower bound at 0 for those parameters that are not allowed to take
negative values.

Representation in Eq. 1: Cpr ppr ppo

Parameter(PFT) Description
Prior
sigma Prior JOINT CO2alone FAPARalone Unit Mapping

Λmax (TrBE)∗ Maximum LAI 0.2 1 0.98 0.82 0.84 . 2
Λmax (TrBD)∗ Maximum LAI 0.2 1 0.58 0.55 0.63 . 2
Λmax (ETD)∗ Maximum LAI 0.2 1 0.98 1.04 1.44 . 2
Λmax (CE)∗ Maximum LAI 0.2 1 1.00 0.84 1.01 . 2
Λmax (CD)∗ Maximum LAI 0.2 1 0.64 1.31 0.56 . 2
Λmax (RS)∗ Maximum LAI 0.2 1 1.33 0.94 1.24 . 2

Λmax (TeH,TeCr)∗ Maximum LAI 0.1 1 0.63 0.53 0.61 . 2
Λmax (TrH,TrCr)∗ Maximum LAI 0.1 1 0.53 0.49 0.59 . 2

1/τl (ETD) Leaf shedding time scale 0.01 0.07 0.057 0.057 0.079 d−1 2
1/τl (CE) Leaf shedding time scale 1e-04 5e-04 0.00067 0.00045 0.00064 d−1 2
1/τl (CD) Leaf shedding time scale 0.01 0.07 0.068 0.07 0.068 d−1 2

1/τl (TeH,TeCr) Leaf shedding time scale 0.01 0.07 0.098 0.076 0.079 d−1 2
1/τl (TrH,TrCr) Leaf shedding time scale 0.01 0.07 0.077 0.07 0.07 d−1 2
τw (TrBE) Water stress tolerance time 30 300 319.82 378.04 286.77 days 2
τw (TrBD) Water stress tolerance time 10 114 107.78 120.84 106.29 days 2
τw (RS) Water stress tolerance time 5 50 49.51 50.02 47.82 days 2

τw (TeH,TeCr) Water stress tolerance time 25 250 222.32 215.22 230.41 days 2
τw (TrH,TrCr) Water stress tolerance time 25 250 276.06 236.32 286.64 days 2
Tφ (ETD) Temperature at leaf onset 1 9.21 7.19 8.63 2.28 ◦C 1
Tφ (CE) Temperature at leaf onset 1 9.21 7.53 9.01 7.61 ◦C 1
Tφ (CD) Temperature at leaf onset 1 9.21 0.10 5.53 0.30 ◦C 1

Tφ (TeH,TeCr) Temperature at leaf onset 0.5 1.92 3.82 2.67 2.78 ◦C 1
Tφ (TrH,TrCr) Temperature at leaf onset 0.5 1.92 2.50 1.57 1.88 ◦C 1
tc (ETD) Day length at leaf shedding 1 13.37 13.57 13.84 13.60 hours 2
tc (CE) Day length at leaf shedding 1 13.37 14.22 13.69 14.12 hours 2
tc (CD) Day length at leaf shedding 1 13.37 14.94 13.66 14.73 hours 2
ξ Initial leaf growth rate 0.03 0.37 0.41 0.38 0.43 d−1 2

fphotos (TrBE)∗ Photosynthesis rate modifier 0.1 1 0.75 1.02 0.91 . 2
fphotos (TrBD)∗ Photosynthesis rate modifier 0.1 1 1.07 1.08 0.97 . 2
fphotos (ETD)∗ Photosynthesis rate modifier 0.02 1 0.99 1.00 1.00 . 2
fphotos (CE)∗ Photosynthesis rate modifier 0.03 1 0.95 1.00 1.00 . 2
fphotos (CD)∗ Photosynthesis rate modifier 0.06 1 1.04 1.05 1.00 . 2
fphotos (RS)∗ Photosynthesis rate modifier 0.1 1 1.01 1.05 1.00 . 2
fphotos (TeH)∗ Photosynthesis rate modifier 0.1 1 0.96 1.01 0.99 . 2
fphotos (TeCr)∗ Photosynthesis rate modifier 0.1 1 0.67 0.86 1.00 . 2
fphotos (TrH)∗ Photosynthesis rate modifier 0.1 1 1.04 1.02 1.06 . 2
fphotos (TrCr)∗ Photosynthesis rate modifier 0.1 1 0.87 0.94 1.00 . 2

Q10 Temperature sensitivity of resp. 0.15 1.8 1.90 1.81 1.80 . 2
fslow Multiplier for initial slow pool 0.1 1 0.50 0.51 1.00 . 2

faut_leaf Leaf fract. of maintenance resp. 0.1 0.4 0.30 0.35 0.40 . 2
COoffset2 Initial atmospheric carbon 3 0 0.90 0.85 0.00 ppm 1
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Prior parameter ranges for each PFT were derived from the
TRY data-base (Kattge et al., 2011).

Autotrophic respiration (Ra) in JSBACH follows Knorr
(2000), who assumed that growth respiration is a fixed frac-
tion (20 %) of the net assimilation. Maintenance respiration5

scales with dark respiration (with a parameter faut_leaf ),
and thus V cmax, assuming that it is mainly driven by the
amount of available photosynthates. The net primary produc-
tion (NPP, the difference of GPP and Ra) is allocated to ei-
ther a green or woody pool. Upon senescence, these pools10

turn over into three litter pools (above ground green, be-
low ground green and woody) with PFT- and pool-specific
turnover times. Heterotrophic respiration (Rh) of these pools
responds to temperature according to a Q10 formulation (see
Appendix A).15

Prior sensitivity studies have revealed that the most in-
fluential parameters controlling carbon storage on land and
the partitioning between autotrophic and heterotrophic res-
piration were the leaf fraction of maintenance respiration
(faut_leaf ) and temperature response (Q10) of the carbon20

pools, which were both included as parameters into the opti-
misation. The uncertainty of these parameters has been esti-
mated based on the works of Mahecha et al. (2010) for Q10

and Knorr (2000) for faut_leaf .
To account for non steady-state conditions of the net car-25

bon flux at the beginning of the assimilation period, we fol-
lowed the approach of Carvalhais et al. (2008) by estimating
a global scaling factor for the size of the initial slow pool
fslow. The inclusion of fslow to the optimised parameters al-
lows for the modification of global heterotrophic respiration30

and thereby adjusts the CO2 growth rate by altering the net
carbon flux to the atmosphere. However, the limitation of this
approach is that it does not change the spatial distribution of
carbon pools, which remains entirely controlled by the prior
parameter values.35

For this first application of the MPI-CCDAS, the most
slowly varying pool has been selected (i.e. the soil carbon
pool with a turnover time of 100 years). The initial conditions
of other carbon pools were not included in the control vector
to avoid the associated increase in the computational burden40

(e.g. run time). This consequently includes the risk of assign-
ing any misrepresentation of modelled pool sizes to the soil
carbon pool and the changes in the carbon pool sizes after the
assimilation should be interpreted with care. The uncertainty
of fslow has been set to 10 %, reflecting a moderate deviation45

from equilibrium (but see also discussion in Sect. 4.4). The
turnover-time parameters (see Eq. A18) were not included
in the control vector, because their impact on land carbon
fluxes was small compared to other parameters (Schürmann,
unpublished results) at the time-scale of the MPI-CCDAS (a50

couple of years).
To account for minor offsets of the MPI-CCDAS with re-

spect to the initial carbon content of the atmosphere, one sin-
gle offset value COoffset2 is included in the set of estimated

parameters (see Sect. 2.3). COoffset2 was assumed to not de- 55

viate more than a few ppm, and its uncertainty set accord-
ingly.

Uncertainties of all parameters were assumed to be Gaus-
sian and exposed to the assimilation procedure in a form nor-
malised by their prior uncertainty. In order to prevent param- 60

eters from attaining physically impossible, negative values,
some parameters were constrained at the lower end of the
distribution to zero (see Table 2 and Appendix C).

2.5 Observational constraints and observation
operators 65

2.5.1 Atmospheric CO2

Observed atmospheric CO2 mole fractions were obtained
from the flask data/continuous measurements provided by
different institutions (e.g. flask data of NOAA/CMDL’s sam-
pling network, update of Conway et al. 1994, Japan Meteo- 70

rological Agency - JMA, Meteorological Service of Canada -
MSC, and many others; see Rödenbeck et al. 2003). Stations
were selected in order to cover the global latitudinal gradi-
ent (Table B1), focussing on remote locations with little im-
print of local fluxes. For cross-evaluation, an independent set 75

of available station data were used (Table B2). The temporal
resolution of the CO2 original data at the monitoring stations
(hourly to daily/weekly) depends on the specific station. The
data were averaged to monthly means.

The MPI-CCDAS compares atmospheric CO2 abun- 80

dances at a monthly temporal resolution. In order to reduce
the representation error, simulated CO2 abundances are only
considered at observational sampling times. The treatment
of the observations of CO2 and their uncertainties follows
Rödenbeck et al. (2003). A floor value of 1 ppm is added 85

to this uncertainty, similarly as in Rayner et al. (2005). An-
cillary flux fields at monthly resolution were prescribed to
represent the ocean (Jena CarboScope pCO2-based mixed
layer scheme oc_v1.0 Rödenbeck et al., 2013) and fos-
sil fuel (Emissions Database for Global Atmospheric Re- 90

search EDGAR, European Commission, Joint Research Cen-
tre (JRC)/Netherlands Environmental Assessment Agency
(PBL) 2009) net CO2 fluxes.

2.5.2 TIP-FAPAR

The observations of FAPAR used in the assimilation pro- 95

cess were specifically derived for this study by the Joint
Research Centre Two-stream Inversion Package (JRC-TIP,
Pinty et al. 2007). JRC-TIP is based on an advanced one
dimensional two-stream scheme, which assures a physically
consistent solution of the radiative transfer problem in the 100

coupled canopy-soil system (Pinty et al., 2006). It has been
explicitly designed to deliver products suitable for assimi-
lation into climate and numerical weather prediction models.
Similar schemes are implemented in most state-of-the-art ter-
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restrial biosphere models (e.g. Loew et al., 2014). The prod-
uct used here was derived by running JRC-TIP on MODIS
broadband visible and near-infrared white sky surface albedo
input aggregated to the model grid separately for snow-free
and snow-like background conditions in a similar way as de-5

scribed for the native 0.01 degree product (Pinty et al., 2011a,
b; Clerici et al., 2010; Voßbeck et al., 2010).

Uncertainties in the FAPAR data are based on rigorous
uncertainty propagation from the MODIS input albedos us-
ing first and second derivative information (Voßbeck et al.,10

2010). A space and time invariant prior (except for the oc-
currence of snow) is used, i.e. all spatio-temporal variability
in the products is derived from the input products (including
the MODIS snow flag). In contrast to alternative algorithms,
there is no variability imposed through (possibly implicit) as-15

sumptions such as the distribution of land cover types (as in
Knyazikhin et al., 1999), which avoids potential inconsisten-
cies with the model’s own land cover (for more details see
Disney et al. 2016). To reduce biases in the retrieved prod-
ucts through the prior information, the prior is given a de-20

liberately low weight, that is a σ of 5 for the effective LAI
(Pinty et al., 2011a).

We applied two filters on the global FAPAR product to
assure that potential model structural errors did not lead to
compensating effects in the parameter estimation procedure25

and thus impede fitting the FAPAR data in other regions.
First, owing to the fact that no specific crop-phenology is im-
plemented in JSBACH, grid cells with fractional crop cover-
age of more than 20 % have been filtered out. A consequence
of this filter is to mask the deciduous broadleaf PFT in the US30

and Europe, because in these areas, this PFT is collocated in
crop-dominated pixels. Hence, the phenological parameters
of the deciduous broadleaf PFT are only constrained by ob-
servations from other locations - a fact that should be kept
in mind when interpreting the deciduous broadleaf parame-35

ters. Second, grid-points with correlations between the prior
model and the observed FAPAR below 0.2 (i.e. prior phe-
nology exhibits out-of-phase seasonal cycles) have also been
filtered out. Together, these filters reduce the overall global
coverage of the FAPAR-constraint and thus the number of40

observations to be fitted (Fig. 1) by 57 %.

2.6 Experimental set-up

The MPI-CCDAS was driven by daily meteorological forc-
ing (air temperature, specific air humidity, precipitation,
downward short- and long wave radiation, wind speed) ob-45

tained from the WATCH forcing data set (Weedon et al.,
2014). Annual CO2 mole fractions of the atmosphere as a
forcing for the photosynthesis calculations of JSBACH were
prescribed according to Sitch et al. (2015). Vegetation dis-
tribution (Fig. E1) and other surface characteristics were de-50

rived from Pongratz et al. (2008). Although the MPI-CCDAS
is flexible to be run at any spatial resolution, for computa-
tional efficiency, it was applied at a coarse spatial resolution
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Figure 1. Location of the CO2 observations (for constraining the
model and for evaluation) and the temporal median of the TIP-
FAPAR uncertainties (given with the color-scale) in each pixel act-
ing as constraint.

of about 8◦x10◦. Note that, as explained in Sect. 2.3, the at-
mospheric transport itself was simulated at 4◦x5◦. 55

Water and carbon cycle state-variables of JSBACH were
initialised as follows: first, an equilibrium in terms of stores
and long-term fluxes of water and carbon was achieved
through repeated integration over the period 1979-1989 with
corresponding meteorological forcing and atmospheric CO2 60

mole fractions of 1979. Starting from this equilibrium state,
an integration followed with transient atmospheric and me-
teorological forcing from 1979 to 2003, but with constant
land-cover. The final state of 2003 was then taken as the ini-
tial condition for all MPI-CCDAS experiments. This spin-up 65

procedure used the prior parameter values, i.e. it was not part
of the assimilation loop for the parameter estimation.

The MPI-CCDAS experiments were run for the years
2003 - 2011 with transient atmospheric and meteorological
forcing, but constant land-cover. During this period the pa- 70

rameters were left free to adapt to the observational con-
straints given the optimisation procedure. To allow for non-
equilibrium states of the carbon pools at the beginning of
these experiments, the assimilation procedure was allowed
to modify the initial soil carbon pool (at the end of the spin- 75

up procedure) by a global scaling factor (see Sect. 2.4). The
first two years of the simulation (2003 to 2004) were used
to build a spatial gradient in the simulated atmospheric CO2

mole fractions in accordance with the simulated net carbon
exchange, and no observations for these years were included 80

as observational constraint. In the following years (2005 to
2009), the observational constraints were active. For the final
two years (2010 to 2011), the constraints were inactive and
the observations were used to evaluate the MPI-CCDAS with
prior and posterior parameters in a prognostic manner. 85

We used the correlation, bias, root mean squared error
and the Nash-Sutcliffe model efficiency (NSE) as evaluation
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statistics. NSE is defined as:

NSE = 1−
∑
i (di−mi)

2∑
i

(
di− di

)2 (5)

where the index i denotes individual pairs of observation (d)
and model output (m) and an overbar the arithmetic mean.
NSE = 1 indicates a perfect model and for allNSE < 0 the5

mean of the observations is a better predictor than the model
itself.

Our study follows a factorial design to assess the ben-
efit of each data stream, but also to evaluate the potential
of assimilating more than one data stream and its effect10

on the carbon cycle: two experiment using each one data
stream alone as observational constraint (CO2alone using
only atmospheric CO2 observations, and FAPARalone us-
ing only the TIP-FAPAR product), and one experiment using
both data streams simultaneously as observational constraint15

(JOINT), with each data stream equally weighted in the cost
function (Eq. 1).

3 Results

3.1 Performance of the assimilation

The application of the MPI-CCDAS was successful within20

a feasible number (29 to 69) of iterations (with run-times
of 1 to 2 months), increasing from FAPARalone (using only
TIP-FAPAR), to CO2alone (using only atmospheric CO2 ob-
servations) and JOINT (using both observations simultane-
ously; Table 3). For all three assimilation experiments, the25

value of the cost-function was considerably reduced, while
the posterior parameter values remained in physically plausi-
ble ranges. Nevertheless, some parameter values (e.g.: Tφ of
the CD phenotype) deviated strongly from the prior values
(Table 2). For FAPARalone, the value of the cost function30

was almost halved between the prior and the posterior run.
Even stronger reductions of the cost function were obtained
in the other two experiments using CO2 as a constraint (Ta-
ble 3).

Several statistics comparing the posterior model with ob-35

servations for FAPAR and CO2 (Tables 4 and 5) show that
the model performance of the JOINT experiment was com-
parable to the performance of the two single data-stream
experiments relative to the assimilated quantity. The single
data-stream assimilation experiments either showed no im-40

provement with respect to the other data stream (the fit of the
CO2alone experiment to TIP-FAPAR), or even a degradation
(the fit of the FAPARalone experiment to atmospheric CO2

observations). To the contrary, the JOINT assimilation cap-
tured the main features of both data sources. Overall, these45

results suggest that both data streams can be successfully as-
similated jointly with the MPI-CCDAS.

During the assimilation procedure, the norm of the gra-
dient1 ∂J

∂p (see Eq. 1) was considerably reduced by 3 - 4 or-
ders of magnitude (Table 3). During the first tens of iterations 50

of the assimilation procedure, the cost as well as the norm
of the gradient were considerably reduced. In this initial
phase of the assimilation, also the parameter values changed
most strongly. However, some parameter values continue to
change in later iterations without substantial reductions in the 55

cost function or the norm of the gradient. The assimilation
procedure finally stopped when the changes to the parame-
ters became too small.

3.2 Phenology

The statistics of the comparison to the TIP-FAPAR data 60

sets show an improvement of the model-data fit for all
experiments relative to the prior model (Table 4). As ex-
pected, the improvement was strongest when using FAPAR
(FAPARalone and JOINT) as a constraint. One important
reason for the improvement was a general reduction in mod- 65

elled growing-season average FAPAR simulated by the MPI-
CCDAS compared to the prior run. This decrease in FAPAR
was mostly driven by a reduction of globally averaged foliar
area of 0.41 m2m−2 for the JOINT experiment (0.34 m2m−2

for FAPARalone, and 0.59 m2m−2 for CO2alone). Almost 70

all PFTs contributed to the decrease in FAPAR, resulting
from a reduction in the maximum leaf area index parameter
(Λmax) for tropical deciduous forests, needle-leaf deciduous
forests, as well as herbaceous PFTs (crops and grasses). In
addition, the water-stress parameter τw for drought respon- 75

sive PFTs played a secondary role in the leaf area reduction.
The concurrent increase of foliar area for extra-tropical de-
ciduous and rain green shrubs only plays a minor role in the
model-data agreement, since these PFTs only cover a small
fraction of the global land area. 80

In regions with a strong temperature control of phenology,
the assimilation did not only change the average LAI dur-
ing the growing season. Also the timing of onset and end
of the growing season was improved, as demonstrated by
the enhanced correlation and model efficiency of the MPI- 85

CCDAS with respect to the TIP-FAPAR data (Table 4). This
improvement was mostly the result of adjusting the param-
eters Tφ and tc, which are the temperature and day-length
criteria determining when the vegetation switches from the
dormant to the active phase. In particular, the assimilation 90

reduced the temperature control parameter Tφ, which led to
an earlier onset of the growing season in the extra-tropical
deciduous broadleaf and deciduous needleleaf PFTs. For the
deciduous needleleaf forests the assimilation procedure also
resulted in an earlier end of the growing season, in accor- 95

dance with the observations (see Fig. 2 for an example). The
parameters controlling the phenological timing of other PFTs
were not strongly altered by the assimilation, which - at the

1The norm of a vector v is: ‖v‖=
√
v ·v
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Table 3. Characteristics of the assimilation experiments. The prior and posterior cost-function values and the contribution of FAPAR, CO2

and the prior (second term in Eq. 1) to the posterior cost-function value are given, as well as the norm of the gradient, the number of
observations acting as a constraint, and the number of iterations of the assimilation

Experiment
name

Prior
cost

Posterior
cost

FAPAR
cost

CO2

cost
Parameter

cost
Prior norm

of the gradient
Posterior norm
of the gradient

Number of
observations

Number of
iterations

CO2alone 1922 344 0 287 57 12196 14.8 1524 69
FAPARalone 1431 723 626 0 97 208 0.7 3189 29
JOINT 3352 1102 682 309 112 12162 6.1 4713 69

2007 2008 2009
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Figure 2. Example time-series of FAPAR for an East Siberian pixel dominated by the CD-PFT to demonstrate the improvement in the timing
of the phenology due to the data assimilation. TIP-FAPAR observations are given with their mean (dots) and 1σ uncertainties (vertical lines).

monthly temporal resolution of the satellite data analysed
here - led to no observable modification of the temporal be-
haviour of FAPAR. Notably, also the CO2alone experiment
showed some improvement in the correlation and model ef-
ficiency compared to TIP-FAPAR, although this experiment5

did not use the TIP-FAPAR data as a constraint. This sug-
gests that the seasonal cycle of CO2 bears some constraint
on the timing of northern extra-tropical phenology.

The FAPARalone assimilation run performed best com-
pared to TIP-FAPAR (Table 4). However, the JOINT exper-10

iment yielded a fairly similar (though not identical) perfor-
mance with respect to the simulated FAPAR. The temporally
averaged LAI demonstrates the overall similarity between
the FAPARalone and JOINT experiments (Fig. 3). This sim-
ilarity is also reflected in the parameter values of the phe-15

nology: the parameters of FAPARalone and JOINT were of-
ten closer to each other than to CO2alone (Table 2). How-
ever, in some cases, similar model performance was obtained
with diverging model parameterisation: an example for this
is the TrBE PFT, for which parameters of the JOINT and20

FAPARalone experiment were different, while the modelled

foliar area was very similar. An explanation of this feature
highlighting the potential benefits of multi-data stream as-
similation is given in Sect. 3.4.1. The most pronounced dif-
ferences between the JOINT and FAPARalone experiment 25

arose at locations where TIP-FAPAR data were not used
as constraint, such as crop dominated pixels, in which also
the ETD PFT covered a substantial part of the grid-cell.
These differences contributed strongly to the differences in
the globally averaged foliar area. 30

Larger differences in simulated FAPAR occurred between
the CO2alone and JOINT experiments (Table 4 and Fig. 3).
The CO2alone experiment showed the smallest LAI, and thus
the smallest FAPAR. This feature is especially pronounced
in tropical regions, where the decrease was driven by the 35

water-control parameter τw and the parameter controlling
maximum foliar area Λmax. The opposite pattern was ob-
tained for the CD PFT, which showed a larger foliar area for
CO2alone driven by an increased parameter Λmax compared
to the other two experiments, in which foliar area and Λmax 40

decreased. The likely explanation of this behaviour is given
in Sect. 3.4.2.
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Figure 3. Temporally averaged global LAI of the JOINT experiment and differences of the other experiments to the JOINT case.

Table 4. Performance of the prior and posterior models compared with TIP-FAPAR observations (applying the same data quality screening
as for the assimilation). The assimilation period (2005 - 2009) as well as a subsequent evaluation period (2010/2011) is shown. Abbreviations
are: Corr: Correlation; Bias: Model - Observations; RMSE: Root mean squared error; NSE: Nash-Sutcliffe model efficiency.

2005 - 2009 2010/2011
Corr Bias RMSE NSE Corr Bias RMSE NSE

PRIOR 0.60 0.069 0.19 0.10 0.61 0.075 0.19 0.12
CO2alone 0.66 -0.072 0.17 0.31 0.67 -0.074 0.17 0.31
FAPARalone 0.72 -0.014 0.14 0.51 0.73 -0.013 0.14 0.52
JOINT 0.71 -0.022 0.14 0.49 0.72 -0.022 0.14 0.50

3.3 Atmospheric CO2

The assimilation procedure strongly reduced the misfit be-
tween observed and modelled atmospheric mole fraction of
CO2 when using CO2 as a constraint (CO2alone; Table 5).
This was true for the seasonal cycle, the seasonal cycle’s am-5

plitude and the 5-years trend (Fig. 4 and 5). Conversely, the
FAPARalone experiment showed a strong deterioration of the
simulated atmospheric CO2 metrics compared to the prior

model. Notwithstanding an improvement of the seasonal cy-
cle amplitude of atmospheric CO2 (Fig. 5), the 5-years trend 10

of atmospheric CO2 was much less conforming to the ob-
servations, leading to a much faster increase in CO2 than
observed (Table 5 and Fig. 4).

Introducing TIP-FAPAR as an additional constraint in the
JOINT experiment did allow the MPI-CCDAS to match both 15

the atmospheric CO2 data and the TIP-FAPAR product: the
simulated monthly CO2 mole fractions of the JOINT and
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Table 5. Performance of the prior and posterior models compared with atmospheric CO2 for constraining and evaluation sites and for the
assimilation period (2005 - 2009) and the evaluation period (2010/2011). Abbreviations are: Corr: Correlation; Bias: Model - Observations;
RMSE: Root mean squared error; NSE: Nash-Sutcliffe model efficiency.

2005 - 2009 2010/2011
Corr Bias RMSE NSE Corr Bias RMSE NSE

Stations acting as constraint
PRIOR 0.95 0.64 2.60 0.68 0.93 4.85 5.22 -0.69
CO2alone 0.96 -0.05 1.32 0.92 0.93 0.10 1.47 0.87
FAPARalone 0.91 8.91 9.84 -3.63 0.91 18.21 18.35 -19.86
JOINT 0.96 -0.09 1.35 0.91 0.93 -0.16 1.48 0.87

Stations withheld from assimilation
PRIOR 0.86 1.20 3.83 0.52 0.84 5.18 6.03 -0.61
CO2alone 0.89 0.25 2.54 0.79 0.89 0.19 2.19 0.79
FAPARalone 0.84 9.73 10.84 -2.87 0.86 18.89 19.12 -15.14
JOINT 0.88 0.24 2.61 0.78 0.88 -0.05 2.28 0.77

CO2alone experiment are almost identical for most sites (Ta-
ble 5 and Fig. 4 and 5).

The improvement of the simulated atmospheric CO2 for
the CO2alone and JOINT assimilation run persisted for the
two years following the assimilation period, in which the5

model was run in a prognostic mode (driven by reconstructed
meteorology), with only minor degradation in model perfor-
mance (Table 5). Both experiments clearly outperform the
prior model, which is most obvious in the improvement of
the NSE for the prognostic period.10

The comparison of the simulated posterior atmospheric
CO2 mole fractions at the evaluation stations showed a gen-
eral improvement in the performance measures, with sub-
stantial improvements in the simulated bias, RMSE and NSE
relative to the prior model (Table 5). Unlike for the set of15

calibration sites, there was no difference in the improvement
between the assimilation period and the subsequent two-year
period, suggesting that the model improvement is of general
nature. In other words, the short-term (1-2 years) prognostic
capabilities of the model have been largely improved for a20

2-years horizon after assimilating CO2-observations, also at
the evaluation locations.

3.3.1 Changes in carbon fluxes causing the changes in
simulated CO2

The changes in simulated atmospheric CO2 mole fractions25

originated from substantial changes of the seasonal ampli-
tude and overall strength of the net carbon fluxes simu-
lated by JSBACH. The application of the CO2-constraint
increased the global net biome production (NBP) from
1.0 PgCyr−1 in the prior model to 3.2 PgCyr−1 in the30

CO2alone and JOINT experiments. Conversely, using only
TIP-FAPAR as a constraint decreased the NBP to -2.2
PgCyr−1. In other words, using FAPAR data alone turned
the biosphere into a net source (Table 6), inconsistent with

current understanding of the global carbon cycle (Le Quéré 35

et al., 2015).
Despite the similarity of the global NBP for the experi-

ments with CO2 as a constraint, the spatial patterns of NBP
were different between the CO2alone and JOINT experi-
ments (Fig. 6). The net uptake in both experiments originated 40

from boreal and tropical regions. However, the JOINT ex-
periment showed an uptake in the boreal regions of conifer-
ous evergreen and coniferous deciduous dominated pixels,
whereas the net CO2 uptake in the CO2alone experiment
was more concentrated on the coniferous deciduous regions. 45

These differences will be further investigated in Sect. 3.4.2.
While the atmospheric observations constrained the net

land-atmosphere CO2 flux, the MPI-CCDAS model parame-
ters act directly only on the gross carbon fluxes: gross pri-
mary production (GPP), autotrophic respiration, and het- 50

erotrophic respiration (Ra and Rh, respectively). Thus, the
changes in simulated NBP were the indirect consequence
of altered gross fluxes and land carbon pools. Although the
globally integrated posterior GPP values were somewhat dif-
ferent across the experiments (Table 6), the relative latitudi- 55

nal patterns were fairly similar to each other (Fig. 7): a re-
duction of GPP occurred globally, but was most prominent
in tropical forests and grass/crop dominated regions in the
temperate and boreal zone. The GPP reduction was strongest
for the CO2alone experiment and weakest (but still very pro- 60

nounced) for FAPARalone. The generally reduced foliar area
directly led to a reduced GPP of the terrestrial biosphere (in
all experiments). The changes in the photosynthetic capac-
ity (fphotos) (Table 2) often further reduced GPP. This was
most pronounced for the crop and tropical evergreen PFTs 65

(Table 2). In the JSBACH model, Ra is estimated as a direct
function of canopy-integrated carboxylation capacity, which
strongly correlates with GPP (Eq. A17). Simulated Ra and
net primary production (NPP) thus quickly adjusted to the
imposed change of GPP. 70
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Table 6. Global averages of selected carbon cycle components for the years 2005 to 2009 in PgC yr−1 for fluxes and PgC for stocks and
comparison with independent estimates. Ra: autotrophic respiration. Rh: heterotrophic respiration. Reco: ecosystem respiration. NBP = GPP
- Reco = GPP - Ra - Rh = NPP - Rh. Vegetation carbon includes quickly overturning leaf and fine root carbon, as well as a woody carbon
pool.

PRIOR CO2alone FAPARalone JOINT Other estimates Other CCDAS

NPP 65.5 40.9 53.5 45.6 44− 66a 40g

Ra 86.1 57.6 67.8 65.7
Rh 64.5 37.6 55.4 42.2
Reco 150.6 95.2 123.2 107.9
GPP 151.6 98.4 121.3 111.3 119± 6b,123± 8c 109− 164h

NBP 1 3.2 -2.2 3.2 2.4± 0.8d

Soil Carbon 2649 1064.7 2187.1 1122.3 1343e

Vegetation Carbon 424 388.5 420.5 407.3 442± 146f

Litter Carbon 239.9 189.8 212.8 193.9

aCramer et al. (1999); Saugier and Roy (2001); bJung et al. (2011); cBeer et al. (2010); dLe Quéré et al. (2015);
ehttp://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/; fCarvalhais et al. (2014); gRayner et al. (2005); hKoffi
et al. (2012)

Application of the CO2 constraint in the CO2alone and
JOINT experiment forced heterotrophic respiration (Rh) to
be reduced to match the reduced NPP and the imposed at-
mospheric growth rate of CO2. The reduction in Rh was
mainly driven by a reduction of the initial soil carbon pool5

(via the modifier fslow) to about 50% of the prior value for
the JOINT and CO2alone experiment (Table 6). Since the net
carbon fluxes in the FAPARalone experiment were not con-
strained by the atmospheric CO2 observations, the assimila-
tion did not adjust the heterotrophic respiration to balance the10

reduced net primary productivity induced from the altered
FAPAR. As a consequence, the net CO2 flux to the atmo-
sphere in the FAPARalone increased, leading to the overesti-
mation of the growth rate of atmospheric CO2 (Fig. 4).

3.4 Regional differences among the experiments15

In the following, we focus on differences in the spatial pat-
terns of the results obtained for tropical regions and the bo-
real zone to highlight the interplay between parameters in
a global, multi-data stream application of the MPI-CCDAS
either by compensating effects between different model pro-20

cesses within one PFT as occurring in the tropics (Sect. 3.4.1)
or by compensations between different parts of the globe
(Sect. 3.4.2).

3.4.1 Tropics

The modelled foliar area in the tropics (dominated by the25

tropical evergreen PFT) was similar for the JOINT and
FAPARalone experiments (Fig. 3), but smaller for CO2alone.
The simulated GPP of the JOINT experiment (Fig. 7) was
somewhat lower than in the FAPARalone experiment, but
still substantially larger than that of the CO2alone experi-30

ment. Notwithstanding these differences, the simulated net
land-atmosphere CO2 exchange (Fig. 6) of the JOINT exper-
iment was closer to the posterior estimate of CO2alone than
to that of FAPARalone in terms of absolute values. This result
was caused by compensating effects of the two observational 35

constraints (Fig. 8 and Table 2): the phenological parameters,
notably τw and Λmax, were substantially different between
the FAPARalone and JOINT experiment, yet their modelled
foliar area was very similar (Fig. 3). The reason for this was
that the photosynthesis parameter modifier fphotos was re- 40

duced strongly in the JOINT experiment. This change caused
the smaller GPP in the JOINT relative to the FAPARalone ex-
periment. Through the effect of net photosynthesis on canopy
conductance (Eq. A14), the potential transpiration rate (Epot;
Eq. A5) was strongly decreased. Together with the increase 45

of τw (Eq. A5) in the JOINT experiment, the decline in
Epot had the same effect on the simulated phenology as the
smaller parameter changes in the FAPARalone experiment.
The lack of an FAPAR constraint in the CO2alone experi-
ment allowed the assimilation to overly reduce the foliar area 50

by increasing τw at the prior rate of photosynthesis and thus
Epot to satisfy the constraint by the atmospheric CO2 obser-
vations. As a consequence, due to the water-cycle feedback,
the modelled foliar area was clearly different between the
JOINT and CO2alone experiments. 55

3.4.2 Boreal zone

The CO2alone and JOINT experiments showed similar
global statistics when compared with atmospheric CO2

observations (Table 5 and Fig. 4). Their global and
hemispheric net carbon uptake was similar (Northern 60

Hemisphere: 2.24/2.20 PgC yr−1; Southern Hemisphere:
0.98/0.98PgC yr−1), but their underlying spatial patterns
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Figure 4. Time series of atmospheric CO2 as observed at the high-
latitude evaluation site Summit and at two constraining sites, one at
high-latitudes (Alert) and one representative for the Northern Hemi-
sphere (Mauna Loa) for the different prior and posterior models.
The observations are given together with their uncertainty.

were different, in particular in the boreal zone (Fig. 6). The
entire boreal zone took up a large share of the global car-
bon sequestration in the JOINT experiment (0.88 PgC yr−1),
especially in coniferous deciduous (CD) dominated regions
of Eastern Siberia (0.30 PgC yr−1). The CO2alone experi-5

ment showed a similar net carbon uptake in the boreal re-
gion, but the uptake in the CD dominated region was 0.16
PgC yr−1 stronger than in the JOINT experiment. This dif-
ference was mainly driven by larger foliar area and increased
leaf-level productivity (parameter fphotos) of the CD PFT10

in the CO2alone experiment. In the same latitudinal band,
coniferous evergreen trees showed reduced foliar area in the
CO2alone experiment compared to the JOINT experiment,
reducing the net uptake by 0.16 PgC yr−1, such that the dif-
ferences in these regions cancel each other. These relatively15

small spatial differences do not prevent the posterior JOINT
and CO2alone experiment from capturing the amplitude of
the seasonal cycle at individual northern-most stations.
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Figure 5. Latitudinal distribution of atmospheric CO2 seasonal cy-
cle amplitude, calculated as the difference between the maximum
and minimum CO2 mole fraction of the averaged seasonal cycle of
the linearly de-trended signal from 2005 - 2009.

This largely increased sink in Eastern Siberia could be an
artefact of the set-up used for the data assimilation in this 20

study. No nearby atmospheric stations constrains the net car-
bon sink in this region adequately, and the CD PFT only oc-
curs dominantly in this region. In consequence, the PFT’s
parameters cannot be adequately constrained by carbon cy-
cle observations from other parts of the globe. This rela- 25

tive scarceness of observations and independency of other
regions allows the East-Siberian net carbon uptake to com-
pensate for other regions fluxes in order to match the global
growth rate. Additional observations would be required to al-
low for spatially higher resolved estimation of the net fluxes. 30

4 Discussion

4.1 Comparison of the simulated carbon cycle with
independent estimates

We have demonstrated that the JSBACH model is capable of
reproducing the seasonal cycle and 5-years trend of the ob- 35

served atmospheric CO2 (Figs. 4 and 5, and Table 5). Dur-
ing the assimilation run, we have applied a careful selection
of stations to avoid the impact of local sources on modelled



14 Schürmann et al.: MPI-CCDAS

−150 −100 −50 0 50 100 150

JOINT

Temporal mean 2005 − 2009NBP[gC/yr/m2]

−100 −50 0 50 100

CO2alone minus JOINT

Temporal mean 2005 − 2009NBP[gC/yr/m2]

Figure 6. Temporally averaged NBP of the JOINT assimilation, and
the difference between the CO2alone and the JOINT experiment.
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Figure 7. Latitudinal distribution of GPP for the prior and posterior
models compared to the independent estimates of Jung et al. (2011).

atmospheric CO2 mole fractions, which cannot be simulated
with the current coarse resolution of the MPI-CCDAS. The
evaluation at the cross-validation sites, which are located on
land and thus closer to locally varying source patterns, also
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Figure 8. Parameter changes of tropical evergreen trees in multiples
of the prior uncertainty (as ppo−ppr

σpr
).

demonstrated a good skill of the posterior model for these 5

sites. Overall, this does suggest that the improvement of the
MPI-CCDAS’s capability to capture the observed CO2 dy-
namics at monthly to yearly time scales is reasonably ro-
bust. Our results further support earlier studies (Rayner et al.,
1999; Kaminski et al., 1999; Peylin et al., 2013) that the ob- 10

servational network of atmospheric CO2 only constrains a
limited number of spatio-temporal flux patterns.

The application of the CCDAS led to significant changes
of the modelled carbon cycle in JSBACH. The average global
GPP of the JOINT experiment was substantially reduced rel- 15

ative to the prior run and was only slightly lower than inde-
pendent, data-driven estimates of 119 ± 6 PgC yr−1 (Jung
et al., 2011) and 123 ± 8 PgC yr−1 (Beer et al., 2010), as
well as estimates of comparable land surface models (ranging
from 111 to 151 PgC yr−1; Piao et al. 2013). Partly driven 20

by the reduction of GPP, the NPP was also significantly re-
duced to 46 PgC yr−1 in the JOINT experiment. While such
a value is lower than the commonly accepted reference value
of 60 PgC yr−1, it is still compatible with the range of avail-
able estimates for NPP of 44 - 66 PgC yr−1 (Cramer et al., 25

1999; Saugier and Roy, 2001). The latitudinal distribution of
GPP in comparison to an empirical estimate based on satel-
lite data and field measurements (Jung et al., 2011) shows
that the global reduction of GPP led to a better agreement of
GPP in the northern extra-tropics between 30◦N and 60◦N, 30

but to a lower GPP in the tropical rain forests (Fig. 7). The
reduction of GPP in the northern extra-tropics is likely as-
sociated with the overestimation of the seasonal cycle of at-
mospheric CO2 by the prior model, which was successfully
reduced primarily by reducing northern extra-tropical pro- 35

ductivity, in particular in temperate and boreal grasslands.
Nevertheless, our study supports earlier findings that despite
some constraint on northern extra-tropic production, the con-
straint of observed atmospheric CO2 on global production is
small (Koffi et al., 2012). 40

A detailed comparison of the simulated vegetation and soil
carbon stocks is beyond the scope of this paper, partly be-
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cause the simplifications of the spin-up procedure entail bi-
ases in predicted vegetation and soil carbon stocks, as tran-
sient land-use changes, forest management, and forest-age
structure are ignored. It is nevertheless instructive to com-
pare the simulated vegetation and soil carbon stocks to global5

totals from independent estimates to provide context for the
global carbon cycle simulated by MPI-CCDAS. The poste-
rior experiments showed only little less carbon in vegetation
(389 - 420 PgC) than the prior model (424 PgC; see Table
6). All of these estimates are lower than the 556 PgC vege-10

tation carbon based on updated Olson’s major world ecosys-
tem carbon stocks2, but are comparable to a more recent esti-
mate of global vegetation carbon storage of 442 ± 146 PgC
(Carvalhais et al., 2014). The posterior amount of soil car-
bon from the assimilation runs using atmospheric CO2 as15

a constraint compare favourably (within the uncertainty) to
the estimates of 1343 PgC based on the Harmonized World
Soil Database (HWSD)3. This estimate is more appropriate
for the presented comparison than the more recent and higher
estimate of soil carbon by Carvalhais et al. (2014) of 1836 -20

3257 PgC (95% confidence interval), as the latter includes
estimates of permafrost carbon, which is not modelled with
the current version of the MPI-CCDAS.

Our estimate of the net land carbon sink using atmospheric
CO2 as a constraint is slightly larger than the residual land25

carbon sink estimate (without inclusion of land-use change
fluxes) inferred from atmospheric measurements and aux-
iliary fluxes by Le Quéré et al. (2015), who derived a net
uptake of 2.4 ± 0.8 PgC yr−1 for the period 2000 - 2009.
Correcting this estimate for the pre-industrial lateral carbon30

fluxes from land to the ocean via rivers would increase the
terrestrial net land C uptake seen by the atmosphere (and
thus the MPI-CCDAS) to 2.85 PgC yr−1; see Le Quéré et al.
2015 and Jacobson et al. 2007). Due to the interannual vari-
ability of the land sink, the shorter time-period of our sink es-35

timate may have contributed to the difference between the es-
timates. However, it is more likely that the reason for the dif-
ference is the prescribed, comparatively small, net ocean car-
bon uptake of 1.1 PgC yr−1 (Rödenbeck et al., 2013). This
net ocean uptake applied in the MPI-CCDAS compares to the40

estimate of 2.4 ± 0.5 PgC yr−1 of Le Quéré et al. (2015)4,
which reduces to 1.95 PgC yr−1 when correcting the esti-
mate for the dissolved organic carbon (DOC) transport from
land to oceans via river systems. Bearing in mind that the
atmospheric CO2 observations more directly constrain the45

net global carbon fluxes at seasonal and annual scales rather
than the gross land fluxes or land carbon pools, assuming a
larger ocean net carbon uptake would have reduced the net

2http://cdiac.ornl.gov/epubs/ndp/ndp017/ndp017b.html
3http://webarchive.iiasa.ac.at/Research/LUC/External-World-

soil-database/HTML/
4The estimates of Rödenbeck et al. (2013) and Le Quéré et al.

(2015) are not fully compatible because they differ in the accounting
of carbon fluxes from rivers to the ocean.

land uptake simulated by MPI-CCDAS. Explicitly account-
ing for DOC-based carbon losses from land in the JSBACH 50

model would probably help to close the gap between the esti-
mates, and thereby reduce the estimated land carbon storage
inferred from the atmospheric data. Adding such a process
formulation would thus permit the MPI-CCDAS to generate
an estimate which is more compatible with that of Le Quéré 55

et al. (2015).

4.2 Comparison to previous studies

Our results are consistent with earlier studies, which showed
that JSBACH overestimates the seasonal cycle amplitude of
atmospheric CO2 (Dalmonech and Zaehle, 2013). The pos- 60

terior estimates of this amplitude was considerably reduced,
leading to an improved model performance in all three exper-
iments (Fig. 5). This also holds for FAPARalone, for which
the comparison with CO2 is an independent evaluation. Note
that the prior we reported here already relies on an adjusted 65

Λmax parameter for the CE PFT (see Sect. 2.6). For the run
with the off-the-shelf configuration of JSBACH as applied in
(Dalmonech and Zaehle, 2013, results not shown), the high-
latitude mean seasonal cycle amplitude was around 30 ppm,
implying an overestimation of about 15 ppm. In the prior ex- 70

periment including the adjusted Λmax for the CE PFT, this
overestimation was reduced to about 5 - 10 ppm. Apply-
ing only FAPAR as a constraint further reduced the overes-
timation of the high-latitude mean seasonal cycle amplitude
(FAPARalone experiment in Fig. 5). Adding CO2 as a con- 75

straint further improves the fit to the seasonal cycle ampli-
tude. In other words, boreal phenology, in particular maxi-
mum annual leaf area, has a considerable control on the sea-
sonal cycle of the high-latitude atmospheric CO2-signal. Us-
ing TIP-FAPAR helped to improve this metric of the carbon 80

cycle despite the deterioration of the simulated longer-term
CO2 trend (Fig. 4).

This conclusion is also supported by Kaminski et al.
(2012), who constrained the BETHY-CCDAS jointly with at-
mospheric CO2 data and a different FAPAR product (Gobron 85

et al., 2007). They found an improved seasonal cycle ampli-
tude of CO2 for their joint assimilation, which is in line with
our findings. Through factorial uncertainty propagation with
their assimilation scheme, Kaminski et al. (2012) also found
that the inclusion of FAPAR yields only a moderate uncer- 90

tainty reduction in the simulated carbon fluxes and mainly
reduces the water flux uncertainties. Kaminski et al. (2012)
therefore suggested that FAPAR only added little informa-
tion to the modelled carbon cycle in addition to atmospheric
CO2. In contrast, we have shown here a considerable impact 95

of the FAPAR data set by altering the spatial net carbon flux
patterns between the JOINT and CO2alone experiments.

Our study showed considerable differences in the GPP es-
timates, which were not reflected in the net carbon fluxes for
the CO2alone and JOINT cases, as the net flux is more di- 100

rectly constrained by the atmospheric CO2 observations. Us-
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ing a variant of the BETHY-CCDAS, Koffi et al. (2012) also
found large differences in their posterior GPP estimates rang-
ing from 109 - 164 PgC yr−1 resulting from the use of alter-
native transport models, atmospheric station densities, and
prior uncertainties. As in our study, their large GPP range5

was not reflected in large differences of the net land carbon
flux. Our work thus supports earlier findings (Rayner et al.,
2005; Scholze et al., 2007; Koffi et al., 2012) that despite
some constraint on northern extra-tropical GPP, the global
land GPP cannot be well constrained with atmospheric CO210

alone.
A striking difference to the results of Koffi et al. (2012) oc-

curred in the tropics, where BETHY-CCDAS overestimated
GPP compared to data-driven estimates, whereas the MPI-
CCDAS underestimated GPP. As will be discussed below15

(Sect. 4.4), the underestimation of tropical GPP with MPI-
CCDAS is likely a compensating effect arising from the res-
piration part of the model that only can be modified globally.
This is not the case for the BETHY-CCDAS, which allows
for a spatially more explicit control on heterotrophic respi-20

ration. It appears thus likely that a larger posterior GPP in
the MPI-CCDAS could be expected with a system allowing
for more spatial freedom in the parameterisation of respira-
tion processes, for instance, by making faut_leaf and fslow
a function of plant functional type. Additional information25

to further reduce uncertainty in the spatial distribution of the
gross fluxes (GPP and ecosystem respiration), especially in
tropical regions, is therefore required. Improvements made
on the gross fluxes will likely also propagate to an improved
estimate of the net CO2-fluxes.30

4.3 Discussion of the assimilation procedure

The results clearly show that two data-streams can be
successfully integrated with the MPI-CCDAS. The poste-
rior parameter values (Table 2) were different between the
FAPARalone and JOINT, as well as the CO2alone and35

JOINT experiments. This demonstrates that the joint use of
the two data streams added information to the posterior pa-
rameter vector by preventing the degradation of the phenol-
ogy simulation when trying to fit the CO2 observations (Ta-
ble 5 and 4). This conclusion is also supported by the fact that40

value of the cost function of the JOINT assimilation roughly
equals the sum of the single data-stream experiments, indi-
cating consistency of the model with both data streams.

Hence, although the JSBACH phenology is only weakly
influenced by the carbon cycle component of JSBACH and45

mainly controlled by other drives (e.g. soil moisture, temper-
ature), there are strong interactions among carbon and wa-
ter cycle parameters and simulated FAPAR, a finding sup-
ported by Forkel et al. (2014). The combination of the two
data streams in the JOINT experiment helped to keep param-50

eters within acceptable bounds. The capability of assimilat-
ing multiple data streams simultaneously is a distinct advan-
tage of the MPI-CCDAS over alternative strategies that as-

similate multiple data streams following a sequential design
of assimilating FAPAR prior to carbon cycle information. 55

An implementation of such a sequential assimilation likely
reduces the number of parameters to be optimised in each
step, and therefore allows a quicker solution of the optimi-
sation problem. However, this advantage comes at the cost
of breaking the linkage between parameters, because side- 60

effects of parameter variations on other modelled quantities
are ignored in the assimilation process. This can lead to sim-
ulation results, in which the posteriori model of a sequen-
tial assimilation experiment will not match the observations
equally well as obtained by simultaneous assimilation of the 65

data streams. Since our results have demonstrated that a joint
assimilation is feasible without impairing the fit to the in-
dividual data sources, a joint assimilation approach appears
therefore recommendable.

The assimilation procedure achieved a strong reduction of 70

the cost function and the norm of the gradient (see Table
3). Although the relative reduction in the norm of the gra-
dient was larger in the CO2-cases than in the FAPARalone
case, the norm did not not approach zero - contrary to the
FAPARalone case. Such a non-zero gradient was also noted 75

by Rayner et al. (2005) in their CO2 assimilation with the
BETHY-CCDAS. The fact that the MPI-CCDAS success-
fully reduces the norm of the gradient for FAPAR suggests
that this is not a general failure of the MPI-CCDAS, but spe-
cific to the particularities of the CO2 set-up. It is presently 80

unclear, what is causing the assimilation to fail to reach the
minimum of the cost function, warranting further investiga-
tion of the non-linear nature and potential numerical issues
regarding the computation of the gradient ∂J

∂p (Eq. 1). Fur-
ther tests with alternative station network settings, parame- 85

ter priors, or time-periods for data assimilation will provide
more insight into potential solutions to tackle this issue. Nev-
ertheless, we believe that our results can still be meaningfully
interpreted and used to evaluate the general capacity of the
MPI-CCDAS as a comprehensive data assimilation tool. 90

4.4 Comments on the parameter set-up

The results presented in Sect. 3.2 show that there is a cer-
tain degree of equifinality in the parameter values obtained
from the assimilation of TIP-FAPAR. This can happen when
(i) certain parameters enter an insensitive regime where pa- 95

rameter differences do hardly propagate to differences in the
modelled foliar area, (ii) pixels are a composite of different
plant functional types that can show compensating effects,
and (iii) the atmospheric CO2 constraint imposes an addi-
tional weight on changing FAPAR, because of the feedbacks 100

through photosynthesis and stomatal conductance.
A cautionary note about the posterior parameter values

is warranted: Some of the parameters of the JOINT and
CO2alone experiment were altered strongly compared to the
assumed prior uncertainty. This is possible within the MPI- 105

CCDAS, because the prior contribution to the cost-function
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is weak due to the small number of parameters compared to
the number of observations. One example is the fslow param-
eter, which controls the initial soil Carbon pool size and thus
the disequilibrium between GPP and respiration (Table 2).
Another example is the photosynthesis parameter fphotos for5

the tropical evergreen PFT in the JOINT experiment, which
was reduced by more than 2.5 times the prior uncertainty
and to roughly 75% of its prior value. As a consequence, the
assimilation procedure can result in parameter values with
small prior probabilities. This either points toward too tight10

prior uncertainties, or to model structural problems.
One such structural problem is that the current MPI-

CCDAS excludes the model spin-up from the assimilation
procedure for reasons of computational efficiency. The cur-
rent version of MPI-CCDAS manipulates the initial soil car-15

bon pool by one globally valid modifier. This choice was
made because allowing to control the spatial structure of
the carbon pools would require several more parameters to
be optimised, which would very likely suffer from a strong
equifinality problem, and which would considerably extend20

the already long run-time of the MPI-CCDAS. Our results
demonstrate that this spin-up approach allows to adequately
reproduce the space-time structure of the atmospheric CO2

budget at the time scale of several years (Fig. 4 and Table
5). However, this approach likely introduces an imprint of25

the spatial distribution of the prior productivity on the final
model outcome, which may cause imperfections in the abil-
ity of the MPI-CCDAS to accurately capture the spatial dis-
tribution of the net land carbon uptake. In turn, this approach
will also affect the posteriori parameter vector. Allowing for30

more spatially explicit modifiers for the initial carbon pools
(as is done in the BETHY-CCDAS), for instance, by linking
the initial soil disequilibrium to a particular PFT, would be a
first step forward.

Another structural problem of MPI-CCDAS is the stiff-35

ness of the respiration parametrisation in JSBACH (with
only a few adjustable parameters). This feature likely con-
tributed strongly to the propagation of low temperate GPP
into the tropical zone. Because the overall net CO2 flux
is constrained by the atmospheric observations, reduction40

in temperate GPP required a corresponding adjustment of
the ecosystem respiration to balance the budget. While low-
ering GPP also reduces autotrophic respiration (Eq. A17),
any further reduction in respiration in the temperate zone
by adjusting autotrophic (faut_leaf ) or heterotrophic respi-45

ration parameters (Q10, fslow) would also affect tropical res-
piration, because in the current version of the MPI-CCDAS
these parameters are assumed to be valid globally. To balance
the budget, a reduction in tropical GPP, associated with the
strong reduction of fphotos for the tropical evergreen PFT in50

the JOINT experiment, might have been required. It is un-
likely that the reduction of tropical GPP was associated with
a phase-shift in the dry-wet cycle in the Amazon rain for-
est, as no phase mismatch in atmospheric CO2 is observed at
Mauna Loa (Fig. 4) that would suggest such a problem.55

4.5 Further development of the MPI-CCDAS

The application of the MPI-CCDAS allows detecting model
structural errors and/or deficits in the set-up, which then
can lead to a reformulation of the forward model (see e.g.
Kaminski et al., 2003; Rayner et al., 2005; Williams et al., 60

2009; Kaminski et al., 2013). The framework described here
can be steadily improved through regular improvements of
the JSBACH model structure by including missing or cor-
recting false model parameterisations (e.g. Knauer et al.,
2015). The system is also versatile enough to add more 65

constraints from relevant and complementary, multiple data
sources (Luo et al., 2012) to come up with more robust re-
gional estimates than the current atmospheric inversion al-
low. Beside the previously discussed limitation related to the
spin-up, the representation of initial carbon pools and ecosys- 70

tem respiration, we suggest also other analyses and develop-
ments to further improve MPI-CCDAS.

The discrepancies between FAPARalone and JOINT in the
foliar area estimates for crop-dominated regions originates
from the exclusion of TIP-FAPAR as constraint for these re- 75

gions. This exclusion also affected the extra-tropical decid-
uous PFT, that co-occurred dominantly in the same pixels.
Increasing the constraining power of TIP-FAPAR by either
adding more pixels as constraints or by increasing the reso-
lution to finer grids might further improve the phenology. In 80

this context we note that the per-pixel uncertainty ranges in
the TIP-FAPAR product also reflect limitations of the infor-
mation content that can be derived from sunlight reflected to
space in the optical domain (i.e. the input to TIP) in particu-
lar over dense canopies. Formal uncertainty propagation can 85

quantify the information content in the FAPAR product on
gross-fluxes or, conversely, derive accuracy requirements for
optical products (Kaminski et al., 2012).

We demonstrated the value of using a CCDAS instead of a
pure atmospheric inversion to estimate the land net carbon 90

flux, because the CCDAS can ingest complementary data
streams, which may help to further constrain the regional
estimates of the net land carbon flux. In this first version
of the MPI-CCDAS, we have assumed the net fluxes other
than those simulated with JSBACH, i.e. fossil fuel emis- 95

sions and ocean exchange, as well as the atmospheric drivers
to JSBACH to be perfectly known. Thereby we impute all
model-data mismatch on shortcomings of the land-surface
model. It would be desirable to also account for the uncer-
tainties in these components of the modelling system to more 100

robustly identify potential model shortcomings. Further as-
sessing the relative importance of different error sources (e.g.
in the land cover type parameterisation, model biases, or ob-
servational errors) with a system such as the MPI-CCDAS
would allow to highlight priority areas to reduce their uncer- 105

tainties and further constrain the global carbon cycle num-
bers as given in table 6

Our results show that applying FAPAR and atmospheric
CO2 as a constraint for the JSBACH model leads to an im-
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proved simulation of phenology and northern extra-tropical
GPP. As a consequence of the assimilation procedure, the
model also captures the magnitude of the global and hemi-
spheric NBP. This is a major step forward to including better
constrained terrestrial models for the estimation of the global5

carbon budget (Le Quéré et al., 2015). However, we have set
up the model such that it attributes the difference between
prior and posterior sink (i.e. 2.2 PgCyr−1) to changes in the
soil carbon storage. It has been long known that the terrestrial
net carbon uptake, and thus the CO2 signal seen by the at-10

mospheric observations, is strongly affected by natural (such
as fire) and anthropogenic disturbances (such as land-use
change; Houghton et al. 2012). These processes contribute
to the disequilibrium of vegetation and soil carbon pools
with vegetation production, and thus affect the spatial pattern15

of terrestrial carbon release and uptake. Without considera-
tion of these processes, one should be careful in analysing
the MPI-CCDAS projected carbon cycle trends and attribu-
tion of drivers of the trends. The tangent-linear version of
the JSBACH model contained in the MPI-CCDAS already20

has the appropriate modules to simulate disturbance by fire
(Lasslop et al., 2014) and land-use (Reick et al., 2013). A
further development of the MPI-CCDAS could be to activate
these processes. In order to improve on the current situation
it might also be desirable to constrain the post-disturbance25

dynamics of the carbon pools or at least to analyse how well
these are constrained. This would also allow to add more data
streams to potentially disentangle the tight parameter link-
ages in the model.

5 Conclusions30

The assimilation of five years of remotely sensed FAPAR
and atmospheric CO2 observations with the MPI-CCDAS
was generally successful as the fairly substantial model-data
mismatch of the prior model was largely reduced. In par-
ticular, the assimilation procedure strongly reduced the too35

large prior-estimate of GPP, and generally led to an improve-
ment of the simulated carbon cycle and its seasonality. The
resultant carbon cycle estimates compared favourably to in-
dependent data-driven estimates, although tropical produc-
tivity was lower than these estimates. The posterior global40

net land-atmosphere flux was well constrained and commen-
surate with independent estimates of the global carbon bud-
get. Our analysis of the prognostic fluxes for a consecutive
2-year period as well as at stations withheld from the assim-
ilation procedure demonstrates that our results are robust.45

The factorial inclusion of FAPAR and atmospheric CO2

as a constraint clearly demonstrated that the two data streams
can be simultaneously integrated with the MPI-CCDAS. We
have shown the potential of multiple-data-stream assimila-
tion by adding TIP-FAPAR as a constraint and have shown50

how this data stream helps constraining the foliar area with-
out degrading the ability of the model to capture seasonal

and yearly dynamics of the atmospheric CO2 mole fractions.
However, the multi-data assimilation also pointed to model
structural problems in the initialisation, which need to be ad- 55

dressed. Nevertheless, our study highlights the potential of
adding new data streams to constrain more processes in a
global ecosystem model.

This study provides an important step forward in the de-
velopment of global atmospheric inversion schemes. Adding 60

a process-based component to these inversion systems allows
to disentangle the drivers of the terrestrial carbon balance. It
also gives the opportunity to apply multiple data streams to
constrain these drivers. Applying a data-assimilation system
to a land component of a coupled carbon-cycle climate model 65

provides a means to continuously improve carbon flux sim-
ulations in this coupled model. Improving the assimilation
system on the one hand and adding more data streams on the
other hand can ultimately lead to regionally constrained esti-
mates of the terrestrial carbon balance for the assessment of 70

current and future trends.

Code availability

The JSBACH model code is available upon request to S. Za-
ehle (szaehle@bgc-jena.mpg.de)

The TM3 model code is available upon request to to C. 75

Rödenbeck (christian.roedenbeck@bgc-jena.mpg.de)
The TAF generated derivative code is subject to license

restrictions and not available.

Appendix A: Model description of JSBACH

A1 The phenology module 80

In the revised MPI-CCDAS phenology scheme (Knorr et al.,
2010), each plant functional type (PFT) is assigned to a
specific phenotype, implying limitations on phenology by
water (tropical and rain-green PFTs), water and tempera-
ture (herbaceous PFTs) and temperature and daylight (extra- 85

tropical tree PFTs; see Table 1). The evolution of the leaf
area index (LAI, denoted as Λ) on a daily time-step ∆t is
described as

Λ(t+ ∆t) = Λlim− [Λlim−Λ(t)]e−r∆t (A1)

with the inverse time scale r, which is defined as: 90

r = ξf + (1− f)/τl (A2)

The parameter ξ describes the rate of initial leaf growth, and
the parameter τl describes how quickly leafs are shed. f spec-
ifies the stage of the vegetation being fully active at f = 1 or
fully dormant at f = 0 (see Eq. A4). Λlim is defined as: 95

Λlim = ξΛmaxf/r (A3)



Schürmann et al.: MPI-CCDAS 19

where the parameter Λmax is the maximal possible LAI for
a particular PFT.

The phenology scheme accounts for naturally occur-
ring heterogeneity within the area of a model grid-cell by
smoothly varying the vegetation’s state f during transitions.5

The transition is controlled either by the day length (td) or a
temporally averaged temperature Tm with exponentially de-
caying weights for older periods, with a time scale of 30 days
(for details see Knorr et al. 2010).

f = Φ

(
Tm−Tφ
Tr

)
Φ

(
td− tc
tr

)
(A4)10

with the temperature control parameters Tφ, Tr and day-
length control parameters tc and tr and the cumulative nor-
mal distribution Φ (with mean Tm resp. td and standard de-
viation Tr resp. tr).

Water limitation is incorporated by calculating a water-15

limited maximum leaf area index ΛW that cannot be ex-
ceeded by the actual LAI:

ΛW =
WΛlast

EpotτW
(A5)

with a water limitation time scale τW . The potential evapo-
ration Epot, the relative root-zone moisture W and the LAI20

Λlast are taken from the previous day averages. ΛW itself
is a temporally averaged LAI with exponentially decaying
weigths of 30 day time-scale, similar to temperature and day
length above.

A2 Photosynthesis25

Photosynthesis in JSBACH follows Farquhar et al. (1980) for
C3-plants and Collatz et al. (1992) for C4-plants, with details
as described in Knorr and Heimann (2001) and Knorr (1997).
Net leaf CO2 uptake is the minimum of a carboxylation lim-
ited photosynthesis rate JC and of electron transport limited30

rate JE minus dark respiration Rd:

A= min(JC ,JE)−Rd (A6)

The carboxylation limited rate is calculated as:

JC = Vm
Ci−Γ?

Ci +KC(1 +Ox/KO)
(A7)

with the leaf internal CO2-Concentration Ci, the oxygen35

concentration Ox (0.21 mol/mol) and the CO2 compensa-
tion point (without dark respiration) Γ? = 1.7µmol/mol◦C ·
T which depends on temperature T (in ◦C). KC and KO are
the Michealis-Menten constants for CO2 and O2 and Vm is
the maximum carboxylation rate. The latter three all depend40

on the canopy temperature Tc (in K) in the form (exemplified
by Vm):

Vm = V cmax · exp(
EV T0

T1RgTc
) (A8)

with activation energy EV = 58520 Jmol−1 and gas con-
stant Rg = 8.314 JK−1mol−1. T1 = 298.16 ◦C is a refer- 45

ence temperature and T0 = Tc−T1 the difference to this ref-
erence. V cmax is the maximal carboxylation rate at 25 ◦C
and is given in Table D1. Temperature dependence of KC

andKO are calculated with a similar approach with reference
values at 25 ◦C for KC0 = 460 · 10−6 mol/mol and KO0 = 50

330 · 10−3 mol/mol and activation energies of EC = 59356
Jmol−1 and EO = 35948 Jmol−1, respectively.

The electron transport limited rate, JE , is calculated as

JE = J
Ci−Γ?

4(Ci− 2Γ?)
(A9)

with the photon capture efficiency α= 0.28 55

mol(electrons)/mol(photons), the absorption rate of
photosynthetically active radiation I , and with

J =
αIJm√
J2
m +α2I2

. (A10)

The limiting rate constant Jm depends on the temperature
with a maximum rate of electron transport Jmax at 25 ◦C 60

(Table D1):

Jm = Jmax ·T/25◦C (A11)

Photosynthesis for C4-plants follows Collatz et al. (1992)
and is the minimum among the three limiting rates Je = Vm,
Jc = kCi and Ji = αiI with the quantum efficiency αi = 65

0.04 and k:

k = Jmax · 103 exp(
EKT0

T1RgTc
) (A12)

with EK = 50967 Jmol−1.
Dark respiration is modelled depending on V cmax accord-

ing to 70

Rd = frC3|C4V cmax · exp(
ERT0

T1RgTc
) (A13)

with activation energy ER = 45000 Jmol−1, and frC3|C4 =
0.011|0.031 for C3 and C4 plants, respectively. Dark respi-
ration is reduced to 50% of its value during light conditions
(Brooks and Farquhar, 1985). 75

Photosynthesis and dark respiration are inhibited above
55◦C. Calculations are performed per PFT and three distinct
canopy layers, which vary in depth according to the current
leaf area index, assuming that within the canopy nitrogen,
and thus V cmax, Jmax, and Rd decline proportionally with 80

light levels in the canopy. GPP values per PFT are integrated
to grid-cell averages according to the cover fractions of each
PFT within each grid-cell.

A3 Carbon-water coupling

JSBACH employs a two-step approach to couple the plant 85

carbon and water fluxes (Knauer et al., 2015). Given a
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photosynthetic-pathway dependent specific maximal internal
leaf CO2 concentration (Ci), a maximal estimate of stomatal
conductance (gspot) is derived for each canopy layer, which
is then reduced by a water-stress factor (ws) to arrive at the
actual stomatal conductance (gsact) (see Knorr, 1997, 2000,5

and references therein).

gsact = ws · gspot = ws · 1.6 ·
A

Ca−Ci
(A14)

where Ca and Ci are the external and internal leaf CO2

concentrations. The water-stress factor ws is defined as

ws = min(
Wroot−Wwilt

Wcrit−Wwilt
,1) (A15)10

where Wroot is the actual soil-moisture in the root zone,
and Wcrit|wilt define the soil moisture levels at which stom-
ata begin to close, or reach full closure, respectively. Soil
moisture and bare soil evaporation are calculated according
to the multi-layer soil water scheme of Hagemann and Stacke15

(2014).
Given the water-stressed stomatal conductance, leaf in-

ternal CO2 concentration and carbon assimilation are then
recalculated for each canopy layer by solving simultane-
ously the diffusion equation (Eq. A14) and the photosynthe-20

sis equations as outlined above (Sec. A2)

A4 Land carbon pools, respiration and turnover

The vegetation’s net primary production (NPP) is related to
the net assimilation (A) as

NPP =A−Rm−Rg (A16)25

where Rg is the growth respiration, which is assumed to be
a fixed fraction (20%) of A−Rm. Rm is the maintenance
respiration, which is assumed to be coordinated with foliar
photosynthetic activity, and thus scaled to leaf dark respira-
tion via faut_leaf (Knorr, 2000)30

Rm =
Rd

faut_leaf
(A17)

with the dark respiration Rd as given in Eq. A13. As a con-
sequence, an increase in f_aut_leaf leads to an increase in
NPP.

NPP is allocated to either a green or woody pool given35

fixed, PFT-specific allocation constants. The green pool turns
to litter according to the leaf phenology, whereas the woody
turnover rate is prescribed as a fixed constant.

JSBACH considers three litter pools (above ground green,
below ground green and woody) with distinct, PFT-specific40

turnover times, as well as a soil organic matter pool with a
longer turnover time. Heterotrophic respiration for each of

these pools responds to temperature according to a Q10 for-
mulation:

Rpool = αrespQ
(T−Tref )/10
10 /τpool ·Cpool (A18) 45

with a soil-moisture dependent factor 0<= αresp <= 1.
Cpool is either the slow soil carbon pool, above or below
ground green litter or wood litter pool and T is tempera-
ture and Tref = 0◦C the reference temperature and a pool
depended turnover rate τpool (more details on the carbon bal- 50

ance sub-module can be found in Goll et al., 2012).

Appendix B: CO2 station list

The stations of atmospheric CO2-observations used for as-
similation and evaluation are given in Table B1 resp. Table
B2.

Table B1. CO2 stations used in the assimilation together with their
median uncertainty.

ID Longitude Latitude Median Uncertainty

MNM 153.97 24.30 1.4
SBL -60.02 43.93 5.9
ALT -62.52 82.45 1.8
ASC -14.42 -7.92 1.1
AZR -27.19 38.76 1.9
BHD 174.90 -41.40 1.0
CHR -157.17 1.70 1.0
CRZ 51.85 -46.45 1.0
EIC -109.45 -27.15 1.1
ESP -126.83 49.56 2.9
GMI 144.78 13.43 1.2
HBA -26.65 -75.58 1.0
ICE -20.21 63.30 1.9
KER -177.15 -29.03 1.0
KUM -154.82 19.52 1.6
MHD -9.90 53.33 2.4
MID -177.37 28.22 1.7
MQA 158.97 -54.48 1.0
RPB -59.43 13.17 1.1
SEY 55.17 -4.67 1.0
SHM 174.10 52.72 2.1
SIS -1.23 60.23 3.1

STM 2.00 66.00 3.2
TDF -68.48 -54.87 1.0
ZEP 11.88 78.90 2.3
MLO -155.58 19.53 1.1
SMO -170.57 -14.25 1.0
SPO -24.80 -89.98 1.0

55

Appendix C: Mapping variants

For performance reasons, the assimilation is not performed
in the physical parameter space but parameters p are trans-
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Table B2. CO2 stations used for evaluation that have not been used
as constraints for the assimilation.

ID Longitude Latitude

PAL 24.12 67.97
PRS 7.70 45.93
RYO 141.83 39.03
YON 123.02 24.47
CBA -162.72 55.20
CFA 147.06 -19.28
CGO 144.70 -40.68
COI 145.50 43.15
CYA 110.52 -66.28
HAT 123.80 24.05
IZO -16.48 28.30
KEY -80.20 25.67
LEF -90.27 45.93
LJO -117.25 32.87
LMP 12.61 35.51
MAA 62.87 -67.62
NWR -105.60 40.05
PSA -64.00 -64.92
SUM -38.47 72.57
TAP 126.13 36.73
UTA -113.72 39.90
UUM 111.10 44.45
WIS 34.88 31.13
WLG 100.91 36.28
BRW -156.60 71.32
SYO 39.58 -69.00
CMN 10.70 44.18
SCH 7.92 47.92

formed to x expressed in multiples of the prior uncertainty,
the intrinsic units of the problem (Kaminski et al., 1999). The
most basic mapping is:

x=
p− p0

σprior
⇔ p= p0 +xσprior (C1)

An extension of this is to apply lower bounds in the mapping5

back to physical space with

p= pmin +xlow/xσprior

only if

x < xlow =
pmin +σprior − p0

σprior

(C2)

with pmin the minimum allowed parameter value.

Appendix D: Parameter values

Some parameters were modified with a factor within the10

MPI-CCDAS, because model structure did not allow to di-

rectly change these values and thus such an approach was
required. The parameter values are listed in Table D1.

Appendix E: PFT-distribution

The vegetation distribution of the PFT’s as prescribed in the 15

MPI-CCDAS is given in Fig. E1.
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Table D1. Values of those parameters that have been changed with a multiplicative factor during the assimilation.

PFT TrBE TrBD ETD CE CD RS TeH TeCr TrH TrCr

Prior Λmax [m2/m2] 7.0 7.0 5.0 1.7 5.0 2.0 3.0 4.0 3.0 4.0
Joint Λmax [m2/m2] 6.9 4.1 4.9 1.7 3.2 2.7 1.9 2.5 1.6 2.1

Prior V cmax [µmol/m2s] 39.0 31.0 66.0 62.5 39.1 61.7 78.2 100.7 8.0 39.0
Joint V cmax [µmol/m2s] 29.2 33.3 65.1 59.2 40.6 62.1 75.4 67.9 8.3 34.1

Prior Jmax [µmol/m2s] 74.1 58.9 125.4 118.8 74.3 117.2 148.6 191.3 140.0 700.0
Joint Jmax [µmol/m2s] 55.5 63.3 123.7 112.5 77.2 117.9 143.2 129.0 145.0 611.2

TrBE TrBD

ETD CE

CD RS

TeH TeCr

TrH TrCr

0.0 0.2 0.4 0.6 0.8 1.0

Figure E1. Fractional vegetation coverage of the PFT’s as prescribed in the MPI-CCDAS. See Table 1 for abbreviations.



Schürmann et al.: MPI-CCDAS 23

Acknowledgements. The research leading to this publication was
supported by the European Space Agency through the STSE Car-
bonflux (contract no. 4000107086/12/NL/Fv0), the European Com-
munity within its 7th framework programme under contract num-
ber (GEOCARBON; FP7-283080), as well as the Max Planck So-5

ciety for the Advancement of Science, e.V. through the ENIGMA
project. The authors thank P. Peylin for providing the fossil fuel
emission data, M. Scholze, W. Knorr and K. Scipal for fruitful dis-
cussions and C. Reick, R. Schnur and V. Gayler for assistance with
the JSBACH model.10

References

Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox,
P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the
Land and Ocean Components of the Global Carbon Cycle in the
CMIP5 Earth System Models, J. Climate, 26, 6801–6843, 2013.15

Bacour, C., Peylin, P., MacBean, N., Rayner, P. J., Delage, F.,
Chevallier, F., Weiss, M., Demarty, J., Santaren, D., Baret,
F., Berveiller, D., Dufrêne, E., and Prunet, P.: Joint assim-
ilation of eddy covariance flux measurements and FAPAR
products over temperate forests within a process-oriented bio-20

sphere model, Journal of Geophysical Research: Biogeosciences,
120, 1839–1857, doi:10.1002/2015JG002966, http://dx.doi.org/
10.1002/2015JG002966, 2015JG002966, 2015.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carval-
hais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan,25

G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lo-
mas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard,
O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I.,
and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global
Distribution and Covariation with Climate, Science, 329, 834–30

838, doi:10.1126/science.1184984, 2010.
Booth, B. B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox,

P. M., Sitch, S., Huntingford, C., Betts, R. A., Harris, G. R.,
and Lloyd, J.: High sensitivity of future global warming to
land carbon cycle processes, Environmental Research Letters, 7,35

024 002, 2012.
Brooks, A. and Farquhar, G.: Effect of temperature on the CO2/O2

specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase
and the rate of respiration in the light, Planta, 165, 397–406,
doi:10.1007/BF00392238, 1985.40

Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.:
Global biogeophysical interactions between forest and climate,
Geophysical Research Letters, 36, doi:10.1029/2009GL037543,
2009.

Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G. J.,45

Pereira, J. S., Berbigier, P., Carrara, A., Granier, A., Mon-
tagnani, L., Papale, D., Rambal, S., Sanz, M. J., and Valen-
tini, R.: Implications of the carbon cycle steady state as-
sumption for biogeochemical modeling performance and in-
verse parameter retrieval, Global Biogeochemical Cycles, 22,50

n/a–n/a, doi:10.1029/2007GB003033, http://dx.doi.org/10.1029/
2007GB003033, gB2007, 2008.

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M.,
Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M.,
Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T.,55

and Reichstein, M.: Global covariation of carbon turnover times

with climate in terrestrial ecosystems, Nature, 514, 213–217,
2014.

Clerici, M., Vossbeck, M., Pinty, B., Kaminski, T., Taberner, M.,
Lavergne, T., and Andredakis, I.: Consolidating the Two-Stream 60

Inversion Package (JRC-TIP) to Retrieve Land Surface Param-
eters From Albedo Products, Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Journal of, 3, 286–295,
doi:10.1109/JSTARS.2010.2046626, 2010.

Collatz, G., Ribas-Carbo, M., and Berry, J.: Coupled 65

Photosynthesis-Stomatal Conductance Model for Leaves of
C4 Plants, Functional Plant Biol., 19, 519–538, 1992.

Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W.,
Kitzis, D. R., Masarie, K. A., and Zhang, N.: Evidence for
interannual variability of the carbon cycle from the National 70

Oceanic and Atmospheric Administration/Climate Monitoring
and Diagnostics Laboratory Global Air Sampling Network, Jour-
nal of Geophysical Research: Atmospheres, 99, 22 831–22 855,
doi:10.1029/94JD01951, 1994.

Cramer, W., Kicklighter, D. W., Bondeau, A., Iii, B. M., Churk- 75

ina, G., Nemry, B., Ruimy, A., Schloss, A. L., and Intercom-
parison, T. P. O. T. P. N. M.: Comparing global models of
terrestrial net primary productivity (NPP): overview and key
results, Global Change Biology, 5, 1–15, doi:10.1046/j.1365-
2486.1999.00009.x, 1999. 80

Dalmonech, D. and Zaehle, S.: Towards a more objective evalua-
tion of modelled land-carbon trends using atmospheric CO2 and
satellite-based vegetation activity observations, Biogeosciences,
10, 4189–4210, doi:10.5194/bg-10-4189-2013, 2013.

Dalmonech, D., Zaehle, S., Schürmann, G. J., Brovkin, V., Reick, 85

C., and Schnur, R.: Separation of the Effects of Land and Climate
Model Errors on Simulated Contemporary Land Carbon Cycle
Trends in the MPI Earth System Model version 1, J. Climate, 28,
272–291, 2015.

Disney, M., Muller, J.-P., Kharbouche, S., Kaminski, T., Voßbeck, 90

b. M., Lewis, P., and Pinty, B.: A New Global fAPAR
and LAI Dataset Derived from Optimal Albedo Estimates:
Comparison with MODIS Products, Remote Sensing, 8,
275, doi:10.3390/rs8040275, http://www.mdpi.com/2072-4292/
8/4/275, 2016. 95

European Commission, Joint Research Centre (JRC)/Netherlands
Environmental Assessment Agency (PBL): Emission Database
for Global Atmospheric Research (EDGAR), release version 4.0,
http://edgar.jrc.ec.europa.eu,2009, 2009.

Farquhar, G., von Caemmerer, S., and Berry, J.: A biochemi- 100

cal model of photosynthetic CO2 assimilation in leaves of C3
species, Planta, 149, 78–90, doi:10.1007/BF00386231, 1980.

Forkel, M., Carvalhais, N., Schaphoff, S., v. Bloh, W., Migliavacca,
M., Thurner, M., and Thonicke, K.: Identifying environmental
controls on vegetation greenness phenology through model–data 105

integration, Biogeosciences, 11, 7025–7050, doi:10.5194/bg-11-
7025-2014, 2014.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D.,
Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in
CMIP5 Climate Projections due to Carbon Cycle Feedbacks, J. 110

Climate, 27, 511–526, 2014.
Giering, R. and Kaminski, T.: Recipes for Adjoint Code

Construction, ACM Trans. Math. Softw., 24, 437–474,
doi:10.1145/293686.293695, 1998.

http://dx.doi.org/10.1002/2015JG002966
http://dx.doi.org/10.1002/2015JG002966
http://dx.doi.org/10.1002/2015JG002966
http://dx.doi.org/10.1002/2015JG002966
http://dx.doi.org/10.1126/science.1184984
http://dx.doi.org/10.1007/BF00392238
http://dx.doi.org/10.1029/2009GL037543
http://dx.doi.org/10.1029/2007GB003033
http://dx.doi.org/10.1029/2007GB003033
http://dx.doi.org/10.1029/2007GB003033
http://dx.doi.org/10.1029/2007GB003033
http://dx.doi.org/10.1109/JSTARS.2010.2046626
http://dx.doi.org/10.1029/94JD01951
http://dx.doi.org/10.1046/j.1365-2486.1999.00009.x
http://dx.doi.org/10.1046/j.1365-2486.1999.00009.x
http://dx.doi.org/10.1046/j.1365-2486.1999.00009.x
http://dx.doi.org/10.5194/bg-10-4189-2013
http://dx.doi.org/10.3390/rs8040275
http://www.mdpi.com/2072-4292/8/4/275
http://www.mdpi.com/2072-4292/8/4/275
http://www.mdpi.com/2072-4292/8/4/275
http://edgar.jrc.ec.europa.eu, 2009
http://dx.doi.org/10.1007/BF00386231
http://dx.doi.org/10.5194/bg-11-7025-2014
http://dx.doi.org/10.5194/bg-11-7025-2014
http://dx.doi.org/10.5194/bg-11-7025-2014
http://dx.doi.org/10.1145/293686.293695


24 Schürmann et al.: MPI-CCDAS

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader,
J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K.,
Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T.,
Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajew-
icz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S.,5

Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschnei-
der, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to
2100 in MPI-ESM simulations for the Coupled Model Intercom-10

parison Project phase 5, Journal of Advances in Modeling Earth
Systems, 5, 572–597, doi:10.1002/jame.20038, 2013.

Gobron, N., Pinty, B., Melin, F., Taberner, M., Verstraete,
M. M., Robustelli, M., and Widlowski, J.-L.: Evaluation of the
MERIS/ENVISAT FAPAR product, Adv. Space Res., 39, 105–15

115, 2007.
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Re-

ich, P. B., van Bodegom, P. M., and Niinemets, U.: Nutrient lim-
itation reduces land carbon uptake in simulations with a model
of combined carbon, nitrogen and phosphorus cycling, Biogeo-20

sciences, 9, 3547–3569, doi:10.5194/bg-9-3547-2012, 2012.
Griewank, A.: On Automatic Differentiation, in: Mathematical Pro-

gramming: Recent Developments and Applications, edited by Iri,
M. and Tanabe, K., pp. 83–108, Kluwer Academic Publishers,
Dordrecht, 1989.25

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D.,
Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung,
I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T.,
Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C.,
Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and30

Yuen, C.-W.: Towards robust regional estimates of CO2 sources
and sinks using atmospheric transport models, Nature, 415, 626–
630, 2002.

Hagemann, S. and Stacke, T.: Impact of the soil hydrology scheme
on simulated soil moisture memory, Climate Dynamics, pp. 1–35

20, doi:10.1007/s00382-014-2221-6, 2014.
Heimann, M. and Körner, S.: The Global Atmospheric Tracer

Model TM3, Tech. Rep. 5, Max-Planck-Institute for Biogeo-
chemistry, 2003.

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., De-40

Fries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.:
Carbon emissions from land use and land-cover change, Biogeo-
sciences, 9, 5125–5142, doi:10.5194/bg-9-5125-2012, 2012.

Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento,
J. L., and Gloor, M.: A joint atmosphere-ocean inver-45

sion for surface fluxes of carbon dioxide: 1. Methods
and global-scale fluxes, Global Biogeochemical Cycles, 21,
n/a–n/a, doi:10.1029/2005GB002556, http://dx.doi.org/10.1029/
2005GB002556, gB1019, 2007.

Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Za-50

ehle, S., Ciais, P., Viovy, N., Bondeau, A., Chen, Y., Trusilova,
K., Feser, F., and Heimann, M.: Uncertainties of modeling
gross primary productivity over Europe: A systematic study
on the effects of using different drivers and terrestrial bio-
sphere models, Global Biogeochemical Cycles, 21, n/a–n/a,55

doi:10.1029/2006GB002915, gB4021, 2007.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richard-

son, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal,
D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W.,

Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montag- 60

nani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari,
F., and Williams, C.: Global patterns of land-atmosphere fluxes
of carbon dioxide, latent heat, and sensible heat derived from
eddy covariance, satellite, and meteorological observations, Jour-
nal of Geophysical Research: Biogeosciences, 116, n/a–n/a, 65

doi:10.1029/2010JG001566, 2011.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,

Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,
Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins,
W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., 70

and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project,
Bull. Amer. Meteor. Soc., 77, 437–471, 1996.

Kaminski, T. and Mathieu, P.-P.: Reviews and Syntheses: Fly-
ing the Satellite into Your Model, Biogeosciences Dis-
cussions, 2016, 1–25, doi:10.5194/bg-2016-237, http://www. 75

biogeosciences-discuss.net/bg-2016-237/, 2016.
Kaminski, T., Heimann, M., and Giering, R.: A coarse grid three

dimensional global inverse model of the atmospheric transport,
2, Inversion of the transport of CO2 in the 1980s, J. Geophys.
Res., 104, 18,555–18,581, 1999. 80

Kaminski, T., Giering, R., Scholze, M., Rayner, P., and
Knorr, W.: A prototype of a data assimilation system
based on automatic differentiation, Geophysical Research Ab-
stracts, 5, 11 812, http://www.cosis.net/abstracts/EAE03/11812/
EAE03-J-11812.pdf, 2003. 85

Kaminski, T., Knorr, W., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Consistent assimilation of MERIS
FAPAR and atmospheric CO2 into a terrestrial vegetation model
and interactive mission benefit analysis, Biogeosciences, 9,
3173–3184, doi:10.5194/bg-9-3173-2012, 2012. 90

Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner,
P. J., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering,
R., Gobron, N., Grant, J. P., Heimann, M., Hooker-Stroud, A.,
Houweling, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi,
E. N., Köstler, C., Mathieu, P.-P., Pinty, B., Reick, C. H., Rö- 95

denbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T., van
Scheltinga, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.:
The BETHY/JSBACH Carbon Cycle Data Assimilation System:
experiences and challenges, J. Geophys. Res. Biogeosci., 118,
1414–1426, 2013. 100

Kato, T., Knorr, W., Scholze, M., Veenendaal, E., Kaminski, T.,
Kattge, J., and Gobron, N.: Simultaneous assimilation of satellite
and eddy covariance data for improving terrestrial water and car-
bon simulations at a semi-arid woodland site in Botswana, Bio-
geosciences, 10, 789–802, doi:10.5194/bg-10-789-2013, http:// 105

www.biogeosciences.net/10/789/2013/, 2013.
Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical

model of photosynthesis: a reanalysis of data from 36 species,
Plant, Cell & Environment, 30, 1176–1190, doi:10.1111/j.1365-
3040.2007.01690.x, 2007. 110

Kattge, J., Dí az, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch,
G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cor-
nelissen, J. H. C., Violle, C., Harrison, S. P., Van Bodegom,
P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A.,
Ackerly, D. D., Anand, M., Atkin, O., Bahn, M., Baker, T. R., 115

Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond,
W. J., Bradstock, R., Bunker, D. E., Casanoves, F., Cavender-
Bares, J., Chambers, J. Q., Chapin III, F. S., Chave, J., Coomes,

http://dx.doi.org/10.1002/jame.20038
http://dx.doi.org/10.5194/bg-9-3547-2012
http://dx.doi.org/10.1007/s00382-014-2221-6
http://dx.doi.org/10.5194/bg-9-5125-2012
http://dx.doi.org/10.1029/2005GB002556
http://dx.doi.org/10.1029/2005GB002556
http://dx.doi.org/10.1029/2005GB002556
http://dx.doi.org/10.1029/2005GB002556
http://dx.doi.org/10.1029/2006GB002915
http://dx.doi.org/10.1029/2010JG001566
http://dx.doi.org/10.5194/bg-2016-237
http://www.biogeosciences-discuss.net/bg-2016-237/
http://www.biogeosciences-discuss.net/bg-2016-237/
http://www.biogeosciences-discuss.net/bg-2016-237/
http://www.cosis.net/abstracts/EAE03/11812/EAE03-J-11812.pdf
http://www.cosis.net/abstracts/EAE03/11812/EAE03-J-11812.pdf
http://www.cosis.net/abstracts/EAE03/11812/EAE03-J-11812.pdf
http://dx.doi.org/10.5194/bg-9-3173-2012
http://dx.doi.org/10.5194/bg-10-789-2013
http://www.biogeosciences.net/10/789/2013/
http://www.biogeosciences.net/10/789/2013/
http://www.biogeosciences.net/10/789/2013/
http://dx.doi.org/10.1111/j.1365-3040.2007.01690.x
http://dx.doi.org/10.1111/j.1365-3040.2007.01690.x
http://dx.doi.org/10.1111/j.1365-3040.2007.01690.x


Schürmann et al.: MPI-CCDAS 25

D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L.,
Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang,
J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O.,
Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher,
R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I.,5

Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff,
A. J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops,
J. M. H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D.,
Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L.,
Lloyd, J., Llusià, J., Louault, F., MA, S., Mahecha, M. D., Man-10

ning, P., Massad, T., Medlyn, B. E., Messier, J., Moles, A. T.,
Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, U., Nöllert,
S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V. G., On-
oda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S.,
Paula, S., Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V.,15

Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R.,
Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret,
B., Sardans, J., Shiodera, S., Shipley, B., Siefert, A., Sosinski,
E., Soussana, J.-F., Swaine, E., Swenson, N., Thompson, K.,
Thornton, P., Waldram, M., Weiher, E., White, M., White, S.,20

Wright, S. J., Yguel, B., Zaehle, S., Zanne, A. E., and Wirth,
C.: TRY – a global database of plant traits, Global Change Bi-
ology, 17, 2905–2935, doi:10.1111/j.1365-2486.2011.02451.x,
http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x, 2011.

Knauer, J., Werner, C., and Zaehle, S.: Evaluating stom-25

atal models and their atmospheric drought response in
a land surface scheme: A multi-biome analysis, Jour-
nal of Geophysical Research: Biogeosciences, pp. n/a–n/a,
doi:10.1002/2015JG003114, 2015JG003114, 2015.

Knorr, W.: Satellite remote sensing and modelling of the global30

CO2 exchange of land vegetation: a synthesis study, Ph.D. thesis,
Faculty of Earth Sciences of the University of Hamburg, 1997.

Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial
biosphere: process-based simulations and uncertainties, Global
Ecology and Biogeography, 9, 225–252, 2000.35

Knorr, W. and Heimann, M.: Uncertainties in global terrestrial bio-
sphere modeling: 1. A comprehensive sensitivity analysis with
a new photosynthesis and energy balance scheme, Global Bio-
geochemical Cycles, 15, 207–225, doi:10.1029/1998GB001059,
2001.40

Knorr, W. and Kattge, J.: Inversion of terrestrial ecosystem model
parameter values against eddy covariance measurements by
Monte Carlo sampling, Global Change Biology, 11, 1333–1351,
doi:10.1111/j.1365-2486.2005.00977.x, 2005.

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Gier-45

ing, R., and Mathieu, P.-P.: Carbon cycle data assimilation with
a generic phenology model, J. Geophys. Res., 115, G04 017–,
doi:10.1029/2009JG001119, 2010.

Knyazikhin, Y., Glassy, J., Privette, J. L., Tian, Y., Lotsch, A.,
Zhang, Y., Wang, Y., Morisette, J. T., Votava, P., Myneni, R.,50

Nemani, R. R., and Running, S. W.: MODIS Leaf Area Index
(LAI) and Fraction of Photosynthetically Active Radiation
Absorbed by Vegetation (FPAR) Product (MOD15), Algo-
rithm Theoretical Basis Document (ATBD), https://lpdaac.
usgs.gov/products/modis_products_table/mcd15a2andhttp:55

//modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf, 1999.
Koffi, E. N., Rayner, P. J., Scholze, M., and Beer, C.: At-

mospheric constraints on gross primary productivity and net
ecosystem productivity: Results from a carbon-cycle data as-

similation system, Global Biogeochemical Cycles, 26, n/a–n/a, 60

doi:10.1029/2010GB003900, gB1024, 2012.
Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and

Richardson, A. D.: Constraining a global ecosystem model with
multi-site eddy-covariance data, Biogeosciences, 9, 3757–3776,
doi:10.5194/bg-9-3757-2012, 2012. 65

Kuppel, S., Chevallier, F., and Peylin, P.: Quantifying the model
structural error in carbon cycle data assimilation systems, Geo-
scientific Model Development, 6, 45–55, doi:10.5194/gmd-6-45-
2013, 2013.

Lasslop, G.: Model data fusion for terrestrial biosphere models 70

with carbon and water cycle observations, Tech. Rep. 20, Max-
Planck-Institut für Biogeochemie, P.O.Box 100164, 2011.

Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the
MPI Earth system model: Model development and evaluation,
Journal of Advances in Modeling Earth Systems, 6, 740–755, 75

doi:10.1002/2013MS000284, 2014.
Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P.,

Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A.,
Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P.,
Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, 80

R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keel-
ing, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa,
C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G.,
Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S.,
Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rö- 85

denbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger,
J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D.,
Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R.,
Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng,
N.: Global carbon budget 2014, Earth System Science Data, 7, 90

47–85, doi:10.5194/essd-7-47-2015, 2015.
Loew, A., van Bodegom, P. M., Widlowski, J.-L., Otto, J., Quaife,

T., Pinty, B., and Raddatz, T.: Do we (need to) care about canopy
radiation schemes in DGVMs? Caveats and potential impacts,
Biogeosciences, 11, 1873–1897, doi:10.5194/bg-11-1873-2014, 95

2014.
Luke, C. M.: Modelling aspects of land-atmosphere interaction:

Thermal instability in peatland soils and land parameter estima-
tion through data assimilation, Ph.D. thesis, University of Exeter,
U.K., 2011. 100

Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth,
E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher,
R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D.,
Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M.,
Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I. C., 105

Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J. Y.,
Zaehle, S., and Zhou, X. H.: A framework for benchmarking land
models, Biogeosciences, 9, 3857–3874, doi:10.5194/bg-9-3857-
2012, 2012.

Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., 110

Lange, H., Seneviratne, S. I., Vargas, R., Ammann, C., Arain,
M. A., Cescatti, A., Janssens, I. A., Migliavacca, M., Mon-
tagnani, L., and Richardson, A. D.: Global Convergence in
the Temperature Sensitivity of Respiration at Ecosystem Level,
Science, 329, 838–840, doi:10.1126/science.1189587, http:// 115

science.sciencemag.org/content/329/5993/838, 2010.
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson,

A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner,

http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x
http://dx.doi.org/10.1002/2015JG003114
http://dx.doi.org/10.1029/1998GB001059
http://dx.doi.org/10.1111/j.1365-2486.2005.00977.x
http://dx.doi.org/10.1029/2009JG001119
https://lpdaac.usgs.gov/products/modis_products_table/mcd15a2 and http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf
https://lpdaac.usgs.gov/products/modis_products_table/mcd15a2 and http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf
https://lpdaac.usgs.gov/products/modis_products_table/mcd15a2 and http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf
https://lpdaac.usgs.gov/products/modis_products_table/mcd15a2 and http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf
https://lpdaac.usgs.gov/products/modis_products_table/mcd15a2 and http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf
http://dx.doi.org/10.1029/2010GB003900
http://dx.doi.org/10.5194/bg-9-3757-2012
http://dx.doi.org/10.5194/gmd-6-45-2013
http://dx.doi.org/10.5194/gmd-6-45-2013
http://dx.doi.org/10.5194/gmd-6-45-2013
http://dx.doi.org/10.1002/2013MS000284
http://dx.doi.org/10.5194/essd-7-47-2015
http://dx.doi.org/10.5194/bg-11-1873-2014
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.1126/science.1189587
http://science.sciencemag.org/content/329/5993/838
http://science.sciencemag.org/content/329/5993/838
http://science.sciencemag.org/content/329/5993/838


26 Schürmann et al.: MPI-CCDAS

P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang,
X.: Global atmospheric carbon budget: results from an ensemble
of atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720,
doi:10.5194/bg-10-6699-2013, 2013.

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,5

Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford,
C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R.,
Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z.,
Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of ter-
restrial carbon cycle models for their response to climate vari-10

ability and to CO2 trends, Global Change Biology, 19, 2117–
2132, doi:10.1111/gcb.12187, 2013.

Pinty, B., Lavergne, T., Dickinson, R., Widlowski, J., Gobron, N.,
and Verstraete, M.: Simplifying the interaction of land surfaces
with radiation for relating remote sensing products to climate15

models, J. Geophys. Res, 2006.
Pinty, B., Lavergne, T., Voßbeck, M., Kaminski, T., Aussedat,

O., Giering, R., Gobron, N., Taberner, M., Verstraete, M. M.,
and Widlowski, J.-L.: Retrieving surface parameters for climate
models from Moderate Resolution Imaging Spectroradiome-20

ter (MODIS)-Multiangle Imaging Spectroradiometer (MISR)
albedo products, Journal of Geophysical Research: Atmospheres,
112, n/a–n/a, doi:10.1029/2006JD008105, http://dx.doi.org/10.
1029/2006JD008105, d10116, 2007.

Pinty, B., Andredakis, I., Clerici, M., Kaminski, T., Taberner, M.,25

Verstraete, M. M., Gobron, N., Plummer, S., and Widlowski, J.-
L.: Exploiting the MODIS albedos with the Two-stream Inver-
sion Package (JRC-TIP): 1. Effective leaf area index, vegeta-
tion, and soil properties, Journal of Geophysical Research: At-
mospheres, 116, n/a–n/a, doi:10.1029/2010JD015372, 2011a.30

Pinty, B., Clerici, M., Andredakis, I., Kaminski, T., Taberner,
M., Verstraete, M. M., Gobron, N., Plummer, S., and Wid-
lowski, J.-L.: Exploiting the MODIS albedos with the Two-
stream Inversion Package (JRC-TIP): 2. Fractions of trans-
mitted and absorbed fluxes in the vegetation and soil layers,35

Journal of Geophysical Research: Atmospheres, 116, n/a–n/a,
doi:10.1029/2010JD015373, 2011b.

Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.: A recon-
struction of global agricultural areas and land cover for the
last millennium, Global Biogeochemical Cycles, 22, n/a–n/a,40

doi:10.1029/2007GB003153, gB3018, 2008.
Press, W., Flannery, B., Teukolsky, S., and Vetterling, W.: Numeri-

cal Recipes in Fortran 77: The Art of Scientific Computing, Cam-
bridge University Press, 1992.

Raddatz, T., Reick, C., Knorr, W., Kattge, J., Roeckner, E., Schnur,45

R., Schnitzler, K.-G., Wetzel, P., and Jungclaus, J.: Will the trop-
ical land biosphere dominate the climate-carbon cycle feedback
during the twenty-first century?, Climate Dynamics, 29, 565–
574, doi:10.1007/s00382-007-0247-8, 2007.

Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S.,50

Heimann, M., Ojima, D. S., Quegan, S., and Schmullius,
C. C.: Model–data synthesis in terrestrial carbon observation:
methods, data requirements and data uncertainty specifica-
tions, Global Change Biology, 11, 378–397, doi:10.1111/j.1365-
2486.2005.00917.x, 2005.55

Rayner, P. J., Enting, I. G., Francey, R. J., and Langenfelds, R. L.:
Reconstructing the recent carbon cycle from atmospheric CO2,
δ13C and O2/N2 observations, Tellus, 51B, 213–232, 1999.

Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R.,
and Widmann, H.: Two decades of terrestrial carbon fluxes from 60

a carbon cycle data assimilation system (CCDAS), Global Bio-
geochem. Cycles, 19, GB2026–, 2005.

Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Represen-
tation of natural and anthropogenic land cover change in MPI-
ESM, Journal of Advances in Modeling Earth Systems, 5, 459– 65

482, doi:10.1002/jame.20022, 2013.
Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2

flux history 1982–2001 inferred from atmospheric data using a
global inversion of atmospheric transport, Atmospheric Chem-
istry and Physics, 3, 1919–1964, doi:10.5194/acp-3-1919-2003, 70

2003.
Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N.,

Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean
pCO2 and sea–air CO2 flux variability from an observation-
driven ocean mixed-layer scheme, Ocean Science, 9, 193–216, 75

doi:10.5194/os-9-193-2013, 2013.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch,

M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh,
L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U.,
and Tompkins, A.: The atmospheric general circulation model 80

ECHAM5 - Part 1: model description, Report 349, Max-Planck
Institute for Meteorology, Hamburg, ISSN 0937 - 1060, 2003.

Saito, M., Ito, A., and Maksyutov, S.: Optimization of a prognos-
tic biosphere model for terrestrial biomass and atmospheric CO2

variability, Geoscientific Model Development, 7, 1829–1840, 85

doi:10.5194/gmd-7-1829-2014, 2014.
Saugier, B. and Roy, J.: Estimations of Global Terrestrial Produc-

tivity: Converging Towards a Single Number?, in: Global Terres-
trial Productivity: Past, Present and Future, edited by Mooney,
H., Roy, J., and Saugier, B., Academic Press, San Diego, 2001. 90

Schneck, R., Reick, C. H., and Raddatz, T.: Land contribution
to natural CO2 variability on time scales of centuries, Jour-
nal of Advances in Modeling Earth Systems, 5, 354–365,
doi:10.1002/jame.20029, 2013.

Scholze, M., Kaminski, T., Rayner, P., Knorr, W., and Giering, R.: 95

Propagating uncertainty through prognostic carbon cycle data as-
similation system simulations, J. Geophys. Res., 112, D17 305–,
2007.

Sitch, S., Huntingford, C., Gedney, N., E., L. P., Lomas, M., Piao,
S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, 100

C. D., Prentice, I. C., and Woodward, F. I.: Evaluation of the
terrestrial carbon cycle, future plant geography and climate-
carbon cycle feedbacks using five Dynamic Global Vegetation
Models (DGVMs), Global Change Biology, 14, 2015–2039,
doi:10.1111/j.1365-2486.2008.01626.x, 2008. 105

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-
Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze,
C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poul-
ter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, 110

R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,
Zhu, Z., and Myneni, R.: Recent trends and drivers of regional
sources and sinks of carbon dioxide, Biogeosciences, 12, 653–
679, doi:10.5194/bg-12-653-2015, 2015.

Voßbeck, M., Clerici, M., Kaminski, T., Lavergne, T., Pinty, B., and 115

Giering, R.: An inverse radiative transfer model of the vegetation

http://dx.doi.org/10.5194/bg-10-6699-2013
http://dx.doi.org/10.1111/gcb.12187
http://dx.doi.org/10.1029/2006JD008105
http://dx.doi.org/10.1029/2006JD008105
http://dx.doi.org/10.1029/2006JD008105
http://dx.doi.org/10.1029/2006JD008105
http://dx.doi.org/10.1029/2010JD015372
http://dx.doi.org/10.1029/2010JD015373
http://dx.doi.org/10.1029/2007GB003153
http://dx.doi.org/10.1007/s00382-007-0247-8
http://dx.doi.org/10.1111/j.1365-2486.2005.00917.x
http://dx.doi.org/10.1111/j.1365-2486.2005.00917.x
http://dx.doi.org/10.1111/j.1365-2486.2005.00917.x
http://dx.doi.org/10.1002/jame.20022
http://dx.doi.org/10.5194/acp-3-1919-2003
http://dx.doi.org/10.5194/os-9-193-2013
http://dx.doi.org/10.5194/gmd-7-1829-2014
http://dx.doi.org/10.1002/jame.20029
http://dx.doi.org/10.1111/j.1365-2486.2008.01626.x
http://dx.doi.org/10.5194/bg-12-653-2015


Schürmann et al.: MPI-CCDAS 27

canopy based on automatic differentiation, Inverse Problems, 26,
095 003, 2010.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J.,
and Viterbo, P.: The WFDEI meteorological forcing data set:
WATCH Forcing Data methodology applied to ERA-Interim5

reanalysis data, Water Resources Research, 50, 7505–7514,
doi:10.1002/2014WR015638, 2014.

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin,
P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y.,
Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M.,10

and Wang, Y. P.: Improving land surface models with FLUXNET
data, Biogeosciences, 6, 1341–1359, doi:10.5194/bg-6-1341-
2009, 2009.

Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Effects of
parameter uncertainties on the modeling of terrestrial bio-15

sphere dynamics, Global Biogeochemical Cycles, 19, n/a–n/a,
doi:10.1029/2004GB002395, gB3020, 2005.

Ziehn, T., Scholze, M., and Knorr, W.: On the capability of Monte
Carlo and adjoint inversion techniques to derive posterior param-
eter uncertainties in terrestrial ecosystem models, Global Bio-20

geochemical Cycles, 26, n/a–n/a, doi:10.1029/2011GB004185,
http://dx.doi.org/10.1029/2011GB004185, gB3025, 2012.

http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.1029/2004GB002395
http://dx.doi.org/10.1029/2011GB004185
http://dx.doi.org/10.1029/2011GB004185

