
We thank the reviewer for their constructive comments that helped improve the manuscript. We
provide an update of the manuscript with substantial revisions. These revisions include a shift of
several sub-sections to the appendix. 
In  the revised manuscript  (see attachement)  we marked additions to  the text  in  blue color  and
removed parts are red (except for many changes that just improved the language)

In the attached documents we address each reviewers' comments point-by-point.



Answer to RC1

General comments: 
G.J. Schürmann et al., in their manuscript "Constraining a land surface model withmultiple
observations by application of the MPI-Carbon Cycle Data Assimilation System", describe
the MPI-CCDAS system, and a parameter optimization/state estimation experiment with it.
The authors optimize various parameters of the JSBACH land surface model, utilizing remote
sensed  FAPAR data  and  CO2 flux  measurement  data  from around  the  globe.  They  also
analyze,  how each dataset constrains carbon-related model variables, and what parameter
values the MPI-CCDAS system optimizes the model to. 
The topic at hand is important, since estimating the terrestrial carbon fluxes is difficult, and
uncertainties in carbon stocks and fluxes are still large. Tuning a process based model makes
it possible in principle to improve forecasts of how the terrestrial carbon stocks develop in the
future. 
There  are several  good things to say about the research at  hand.  For instance,  the  MPI-
CCDAS is a new and seemingly useful tool for these kinds of experiments, and valuable in
itself as a further development of the CCDAS system. The case study done with the system
and presented in the manuscript is reasonable and the results generally seem to be good. The
authors also nicely discuss and analyze why the results look as they do. 
However, the manuscript is needs to be refined, expanded and clarified in some ways. 
These are listed in the Specific comments section 

Specific comments:
According to already the first sentence of the abstract, the paper is supposed to de-scribe the
MPI-CCDAS system. However, the description of the system is unclear and there seems to be
text missing between pages 2 and 3. Currently the section is written to vaguely describe that
there  is  some data  assimilation  and some generic  likelihood function being minimized.  It
would be important to include more specifics about the CCDAS method. What algorithm,
how the data is used to update the state, when new parameter vectors are drawn etc. I’d enjoy
explanations with formulas when needed. It would be also good to describe how the error
covariance matrix for the likelihood function is constructed. 
We apologize for the missing text. The missing text was:
„Technically,  J  is  minimized through  an  iterative  procedure  using  the  Davidon-Fletcher-Powell
algorithm in the Broyden-Fletcher-Goldfarb-Shanno variant in the implementation provided by the
Numerical Recipes (Press et al., 1992, dfpmin routine). The required gradient ∂J/∂p is evaluated by
the tangent-linear model ….“
If fact, the missing text has probably obscured that the assimilation procedure is straight forward:
The minimised likelihood-function is given in Eq. 1. The assimilation procedure is given in the
reference of the missing text and more details are given in Kaminski et al. (2013) and in reference
therein.  There  is  just  one  assimilation  window  with  one  set  of  control  variables  and  one
observational vector to be matched. We think Section 2.1 provides exactly the right level of detail
on the methodology (which is a standard variational approach), with references to more elaborated
descriptions. We have, however, added more explanatory text.

The differences of the parameter values obtained in Table 6 is large. They are discussed in the
text,  but  there  is  no  compact  description  of  different  error  sources  and  their  relative
importances (like initial states, observation error, model bias, land cover type parametrization
errors  etc.).  I  understand  that  it  was  not  the  objective  of  this  research  to  quantify
uncertainties in the parameter and carbon stock values. Anyway, discussing the topic a bit
more would be appreciated. 
Currently we cannot assess the relative importance of the different error sources with our system.



Discussing these points would considerable lengthen the manuscript.  The manuscript is  already
pretty long (as already mentioned by Reviewer 2). The focus of the manuscript should remain on
the  model  description  part.  Nevertheless  we  already  have  some discussion  of  the  topic  in  the
outlook-section. This part will be extended to also name other potential reasons for uncertainties in
the modelled carbon cycle components. 
The extension reads as:
„Further assessing the relative importance of different error sources (e.g. in the land cover type
parametrization,  model  biases  or  observational  errors)  with a  system such as  the MPI-CCDAS
would allow to highlight priority areas to reduce their uncertainties and further constrain the global
carbon cycle numbers as given in table 6).“

The language of the manuscript is not particularly good. Some sections are better than others.
Very carefully checking grammar,  breaking up too long sentences,  checking capitalization
rules etc. needs to be done. Some corrections are listed below, but they also could be wrong as
I’m not a native speaker.
We  have  gone  trough  the  manuscript  and  improved  the  language  (without  highlighting  these
changes).
 
There is a maybe a bit too much discussion-related content in "results", and some of it 
could go to the discussion part. 
We checked for discussion related parts in the results section and moved this to the discussion
which also helped removing some duplications in the text.

It is stated that the "prognostic capabilities of the model have been largely improved" 
(section 4.3) ... which is deduced from the two-year validation period. I’d like to believe 
that, but two years is not much. Could you please discuss this a bit further in the 
discussion part. 
We refer here to the two year period which is also (in the layout of the experiment) a prognostic
period. Hence for this two years the prognostic capabilities have been largely improved (reduced
bias from 5.18 ppm to -0.05 ppm). We have not assessed longer periods (due to lack of data) and
could only speculate on that. Thus we avoid opening a discussion on this topic. 
To make the point clearer, we add a statement to the results section that we only refer to the 2 years
period: 
“In other words, the short-term (1-2 years) prognostic capabilities of the model have been largely
improved  for  a  2  years  horizon  after  assimilating  CO2-observations,  also  at  the  evaluation
locations.”

Technical corrections 
section 1 / line 63: "certain processes..." is too unspecific. Please clarify. 
These processes are the simulated phenolgy, and its seasonal and interannual climate sensitvity, as
well as the simulated seasonal net land-atmosphere carbon flux. We added these details to the text:
“Dalmonech et al. (2015) have shown that the simulated phenolgy, and its seasonal and interannual
climate sensitvity, as well as the simulated seasonal net land-atmosphere carbon flux are reasonably
robust against climate biases in the MPI-ESM.”

s. 2.1 title: Phenology-module => The phenology module, or something 
Changed to „The phenology module“

s. 2.2 / l. 61: what is "smoothly averaged temperature with a "memory"-time scale of 
30 days"? There must be a more precise way of saying this. 
This „smoothly averaged temperature“ is not representative for one single day or point in time.
Rather it is the temporal average over the entire period with exponentially decaying weights with a



time scale of 30 days. The details are presented in the given reference. 
We reformulate this to:
„The  transition  is  controlled  either  by  the  length  of  the  day  t_d  or  a  temporally  averaged
temperature T_m with exponentially decaying weights for older periods with a time scale of 30
days.“

sections 2.2-2.2.4 These sections are a bit long or unstructured somehow, as they describe just
standrad JSBACH model physics. Particularly when compared to sections 2.2.5 and 2.1. More
conciseness and clarity are needed.
The reason for giving this degree of detail is explained by the importance of the parameters for the
CCDAS. In fact we only describe JSBACH-parts,  where parameters have been taken from and
some of the JSBACH parts are not standard JSBACH (the phenology). The reason for the shorter
section 2.2.5 („Atmospheric transport“)  and 2.1 („CCDAS-Method“) is,  that they are described
already elsewhere and that the details are not of importance for the optimized parameters. 
In order to keep the details, we put these sections (2.2.1 – 2.2.4) to the appendix. To further improve
readability, we also extended the description of the parameters in the main text with some more
details (as suggested by Reviewer 2).

equation 5: Please state the mean and standard deviation of psi in the explanation, 
even though it looks obvious. As it reads, psi could be a distr with funny values. 
We added the suggested clarification.

l. 75: "memory time-scale" (compare to "memory"-time scale earlier)... please be 
consistent and choose as comprehensible expression as possible 
We corrected this

s. 2.2.2 / l 13: multiplication sign is not usually a star when printed. Use something like 
latex \times instead. Repeated many times in formulas, fix them all, please 
We corrected this throughout the manuscript

l. 18 should it not be exemplified "by" instead of "for"?
We corrected this.

l. 20 ", gas" => ", and gas"
We corrected this.

sentence spanning the lines 29-39: restructure for readability 
We restructured this sentence and it has gone to the appendix 

equations 13,14,16: exp and min are not normally italicized in formulas 
We changed this in the entire manuscript

s. 2.2.4/l.15 turns over to => turns to 
We corrected this

s. 2.2.5/l.36- please clarify where "these" transport matrices refers to. The "responses" 
or what? I would not mind if this section was a bit expanded as well. 
We did not explain TM3 in more detail,  because this is standard TM3 and we do not optimize
anything inside TM3. We compute the responses of the atmospheric CO2 concentration C to the
fluxes F at the surface with the adjoint of TM3. The transport M itself is a linear process which
leads to the formulation of  Δc=M*f and hence we refer to M as transport matrices. We add this
formulation to the text. According to reviewer 2 we also moved some parts from the experimental



description  to  this  section  which  gives  further  details  about  how  we  dealt  with  atmospheric
transport.

2.3/51 why not say just "the assumed prior Gaussian uncertainty"?... and ...the poste- 
rior values from the assimilation experiments. 
We changed this

Funny spacing in equations 20 & 21 
We changed this

page 7, l. 15 "uncertainties...are based on expert knowledge" is quite subjective and 
ad-hoc. It’s probably tricky, but I’d appreciate being more specific here. The expert 
knowledge has to be based on something, anyway. Please consider working on it. 
All of these prior uncertainty estimates are not based on a formal uncertainty consideration, but
rather on the authors interpretation of the recent literature. Q10 mainly is based on the experiences
related to the work of Mahecha et al. (2010; Science). The uncertainty of f_aut_leaf is inspired by
the sensitivity study of Knorr (2000; Global Ecology&Biogeography). For the initial uncertainties
of the slow pool, we assumed arbitrary 10 % uncertainty, because we assumed no strong deviation
from the equilibrium. For the CO2-offset we assumed only a change of a few ppm which led us to
give the uncertainty of 3 ppm. This relatively large value allows a rather strong deviation from the
prior  without  putting  a  strong penalty  on  the  parameters.  We added  these  clarifications  to  the
manuscript. 

l. 55 reference to EDGAR could go to references
This has been put to the references

s.4.1 / l. 69-72 the conclusion drawn is not immediately obvious to me, especially when 
"consistency" is not defined. I understand the basic idea here, but still, please clarify 
and explain. 
The  model  can  fit  both  data  streams  jointly  and  the  costs  sum  up.  In  terms  of  a  Bayesian
optimization this is an indication that the model “fits” to the data-streams. The model is capable of
reproducing the observed data streams without degrading other parts of the model (at least not those
discussed in this part). 
We moved  this  to  the  discussion  where  the  arguments  is  getting  clearer,  because  of  a  related
discussion. This now reads as: 
“The  results  clearly  show that  two  data-streams  can  be  successfully  integrated  with  the  MPI-
CCDAS. The posterior parameter values (Table 2) were different between the FAPARalone and
JOINT, as well as the CO2alone and JOINT experiments, showing that the joint use of the two data
streams added information to the posterior parameter vector by preventing the degradation of the
phenology  simulation  when  trying  to  fit  the  CO 2  observations  (Table  5  and 4).  This  is  also
supported by the fact that value of the cost function of the JOINT assimilation roughly equals the
sum of the single data-stream experiments,  indicating consistency of  the model  with both data
streams.”S

s. 4.1 /l. 85 norm of the gradient, but it’s missing of what? costfunction? with respect 
to what? Please be more explicit here. It’s possible to guess what you mean, but that 
should not be needed. 
It is the norm of the gradient dJ/dp. We added this.

4.2/27 what is "magnitude of the phenological seasonal cycle"? 
We mean here the average LAI. We clarified this in the text. 



l.39 "For the other"... slightly odd sentence, please check
We clarified this sentence

p.12 l.14 f_photo => f_photos - usage not systematic in the text throughout it 
We corrected this throughout the text

4.4.1/38 I read it as "an FAPAR" constant instead of "a" 
This has been corrected

4.4.2/l57 C uptake , better maybe carbon uptake? 
This has been changed in the entire manuscript

4.4.2/last sentence could be better formulated 
We reformulated this

5.1/l.80 ranging from 111-151 => ranging from 111 to 151 
We changed this

p. 15/l.1 References are quite old. Are there any newer ones available? 
Unfortunately there are no more recent references on this

p.18/l.26 Northern extra-tropic => northern extra-tropical. 
We have corrected this throughout the manuscript

Last paragraph of conclusions: first sentence quite long, please consider restructuring 
We reformulated this



Answer to RC2

The paper describes a new carbon cycle data assimilation system based on the JSBACH land
surface model and the assimilation of two major data streams: FAPAR and atmospheric CO2
concentrations  (using  TM3  model  to  relate  surface  fluxes  to  concentrations).  The  paper
highlights the benefit of using the two data streams as well as their potential complementarity
to constrain the carbon cycle. The study is relatively comprehensive and provides an honest
description of the strength and weaknesses of the system. It is relatively new in the sense that
it  uses  an  advanced  process-based  land  surface  model  that  serves  as  the  land  surface
component  of  an  Earth  System model.  It  provides  some  new  insight  on  the  potential  of
CCDAS and I thus recommend its publication in GMD. However, I have several comments
and question as well as few recommendations that I would like to be taken into account to
improve the manuscript. As a general remark the paper is quite long and there are several
redundancies that could be avoided:
 
First i would suggest to put the detailed description of the model equations in an appendix
with  only  a  section in  the main text  that  resumes the  principles  and highlights  the  main
parameters. This is not mandatory but a suggestion.
We follow the suggestion here, especially because other reviewer also suggested a restructuring of
the methods part. Section 2.2.1 to 2.2.4 (Detailed JSBACH description) have been moved to the
appendix) and some more description of JSBACH and the relevant parameters have been added to
the section on model parameters. 

Sometime the discussion sections repeat the descriptions of the results in section 4,  which
could thus be avoided. 
We agree with the reviewer. The duplication parts in the manuscript have been removed.

The conclusion seems could maybe be grouped with the outlook 
In the outlook section, we express our opinion about promising further development of the CCDAS.
We think it is work putting such a section into a manuscript that describes a model development and
we also think that this content does not belong to conclusions. We thus  have renamed this section to
„Further development of the system“ and have merged some parts with the discussion to further
streamline and shorten the text. 

The selection of TIP-FAPAR data: I do not understand that the criteria to reject data (i.e. a
prior correlation with the model  output lower than 0.2) leads to disregard completely the
temperate deciduous ecosystems (Europe, USA,. . .). Figure 1 reveals that mainly the boreal
ecosystems and the tropical ones are kept. The result of such selection poses some questions
that are important to discuss; The authors should mention how many PFT are kept after the
selection and how many grid-cell are retained for each PFT as well as why the model behaves
so badly for temperate ecosystems so that these grid cell are rejected. This is interesting as
usually most LSM perform relatively well for deciduous temperate PFTs. 
Here the reviewer misunderstood some parts. The temperate deciduous ecosystems are not omitted
from the assimilation because they showed a poor correlation with the data, but as a result of the
other  selection  criteria  of  omitting  crop-dominated  ecosystems:  The  temperate  deciduous
ecosystems for Europe and the US are collocated in grid-cells with a large fraction of crops. This
leads to their omission. Because several PFT's occur in one grid-cell, it is not meaningful possible
to summarize the reduction of PFT's in only a few numbers. We adapt the manuscript in section
2.4.2 to make this point clearer:
“First, owing to the fact that no specific crop-phenology is implemented in JSBACH, grid cells with
fractional crop coverage of more than 20 % have been filtered out, as we cannot expect the model to
fit cropland phenology. A consequence of this filter is to mask the deciduous broadleaf PFT in the



US and Europe, because in these areas, this PFT is collocated in crop-dominated pixels. Hence, the
phenological parameters of the deciduous broadleaf PFT are only constrained by observations from
other  locations  -  a  fact  that  should be kept  in  mind when interpreting the deciduous broadleaf
parameters.”

One important results concern the distribution of the net C terrestrial uptake. The larger sink
in the northern high latitude compare to the other latitude bands (temperate around 40 ◦ N or
the Tropics) is a strong feature of the MPI-CCDAS. The fact that suc sink occurs mainly in
Siberia  where  the needle-leaf  deciduous trees  (Larix)  dominate (East  Siberia)  can also be
related to the fact that there are not many atmospheric stations around this area (except in the
southern part). The differences in terms of NBP with the adjacent ecosystems (western part of
Siberia) need to be discussed. To my mind this may be an artifact of the system and may not
reflect the “true” distribution of the land carbon sink. Given the implication such spatial
pattern may have for our understanding of the carbon cycle I suggest a stronger discussion of
the potential weaknesses of the systems for the attribution of the net C flux; especially with a
discussion of the “confidence” the author have in this partitioning. Section 4.4.2 describes the
differences between the tests in these boreal regions but I think it should discuss more how
“reliable” the main results are.
This description is perfectly in line with what the authors think about the East Siberian sink. We
will state this clearer in section 4.4.2 where we added the following:
“This largely increased sink in Eastern Siberia could be an artefact of the set-up used for the data
assimilation in this study. No nearby atmospheric stations constrains the net carbon sink in this
region adequately,  and the CD PFT only occurs dominantly in this  region. In consequence,  the
PFT’s parameters can not be adequately constrained by carbon cycle observations from other parts
of the globe. This relative scarceness of observations and independency of other regions allows the
East-Siberian net carbon uptake to compensate for other regions fluxes in order to match the global
growth  rate.  Additional  observations  would  be  required  to  allow  for  spatially  higher  resolved
estimation of the net fluxes.”

SPECIFIC COMMENTS: 
Method (section 2 and 3): 
* P2,L25-40: The paragraph mixes a review of data assimilation system based on different
data stream and different methods. I would suggest to separate more the two issues (data and
method). Also the review about the different data streams is not complete and misses studies
that have assimilated satellite NDVI/fAPAR observations for example. The Luke (2011) PhD
reference is not informative, as the data that are used are not mentioned.
The paragraph was not intended to give an ample review on the assimilated data streams, more it
was thought of method review while still mentioning the assimilated observations. We rewrite this
paragraph to clearer separate aspects related to the method and to observations. We also refer to
more works related to NDVI/FAPAR in the revised manuscript. Nevertheless a complete review on
the topic of assimilating NDVI/FAPAR (or LAI) from satellite would deserve much more space
then is available in this manuscript. Hence we keep it short. 

Luke (2011) uses the MODIS collection 5 LAI product, see the paragraph with heading "MODIS
LAI" in her section 6.4.1 (page 174).

*P2, L55-60: It would be clearer if the authors define what is the “original CCDAS” and
clarify  that  CCDAS  encompasses  the  assimilation  of  several  data  stream  and  not  solely
atmospheric observation. 
We refer to the BETHY-CCDAS (with a reference on the overview article of Kaminksi et al. 13).
We added this to the manuscript and state clearly that the CCDAS assimilates more then one data-
stream. 



* P2, L55: The introduction should clearly mention the use of the two types of observations
they are considered. The objectives and the questions that are posed do not reveal a major
focus of  the study:  the  complementarity  of  atmospheric  CO2 and TIP-FAPAR data.  This
should definitely be presented in the introduction.
We agree with the reviewer, that the complementarity of atmospheric CO2 and TIP-FAPAR is a
major outcome of the study. Since this was not the primary intention of the work, we did not put
this  as  an  objective  into  the  introduction.  Nevertheless  we  add  a  short  sentence  to  make  this
important point clear already in the introduction.

*  P2,  L101-:  The  authors  should  provide  briefly  the  principle  of  the  “Davidon-Fletcher-
Powell” algorithm (whether it needs and approximates the hessian of J).
This algorithm approximates the Hessian of J. We added this clarification to the text:
“Technically,  J  is  minimized  by  a  quasi  Newton  approach  with  so-called  Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updates of the Hessian approximation, in the implementation provided by
the Numerical Recipes (Press et al., 1992, dfpmin routine)”

*P3, L25: “differentiable implementation of J(p)”: This is not clear and I guess it is more a
differentiable implement of some equation in the code but not of J(p) ?
In  fact,  all  code  of  the  forward  model  that  contributes  to  the  calculation  of  J(p)  needs  to  be
differentiated. As long as the net-flux of CO2 is involved this requirement is met by almost the
entire JSBACH-code. We clarified this in the text: 
“The  application  of  gradient-based  minimisation  procedures  is  facilitated  by  a  differentiable
calculation  of  J(p).  According the  the  chain  rule,  this  ultimately  requires  all  code  parts  of  the
forward  model  that  depend  on  the  control  variables  and  impact  the  cost-function  to  be
differentiable.
 
*P3, L35: It is not clear what the author refers to with “through evaluation of sqrt(0) in the
forward mode” ? 
The differentiation of a code with sqrt(0) leads in the differentiated code to 1/sqrt(0). We clarified
this in the text:
“e.g. through differentiation of 0 in the forward mode leading to √ 1 0 in the diffentiated code”

*  P3  Equation  5:  it  would  be  good  to  precise  the  meaning  of  the  different  “control”
parameters already in section 2.2.1 (and units), although the optimized one are described in
Table 2
We  have  moved  the  detailed  JSBACH  description  into  the  appendix  and  added  only  a  brief
description of the model with a focus on the control parameters into the methods section. 

*P4, L58: “PFT values are integrated. . .”: which PFT values ? the GPP or the parameters?
The PFT-dependent GPP is aggregated to a grid-cell GPP according to the fraction cover of each
PFT. This is clarified in the text:
“GPP - values per PFT are integrated to grid-cell averages according to the cover fractions of each
PFT within each grid-cell.”
 
*P4, L77: how many layers has the soil water scheme? 
The soil layer scheme has 5 layers. This has been added to the description of the soil-scheme.

*P4, L83: It is not clear to which diffusion equation you refer to? (equation 15 ?) 
Yes it is equation 15. We add this reference to the text

*P5 section 2.2.5: There is no mention of biomass burning fluxes. The authors should justify



why they have not also used an estimate of biomass burning as this may play a role especially
for the trend at atmospheric station (given that the net biomass burning flux is roughly 1
PgC/year). The choice of only one constant offset for the atmospheric CO2 background poses
the problem of the spin up of the atmospheric CO2 gradient. The authors should discuss this
issue as it may significantly bias the parameter optimization. The mention later in section 3
that they use 2 years for spinning up the atmospheric gradients, which may be not enough.
One way to address this issue is to mention if the simulated gradients after two years are
relatively similar to the ones obtained after more years with the prior parameter sets. 
We have not explicitly accounted for biomass burning fluxes and rather treat it as a respiratory flux.
This can impose problems in the parameters optimisation, since this simplification may yield to
compensating effects in the parameters estimates – especially because we only have a few degrees
of  freedom  to  adjust  respiration,  a  fact  well  discussed  as  limitation  in  the  manuscript.  The
alternative of adding the biomass burning fluxes as a background term (similar as fossil fuel and
ocean carbon fluxes) introduces an inconsistency in the model, because the burnt carbon would
need to be removed from the carbon stocks and post-fire dynamics would need to be accounted for.
We already briefly discussed this issue in the manuscript but for this first application of the newly
developed  MPI-CCDAS  we  decided  to  focus  on  the  most  important  processes  and  leave  the
inclusion of others to the further development. To make clear that we ignore the biomass burning
fluxes, we add a statement about it to section 2.2.5:
“Biomass burning fluxes are not explicitly included (see also discussion in Sect. 5.6) and these
fluxes  are  consequently  mapped  to  the  respiratory  part  of  JSBACH during  the  assimilation  of
atmospheric CO2.”

The latitudinal gradient of CO2 is stable after one year of spin-up. The difference between Mauna
Loa and South-Pole in January   is 0.4 ppm and for the second year it reaches 4.8 ppm For the
subsequent years it is variable (without a visible trend) within the range of 4.7 to 5.5 ppm. We
added the following statement about this:
”After the second year, there is no visible trend in the difference of observed CO2 at Mauna Loa
and South Pole. Thus 2 years are sufficient to spin-up the atmosphere”

*P7, L1: Why do you optimize only the size of the slow pool. You should justify with typical
order of  magnitude why the different  litter pools  are  not  considered (like  with  the  mean
residence time of each pool) 
The slow pool has a turn-over time-scale of 100 years where for example leaf litter has turn over
times of a few years (depending on PFT). The reason for including only one modifier for the slow
pool  is  mainly  a  computational  one in  order  to  limit  the  length of  the  parameter  vector  to  be
optimized. This is one of the main factors controlling the run-time of the system. We have chosen
the slow-pool because it shows by far the longest turn-over time of 100 years, whereas for example
the leaf litter has turn over times of a few years (depending on the PFT). 
We admit that this might influence the estimation of the slow pool, since any discrepancies in any of
the faster pools will be compensated by the slow pool. We added this clarification to the parameter
description:
“For this first application of the MPI-CCDAS, the most slowly varying pool has been selected (i.e.
the soil carbon pool with a turn-over time of 100 years). The initial conditions of other carbon pools
were not included in the control vector to avoid the associated increase in the computational burden
(e.g. run time). This consequently includes the risk of assigning any misrepresentation of modelled
pools sizes to the soil carbon pool and the changes in the carbon pool sizes after the assimilation
should be interpreted with care.”

*P7,L40: The paragraph on the description of TM3 should not be placed in this section which
deals with atmospheric CO2. It should be in section 2.2.5. It is quite strange to mention the
“fine grid” of TM3 given that it is at 4 by 5 degree resolution which is a very low resolution



compared to existing studies and which thus may have an impact on how you can accurately
simulate the spatial gradients between “continental stations”. 
Our initial intention was to put the TM3 description to the CO2 observation as an observational
operator,  because  in  principle  any  atmospheric  transport  model  could  be  used  to  produce  the
matrices. But we agree with the reviewer, that it fits better to the description of the atmospheric
transport. We also agree that 4 by 5 degrees is not a fine grid, but the TM3 naming is such that this
grid is called „fine grid“ and that is the reason why we mention this here. 
We moved the TM3-description to the section about atmospheric transport. 

*P7,L65-69: This discussion of the uncertainty in the FAPAR data does not touch the crucial
point of potential biases. Indeed several previous studies (Kaminsky, 2012, Ba- cour 2015)
have  shown  that  FAPAR  satellite  data  may  be  biased  (because  of  different  issues  like
saturation at  high values,.  .  .)  and that  it  is  crucial  to  deal  with  these  biases  before  any
assimilation in a process-based model. This crucial issue should be at least discussed! I fear
that if you would use a product with higher fAPAR values you would end up in very different
estimate for the GPP and still a fit to both data stream. 
Yes there is saturation. It is, however, intrinsically addressed through the large uncertainty ranges
over dense canopies. This is now clarified in the manuscript: “In this context we note that the per-
pixel  uncertainty  ranges  in  the  TIP-FAPAR product  also  reflect  limitations  of  the  information
content that can be derived from sunlight reflected to space in the optical domain (i.e. the input to
TIP) in particular over dense canopies.”
We recall that the focus of this study was not to assess solely FAPAR as a data stream but the joint
benefit of the data streams. We also discuss the issue of correcting for the bias in the prior model
and observations and that this has a pronounced impact to the posterior GPP and respiration. Further
we also clearly discuss, that GPP is not well constrained.

*P8,L13: It is confusing to mention the resolution of 8 x 10 here while in section 2.4.1 you
mention the resolution of 4x5 for TM3. Please make it more clear between the two section to
which resolution you effectively used TM3 and if you use the same resolution for JSBACH
and TM3. 
We used 4x5 for the atmospheric transport, but 8x10 for JSBACH. We will make this point clearer. 

Results (section 4) 
*P 8, L66: should be the “cost function” 
This has been changed

*P9, L40: the sentence needs to be corrected. 
We reformulated that sentence

*P9, L39: Figure 2: This figure is not easy to read and I would suggest to decrease the number
of year or to show only a mean seasonal cycle so that we could see more clearly the change in
the timing of the model FAPAR. 
Since no relevant information is lost, we now only show 2 years of data.

*P9, L53, Figure 3: It would be more logic to plot in panel b: “Joint minus Prior” as you
discuss the reduction of the LAI during the optimization. 
Thank you for pointing this out. We changed the sign of the plots and their title accordingly

*P11 section 4.3: Table 5: you should mention for the biases, which way it is: model – obs or
the reverse. 
It is model – observations. This has been added to table 4 and 5



P11 section 4.3: As a general remark it is not easy from figures 4-5 and table 5 to see the
improvement in terms of the phase of the seasonal cycle. I would suggest to calculate with the
detrended time series a metric that reveal the phase changes, either the correlation or the
length of the “carbon uptake period”. This would complement the diagnostic of figure 5 on
the mean amplitude. 
A phase change in the atmospheric CO2 is hardly visible,  which is the reason why we did not
analyse it in more detail. At the monthly temporal resolution we apply here, we doubt that a metric
for the phase change can be meaningful interpreted given that the change will be smaller then one
month. Hence we decided not to add this diagnostic.

P13,L5: The change in the initial soil carbon pools, around 50% is huge and suggests that
most of the global CO2 growth rate is matched by adjusting this unique scaling parameter.
Although this is discussed later, it should be mentioned already that this will be discussed later
as being a potential “limitation of the optimization set up”. 
We now mention, that this will be discussed later. 

*P14, L30-34: sentence is too long and not clear. Need to be rewritten.
We shortened this sentence to:
“Through  the  effect  of  net  photosynthesis  on  canopy  conductance  (Eq.  A14),  the  potential
transpiration rate (E pot ; Eq. A5) was strongly decreased.”
 
Discussion (section 5): 
*P15L14-29 : This paragraph is not precise enough as for the “C in vegetation”: whether you
speak about above ground biomass, total biomass, soil C content,. . .. Please be more precise.
The comparison to other estimates is interesting but you should have focus in such “discussion
section” on a critical evaluation of what may be not accounted for in your model so that it
could be pointless to try to be close to some independent biomass estimates. One potential bias
is the steady state assumption for the vegetation so that the forest are mature while the “data
driven”  estimates  of  biomass  account  for  the  fact  the  most  forest  are  relatively  young
compared to a mature forest. For the soil carbon the decrease by 50% of the prior initial soil
carbon content lead to a value that compares favorably with the HWSD data. So this mean
that the model itself tend to produce too much soil carbon or that the turnover of the soil
carbon is not appropriated. These issues should be at least mentioned. 
Vegetation carbon in JSBACH is including carbon stored in all living parts of the vegetation above
and below ground. The total carbon of the ecosystem is then the sum of this vegetation carbon, litter
carbon and soil carbon. A more precise description of vegetation carbon is given in table 6 and the
text. 
We see some value in simply putting the modelled vegetation stocks (and their changes) in context
to other estimates without a detailed discussion of the shortcomings of all the estimates.We decided
to give the global number of all relevant stores and fluxes of the modelled global carbon cycle to
allow for later comparison of our study with others, and also to allow identifying any major biases
in the simulated global carbon cycle. We agree that a more in depth comparison of the different
estimates would be desirable, but also agree with the reviewer that potential model shortcomings
prevent such a close and in-depth evaluation.. We have not done this in the current work, because
the focus was on the CCDAS model description and the implication of the data assimilation and not
on the evaluation of the prior model itself, and potentially model biases that directly result from
imperfections in the model formulation. We add the following note on this to  the paragraph: 
„A detailed comparison on the simulated vegetation and soil carbon stocks of the prior model is
beyond the scope of this paper, partly because of the simplifications of the spin-up procedure entail
biases in predicted vegetation carbon stocks, as transient land-use changes and forest management,
affect-ing forest age structure are ignored. It is nevertheless instructive to provide context for the
simulated vegetation and soil carbon stocks by comparing them to the global totals of independent



estimates.“

There is indeed a strong reduction in modelled soil carbon of JSBACH after the application of the
MPI-CCDAS. But whether this means, that the prior model produces more carbon or whether the
uncertainty of the HWDS data is too large to avoid such a conclusion is out of the scope of this
manuscript. But since one of the main conclusions is, that the systems needs to be improved in
terms of flexibility in constraining the respiration parts of the model, too much interpretation of the
50% reduction in soils stocks should be avoided.

*P15, section 5.2: last paragraph about the net carbon flux. You don’t mention the fact that
your system neglected the net deforestation flux that would in principle add another C source
to  the  atmosphere  and  would  thus  lead  to  a  larger  biosphere  C  uptake  to  balance  the
atmospheric CO2 growth rate. This should be at least raised as a caution when comparing to
GCP estimates (or precise if you took for the GCP the net flux including deforestation). 
So far  land  use  change  emissions  have  not  been  accounted  for  in  JSBACH. We have  clearly
discussed  this  in  the  outlook-section  and  similar  reasons  as  for  biomass  burning  fluxes  (that
imposing this flux would lead to inconsistencies with the stocks and fluxes simulated by JSBACH,
as regrowth effects would have been ignored) led to the decision not to include this in the first MPI-
CCDAS setup.  We reported the „residual terrestrial  sink“ of the GCP estimate,  which does not
include land use change emissions. We clarified these points in the manuscript.  

*P15 section 5.2 first Paragraph: It would be interested to know whether the use of different
spatial resolution with the JSBACH model may change or not the results.
Yes  this  would  be  in  fact  interesting.  But  we  have  not  conducted  experiments  with  different
resolutions and it was not the intention of this article to touch every unresolved point in applying a
CCDAS. It  was rather a systems description,  that allows assessing these critical  points in later
works.  Hence  we do not  feel  capable  of  adding anything of  substance  about  this  point  to  the
manuscript.

*P16  ,  L10-25:  the  discussion  about  the  unique  “Fslow”  parameter  could  be  a  bit
strengthened.  First  you  should  mention  the  additional  cost  (computation  wise)  that  has
prevented from the split of this parameter into several regions ? Also it would be interesting to
see what the model provides in terms of soil carbon after a spin up with the new optimized
parameters. How much the decrease in GPP lead to decrease the soil C content at equilibrium
compared to the 50% requested decrease (through Fslow parameter) ?
We refer here to the discussion in section 5.3.2, which covers this aspect. We disagree about the
added value for giving initial soil carbon stocks computed with a posterior-parameter spin-up. 
We clearly made the point in section 5.3.2 that this is a weak point of the current system and further
discussing this point without improving on the shortcomings seems not appropriate. 
We added the following statement about the run time to the discussion in section 5.3.2 „Parameter
set-up“: 
“This choice was made because allowing to control the spatial structure of the carbon pools would
require several more parameters to be optimized, which would very likely suffer from a strong
equifinality problem, and which would considerably extend the already lengthy run-time of the
MPI- CCDAS”
 
*P16,  L27:  the  conclusion  that  a  better  estimate  of  GPP in  the  tropic  with  additional
constraint will likely improve the net CO2 flux is not obvious. As you say above the constraint
on the net C flux does not lead to a direct constraint on GPP so the reverse is probably the
same. Else the authors should detail the argument. 



Our argument refers to both, GPP and ecosystem respiration (the gross fluxes). Once these two
fluxes  in  the  tropics  are  well  constrained,  this  also counts  for  the  net-flux.  A well-constrained
tropical net flux will have beneficial impact on the estimation of the global net fluxes. We clarify
that we refer to GPP and respiration. 

*P16, last Paragraph of section 5.2: I found the discussion about the NPP not very informative
for a general audience and I would suggest to drop it, given the current length of the paper. 
We agree that one could skip this paragraph. We follow the suggestion of the reviewer and delete
this paragraph. 

*P16,  section  5.3,  first  paragraph:  The  first  sentence  is  difficult  to  understand?  Please
consider rewriting; Line 60: it is not clear what the “alternative method” refers to? 
See the following comment. 

*P16:  Overall  section  5.3  is  not  really  informative  and  does  not  really  provide  a  critical
appraisal of the current MPI-CCDAS (the title). I would either just drop it, or discuss more
fundamental issues due to the resolution of the transport model, the limited set of parameters
(like Fslow), the restricted coverage of FAPAR data, the key potential limitation of the system
to fully “model/explain” the net carbon fluxes (biomass burning, N cycle, land use change,
forest age, . . ..). 
We follow here the suggestion in the next comment to largely drop this section. Parts of it are
included in the outlook section

*P16, L85-90: I disagree with the argument that using a sequential design for as- similating
several  data  streams  leads  by  principle  to  a  different  result  than  using  a  simultaneous
approach.  Theoretically  the  Bayesian theorem could be  recast  in terms of  conjunction or
multiplication  of  probabilities  so  that  it  could  be  equivalent  to  use  a  sequential  or
simultaneous approach, provided that you can carry all the information about the parameter
PDF from one step to the next. However, the practical implementation of the optimization
system (such as for instance the use of Gaussian errors, the inability to calculate fully the
whole PDFs,.  .  ..)  generally lead to differences between the two approaches but it  is  quite
difficult to fully establish which one is superior as you may also have “some benefits” of not
exposing certain parameters to certain data streams in a sequential approach. I thus strongly
recommend to rewrite this part in order to clearly state that the difference comes from the
implementation of the CCDAS rather than from a theoretical point of view. 
We may have formulated our argument too strictly but we still think that our argument is valid and
gives important insight in how to set up an assimilation system. If one would be able to compute to
full posterior PDF (propability density function), the underlying model likely is computationally as
fast that it is not necessary to employ a tangent-linear assimilation procedure, but one could chose a
more  costly  algorithm  (like  e.g.  MCMC;  Monte  Carlo  Markov  chain).  Further,  the  need  to
implement a sequential design (sequentially in the order of the ingestion of the data streams, not
sequential in time as is the case for e.g. Kalman filters) often comes with limiting the parameter
vector for the one or the other data stream. In doing so, the linkages between parameters is broken
(you cannot propagate information to a parameter that is not optimized in one of the steps of the
sequential  approach).  Our example points towards problems with such implementations and we
think it is worth leaving this part of the discussion in the manuscript. As the reviewer suggests, we
reformulate this paragraph to make this point clearer:
“An implementa- 
tion of such a sequential assimilation likely reduces the number of parameters to be optimized in
each  step,  and  therefore  allows  a  quicker  solution  of  the  optimisation  problem.  However,  this
advantage comes with the cost of breaking the linkage between parameters can lead to situations,
where the posteriori results of a sequential assimilation experiment will not match the observations



equally well as with a simultaneous assimilation.”

*P16-17, Section 5.3.1 last paragraph: there is some redundancy concerning the gradient of
the cost function not approaching zero for CO2 data with the same description in section 4.1,
second  paragraph.  To  decrease  a  bit  the  length  of  the  paper  it  could  be  good  to  avoid
repetition between these two paragraphs. But more importantly I fear that the proposed tests
are not really going to help resolving this issue, as it is most likely due to a “minimization
problem”  related  to  the  computation  of  an  accurate  gradient  of  the  cost  function  or  to
limitation of the chosen algorithm in specific non linear circumstances. 
 We further agree with the reviewer that the proposed tests are not solely to resolve this issue but
also will shed light to other questions regarding the application of a CCDAS. 
We removed the redundancy in the results section since it seems more appropriate in the discussion
and we added the reviewers idea of how to assess this problem to the text:
“Investigation of the non-linear nature and potential numerical issues regarding the computation of
the gradient ∂J /∂p (Eq. 1) might be needed. Further tests with alternative station network settings,
parameter priors or time-periods will provide more insight into approaches to tackle this issue.”

*P17, section 5.3.2, second paragraph: As mentioned above it would be good to dis- cuss here
the  value  of  the  soil  carbon  content  following  a  spin  up  performed  with  the  optimized
parameters to see how much of the decrease would arise from lower GPP. Potentially the
discussion on this initial C pool scalar that occurs in several place in the paper could be group
in this section (a suggestion). 
We refer here to the discussion above and consequently do not add the number of the carbon pools 

*P17  section 5.3.2,  last  paragraph:  the  discussion on the  “reduced prior estimate  for the
coniferous evergreen PFT” (L74) is not easy to follow. You should precise that the reduce
prior estimate concerns the maximum foliar area in this sentence. I think that this pertain
more to the method section and does not need a whole paragraph. 
Basically we agree with the reviewer that this paragraph belongs more to the method sections.
There the reduction of prior LAI already is mentioned and hence we omit this paragraph.



Answer to RC3

Authors describe the assimilation of FPAR and atmospheric CO2 data into the MPI- CCDAS
framework and the paper concludes that the assimilation of these two pieces of information
allow to tune parameters of the terrestrial ecosystem component so that it performs better
after it runs unconstrained. 

The manuscript  is  interesting and GMD is  a  proper avenue for its  publication but in its
current  format  the manuscript  is  too  long,  or it  appears  too long because  of  its  arduous
reading since several points are not clear.  The framework is  not very well  described so a
reader is left to wonder. 
If  fact,  a  missing  bit  of  text  has  probably  obscured  that  the  assimilation  procedure  is  straight
forward. We are very sorry for that. The missing text was:
„Technically,  J  is  minimized through  an  iterative  procedure  using  the  Davidon-Fletcher-Powell
algorithm in the Broyden-Fletcher-Goldfarb-Shanno variant in the implementation provided by the
Numerical Recipes (Press et al., 1992, dfpmin routine). The required gradient ∂J/∂p is evaluated by
the tangent-linear model ….“
We think Section 2.1 provides exactly the right level of detail on the methodology (which is a
standard variational approach), with references to more elaborated descriptions. Unfortunately the
missing text (see later) included some parts of the description of the framework. We also added
more details to further describe the system. To reduce the length of the manuscript, we have moved
the model description to the Appendix. We have furthermore reworked the text in terms of style and
grammar to make the issues at hand clearer.

I am always struggling with the fact how inversions and carbon data assimilation handle the
fact that the model must be spun up properly before it can be used. This issue is addressed
somewhat in Section 5 but still needs more discussion. In particular, even after reading this
manuscript, I am still unclear what value does a prior have when the parameter values have
been suddenly changed. In a climate-mode a change in parameter values mean that the model
must  be  spun  up  again  to  make  its  pools  reach  new equilibrium.  As  a  result,  don’t  the
optimized parameters in the MPI-CCDAS system also account for the fact that the model
wasn’t spun up and brought to the present day using optimized parameters. Also, as soon as
the new optimized parameters are used (without the model being spun up properly) doesn’t it
mean that if the model were to run long enough it will eventually start drifting towards its
"true" equilibrium. 
In principle we agree here with the reviewer in that the parameter estimates we obtain are somewhat
influenced by the choice of the spin-up method. The challenge with the carbon cycle is that the
global carbon cycle is not in equilibrium and it is difficult to assess how far it departs from the
equilibrium state (e.g. because of lack of historical information on land-use change etc. pp). Simply
spinning up the model into equilibrium with the new parameters will therefore not be sufficient,
because one will additionally have to run the model in a transient phase with the driving forces
(CO2, climate, land-use etc.), which cause the current imbalance. At the current state, this is, albeit
desirable, computationally not feasible. An alternative to a correct spin-up procedure, is to have
accurate  initial  carbon pools.  Hence  we decided (also for  runtime consideration  – a  spin-up is
computationally  expensive)  to  allow  the  MPI-CCDAS  to  also  change  the  initial  carbon  pools
directly. The relative simple approach adopted with only one global modifier was motivated by the
long runtime of the framework (a few months).  The results  and discussion then reveal that the
framework needs to be improved on that aspect. We also agree that the system will drift towards the
„true“ equilibrium which is – rather then a deficit – a behaviour of any transient system. Whether
the models equilibrium is in accordance with the „true“ equilibrium can only be reasonably assessed
with long time series and potentially with repeated applications of systems like an MPI-CCDAS. 
We already have this  sentence in the text,  which to our understanding describes the point very



clearly:
„In addition, we accounted for non steady-state conditions of the net carbon flux by estimating a
global scaling factor for the size of the initial slow pool“

I have several handwritten comments in the attached supplement (an annotated ver- sion of
manuscript) which indicates the places where sentences and words were un- clear.
See the comments below

The choice of colors in Figures 3 and 7 is really bad which doesn’t allow a reader to evaluate
results. 
Without being more specific here, it is difficult for us to guess where the problems with the colours
arise from. Maybe the reviewer was surprised by the fact that the difference maps do not show very
large differences (with exceptions, but those have been discussed in the text). Since the other two
reviewers did not  mention this  problem, we leave the figures  as they are,  unless  we get  more
specific comments on how to improve the colours.

Finally, had the manuscript been in a single column mode with double spaced lines it would
have been an easier read. 
So far as I know I have no control over the layout that GMD produces with the input files.  Sorry
for this. 

The reply to the handwritten comments follow here:
P1L10: 
Computationally  efficient  refers  to  runtime,  which  is  a  limiting  factor  in  global  carbon  cycle
assimilations. We added a statement to the introduction to clarify this. 

P1L16-17:
Assimilation of two data streams does not guarantee to fit both data streams equally well. There
could be conflicting model formulations that avoid a good fit to all data streams.

P2L62:
Corrected

P2L63-67:
These processes are the simulated phenology, and its seasonal and interannual climate sensitvity, as
well as the simulated seasonal net land-atmosphere carbon flux. We added these details to the text.

P2L91:
Corrected throughout the manuscript (following the GMD-standard)

P2L97:
p_po are the posterior parameters. We clarified this.

P3L1ff:
We apologize for the missing text. The missing text was:
„Technically,  J  is  minimized through  an  iterative  procedure  using  the  Davidon-Fletcher-Powell
algorithm in the Broyden-Fletcher-Goldfarb-Shanno variant in the implementation provided by the
Numerical Recipes (Press et al., 1992, dfpmin routine). The required gradient ∂J/∂p is evaluated by
the tangent-linear model ….“
It will be added to the revised manuscript

P3L58:



This is the naturally occurring heterogeneity within the area covered by one grid-cell (e.g.: due to
different forest species but also variability within one species). We reformulated this to make the
point clearer. 

P3L76:
We added more details to the text (also for the temperature memory) and also refer to Knorr et al.
(2010) for even more details. 

P4L44:
Corrected throughout the manuscript 

P5L17:
This has been corrected. 

P5L50:
This has been corrected. 

P6 Table 2:
The column headings have been clarified.

P7L4-5:
In  changing  the  heterotrophic  respiration,  the  net  carbon  flux  to/from  the  atmosphere  is  also
changed. As a consequence the atmospheric carbon content and its changes (the growth rate) is also
modified. We try to make this clearer.

P7L35:
The term „wider“ is misleading in the text. We didn't intend to say that the set of cross-evaluation
stations is larger then the set of stations used for assimilation. We changed the text accordingly.

P7L51ff:
These ancillary flux-fields are prescribed and we give here basically a short reference from where
we have taken these field. These fields were not altered during the assimilation. We clarified this in
the text

P7 Figure 1:
Yes the colour bar indicates the FAPAR uncertainty (between 0 and 1) and yes the uncertainty of
FAPAR estimate is large. We added some clarification to the figure caption to make clear that the
colour bar refers to FAPAR.

P8L13:
This has been added.

P8L26:
We mean here the soil carbon pool. This has been clarified

P8L23-36:
No, the model will not approach the prior state, because we changed the model parameters and they
will remain at their posterior value also when no constraints are active. We clarified this in the text.

P8L57-58:
Necessary iterations were tens to hundreds and the total runtime was 1-2 months. We clarified this
in the text



P8L66/68/70:
This has been corrected

P8L85:
We mean the norm of the gradient of the cost-function with respect to parameters. This has been
clarified in the text

P8L87:
Iterations of the assimilation procedure. This has been clarified

P9L13:
Yes this is globally averaged. We clarify this in the text

P9L37:
We meant deciduous needle leaved. We have corrected this in the text.

P9L52:
We assimilate FAPAR observations to optimize model parameters. These are then used to run the
model and to simulate FAPAR. So even though the observed and modelled FAPAR should be fairly
similar  after  assimilation,  there  are  still  differences  (e.g.  because  of  observational  or  model
uncertainties). 

P10 Figure2:
The point is the mean and the vertical lines the uncertainties given with the 1*sigma uncertainty. We
clarified this.

P12L2-7:
This refers to the period of 2005 – 2009. We clarified this in the caption of table 6. 

P12-14:
Yes in all experiments (see table 6). We clarified this in the text.

P13 Figure 5:
We do not show a model vs. observation plot because in the current plot we can give also the
information on the latitudinal gradient of the seasonal cycle amplitude (which would be hard to give
in  a  simple  model  vs.  observation  plot).  Since  the  behaviour  of  the  latitudinal  gradient  in  the
assimilation is a relevant information, we keep this plot, even though it might be more difficult to
read then a model vs. observation plot.

P13L3-6:
We directly control the size of the initial soil carbon pool by the modifier f_slow. We clarify this in
the text.

P14 Figure 8:
The figure shows the value of posterior minus prior divided by the prior uncertainty. We clarify this
in the figure caption.

P14L66-69:
We mean that the difference does not largely influence the models capability to reproduce the high-
latitude season cycle of atmospheric CO2. This has been clarified.



P15L48 - 49:
This  is  a  3-D  data  set  and  also  contains  temporal  information.  This  is  clearly  stated  in  the
description of the observational operator representing the atmospheric transport. 

P15L80:
We added the suggestion to the text.

P16L75:
We in fact mean what we write. It is not only atmospheric CO2 but it is rather the carbon cycle as
represented in JSBACH (e.g. carbon stocks). We clarify this in the text.

P16L86:
The statement is not limited to atmospheric CO2 but is also valid for other observations of the
global carbon cycle. Hence we leave this as it is. 

P17L40:
With stiffness we mean here, that there are only few degrees of freedom to control the respiration in
the MPI-CCDAS. We clarify this in the text.

P17L62-75:
In order to shorten the manuscript we removed this part because the important points are covered
elsewhere in the manuscript

P18L11:
We mean, that the current network of CO2 observations only helps constraining the net carbon flux
of relatively large regions. Finer resolved features (e.g. on the scale of European countries) are not
well constrained. 
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Abstract. We describe the Max Planck Institute Carbon Cy-
cle Data Assimilation System (MPI-CCDAS) built around
the tangent-linear version of the land surface scheme of
the MPI-Earth System Model v1 (JSBACH). The simulated
terrestrial biosphere processes (phenology and carbon bal-5

ance) were constrained by observations of the fraction of
absorbed photosynthetically active radiation (TIP-FAPAR
product) and by observations of atmospheric CO2 at a global
set of monitoring stations for the years 2005 - 2009. When
constrained by TIP-FAPAR alone, the system successfully,10

and computationally efficiently, improved simulated grow-
ing season average FAPAR, as well as its seasonality in the
Northern extra-tropics. When constrained by atmospheric
CO2 observations, global net and gross carbon fluxes were
improved, although the system tended to underestimate trop-15

ical productivity. Assimilating both data streams jointly al-
lowed the MPI-CCDAS to match both observations (TIP-
FAPAR and atmospheric CO2) equally well as the single data
stream assimilation cases, therefore overall increasing the ap-
propriateness of the resultant biosphere dynamics and un-20

derlying parameter values. Our study thus demonstrates the
value of multiple-data stream assimilation for the simulation
of terrestrial biosphere dynamics. and highlights the poten-
tial role of remote sensing data, here the TIP-FAPAR prod-
uct in stabilising the strongly underdetermined atmospheric25

inversion problem posed by atmospheric transport and CO2

observations alone. The constraint on regional gross and net
CO2 flux patterns is limited through the parametrisation of
the biosphere model. We expect improvement on that aspect
through a refined initialisation strategy and inclusion of fur-30

ther biosphere observations as constraints.

1 Introduction

Estimates of the net carbon balance of the terrestrial bio-
sphere are highly uncertain, because the net balance cannot
be directly observed at large spatial scales (Le Quéré et al., 35

2015). Studies aiming to quantify the contemporary global
carbon cycle therefore either infer the terrestrial carbon bud-
get as a residual of the arguably better constrained other com-
ponents of the global carbon budget (Le Quéré et al., 2015),
or rely on measurements of atmospheric CO2 and the in- 40

version of its atmospheric transport (Gurney et al., 2002).
Both approaches have the caveat that they are not able to pro-
vide accurate estimates at high spatial resolution, and cannot
utilise the broader set of Earth system observations that pro-
vide information on terrestrial carbon cycle dynamics (Luo 45

et al., 2012). Further, they are diagnostic by nature, and there-
fore lack any prognostic capacity.

Ecosystem models integrate existing knowledge of the un-
derlying processes governing the net terrestrial carbon bal-
ance and have such a prognostic capacity. Since they sim- 50

ulate all major aspects of the terrestrial carbon cycle, they
can - in principle - benefit from the broader set of Earth sys-
tem observations. However, studies comparing different land
surface models show a large spread of estimates of the sea-
sonal and annual net land-atmosphere carbon exchange and 55

their trends (Piao et al., 2013; Sitch et al., 2015). This uncer-
tainty is one of the primary causes for discrepancies in future
projections of stand-alone terrestrial biosphere models (Sitch
et al., 2008), and coupled carbon cycle climate model projec-



2 Schürmann et al.: MPI-CCDAS

tions (Anav et al., 2013; Friedlingstein et al., 2014) for the
21st century. Next to the uncertainty due to different climate
forcing (Jung et al., 2007; Dalmonech et al., 2015) and alter-
native model formulations (Sitch et al., 2015), the uncertainty
about the parameter values of the mathematical representa-5

tion of key carbon cycle processes in these models are an
important source of the model spread (Knorr and Heimann,
2001; Zaehle et al., 2005; Booth et al., 2012). This parametric
uncertainty can be as large as the differences between mod-
els. The spread among models limits our ability to provide10

further constraints of the net terrestrial carbon uptake.
A potential route to reduce parameter and process-

formulation related uncertainties in the estimates of the ter-
restrial carbon cycle is to systematically integrate the in-
creasing wealth of globally distributed carbon cycle obser-15

vations into models through data assimilation methods. A
broad overview of potential observations and methodological
choices is given in Raupach et al. (2005). Knorr and Kattge
(2005) investigated the use of a Monte-Carlo approach for
data assimilation with global models and suggested that the20

computational burden (run time) is too large to allow its use
with a comprehensive land surface model and a reasonable
number of parameters in the optimisation. Notwithstanding
this constraint, for a reduced set of parameters Ziehn et al.
(2012) managed to successfully apply a Monte Carlo algo-25

rithm to the BETHY model in global set-up, albeit with lim-
ited process representations. Since computational run time
is still a limiting factor in global carbon cycle data assimi-
lation, the development of a relatively ”fast” system is ad-
vantageous over other assimilation methods. A computation-30

ally more efficient method is to to use gradient-based meth-
ods. For instance, approximating the gradient with finite dif-
ferences,Saito et al. (2014) performed assimilation of sev-
eral data streams with the VISIT model. An alternative to
finite difference is to calculate the gradient precisely by a35

tangent-linear or adjoint version of the biosphere model. A
prototype of such a carbon cycle data assimilation system
(CCDAS) based on an advanced variational data assimila-
tion scheme and a prognostic terrestrial carbon flux model
(BETHY; Knorr 1997, 2000) has demonstrated the potential40

to effectively constrain the simulated carbon cycle with ob-
servations of atmospheric CO2 (Rayner et al., 2005; Scholze
et al., 2007; Kaminski et al., 2013). Conceptually similar
systems have been built for other global biosphere models.
For example, Luke (2011) constrained the phenology of the45

JULES model with the MODIS collection 5 leaf area in-
dex product and Kuppel et al. (2012, 2013) applied the OR-
CHIDEE model at a series of FLUXNET-sites to estimate
process parameters across these sites and further demon-
strated the usefulness of the approach to improve globally50

modelled CO2. Bacour et al. (2015) assimilate different FA-
PAR observations with the ORCHIDEE model (in-situ and
satellite) at selected sites and report a large influence on
the results depending on the FAPAR-product. Forkel et al.
(2014) assimilated FAPAR into the model LPJmL to assess55

long term control on vegetation greenness. Kaminski et al.
(2012) assimilated FAPAR jointly with CO2 as a constraint
and Kato et al. (2013) assimilated the net carbon fluxes and
FAPAR jointly at a FLUXNET site.

Removed the old paragraph reviewing the CCDAS-Sys- 60

tems which is now replaced by the one above
Here we present the development and first application

of the variational data assimilation system built around the
JSBACH (Raddatz et al., 2007) model (Max Planck Insti-
tute Carbon Cycle Data Assimilation System: MPI-CCDAS), 65

based on the tangent-linear representation of JSBACH. JS-
BACH is a further development of the BETHY model, pro-
viding a more detailed treatment of carbon turnover and stor-
age in the terrestrial biosphere, as well as more detailed treat-
ment of land surface biophysics (Roeckner et al., 2003) and 70

land hydrology (Hagemann and Stacke, 2014), and the land
surface scheme of the MPI-Earth System Model (MPI-ESM;
Giorgetta et al., 2013).

Our objective with this development is twofold: i) to
improve the scope of the original BETHY-CCDAS (see: 75

Kaminski et al., 2013) by including a larger set of terres-
trial processes affecting the terrestrial carbon cycle; and ii)
to provide a means to constrain the land carbon cycle pro-
jections of JSBACH with several data streams, and in hind-
sight also that of the MPI-ESM. Dalmonech et al. (2015) 80

have shown that the simulated phenolgy, and its seasonal
and interannual climate sensitvity, as well as the simulated
seasonal net land-atmosphere carbon flux are reasonably ro-
bust against climate biases in the MPI-ESM. One can there-
fore expect that improvements of these aspects made with the 85

MPI-CCDAS driven by observed meteorology will be main-
tained in the coupled Earth system model. Further, at the ex-
ample of assimilating atmospheric CO2 and TIP-FAPAR, we
demonstrate the mutual benefit of the two data streams in
constraining parameters in JSBACH. 90

While the MPI-CCDAS is driven with observed meteorol-
ogy, and differences in the simulated terrestrial carbon cy-
cle between JSBACH with observed meteorology or coupled
to the ESM exist (Dalmonech et al., 2015), certain features
of the land processes are robust to the climate biases of the 95

MPI-ESM, such that one might expect an improved carbon
representation in the entire MPI-ESM after application of the
MPI-CCDAS.

We first provide a technical description of the MPI-
CCDAS system. We then demonstrate the capacity of 100

the MPI-CCDAS system to simultaneously integrate at-
mospheric CO2 observations and the fraction of absorbed
photosynthetically active radiation (FAPAR) recorded from
satellites, which constrains the seasonality of the phenology,
and assesses the relative effect of the constraint from these 105

two data streams on parameter values and modelled fluxes.
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2 Description of MPI-CCDAS

2.1 CCDAS-Method

The MPI-CCDAS relies on a variational data assimilation
approach to estimate a set of model parameters. In the fol-
lowing we give a brief overview of this method, and refer5

for a detailed description to Kaminski et al. (2013). To take
account of the uncertainty inherent in the description of ob-
served and simulated variables the method operates on prob-
ability density functions (PDFs). It is conveniently formu-
lated in a Gaussian framework and uses the combined infor-10

mation provided by the model M(p) and the observations d
to update a PDF that describes the prior state of information
on the parameter vector p (more precisely on the control vec-
tor, which is a combination the model’s process parameters
and of initial state variables). This prior control vector is de-15

scribed by the mean ppr and the covariance of its uncertainty
Cpr. The CCDAS method seeks to minimize the missfit be-
tween observed and modelled quantities by minimizing the
cost function J

J(p) =
1

2
(M(p)−d)

T C−1
d (M(p)−d)

+ (p−ppr)
T C−1

pr (p−ppr)

(1)20

where Cd is the covariance of combined uncertainty in the
observations (with mean d) and model simulation. The mini-
mum ppo of J , denoted as ppo (the posterior control vector),
is the maximum likelihood estimate. ppo thus balances the
misfit between modelled quantities and their observational25

counterparts over the entire assimilation window, while tak-
ing independent prior information on the control vector into
account. This means the vector d contains all observations,
which act to simulatenously constrain the control vector. In
contrast to sequential assimilation schemes, this approach30

determines a model trajectory through the state space, which,
in particular, ensures convervation of mass and energy (see,
e.g., Kaminski and Mathieu, 2016).

Technically, J is minimized by a quasi Newton approach
with so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS)35

updates of the Hessian approximation, through an iterative
procedure using the Davidon-Fletcher-Powell algorithm in
the Broyden-Fletcher-Goldfarb-Shanno variant in the imple-
mentation provided by the Numerical Recipes (Press et al.,
1992, dfpmin routine). The iterative procedure requires the40

gradient required gradient ∂J
∂p , which is evaluated by the

tangent-linear version of the model that was generated by
TAF (Giering and Kaminski, 1998) via automatic differenti-
ation (AD: Griewank 1989) of the model’s source code. The
fundamental modes of AD, forward and reverse, respectively45

produce tangent-linear and adjoint codes, by application of
the chain rule. Unlike the traditional approximation by finite
or divided differences of model runs (numerical differentia-

tion), tangent-linear and adjoint codes provide derivative in-
formation that is accurate up to machine precision. 50

The values and uncertainties for the control and observa-
tional vectors as well as the model are detailed in the follow-
ing sub-sections.

2.2 The forward model

The model that is optimised within the MPI-CCDAS is the 55

land surface model JSBACH (Raddatz et al., 2007; Brovkin
et al., 2009; Reick et al., 2013; Schneck et al., 2013; Dal-
monech and Zaehle, 2013). The model considers ten plant
functional types (PFTs: see Table 1). These PFTs are al-
lowed to co-occur within one grid cell on different tiles, 60

but nonetheless share a common water storage. Compared
to the aforementioned JSBACH studies, the MPI-CCDAS
does not use land-use change and land-use transition nor
dynamic vegetation, but uses a multi-layer soil hydrology
scheme (Hagemann and Stacke, 2014). JSBACH is typically 65

used within the MPI-ESM (Giorgetta et al., 2013) and calcu-
lates the terrestrial storage of energy, water and carbon and its
half-hourly exchanges between the atmosphere and the land
surface. JSBACH is applied here uncoupled from the atmo-
sphere and forced with reconstructed meteorology (see Sec. 70

3).
The application of gradient-based minimisation proce-

dures is facilitated by a differentiable implementation calcu-
lation of J(p). According the the chain rule, this ultimately
requires all code parts of the forward model that depend on 75

the control variables and impact the cost-function to be dif-
ferentiable. To improve differentiability, the original phenol-
ogy scheme, which describes the timing and amount of fo-
liar area based on logistic growth functions (Lasslop, 2011)
was replaced by the alternative scheme developed explicitly 80

for this purpose (Knorr et al., 2010) (see Sec. A). Some fur-
ther minor modifications were necessary to make the code
differentiable. These changes included replacing look-up ta-
bles with their continuous formulations, avoiding division by
zero in the derivative code (e.g. through evaluation differen- 85

tiation of
√

0 in the forward mode leading to 1√
0

in the dif-
fentiated code) , and reformulating minimum and maximum
calculations to allow a smooth transition at the edge. These
modifications alter the calculations, however, they were im-
plemented such that the differences in the modelled results 90

compared to the original code is minimal.
Sections 2.2.1 to 2.2.4 have been moved to the appendix

2.2.1 Atmospheric transport

To map the net land-atmosphere CO2 exchange simulated by
JSBACH to observations of the atmospheric CO2-mole frac- 95

tion, the computation of atmospheric transport is required,
which is done here by the transport model TM3 (Heimann
and Körner, 2003). Specifically, we compute the response of
monthly mean CO2 mole fractions c to monthly mean sur-
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Table 1. Plant functional types that are optimised and the limitations
that control the phenological behaviour of the respective functional
type.

Plant functional type Limitations

Tropical evergreen trees (TrBE)
Tropical deciduous (TrBS) Water
Raingreen shrubs (RS)

Coniferous evergreen trees (CE) Temperature
Extra-tropical deciduous trees (ETD) and
Coniferous deciduous (CD) Daylight

C3-grasses (TeH)
C3-crops (TeCr) Temperature
C4-grasses (TrH) and Water
C4-crops (TrCr)

face fluxes f (extending 2 years back in time). Since the at-
mospheric transport is linear (in the fluxes), this can be writ-
ten as:

∆c = M ·f (2)

where M represents the TM3 responses as a transport ma-5

trix. In the MPI-CCDAS these and multiply these transport
matrices (or Jacobians) are multiplied with the net CO2 ex-
change as in Rödenbeck et al. (2003). The net exchange is the
sum of the terrestrial fluxes computed by JSBACH and those
not computed by JSBACH, i.e. and prescribed ocean and fos-10

sil fuel fluxes. Biomass burning fluxes are not explicitly in-
cluded (see also discussion in Sect. 5.6) and these fluxes are
consequently mapped to the respiratory part of JSBACH dur-
ing the assimilation of atmospheric CO2 The mole fraction
at the beginning of this simulation is specified as a globally15

constant offset COoffset2 , one of the parameters to be es-
timated. The resulting CO2-mole fractions can then be di-
rectly compared with observed atmospheric CO2. Limiting
the system to one global modifier was motivated by limita-
tion in the computational run time, while an inclusion of an20

offset depending on the observation locations could be easily
implemented. With a spin-up of 2 years for the atmospheric
transport, we allow the system to build up the latitudinal gra-
dient of CO2. After the second year, there is no visible trend
in the difference of observed CO2 at Mauna Loa and South25

Pole. Thus 2 years are sufficient to spin-up the atmosphere.
For our analysis, we used the Jacobian representation of

the TM3 model, version 3.7.24 (Rödenbeck et al., 2003),
with a spatial resolution of about 4◦x5◦ (the “fine” grid of
TM3 by Heimann and Körner 2003), driven by interannually30

varying wind fields of the NCEP reanalysis (Kalnay et al.,
1996).

2.3 Model parameters

For this study, JSBACH parameters related to the phenol-
ogy, photosynthesis and land carbon turnover (including ini- 35

tial carbon stocks) are estimated optimized (see appendix A
for a more detailed description on the relevant parts of JS-
BACH). The default prior value and assumed prior Gaussian
uncertainty (with Gaussian distribution) of each parameter
and the , as well as posterior values from the assimilation 40

experiments are given in Table 2. The choice of these param-
eters was based on an extensive parameter sensitivity study
on a much larger set of parameters across multiple biomes
(Schürmann, unpublished results). We retained those param-
eters, for which we found a significant effect on modelled 45

FAPAR and net CO2 exchange. In principle, it is possible to
add more parameters, which are decisive for other modelled
quantities such as soil moisture and which might feed back
to our observables. A brief explanation of the parameters in-
volved in this study is given in the following. 50

The parameters controlling the phenology (Λmax, τl, τw,
Tφ, tc, and ξ) are allowed to take different values for differ-
ent plant functional types with the exception of ξ, which is
valid globally. While Λmax controls the maximum amount
of leaves, ξ controls the rate of leaf growth, and τl is the 55

time-scale of leaf senescence. Tφ and tc are temperature and
day-length tresholds, respectively, controlling the onset and
end of vegetation activity. The parameter τw controls the
shedding of leaves in response of phenology for drought-
deciduous PFTs. Soil moisture in JSBACH follows a 5-layer 60

scheme (Hagemann and Stacke, 2014) and is coupled to the
vegetation via the phenology and the photosynthesis by in-
fluencing actual stomatal conductance. Their The phenolog-
ical parameter prior values and uncertainties are taken from
Knorr et al. (2010), with the following three exceptions: the 65

water control parameter τw required an adaptation to ac-
count for the different soil-water formulations in the MPI-
ESM compared to BETHY, τl for the coniferous evergreen
(CE) PFT also has been adapted after preliminary site-scale
studies to allow more flexibility in the seasonality of the 70

evergreen-phenology (Schürmann, unpublished results) and,
finally, Λmax is left to its default JSBACH parameter value
for all PFT’s with the exception of the coniferous evergreen
(CE) PFT. For this PFT a value of Λmax = 1.7m2/m2 has
been used, because preliminary model tests revealed a large 75

bias in modelled FAPAR in CE-dominated regions, which
adversely affected the model results of the carbon cycle. (see
also Sect. 5.5).

Photosynthesis in JSBACH follows Farquhar et al. (1980)
for C3-plants and Collatz et al. (1992) for C4- plants, with 80

details as described in Knorr and Heimann (2001) and Knorr
(1997). To estimate gross assimilation directly, maximum
carboxylation rate V cmax and maximum electron transport
Jmax are allowed to vary per PFT. We assume that the ob-
served tight correlation between V cmax and Jmax is con- 85

served irrespective of the precise value for each PFT (Kattge
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Table 2. Parameters that are part of the control vector with their prior and posterior values of the global assimilation experiments. Parameters
marked with a ∗ are multiplied with their respective value in the model, given in Table D1. The mapping variants are explained in the
appendix C: 1: No lower bound; 2: A lower bound at 0 for those parameters that are not allowed to take negative values.

Representation in Eq. 1: Cpr ppr ppo

Parameter(PFT) Description
Prior
sigma Prior JOINT CO2alone FAPARalone Unit Mapping

Λmax (TrBE)∗ Maximum LAI 0.2 1 0.98 0.82 0.84 . 2
Λmax (TrBD)∗ Maximum LAI 0.2 1 0.58 0.55 0.63 . 2
Λmax (ETD)∗ Maximum LAI 0.2 1 0.98 1.04 1.44 . 2
Λmax (CE)∗ Maximum LAI 0.2 1 1.00 0.84 1.01 . 2
Λmax (CD)∗ Maximum LAI 0.2 1 0.64 1.31 0.56 . 2
Λmax (RS)∗ Maximum LAI 0.2 1 1.33 0.94 1.24 . 2

Λmax (TeH,TeCr)∗ Maximum LAI 0.1 1 0.63 0.53 0.61 . 2
Λmax (TrH,TrCr)∗ Maximum LAI 0.1 1 0.53 0.49 0.59 . 2

1/τl (ETD) Leaf shedding time scale 0.01 0.07 0.057 0.057 0.079 d−1 2
1/τl (CE) Leaf shedding time scale 1e-04 5e-04 0.00067 0.00045 0.00064 d−1 2
1/τl (CD) Leaf shedding time scale 0.01 0.07 0.068 0.07 0.068 d−1 2

1/τl (TeH,TeCr) Leaf shedding time scale 0.01 0.07 0.098 0.076 0.079 d−1 2
1/τl (TrH,TrCr) Leaf shedding time scale 0.01 0.07 0.077 0.07 0.07 d−1 2
τw (TrBE) Water stress tolerance time 30 300 319.82 378.04 286.77 days 2
τw (TrBD) Water stress tolerance time 10 114 107.78 120.84 106.29 days 2
τw (RS) Water stress tolerance time 5 50 49.51 50.02 47.82 days 2

τw (TeH,TeCr) Water stress tolerance time 25 250 222.32 215.22 230.41 days 2
τw (TrH,TrCr) Water stress tolerance time 25 250 276.06 236.32 286.64 days 2
Tφ (ETD) Temperature at leaf onset 1 9.21 7.19 8.63 2.28 ◦C 1
Tφ (CE) Temperature at leaf onset 1 9.21 7.53 9.01 7.61 ◦C 1
Tφ (CD) Temperature at leaf onset 1 9.21 0.10 5.53 0.30 ◦C 1

Tφ (TeH,TeCr) Temperature at leaf onset 0.5 1.92 3.82 2.67 2.78 ◦C 1
Tφ (TrH,TrCr) Temperature at leaf onset 0.5 1.92 2.50 1.57 1.88 ◦C 1
tc (ETD) Day length at leaf shedding 1 13.37 13.57 13.84 13.60 hours 2
tc (CE) Day length at leaf shedding 1 13.37 14.22 13.69 14.12 hours 2
tc (CD) Day length at leaf shedding 1 13.37 14.94 13.66 14.73 hours 2
ξ Initial leaf growth rate 0.03 0.37 0.41 0.38 0.43 d−1 2

fphotos (TrBE)∗ Photosynthesis rate modifier 0.1 1 0.75 1.02 0.91 . 2
fphotos (TrBD)∗ Photosynthesis rate modifier 0.1 1 1.07 1.08 0.97 . 2
fphotos (ETD)∗ Photosynthesis rate modifier 0.02 1 0.99 1.00 1.00 . 2
fphotos (CE)∗ Photosynthesis rate modifier 0.03 1 0.95 1.00 1.00 . 2
fphotos (CD)∗ Photosynthesis rate modifier 0.06 1 1.04 1.05 1.00 . 2
fphotos (RS)∗ Photosynthesis rate modifier 0.1 1 1.01 1.05 1.00 . 2
fphotos (TeH)∗ Photosynthesis rate modifier 0.1 1 0.96 1.01 0.99 . 2
fphotos (TeCr)∗ Photosynthesis rate modifier 0.1 1 0.67 0.86 1.00 . 2
fphotos (TrH)∗ Photosynthesis rate modifier 0.1 1 1.04 1.02 1.06 . 2
fphotos (TrCr)∗ Photosynthesis rate modifier 0.1 1 0.87 0.94 1.00 . 2

Q10 Temperature sensitivity of resp. 0.15 1.8 1.90 1.81 1.80 . 2
fslow Multiplier for initial slow pool 0.1 1 0.50 0.51 1.00 . 2

faut_leaf Leaf fract. of maintenance resp. 0.1 0.4 0.30 0.35 0.40 . 2
COoffset2 Initial atmospheric carbon 3 0 0.90 0.85 0.00 ppm 1
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and Knorr, 2007). Thus, we introduce a single scaling coef-
ficient fphotos:

V cmax = V cpriormax · fphotos (3)

Jmax = Jpriormax · fphotos (4)

Prior parameter ranges for each PFT were derived from the5

TRY data-base (Kattge et al., 2011).
Autotrophic respiration in JSBACH follows Knorr (2000)

where growth respiration is a fixed fraction (20 %) of the net
assimilation. Maintenance respiration scales with dark res-
piration (with a parameter faut_leaf ) assuming to be coor-10

dinated with foliar photosynthetic activity. Net primary pro-
duction is allocated to either a green or woody pool which
turns to three litter pools (above ground green, below ground
green and woody) with distinct PFT-specific turnover times.
Heterotrophic respiration of these pools responds to temper-15

ature according to a Q10 formulation (see appendix A). The
prior sensitivity studies revealed that the most influential pa-
rameters controlling Carbon storage on land and partitioning
between autotrophic and heterotrophic respiration were the
leaf fraction of maintenance respiration (faut_leaf ) and tem-20

perature response (Q10) of the carbon pools, which were both
included as parameters into the optimisation. The uncertainty
of these parameters was based on expert knowledge, and in-
spired by the works of Mahecha et al. (2010) for Q10 and
Knorr (2000) for faut_leaf .25

To account for non steady-state conditions of the net car-
bon flux, we followed the approach of Carvalhais et al.
(2008) by estimating a global scaling factor for the size of
the initial slow pool fslow. The inclusion of fslow to the opti-
mized parameters This allows for the modification of global30

heterotrophic respiration and hence also an adjustment of the
CO2 growth rate via altering the net carbon flux from or to
the atmosphere. , butHowever, the limitation is that this does
not change the spatial distribution of carbon pools, which
remains controlled by the prior parameter values. For this35

first application of the MPI-CCDAS, the most slowly varying
pool has been selected (i.e. the soil carbon pool with a turn-
over time of 100 years). The initial conditions of other carbon
pools were not included in the control vector to avoid the as-
sociated increase in the computational burden (e.g. run time).40

This consequently includes the risk of assigning any misrep-
resentation of modelled pools sizes to the soil carbon pool
and the changes in the carbon pool sizes after the assimilation
should be interpreted with care. The uncertainty of fslow has
been set to 10 %, reflecting a moderate deviation from equi-45

librium (but see also discussion in Sect. 5.5). The turnover-
time parameters (see Eq. A18) were not included in the as-
similation experiment, because their impact on land carbon
fluxes was small compared to other parameters (Schürmann,
unpublished results) at the time-scale of the MPI-CCDAS (a50

couple of years).

To account for minor offsets of the MPI-CCDAS with re-
spect to the initial carbon content of the atmosphere, one sin-
gle offset value COoffset2 is included in the set of estimated
parameters. COoffset2 was assumed to not deviate more than 55

a few ppm, and its uncertainty set accordingly.
Uncertainties on all parameters were assumed to be Gaus-

sian and exposed to the assimilation procedure in a form nor-
malized by their prior uncertainty. In order to prevent param-
eters from attaining physically impossible, negative values, 60

some parameters were constrained at the lower end of the
distribution to zero (see Table 2 and appendix C).

2.4 Observational constraints and observation
operators

2.4.1 Atmospheric CO2 65

Observed atmospheric CO2 mole fractions were obtained
from the flask data/continuous measurements provided by
different institutions (e.g. flask data of NOAA/CMDL’s sam-
pling network, update of Conway et al. 1994, Japan Meteo-
rological Agency - JMA, Meteorological Service of Canada - 70

MSC, and many others; see Rödenbeck et al. 2003). Stations
were selected in order to cover the global latitudinal gradient
(Table B1), focussing on remote locations with little imprint
of local fluxes. For cross-evaluation, a widera disjunct set of
available station data were used (Table B2). The temporal 75

resolution of the CO2 original data at the monitoring stations
(hourly to daily/weekly) depends on the specific station and
were averaged into monthly means.

For our analysis, we used the Jacobian representation of
the TM3 model, version 3.7.24 (Rödenbeck et al. 2003), 80

with a spatial resolution of about 4 ◦x5◦ (the “fine” grid of
TM3 by Heimann and Körne 2003), driven by interannually
varying wind fields of the NCEP reanalysis (Kalnay et al.
1996). The MPI-CCDAS compares atmospheric CO2 at a
monthly temporal resolution, considering the sampling of 85

simulated CO2 abundance at the same time in which mea-
surements were available in order to reduce the represen-
tation error. The treatment of the observations of CO2 and
their uncertainties are done as in Rödenbeck et al. (2003). A
floor value of 1 ppm is added to this uncertainty, similarly 90

as in Rayner et al. (2005). Ancillary flux fields at monthly
resolution were prescribed used to represent the ocean (Jena
CarboScope pCO2-based mixed layer scheme oc_v1.0 Rö-
denbeck et al., 2013) and fossil fuel (Emissions Database for
Global Atmospheric Research EDGAR, European Commis- 95

sion, Joint Research Centre (JRC)/Netherlands Environmen-
tal Assessment Agency (PBL) 2009) net CO2 fluxes.

2.4.2 TIP-FAPAR

The observations of FAPAR that have been assimilated were
specifically derived for this study by the Joint Research Cen- 100

tre Two-stream Inversion Package (JRC-TIP, Pinty et al.
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2007). The product was derived by running JRC-TIP on
MODIS broadband visible and near-infrared white sky sur-
face albedo input aggregated to the model grid separately for
snow-free and snow-like background conditions in a similar
way as described for the native 0.01 degree product (Pinty5

et al., 2011a, b; Clerici et al., 2010; Voßbeck et al., 2010).
Uncertainties in the FAPAR data are based on rigorous un-
certainty propagation using first and second derivative infor-
mation (Voßbeck et al. 2010). JRC-TIP has been explicitly
designed to deliver products suitable for assimilation into cli-10

mate and numerical weather prediction models. It is based on
an advanced one dimensional two-stream scheme Pinty et al.
(2006) that assures a physically consistent solution of the ra-
diative transfer problem in the coupled canopy-soil system.
Similar schemes are implemented in most state-of-the-art ter-15

restrial biosphere models (see, e.g. Loew et al., 2014). Un-
certainties in the FAPAR data are based on rigorous uncer-
tainty propagation from the MODIS input albedos using first
and second derivative information (Voßbeck et al., 2010). A
space and time invariant prior (except for the occurrence of20

snow) is used, i.e. all spatio-temporal variability in the prod-
ucts is derived from the input products (including the MODIS
snow flag). In contrast to alternative algorithms there is no
variability imposed through (possibly implicit) assumptions,
e.g. on land cover (as in Knyazikhin et al., 1999), which25

avoids inconsistencies, e.g. with the model’s own land cover
(for more details see Disney et al. (2016)). To reduce biases
in the retrieved products through the prior information, the
prior is given a deliberately low weight, e.g. a sigma of 5 for
the effective LAI (Pinty et al., 2011a).30

We applied two filters on the global FAPAR product to
assure that potential model structural errors did not lead to
compensating effects in the parameter estimation procedure
and thus impede fitting the FAPAR data in other regions.
First, owing to the fact that no specific crop-phenology is35

implemented in JSBACH, grid cells with fractional crop cov-
erage of more than 20 % have been filtered out, as we cannot
expect the model to fit cropland phenology. A consequence
of this filter is to mask the deciduous broadleaf PFT in the US
and Europe, because in these areas, this PFT is collocated in40

crop-dominated pixels. Hence, the phenological parameters
of the deciduous broadleaf PFT are only constrained by ob-
servations from other locations - a fact that should be kept
in mind when interpreting the deciduous broadleaf parame-
ters. Second, grid-points with correlations between the prior45

model and the observed FAPAR below 0.2 (i.e. prior phe-
nology exhibits out-of-phase seasonal cycles) have also been
filtered out. Together, these filters reduce the overall global
coverage of the FAPAR-constraint and thus the number of
observations to be fitted (Fig. 1) by 57 %.50
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Figure 1. Location of the CO2 observations (for constraining the
model and for evaluation) and the median over the time series of
the TIP-FAPAR uncertainties (given with the color-scale) in each
pixel acting as constraint

3 Experimental set-up

The MPI-CCDAS is driven by daily meteorological forcing
(air temperature, specific humidity, precipitation, downward
short- and longwave radiation, wind speed) obtained from
the WATCH forcing data set (Weedon et al., 2014). Annual 55

CO2 mole fractions of the atmosphere as a forcing for the
photosynthesis calculations of JSBACH were prescribed ac-
cording to Sitch et al. (2015). Vegetation distribution (Fig.
E1) and other surface characteristics are derived from Pon-
gratz et al. (2008). Although the MPI-CCDAS is flexible to 60

be run at any spatial resolution, for computational efficiency,
we have set-up the MPI-CCDAS at a coarse spatial resolution
of about 8◦x10◦, even though the atmospheric transport itself
was simulated at 4◦x5◦, because the precomputed Jacobians
have been calculated at that resolution. 65

For the water and carbon cycle state-variables of JSBACH,
the following spin up procedure was applied: First, an equi-
librium was achieved through an integration over the period
1979-1989 with corresponding meteorological forcing and
atmospheric CO2 mole fractions of 1979. Starting from this 70

equilibrium state, a transient integration from 1979 to 2003
followed. The final state of 2003 was then taken as the ini-
tial condition for all MPI-CCDAS experiments. This spin-up
procedure used the prior parameter values, i.e. it was not part
of the assimilation loop for the parameter estimation. To al- 75

low a direct control of the non-equilibrium states of the car-
bon pools, the initial soil carbon slow pool (at the end of the
spin-up procedure) was multiplied by a global scaling factor
that is part of the parameter estimation procedure (see Sect.
2.3). 80

The MPI-CCDAS itself was run for the years 2003 - 2011,
i.e. parameters were left free to adapt to the observational
constraints. The first two years (2003 to 2004) allowed the
system to build a spatial gradient in the simulated atmo-
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spheric CO2 mole fractions. In the following years (2005 to
and 2009) the observational constraints were active. For the
consecutive two years (2010 to 2011), the constraints were
inactive and the observations were used to evaluate the MPI-
CCDAS with posterior parameters in hindcast-model.5

As evaluation statistics, we used the correlation, bias, root
mean squared error and the Nash-Sutcliffe model efficiency
(NSE). The latter is defined as:

NSE = 1−
∑
i (di−mi)

2∑
i

(
di− di

)2 (5)

where the index i denotes individual pairs of observation (d)10

and model output (m) and an overbar the arithmetic mean.
NSE = 1 indicates a perfect model and for allNSE < 0 the
mean of the observations is a better predictor than the model
itself.

Our study follows a factorial design to assess the benefit of15

each data stream, but also to evaluate the potential of assimi-
lating more than one data stream and its effect on the carbon
cycle. Therefore, we conducted three experiments: two ex-
periment assimilating each one data stream alone (CO2alone
using only CO2 and FAPARalone using only TIP-FAPAR)20

and one experiment assimilating both data streams simulta-
neously (JOINT), with each data stream equally weighted in
the cost function (Eq. 1).

4 Results

4.1 Performance of the assimilation25

The application of the MPI-CCDAS to the given problem
(FAPARalone, CO2alone, or JOINT) was successful within
an appropriate number (tens to hundreds) of iterations (with
run-times of 1 - 2 months), increasing from FAPARalone (us-
ing only TIP-FAPAR), to CO2alone (using only CO2), and30

JOINT (using both observations simultaneously as a con-
straint; Table 3): For all three assimilation experiments, the
value of the cost-function was considerably reduced, while
the posterior parameter values remained in physically plau-
sible ranges, even though a few (e.g.: Tφ of the coniferous35

deciduous phenotype) deviate strongly from the prior val-
ues (Table 2). For FAPARalone, the value of the cost func-
tion was almost halved between prior and posterior run. Even
stronger reductions of the cost function were obtained in the
other two experiments using also CO2 (Table 3). Interest-40

ingly, the posterior cost of the JOINT assimilation roughly
equals the sum of the single data-stream experiments, in-
dicating consistency of the model with both data streams.
Several statistics comparing the posterior model with ob-
servations for FAPAR and CO2 (Tables 4 and 5) show that45

the model performance of the JOINT experiment was com-
parable to the performance of the two single data-stream
experiments relative to the assimilated quantity. While the
JOINT assimilation captured the main features of both data

sources, the single data-stream assimilation experiments ei- 50

ther showed no improvement with respect to the other data
stream (such as the CO2alone case for FAPAR), or even a
degradation (such as the FAPARalone case for CO2). Over-
all, these results suggest that both data streams can be suc-
cessfully assimilated jointly with the MPI-CCDAS. 55

During the assimilation procedure, the norm of the gradi-
ent1 ∂J

∂p (see Eq. 1) was considerably reduced by 3 - 4 orders
of magnitude (Table 3). The behaviour was such that during
the first tens of iterations of the assimilation procedure, the
cost as well as the norm of the gradient were considerably 60

reduced. Also the parameter values changed the most in this
initial phase of the assimilation. However, they also changed
in later iterations without substantial reductions in the cost
function or the norm of the gradient. The assimilation then
finally stopped, because the changes to the parameters be- 65

came too small. Notably, the norm did not approach zero for
the cases using CO2 as a constraint, as would have been ex-
pected for the minimum of the cost-function. This is an indi-
cation that for these experiments our posterior parameter es-
timate does not yet minimize the cost function: a point also 70

mentioned by Rayner et al. (2005) with respect to their CO2

assimilation with the BETHY-CCDAS. In the following we
discuss the performance of the assimilation with respect to
FAPAR and CO2 in detail.

4.2 Phenology 75

The statistics of the comparison with the TIP-FAPAR data
sets shows an improvement of the model-data fit for all ex-
periments relative to the prior model (Table 4), which as ex-
pected is strongest when using FAPAR (FAPARalone and
JOINT) as a constraint. 80

One important reason for the improvement was a gen-
eral reduction in modelled growing-season average FAPAR
simulated by the MPI-CCDAS compared to the prior run.
This decrease in FAPAR was mostly driven by a reduction of
globally averaged foliar area of 0.41 m2m−2 on average for 85

the JOINT experiment (0.34 m2m−2 for FAPARalone and
0.59 m2m−2 for CO2alone). Almost all PFTs contributed to
the decrease in FAPAR following a reduction in the maxi-
mum leaf area index parameter (Λmax) for tropical decidu-
ous forests, needle-leaf deciduous forests, as well as herba- 90

ceous PFTs (crops and grasses). The water-stress parameter
τw played a secondary role in the leaf area reduction by af-
fecting the maximum leaf-area for drought responsive PFTs
(see Table 1). The concurrent increase of foliar area for extra-
tropical deciduous and rain green shrubs only plays a mi- 95

nor role in the model-data agreement, since these PFTs only
cover a small fraction of the global land area.

In regions with a strong temperature control of phenol-
ogy, the assimilation did not only change the magnitude
average LAI of the phenological seasonal cycle during the 100

1The norm of a vector v is: ‖v‖=
√
v ·v
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Table 3. Characteristics of the assimilation experiments. The prior and posterior cost-function values and the contribution of FAPAR, CO2

and the prior (second term in Eq. 1) to the posterior cost-function value are given as well as the norm of the gradient and the number of
observations acting as a constraint and the number of iterations of the assimilation

Experiment
name

Prior
cost

Posterior
cost

FAPAR
cost

CO2

cost
Parameter

cost
Prior norm

of the gradient
Posterior norm
of the gradient

Number of
observations

Number of
iterations

CO2alone 1922 344 0 287 57 12196 14.8 1524 69
FAPARalone 1431 723 626 0 97 208 0.7 3189 29
JOINT 3352 1102 682 309 112 12162 6.1 4713 69
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Figure 2. Example time-series of FAPAR for an East Siberian pixel dominated by the CD-PFT to demonstrate the improvement in the timing
of the phenology after the assimilation. TIP-FAPAR observations are given with their mean (dots) and 1 ·σ uncertainties (vertical lines). 1-σ
uncertainties

growing season. As demonstrated by the enhanced correla-
tion and model efficiency of the MPI-CCDAS with respect
to the TIP-FAPAR data (Table 4), also the timing of onset
and end of the growing season was improved. This improve-
ment was mostly the result of adjusting the parameters Tφ5

and tc, which are temperature and day-length criteria that
determine when the vegetation switches from the dormant to
the active phase. In particular, the assimilation reduced the
temperature control parameter Tφ, which led to an earlier
onset of the growing season in the extra-tropical deciduous10

broadleaf and deciduous needleleaf PFTs. For the deciduous
evergreenneedleleaf forests the assimilation procedure also
resulted in an earlier end of the growing season, in accor-
dance with the observations (see Fig. 2 for an example). For
the other PFTs, these parameters changed not as pronounced,15

leading to no notable difference in the phenological timing
- at least not at the analysed monthly temporal resolution.
The parameters controlling the phenological timing of other
PFTs were not strongly altered by the assimilation, which - at
the monthly temporal resolution of the satellite data analysed20

here - led to no observable modification of the temporal be-

haviour of FAPAR. Notably, also the CO2alone experiment
showed some improvement in the correlation and model ef-
ficiency compared to TIP-FAPAR, although this experiment
did not use the TIP-FAPAR data as a constraint. This sug- 25

gests that the seasonal cycle of CO2 bears some constraint
on the timing of Nnorthern extra-tropical phenology.

While the FAPARalone assimilation run performs best
compared with TIP-FAPAR (Table 4), the FAPARalone and
JOINT assimilation runs are fairly similar (though not iden- 30

tical) with respect to the simulated FAPAR. The temporally
averaged LAI (Fig. 3) demonstrates the overall similarity be-
tween the FAPARalone and JOINT experiments. This simi-
larity is also reflected in the parameter values of the phenol-
ogy: the parameters of FAPARalone and JOINT often were 35

closer to each other than to CO2alone (Table 2). An exam-
ple for this are the tropical evergreen tree PFTs, for which
parameters of the JOINT and FAPARalone experiment are
different while the modelled foliar area is very similar. A fur-
ther explanation for this feature highlighting the importance 40

of multi-data stream assimilation is given in Sec. 4.4.1. The
most pronounced differences between the JOINT and FA-
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Figure 3. Temporally averaged global LAI of the JOINT experiment and differences of the other experiments to the JOINT case.

Table 4. Performance of the prior and posterior models compared with TIP-FAPAR observations (applying the same data quality screening
as for the assimilation). The assimilation period (2005 - 2009) as well as a subsequent evaluation period (2010/2011) is shown. Abbreviations
are: Bias: Model - Observations, Corr: Correlation, RMSE: Root mean squared error, NSE: Nash Sutcliffe model efficiency.

2005 - 2009 2010/2011
Corr Bias RMSE NSE Corr Bias RMSE NSE

PRIOR 0.60 0.069 0.19 0.10 0.61 0.075 0.19 0.12
CO2alone 0.66 -0.072 0.17 0.31 0.67 -0.074 0.17 0.31
FAPARalone 0.72 -0.014 0.14 0.51 0.73 -0.013 0.14 0.52
JOINT 0.71 -0.022 0.14 0.49 0.72 -0.022 0.14 0.50

PARalone experiment, leading also to the differences in the
globally averaged foliar area, arose at locations where TIP-
FAPAR data were not used as constraints in e.g. crop dom-
inated pixels (where also the extra-tropical deciduous tree
(ETD) PFT covered a substantial part of the grid-cell).5

Larger differences in FAPAR were obtained with the
CO2alone and JOINT experiments (Table 4 and Fig. 3). The
CO2alone experiment showed the smallest LAI, and thus the
smallest FAPAR. This feature is especially pronounced in

tropical regions, where the decrease is driven by the water- 10

control parameter τw and the maximum foliar area Λmax.
This pattern is countered by larger foliar area than the JOINT
experiment for coniferous deciduous trees, driven by the
parameter Λmax which is increased for CO2alone, but de-
creased for the other two experiments. A likely explanation 15

of this behaviour is given in Sect. 4.4.2.
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4.3 Atmospheric CO2

The assimilation procedure strongly reduced the misfit be-
tween observed and modelled atmospheric mole fraction of
CO2 when using CO2 as a constraint (Table 5). This was
true for the seasonal cycle, the seasonal cycle’s amplitude5

and the 5-years trend (Fig. 4 and 5). Conversely, the FA-
PARalone experiment showed a strong deterioration of the
simulated atmospheric CO2 metrics compared to the prior
model. Notwithstanding an improvement of the seasonal cy-
cle amplitude of atmospheric CO2 (Fig. 5), the 5-years trend10

of atmospheric CO2 was much less conforming to the ob-
servations, leading to a much faster increase in CO2 than ob-
served (Table 5 and Fig. 4). Notably, introducing TIP-FAPAR
as an additional constraint in the JOINT experiment did allow
the MPI-CCDAS to match both the atmospheric CO2 data15

and the TIP-FAPAR product: the simulated monthly CO2

mole fractions of the JOINT and CO2alone experiment are
almost identical for most sites (Table 5 and Fig. 4 and 5).

The improvement of the simulated atmospheric CO2 for
the CO2alone and JOINT assimilation run persisted for the20

two years following the assimilation period, in which the
model was run in a hindcast mode (driven by reconstructed
meteorology), with only minor degradation in model perfor-
mance (Table 5). Both experiments clearly outperform the
prior model, which is most obvious in the improvement of25

the Nash-Sutcliffe model efficiency for the hindcast period.
The comparison of the simulated posterior atmospheric

CO2 mole fractions at the evaluation stations showed a gen-
eral improvement in the performance measures, with sub-
stantial improvements in the simulated bias, RMSE and30

Nash-Sutcliffe model efficiency relative to the prior model
(Table 5). Unlike for the set of calibration sites, there was no
difference in the improvement between the assimilation pe-
riod and the subsequent two-year period, suggesting that the
model improvement is of general nature. In other words, the35

short-term (1-2 years) prognostic capabilities of the model
have been largely improved for a 2 years horizon after assim-
ilating CO2-observations, also at the evaluation locations.

4.3.1 Changes in Carbon fluxes causing the changes in
simulated CO240

The changes in simulated atmospheric CO2 mole fractions
originate from substantial changes of the seasonal amplitude
and overall strength of the net carbon fluxes simulated by of
JSBACH. The application of the CO2-constraint increased
the global net biome production (NBP) from 1.0 PgCyr−1 in45

the prior model to 3.2 PgCyr−1 in the CO2alone and JOINT
experiments. Conversely, using only TIP-FAPAR as a con-
strained decreased the NBP to -2.2 PgCyr−1, in other words,
turning the biosphere into a net source (Table 6), inconsis-
tent with current understanding of the global carbon cycle50

(Le Quéré et al., 2015). Despite the similarity of the global
NBP for the experiments with CO2 as a constraint, the spa-
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Figure 4. Time series of CO2 as observed at the high latitude evalu-
ation site Summit and at two constraining sites, one at high latitudes
(Alert) and one representative for the Northern Hemisphere (Mauna
Loa) for the different prior and posterior models. The observations
are given together with their uncertainty.

tial patterns of the NBP are different between the CO2alone
and JOINT experiments (Fig. 6). The net uptake in both ex-
periments originates from boreal and tropical regions. How- 55

ever, while the JOINT experiment shows an uptake in the
boreal regions of coniferous evergreen and coniferous decid-
uous dominated pixels, the net CO2 uptake in the CO2alone
experiment is more concentrated to the coniferous deciduous
regions. These differences will be further discussed in Sect. 60

4.4.2.
While the atmospheric observations constrain the net land-

atmosphere CO2 flux, the MPI-CCDAS model parameters
affect the gross-fluxes, and thus the changes in NBP are again
the consequence of substantially altered gross fluxes and land 65

carbon pools. The generally reduced foliar area directly leads
to a reduced gross primary production (GPP) of the terrestrial
biosphere (in all experiments). The changes to the photosyn-
thetic capacity (fphotos) (Table 2) often further reduce the up-
take, a factor which is most pronounced for crop and tropical 70
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Table 5. Performance of the prior and posterior models compared with atmospheric CO2 for constraining and evaluation sites and for the
assimilation period (2005 - 2009) and the hindcast period (2010/2011). Abbreviations are: Bias: Model - Observations, Corr: Correlation,
RMSE: Root mean squared error, NSE: Nash Sutcliffe model efficiency.

2005 - 2009 2010/2011
Corr Bias RMSE NSE Corr Bias RMSE NSE

Stations acting as constraint
PRIOR 0.95 0.64 2.60 0.68 0.93 4.85 5.22 -0.69
CO2alone 0.96 -0.05 1.32 0.92 0.93 0.10 1.47 0.87
FAPARalone 0.91 8.91 9.84 -3.63 0.91 18.21 18.35 -19.86
JOINT 0.96 -0.09 1.35 0.91 0.93 -0.16 1.48 0.87

Stations withheld from assimilation
PRIOR 0.86 1.20 3.83 0.52 0.84 5.18 6.03 -0.61
CO2alone 0.89 0.25 2.54 0.79 0.89 0.19 2.19 0.79
FAPARalone 0.84 9.73 10.84 -2.87 0.86 18.89 19.12 -15.14
JOINT 0.88 0.24 2.61 0.78 0.88 -0.05 2.28 0.77

Table 6. Global averages of selected carbon cycle components for the years 2005 to 2009 in PgC yr−1 for fluxes and PgC for stocks and
comparison with other estimates. Ra: autotrophic respiration. Rh: heterotrophic respiration. Reco: ecosystem respiration. Vegetation carbon
is made up of all carbon stored in the living parts of the vegetation (including above and belowground carbon of plants and woods.)

PRIOR CO2alone FAPARalone JOINT Other estimates Other CCDAS

NPP 65.5 40.9 53.5 45.6 44− 66a 40g

Ra 86.1 57.6 67.8 65.7
Rh 64.5 37.6 55.4 42.2
Reco 150.6 95.2 123.2 107.9
GPP 151.6 98.4 121.3 111.3 119± 6b,123± 8c 109− 164h

NBP 1 3.2 -2.2 3.2 2.4± 0.8d

Soil Carbon 2649 1064.7 2187.1 1122.3 1343e

Vegetation Carbon 424 388.5 420.5 407.3 442± 146f

Litter Carbon 239.9 189.8 212.8 193.9

aCramer et al. (1999); Saugier and Roy (2001); bJung et al. (2011); cBeer et al. (2010); dLe Quéré et al. (2015);
ehttp://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/; fCarvalhais et al. (2014); gRayner et al. (2005); hKoffi
et al. (2012)

evergreen PFTs (Table 6 and Table 2). The GPP reduction is
strongest for the CO2alone experiment and weakest (but still
very pronounced) for FAPARalone. Even though the globally
integrated posterior GPP values were somewhat different, the
relative latitudinal patterns were fairly similar to each other5

(Fig. 7), and the reduction occurred in all regions, predomi-
nantly in tropical forests and grass/crop dominated temperate
and boreal zones (Table 2).

Since the net carbon fluxes in the FAPARalone experi-
ment were not constrained by the atmospheric CO2 obser-10

vations, the assimilation did not adjust the ecosystem respi-
ration to balance the reduced productivity induced from the
altered FAPAR. In the JSBACH model, autotrophic respira-
tion is estimated as a direct function of GPP and canopy in-
tegrated carboylation capacity (Eq. A17), and thus quickly15

adjusts to any changes in GPP, On the time scales of five

years in this study, this decline was not sufficient to balance
the reduced GPP. As a consequence, the net flux to the atmo-
sphere increased leading to the overestimation of the growth
rate of atmospheric CO2. Application of the CO2 constraint 20

in the CO2alone and JOINT experiment forces ecosystem
respiration to be further reduced to match the atmospheric
signal. This additional reduction in ecosystem respiration is
mainly driven by a reduction of the initial soil carbon pool
(via the modifier fslow) to 50% and 51% for the JOINT 25

and CO2alone experiment, respectively, which reduces het-
erotrophic respiration (Table 6 ; see also discussion in Sec-
tion 5.5).
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Figure 5. Latitudinal distribution of atmospheric CO2 seasonal cy-
cle amplitude, calculated as the difference between the maximum
and minimum CO2 mole fraction of the averaged seasonal cycle of
the linearly de-trended signal from 2005 - 2009.

4.4 Regional differences among the experiments

In the following, we focus on differences in the spatial pat-
terns of the results obtained for tropical regions and the bo-
real zone to highlight the interplay between parameters in
a global, multi-data stream application of the MPI-CCDAS5

either by compensating effects between different model pro-
cesses within one PFT as occurring in the tropics (Sect. 4.4.1)
or by compensations between different parts of the globe
(Sect. 4.4.2).

4.4.1 Tropics10

The modelled foliar area in the tropics (mainly the tropi-
cal evergreen tree PFT) was similar for the JOINT and FA-
PARalone experiments (Fig. 3), but smaller for CO2alone.
The simulated GPP of the JOINT experiment (Fig. 7) was
somewhat lower than in the FAPARalone experiment, but15

still substantially larger than that of the CO2alone experi-
ment. Notwithstanding these differences, the simulated net
land-atmosphere CO2 exchange (Fig. 6) of the JOINT ex-
periment was closer to the posterior estimate of CO2alone
than to that of FAPARalone in terms of absolute values.This20

result was caused by compensating effects of the differ-

−150 −100 −50 0 50 100 150

JOINT

Temporal mean 2005 − 2009NBP[gC/yr/m2]

−100 −50 0 50 100

CO2alone minus JOINT

Temporal mean 2005 − 2009NBP[gC/yr/m2]

Figure 6. Temporally averaged NBP of the JOINT assimilation, dif-
ferences of CO2alone to the JOINT experiment and the latitudinal
distribution for the prior and posterior models.
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Figure 7. Latitudinal distribution of GPP for the prior and posterior
models and comparison with the estimates of Jung et al. (2011).

ent observational constraints (Fig. 8 and Table 2): the phe-
nological parameters, notably τw and Λmax, were substan-
tially different between the FAPARalone and JOINT exper-
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iment, yet their modelled foliar area was very similar (Fig.
3). The reason for this was that the photosynthesis param-
eter modifier fphotos was reduced strongly in the JOINT
experiment, which also drives the smaller GPP (relative
to FAPARalone). A consequence of this large reduction in5

modelled photosynthesis per unit foliar area and ecosystem
level GPP was a strong decrease in the potential transpiration
rate (Epot; Eq. A5) through the effect of net photosynthesis
on canopy conductance (Eq. A14). Through the effect of net
photosynthesis on canopy conductance (Eq. A14), the poten-10

tial transpiration rate (Epot; Eq. A5) was strongly decreased.
Together with the increase of τw (Eq. A5) in the JOINT ex-
periment, the decline inEpot had the same effect on the simu-
lated phenology as the smaller parameter changes in the FA-
PARalone experiment. The lack of an FAPAR constraint in15

the CO2alone experiment allowed the assimilation to overly
reduce the foliar area by increasing τw at the prior rate of
photosynthesis and thus Epot to satisfy the constraint by the
atmospheric CO2 observations. As a consequence, due to the
water-cycle feedback, the modelled foliar area was clearly20

different between the JOINT and CO2alone experiments.
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Figure 8. Parameter changes of tropical evergreen trees in multiples
of the prior uncertainty (as ppo−ppr

σpr
).

4.4.2 Boreal zones

The CO2alone and JOINT experiments showed similar
global statistics when compared with atmospheric CO2

observations (Table 5 and Fig. 4). Their global and25

hemispheric net carbon uptake was similar (Northern
Hemisphere: 2.24/2.20 PgC yr−1; Southern Hemisphere:
0.98/0.98PgC yr−1), but their underlying spatial patterns
were different, in particular in the boreal zone (Fig. 6). The
entire boreal zone took up a large share of the global car-30

bon sequestration in the JOINT experiment (0.88 PgC yr−1),
especially in coniferous deciduous (CD) dominated regions
of Eastern Siberia (0.30 PgC yr−1). The CO2alone experi-
ment showed a similar net Carbon uptake in the boreal re-
gion, but the uptake in the CD dominated region was 0.1635

PgC yr−1 stronger than in the JOINT experiment. This dif-
ference was mainly driven by larger foliar area and increased

leaf-level productivity (parameter fphotos) of the CD PFT
in the CO2alone experiment. In the same latitudinal band,
coniferous evergreen trees showed reduced foliar area in the 40

CO2alone experiment compared to the JOINT experiment,
reducing the net uptake by 0.16 PgC yr−1, such that the dif-
ferences in these regions cancel each other. These relatively
small spatial differences can nevertheless be seen as minor
differences in the ability of the do not prevent the posterior 45

JOINT and CO2alone experiment in from capturing the am-
plitude of the seasonal cycle at individual northern-most sta-
tions.

This largely increased sink in Eastern Siberia could be an
artefact of the set-up used for the data assimilation in this 50

study. No nearby atmospheric stations constrains the net car-
bon sink in this region adequately, and the CD PFT only oc-
curs dominantly in this region. In consequence, the PFT’s
parameters can not be adequately constrained by carbon cy-
cle observations from other parts of the globe. This rela- 55

tive scarceness of observations and independency of other
regions allows the East-Siberian net carbon uptake to com-
pensate for other regions fluxes in order to match the global
growth rate. Additional observations would be required to al-
low for spatially higher resolved estimation of the net fluxes. 60

5 Discussion

5.1 Comparison of the simulated Carbon cycle with
independent estimates

We have demonstrated that the JSBACH model is capable of 65

reproducing the seasonal cycle and five years trend of the ob-
served atmospheric CO2 (Fig.s 4 and 5 and Table 5). During
the assimilation run, we have applied a careful selection of
stations to avoid the impact of local sources on modelled at-
mospheric CO2 mole fractions, which cannot be simulated 70

with the current coarse resolution of the MPI-CCDAS. The
evaluation at the cross-validation sites, which are located on
land and thus closer to locally varying source patterns, also
demonstrates a good skill of the posterior model for these
sites. Overall, this does suggest that the improvement of the 75

MPI-CCDAS’s capability to capture the observed CO2 dy-
namics at monthly to yearly time scales is reasonably ro-
bust. Our results further support earlier studies (Rayner et al.,
1999; Kaminski et al., 1999; Peylin et al., 2013) that the ob-
servational network of atmospheric CO2 only constrains a 80

limited number of spatio-temporal flux patterns.
The application of the CCDAS led to significant changes

of the modelled carbon cycle in JSBACH. The average global
GPP of the JOINT experiment (111 PgC yr−1) was sub-
stantially reduced from the prior run (152 PgC yr−1) and 85

was slightly lower than independent, data-driven estimates
of 119 ± 6 PgC yr−1 (Jung et al., 2011) and 123 ± 8
PgC yr−1 (Beer et al., 2010), as well as estimates of com-
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parable land surface models (ranging from 111 - to 151
PgC yr−1; Piao et al. 2013). Partly driven by the reduction of
GPP, the net primary production (NPP) was also significantly
reduced (from 66 PgC yr−1 (prior) to 46 PgC yr−1 in the
JOINT experiment. While this is lower than the commonly5

accepted reference value of 60 PgC yr−1, it is still compati-
ble with the range of available estimates for NPP of 44 - 66
PgC yr−1 (Cramer et al., 1999; Saugier and Roy, 2001). The
latitudinal distribution of GPP in comparison to an empiri-
cal estimate based on satellite data and field measurements10

(Jung et al., 2011) shows that the global reduction of GPP
occurred across the globe, leading leads to a better agree-
ment of GPP in the Nnorthern extra-tropics between 30◦N
and 60◦N, but to a lower GPP a smaller simulated GPP in
the tropical rain forests (Fig. 7). The reduction of GPP in15

the Nnorthern extra-tropics is likely associated with the over-
estimation of the seasonal cycle of atmospheric CO2 by
the prior model, which was successfully reduced primarily
by reducing Nnorthern extra-tropical productivity, in partic-
ular in temperate and boreal grasslands. Nevertheless, our20

study supports earlier findings that despite some constraint
on northern extra-tropic production, the constraint of ob-
served atmospheric CO2 on global production is small (Koffi
et al., 2012).

A detailed comparison on the simulated vegetation and25

soil carbon stocks of the prior model is beyond the scope of
this paper, partly because the simplifications of the spin-up
procedure entail biases in predicted vegetation carbon stocks,
as transient land-use changes and forest management, affect-
ing forest age structure are ignored. It is nevertheless instruc-30

tive to provide context for the simulated vegetation and soil
carbon stocks by comparing them to the global totals of in-
dependent estimates. The posterior experiments showed only
little less carbon in vegetation (389 - 420 PgC (composed
of quickly overturning leaf and fine root carbon, as well as35

a woody carbon pool). ) than the prior model (424 PgC).
All of these estimates are lower than the 556 PgC vegeta-
tion carbon based on updated Olson’s major world ecosys-
tem carbon stocks2, but comparable to a more recent esti-
mate of global vegetation carbon storage of 442 ± 146 PgC40

(Carvalhais et al., 2014). The posterior amount of soil car-
bon from the assimilation runs using atmospheric CO2 as
a constraint compare favourably (within the uncertainty) to
the estimates of 1343 PgC based on the Harmonized World
Soil Database (HWSD)3. This estimate is more appropriate45

for the presented comparison than the more recent and higher
estimate of soil carbon by Carvalhais et al. (2014) of 1836 -
3257 PgC (95% confidence interval), as the latter includes
estimates of permafrost carbon, which is not modelled with
the current version of the MPI-CCDAS.50

2http://cdiac.ornl.gov/epubs/ndp/ndp017/ndp017b.html
3http://webarchive.iiasa.ac.at/Research/LUC/External-World-

soil-database/HTML/

The above changes in the carbon cycle led to significant
differences in the simulated annual net land carbon fluxes be-
tween the assimilation experiments. The assimilation experi-
ments using atmospheric CO2 as a constraint considerably
increased the net land carbon uptake from 1.0 PgC in 55

the prior run to 3.2 PgC during 2005-2009. This increase
primarily occurred by reducing ecosystem respiration more
than reducing GPP.

Our estimate of the net land carbon sink using atmospheric
CO2 as a constraint is slightly larger than the residual land 60

carbon sink estimate (without inclusion of land-use change
fluxes) inferred from atmospheric measurements and aux-
iliary fluxes by Le Quéré et al. (2015), who derived a net
uptake of 2.4 ± 0.8 PgC yr−1 for the period 2000 - 2009.
Correcting this estimate for the pre-industrial lateral carbon 65

fluxes from land to the ocean via rivers would increase the
terrestrial net land C uptake seen by the atmosphere (and
thus the MPI-CCDAS) to 2.85 PgC yr−1; see Le Quéré et al.
2015 and Jacobson et al. 2007). Due to the interannual vari-
ability of the land sink, the shorter time-period of our sink es- 70

timate may have contributed to the difference between the es-
timates. More likely, one driving factor of our slightly larger
estimate of the land net carbon uptake is from the compara-
tively small net ocean carbon uptake of 1.1 PgC yr−1 (Rö-
denbeck et al., 2013), which we prescribed in our assimila- 75

tion. This compares to the estimate of 2.4± 0.5 PgC yr−1 of
Le Quéré et al. (2015). Bearing in mind that the atmospheric
CO2 observations more directly constrain the net land carbon
fluxes at seasonal and annual scales than the gross fluxes or
carbon pools, assuming a larger ocean net carbon flux would 80

have reduced the land uptake. Explicitly accounting for DOC
based carbon losses from land in the future will help to close
the gap between the estimates, and thereby reduce the es-
timated land carbon storage inferred from the atmospheric
data, and allow for the estimate of the MPI-CCDAS to be 85

more compatible with the estimate of Le Quéré et al. (2015).

5.2 Comparison to previous studies

Our results are consistent with earlier studies, which showed
that JSBACH overestimates the seasonal cycle amplitude of
atmospheric CO2 (Dalmonech and Zaehle, 2013). The pos- 90

terior estimates of this amplitude was considerably reduced
and hence improved in all three experiments (Fig. 5). This
also holds for FAPARalone, for which the comparison with
CO2 is an independent evaluation. Note that the prior we
reported here already relies on a corrected maximum leaf 95

area index (Λmax) of coniferous evergreen trees (see Sect. 3).
For the run with the off-the-shelf configuration of JSBACH
(results not shown), the high latitude mean seasonal cycle
amplitude was clustered around 30 ppm, implying an over-
estimation of about 15 ppm. In the prior experiment, this 100

overestimation was reduced to about 5 - 10 ppm, and further
reduced in the FAPAR alone experiment (Fig. 5). In other
words, boreal phenology considerably controls the seasonal
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cycle of the high latitude atmospheric CO2-signal and TIP-
FAPAR can improve this aspect even though the CO2 trend
is deteriorated (Fig. 4). Adding CO2 as a constraint further
improves the fit to the seasonal cycle amplitude.

This conclusion is also supported by Kaminski et al.5

(2012), who constrained the BETHY-CCDAS jointly with
atmospheric CO2 data and a different FAPAR product (Go-
bron et al., 2007). They found an improved seasonal cycle
amplitude of CO2 for their joint assimilation with real data,
which is in line with our findings. Through factorial uncer-10

tainty propagation with their assimilation scheme, Kaminski
et al. (2012) also found that the inclusion of FAPAR yields
only a moderate uncertainty reduction in the simulated car-
bon fluxes and mainly reduces the water flux uncertainties.
Kaminski et al. (2012) therefore suggested that FAPAR only15

added little information to the modelled carbon cycle in ad-
dition to atmospheric CO2. In contrast, we have shown here
a considerable impact of TIP-FAPAR by altering the spatial
net Carbon flux patterns between the JOINT and CO2alone
experiments.20

Our study also showed a considerable difference of GPP
estimates that are not likewise reflected in the net carbon
fluxes, as these are more directly constrained by CO2. Also
Koffi et al. (2012), using a variant of the BETHY-CCDAS
(Rayner et al., 2005; Scholze et al., 2007), found large dif-25

ferences in their posterior GPP-estimates ranging from 109
- 164 PgC yr−1 when using different transport models, at-
mospheric station densities and prior uncertainties. As in
our study, their relatively large GPP-ranges are not reflected
in the net fluxes, as these are more directly constrained by30

the atmospheric CO2 network. A striking difference to the
results of Koffi et al. (2012) occurs in the tropics, where
they overestimate GPP compared to data-driven estimates,
whereas the MPI-CCDAS underestimates GPP. As will be
discussed later (Sect. 5.5), our underestimation of tropical35

GPP is likely a compensating effect arising from the respira-
tion part of the model that only can be modified globally. This
is not the case for the BETHY-CCDAS, which allows for a
spatially more explicit control on heterotrophic respiration.
It appears thus likely that a larger posterior GPP in the MPI-40

CCDAS could be expected with a system allowing for more
spatial freedom in the respiration part of the assimilation sys-
tem, for instance by making faut_leaf and fslow vary by plant
functional type. Regardless of this difference, our work fur-
ther supports earlier findings (Rayner et al., 2005; Scholze45

et al., 2007; Koffi et al., 2012) that despite some constraint
on Nnorthern extra-tropical GPP, the global land GPP cannot
be well constrained with atmospheric CO2 alone. It appears
thus vital that additional information is provided, especially
in tropical regions, to further reduce uncertainty in the spatial50

distribution of the gross fluxes GPP and ecosystem respira-
tion. This likely will propagate to an improved estimate of
the net CO2-fluxes as well.

Within the BETHY-CCDAS, Rayner et al. (2005) found
a very pronounced decrease of NPP from 68 PgC yr−1 in55

the prior run to 40 PgC yr−1 in the posterior run. This
decrease was driven by a decrease of their parameter fR,leaf
(a value also achieved by Scholze et al. 2007), which
is functionally comparable to the MPI-CCDAS parameter
faut_leaf . Their estimate is thus similar to our strong 60

NPP-reduction (JOINT NPP: 46 PgC yr−1). This apparent
similarity towards relatively small numbers (compared to
other estimates) should not mislead to the conclusion that
global NPP is well constrained from atmospheric CO2,
because it ignores spatial offsets between the estimates, 65

and the fact that the MPI-CCDAS and BETHY-CCDAS
approaches to estimate NPP from GPP are fairly similar.
Assimilation of CO2 into other, simpler biosphere models
achieved ranges for NPP from 36 to 53 PgC yr−1 given
different model formulations (Kaminski et al. 2002). 70

5.3 Critical appraisal of the current MPI-CCDAS

With the set-up of the cost function and given the tangent-lin-
ear version of the JSBACH model, the assimilation problem
for the MPI-CCDAS is clearly defined and solutions of the
problem are by construction compatible with the model dy- 75

namics. This is a considerable difference to alternative meth-
ods, but also means that in the posterior estimates, any model
structural deficits will be compensated for by unrealistic pa-
rameter values or can be detected in large model-data resid-
uals. This allows to detect model structural errors and/or 80

deficits in the set-up, which then can lead to a reformula-
tion of the forward model (see e.g.: Kaminski et al., 2003;
Rayner et al., 2005; Williams et al., 2009; Kaminski et al.,
2013). The MPI-CCDAS framework described here can be
steadily improved through regular improvements of the JS- 85

BACH model structure by including missing or correcting
false model parametrisations (e.g. Knauer et al., 2015). The
system is versatile enough to add more constraints from rel-
evant and complementary, multiple data sources (Luo et al.,
2012) to come up with more robust regional estimates than 90

the current atmospheric inversion allow.

5.4 Discussion of the assimilation procedure

The results clearly show that two data-streams can be suc-
cessfully integrated with the MPI-CCDAS. The posterior
parameter values (Table 2) were different between the FA- 95

PARalone and JOINT, as well as the CO2alone and JOINT
experiments, showing that the joint use of the two data
streams added information to the posterior parameter vector
by preventing the degradation of the phenology simulation
when trying to fit the CO2 observations (Table 5 and 4). This 100

is also supported by the fact that value of the cost function of
the JOINT assimilation roughly equals the sum of the single
data-stream experiments, indicating consistency of the model
with both data streams.

Hence, although the JSBACH phenology is only weakly 105

influenced by the carbon cycle component of JSBACH and
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mainly controlled by other drives (e.g.: soil moisture, tem-
perature), there are strong interactions among carbon and
water cycle parameters and simulated FAPAR, a finding sup-
ported by Forkel et al. (2014). Thus the combination of dif-
ferent data streams in the JOINT experiment helped estimat-5

ing parameters of different processes to remain within ac-
ceptable bounds. The capability of assimilating multiple data
streams simultaneously is a distinct advantage of the MPI-
CCDAS over alternative strategies that assimilate multiple
data streams by following a sequential design of assimilating10

FAPAR prior to carbon cycle information. An implementa-
tion of such a sequential assimilation likely reduces the num-
ber of parameters to be optimized in each step, and therefore
allows a quicker solution of the optimisation problem. How-
ever, this advantage comes with the cost of breaking the link-15

age between parameters. This disconnect between the differ-
ent data streams and their effect on the respective parameter
sets can lead to situations, where the posteriori results of a se-
quential assimilation experiment will not match the observa-
tions equally well as with a simultaneous assimilation. Since20

our results have demonstrated that a joint assimilation is fea-
sible without impairing the fit to the individual data sources,
a joint assimilation approach appears therefore recommend-
able.

The assimilation procedure achieved a strong reduction of25

the cost function and the norm of the gradient (see Table
3). Although the relative reduction in the norm of the gra-
dient was larger in the CO2-cases than in the FAPARalone
case, the norm did not not approach zero - contrary to the
FAPARalone case. Such a non-zero gradient was also noted30

by Rayner et al. (2005) in their CO2 assimilation with the
BETHY-CCDAS. The fact that the MPI-CCDAS success-
fully reduces the norm of the gradient for FAPAR suggests
that this is not a general failure of the MPI-CCDAS, but spe-
cific to the particularities of the CO2 set-up. It is presently35

unclear, what is causing the assimilation to fail to reach the
minimum of the cost function. , and further tests with alter-
native station network settings, parameter priors or time-pe-
riods are needed to evaluate the cause. Investigation of the
non-linear nature and potential numerical issues regarding40

the computation of the gradient ∂J∂p (Eq. 1) might be needed.
Further tests with alternative station network settings, param-
eter priors or time-periods will provide more insight into ap-
proaches to tackle this issue. Nevertheless, we believe that
our results can still be meaningfully interpreted and used to45

evaluate the general capacity of the MPI-CCDAS as a com-
prehensive data assimilation tool.

5.5 Comments on the parameter set-up

The results presented in 4.2 show, that there is a certain de-
gree of equifinality in the parameter values obtained from50

the assimilation of TIP-FAPAR, as the combination of dif-
ferent parameter values can lead to fairly similar results. This
can happen when (i) certain parameters enter an insensitive

regime where parameter differences do hardly propagate to
differences in the modelled foliar area, (ii) pixels are a com- 55

posite of different plant functional types that can show com-
pensating effects, and (iii) the CO2 constraint may still im-
pose an additional weight on changing FAPAR because of
the feedbacks on photosynthesis.

Another cautionary note about the posterior parameter val- 60

ues is warranted: Some of the parameters of the JOINT and
CO2alone experiment were altered strongly compared to the
assumed prior uncertainty. This is possible within the MPI-
CCDAS, because the prior contribution to the cost-function
is weak due to the small number of parameters compared to 65

the number of observations. One example is the fslow param-
eter, which controls the initial soil Carbon pool size and thus
the disequilibrium between GPP and respiration (Table 2).
Another example is the photosynthesis parameter fphotos for
the tropical evergreen PFT in the JOINT experiment, which 70

was reduced by more than 2.5 times the prior uncertainty
and to roughly 75% of its prior value. As a consequence, the
assimilation procedure can result in parameter values with
small prior probabilities. This either points toward too tight
prior uncertainties or to model structural problems. 75

One such structural problem may be that the current MPI-
CCDAS excludes the model spin-up from the assimilation
procedure for reasons of computational efficiency: the so-
lution applied was to allow the MPI-CCDAS to manipulate
the initial soil carbon pool by one globally valid modifier. 80

This choice was made because allowing to control the spa-
tial structure of the carbon pools would require several more
parameters to be optimized, which would very likely suffer
from a strong equifinality problem, and which would con-
siderably extend the already lengthy run-time of the MPI- 85

CCDAS. Our results demonstrate that this spin-up approach
allows to adequately reproduce the space-time structure of
the atmospheric CO2 budget at the time scale of several years
(Fig. 4 and Table 5). However, this approach likely intro-
duces an imprint of the spatial distribution of the prior pro- 90

ductivity on the final model outcome, which may cause im-
perfections in the ability of the MPI-CCDAS to accurately
capture the spatial distribution of the net land carbon uptake,
and in turn also affect the posteriori parameter vector. Allow-
ing for more spatially explicit modifiers for the initial carbon 95

pools (as is done in the BETHY-CCDAS) by e.g. linking the
initial soil disequilibrium to a particular PFT, would be a first
step forward.

The stiffness of the MPI-CCDAS respiration parametri-
sation (with only a few adjustable parameters) likely also 100

caused the reduction of temperate GPP to propagate into the
tropical zone, leading to the strong change of fphotos for the
tropical evergreen PFT in the JOINT experiment. Because
the overall net CO2 flux is constrained by the atmospheric
observations, reduction in temperate GPP requires a corre- 105

sponding adjustment of the ecosystem respiration to balance
the budget. While lowering GPP also reduces autotrophic
respiration (Eq. A17), any further reduction in respiration
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in the temperate zone by adjusting autotrophic (faut_leaf )
or heterotrophic respiration parameters (Q10, fslow) would
also affect tropical respiration, because in the current ver-
sion of the MPI-CCDAS these parameters are assumed to be
valid globally. To balance the budget, a reduction in tropi-5

cal GPP might have been required. Because of enough water
availability in the tropics a phase-shift in the dry-wet cycle
in the Amazonian rain forest may play a minor role in the
down-regulation of GPP during the assimilation. At least no
phase mismatch in atmospheric CO2 is observed at Mauna10

Loa (Fig. 4) that would suggest such a problem.
We also found that extreme parameter changes in vegeta-

tion production to better match the observational constraints
would impede finding an optimum solution with realistic pa-
rameter values. A first series of experiments with the stan-15

dard maximum foliar area for the coniferous evergreen PFT
(not reported here) revealed a bias of 0.4 in FAPAR in the
boreal zone. While, in these experiments, the FAPARalone
assimilation successfully removed this bias, the lack of a re-
calculated initial carbon pool meant that the spatial patterns20

of the initial carbon pools belonging to the high-biased FA-
PAR values caused compensating effects in the carbon fluxes
of other PFTs in the JOINT assimilation run. To avoid this
significant bias from affecting our results, the MPI-CCDAS
experiments reported here are therefore based on a reduced25

prior estimate for the coniferous evergreen PFT to account
for the sparseness of boreal forests. Strictly speaking this is a
violation of the Bayesian theory and a double counting of the
information contained in the FAPAR observations. We nev-
ertheless think that this violation is appropriate, as it corrects30

for a known model shortcoming and since we do not change
the prior uncertainties and do not evaluate the posterior prob-
abilities of the parameters.

5.6 Further development of the MPI-CCDAS Outlook

The application of the MPI-CCDAS allows to detect model35

structural errors and/or deficits in the set-up, which then
can lead to a reformulation of the forward model (see e.g.:
Kaminski et al., 2003; Rayner et al., 2005; Williams et al.,
2009; Kaminski et al., 2013). The framework described here
can be steadily improved through regular improvements of40

the JSBACH model structure by including missing or cor-
recting false model parametrisations (e.g. Knauer et al.,
2015). The system is also versatile enough to add more
constraints from relevant and complementary, multiple data
sources (Luo et al., 2012) to come up with more robust re-45

gional estimates than the current atmospheric inversion al-
low. Beside the previously discussed limitation related to
the spin-up and the representation of initial carbon pools, we
can suggest also other analysis and system developments to
further improve the MPI-CCDAS.50

The discrepancies between FAPARalone and JOINT in
the foliar area estimates for crop-dominated regions, even
though large in extent, originates from the exclusion of TIP-

FAPAR as constraint for these regions. This likewise affected
the extra-tropical deciduous PFT, that co-occurred domi- 55

nantly in the same pixels. Increasing the constraining power
of TIP-FAPAR by either adding more pixels as constraints
or by increasing the resolution to finer grids might further
improve the phenology. We also did not analyse the pheno-
logical model behaviour in full detail, because the focus of 60

this work lied on analysing the benefit of the joint assimila-
tion. More focusing on only the FAPAR assimilation also in
a spatially more explicit manner could further evaluate the
phenology scheme and improve the modelled foliar area. In
this context we note that the per-pixel uncertainty ranges in 65

the TIP-FAPAR product also reflect limitations of the infor-
mation content that can be derived from sunlight reflected to
space in the optical domain (i.e. the input to TIP) in particu-
lar over dense canopies. Formal uncertainty propagation can
quantify the information content in the FAPAR product on 70

gross-fluxes or, conversely, derive accuracy requirments for
optical products (Kaminski et al., 2012)

We have demonstrated that the JSBACH model is capable
of reproducing the seasonal cycle and 5 year trend of the ob-
served atmosphericCO2 (Fig.s 4 and 5 and Table 5). We have 75

applied a careful selection of stations to avoid the impact of
local sources on modelled atmospheric CO2 mole fractions,
which cannot be simulated with the current coarse resolution
of the MPI-CCDAS. Nevertheless, the evaluation with the
cross-validation sites demonstrates a good skill of the poste- 80

rior model also for these sites, suggesting that the observed
CO2 dynamics at monthly to yearly time scales are reason-
ably well captured. Our study supports earlier findings that
despite some constraint on Northern extra-tropic production,
the constraint of observed atmospheric CO2 on global pro- 85

duction is small (Koffi et al., 2012). It further also supports
the studies of Rayner et al. (1999), Kaminski et al. (1999) and
Peylin et al. (2013) that the observational network of atmo-
spheric CO2 only constrains the net carbon fluxes of larger
regions. 90

We demonstrated the value of using a CCDAS instead of
a pure atmospheric inversion to estimate the land net car-
bon flux, because the CCDAS can ingest complementary data
streams, which may help to further constrain the regional es-
timates of the net land carbon flux. In this first version of 95

the MPI-CCDAS, we have assumed the net fluxes other than
those simulated with JSBACH (i.e. fossil fuel emissions and
ocean exchange), as well as the atmospheric drivers to JS-
BACH to be perfectly known, and thus impute all the model-
data mismatch on shortcomings of the land-surface model. 100

It would be desirable to also account for the uncertainties in
these components of the modelling system to more robustly
identify potential model shortcomings. Further assessing the
relative importance of different error sources (e.g. in the land
cover type parameterization, model biases or observational 105

errors) with a system such as the MPI-CCDAS would allow
to highlight priority areas to reduce their uncertainties and
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further constrain the global carbon cycle numbers as given in
table 6

Our results show that applying FAPAR and atmospheric
CO2 as a constraint for the JSBACH model leads to an im-
proved simulation of phenology and Nnorthern extra-tropical5

GPP. As a consequence of the assimilation procedure, the
model also captures the magnitude of the global and hemi-
spheric net biome exchange. This is a major step forward to
including better constrained terrestrial models for the esti-
mation of the global carbon budget (Le Quéré et al., 2015).10

However, we have set up the model such that it attributes
the difference between prior and posterior sink (i.e. 2.2
PgCyr−1) to the soil carbon storage. It has been long known
that the terrestrial net carbon uptake, and thus the CO2 signal
seen by the atmospheric observations, is strongly affected by15

natural (such as fire) and anthropogenic disturbances (such
as land-use change; Houghton et al. 2012). These processes
contribute to the disequilibrium of vegetation and soil car-
bon pools with vegetation production, and thus affect the
spatial pattern of terrestrial carbon release and uptake. With-20

out consideration of these processes, one should be careful
in analysing the MPI-CCDAS projected carbon cycle trends
and attribution of drivers of the trends. The tangent-linear
version of the JSBACH model contained in the MPI-CCDAS
already has the appropriate modules to simulate disturbance25

by fire (Lasslop et al., 2014) and land-use (Reick et al., 2013).
A further development of the MPI-CCDAS could be to ac-
tivate these processes. In order to improve on the current
situation it might also be desirable to constrain the post-
disturbance dynamics of the carbon pools or at least to anal-30

yse how well these are constrained. This would also allow
to add more data streams to potentially disentangle the tight
parameter linkages in the model.

6 Conclusions

The assimilation of five years of remotely sensed FAPAR35

and atmospheric CO2 observations with the MPI-CCDAS
was generally successful in that the fairly substantial model-
data mismatch of the prior model was largely reduced. The
assimilation procedure strongly reduced the too large prior-
estimate of GPP, and generally led to an improvement of40

the simulated carbon cycle and its seasonality. The resul-
tant carbon cycle estimates compared favourably to inde-
pendent data-driven estimates, although tropical productiv-
ity was lower than these estimates. The posterior global net
land-atmosphere flux was well constrained and commensu-45

rate with independent estimates of the global carbon budget.
Our analysis of the prognostic fluxes for a consecutive 2-year
period as well as at stations withheld from the assimilation
procedure demonstrates that our results are robust.

The factorial inclusion of FAPAR and atmospheric CO250

as a constraint clearly demonstrated that the two data streams
can be simultaneously integrated with the MPI-CCDAS. We

have shown the potential of multiple-data-stream assimila-
tion by adding TIP-FAPAR as a constraint and have shown
how this data stream helps constraining the foliar area with- 55

out degrading the ability of the model to capture seasonal
and yearly dynamics of the atmospheric CO2 mole fractions.
However, the multi-data assimilation also pointed to model
structural problems in the initialisation, which need to be ad-
dressed. Nevertheless, our study highlights the potential of 60

adding new data streams to constrain different processes in a
global ecosystem model.

This study thus provides an important step forward in the
development of global atmospheric inversion schemes,. by
aAdding a process-based component, belonging to a coupled 65

carbon-cycle climate model, allows to disentangle the drivers
of the terrestrial carbon balance. andIt also gives the oppor-
tunity to apply multiple data streams to constrain them these
drivers. in the framework of a land surface model belonging
to a coupled carbon-cycle climate model. On the one hand 70

improving the assimilation system and on the other hand
adding more data streams can ultimately lead to regionally
constrained estimates of the terrestrial carbon balance for the
assessment of current and future trends.

Code availability 75

The JSBACH model code is available upon request to S. Za-
ehle (soenke.zaehle@bgc-jena.mpg.de)

The TM3 model code is available upon request to to C.
Rödenbeck (christian.roedenbeck@bgc-jena.mpg.de)

The TAF generated derivative code is subject to license 80

restrictions and not available.

Appendix A: Model description of JSBACH

A1 The phenology module

A2 Phenology-module 85

In the revised MPI-CCDAS phenology scheme (Knorr et al.,
2010), each plant functional type is assigned to a spe-
cific phenotype, implying limitations on phenology by water
(tropical and raingreen PFTs), water and temperature (herba-
ceous PFTs) and temperature and daylight (extra-tropical 90

tree PFTs; see Table 1). The evolution of the leaf area index
Λ (LAI) on a daily time-step ∆t is described as

Λ(t+ ∆t) = Λlim− [Λlim−Λ(t)]e−r∆t (A1)

with the inverse time scale r, which is defined as:

r = ξf + (1− f)/τl (A2) 95

The parameter ξ describes the rate of initial leaf growth, and
the parameter τl describes how quickly leafs are shed. f spec-
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ifies the stage of the vegetation being fully active at f = 1 or
fully dormant at f = 0 (see Eq. A4). Λlim is defined as:

Λlim = ξΛmaxf/r (A3)

where the parameter Λmax is the maximum allowed LAI.
The scheme accounts for grid-cell naturally occuring het-5

erogeneity within the area of a model grid-cell by smoothly
varying the vegetation’s state f between the two extremes.
The transition is controlled either by the length of the day
td or a smoothly temporally averaged temperature Tm with
exponentially decaying weights for older periods with a a10

“memory”- time scale of 30 days (for details see Knorr et al.
(2010)).

f = Φ

(
Tm−Tφ
Tr

)
Φ

(
td− tc
tr

)
(A4)

with the temperature control parameters Tφ, Tr and day-
length control parameters tc and tr and the cumulative nor-15

mal distribution Φ (with mean Tm resp. td and standard de-
viation Tr resp. tr) .

Water limitation is incorporated by calculating a water-
limited maximum leaf area index ΛW that cannot be ex-
ceeded by the actual LAI:20

ΛW =
WΛlast

EpotτW
(A5)

with a water limitation time scale τW . The potential evapo-
ration Epot, the relative root-zone moisture W and the LAI
Λlast are taken from the previous day averages. ΛW is also
applied with a memory time-scale of 30 days, itself is a tem-25

porally averaged LAI with exponentially decaying weigths
of 30 day time-scale, similar to temperature and day length
above.

A3 Photosynthesis

Photosynthesis in JSBACH follows Farquhar et al. (1980) for30

C3-plants and Collatz et al. (1992) for C4- plants, with de-
tails as described in Knorr and Heimann (2001) and Knorr
(1997). Net leaf CO2 uptake is the minimum of a carboxyla-
tion limited photosynthesis rate JC and of electron transport
limited rate JE minus dark respiration Rd:35

A= min(JC ,JE)−Rd (A6)

The carboxylation limited rate is calculated as:

JC = Vm
Ci−Γ?

Ci +KC(1 +Ox/KO)
(A7)

with the leaf internal CO2-Concentration Ci, the oxygen
concentration Ox (0.21 mol/mol) and the CO2 compensa-40

tion point (without dark respiration) Γ? = 1.7µmol/mol◦C ·
T which depends on temperature T (in ◦C). KC and KO are
the Michealis-Menten constants for CO2 and O2 and Vm is

the maximum carboxylation rate. The latter three all depend
on the canopy temperature Tc (in K) in the form (exemplified 45

for by Vm):

Vm = V cmax · exp(
EV T0

T1RgTc
) (A8)

with activation energy EV = 58520 Jmol−1 ,and gas con-
stant Rg = 8.314 JK−1mol−1. T1 = 298.16 ◦C is a refer-
ence temperature and T0 = Tc−T1 the difference to this ref- 50

erence. V cmax is the maximal carboxylation rate at 25 ◦C
and is given in Table D1. Temperature dependence of KC

andKO are calculated with a similar approach with reference
values at 25 ◦C for KC0 = 460 · 10−6 mol/mol and KO0 =
330 · 10−3 mol/mol and activation energies of EC = 59356 55

Jmol−1 and EO = 35948 Jmol−1, respectively.
The electron transport limited rate, JE , is calculated as

JE = J
Ci−Γ?

4(Ci− 2Γ?)
(A9)

with the photon capture efficiency α= 0.28
mol(electrons)/mol(photons), the absorption rate of 60

photosynthetically active radiation I , and with

J =
αIJm√
J2
m +α2I2

. (A10)

and the photon capture efficiency α= 0.28
mol(electrons)/mol(photons), the absorption rate of
photosynthetically active radiation I , and the limiting rate 65

constant Jm with a temperature dependence: The limiting
rate constant Jm depends on the temperature with a maxi-
mum rate of electron transport Jmax at 25 ◦C (Table D1):

Jm = Jmax ·T/25◦C (A11) 70

Jmax is the maximum rate of electron transport at 25 ◦C
(Table D1).

Photosynthesis for C4-plants follows Collatz et al. (1992)
and is the minimum among the three limiting rates Je = Vm,
Jc = kCi and Ji = αiI with the quantum efficiency αi = 75

0.04 and k:

k = Jmax · 103 exp(
EKT0

T1RgTc
) (A12)

with EK = 50967 Jmol−1.
Dark respiration is modelled depending on V cmax accord-

ing to 80

Rd = frC3|C4V cmax · exp(
ERT0

T1RgTc
) (A13)

with activation energy ER = 45000 Jmol−1, and frC3|C4 =
0.011|0.031 for C3 and C4 plants, respectively. Dark respi-
ration is reduced to 50% of its value during light conditions
(Brooks and Farquhar, 1985). 85
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Photosynthesis and dark respiration are inhibited above
55◦C. Calculations are performed per PFT and three distinct
canopy layers, which vary in depth according to the current
leaf area index, assuming that within the canopy nitrogen,
and thus V cmax, Jmax, and Rd decline proportionally with5

light levels in the canopy. GPP - values per PFT values are in-
tegrated to grid-cell averages according to the cover fractions
of each PFT within each grid-cell.

A4 Carbon-water coupling

JSBACH employs a two-step approach to couple the plant10

carbon and water fluxes (Knauer et al., 2015). Given a
photosynthetic-pathway dependent specific maximal internal
leaf CO2 concentration (Ci), a maximal estimate of stomatal
conductance (gspot) is derived for each canopy layer, which
is then reduced by a water-stress factor (ws) to arrive at the15

actual stomatal conductance (gsact) (see Knorr, 1997, 2000,
and references therein).

gsact = ws · gspot = ws · 1.6 ·
A

Ca−Ci
(A14)

where Ca and Ci are the external and internal leaf CO2

concentrations. The water-stress factor ws is defined as20

ws = min(
Wroot−Wwilt

Wcrit−Wwilt
,1) (A15)

where Wroot is the actual soil-moisture in the root zone,
and Wcrit|wilt define the soil moisture levels at which stom-
ata begin to close, or reach full closure, respectively. Soil
moisture and bare soil evaporation are calculated according25

to the multi-layer soil water scheme of Hagemann and Stacke
(2014).

Given the water-stressed stomatal conductance, leaf in-
ternal CO2 concentration and carbon assimilation are then
recalculated for each canopy layer by solving simultane-30

ously the diffusion equation (Eq. A14) and the photosynthe-
sis equations as outlined above (Sec. A3)

A5 Land carbon pools, respiration and turnover

The vegetation’s net primary production (NPP) is related to
the net assimilation (A) as35

NPP =A−Rm−Rg (A16)

where Rg is the growth respiration, which is assumed to be
a fixed fraction (20%) of A−Rm. Rm is the maintenance
respiration, which is assumed to be coordinated with foliar
photosynthetic activity, and thus scaled to leaf dark respira-40

tion via faut_leaf (Knorr, 2000)

Rm =
Rd

faut_leaf
(A17)

with the dark respiration Rd as given in Eq. A13. As a con-
sequence, an increase in f_aut_leaf leads to an increase in
NPP. 45

NPP is allocated to either a green or woody pool given
fixed, PFT-specific allocation constants. The green pool turns
over to litter according to the leaf phenology, whereas the
woody turnover rate is prescribed as a fixed constant.

JSBACH considers three litter pools (above ground green, 50

below ground green and woody) with distinct, PFT-specific
turnover times, as well as a soil organic matter pool with a
longer turnover time. Heterotrophic respiration for each of
these pools responds to temperature according to a Q10 for-
mulation: 55

Rpool = αrespQ
(T−Tref )/10
10 /τpool ·Cpool (A18)

with a soil-moisture dependent factor 0<= αresp <= 1.
Cpool is either the slow soil carbon pool, above or below
ground green litter or wood litter pool and T is tempera-
ture and Tref = 0◦C the reference temperature and a pool 60

depended turnover rate τpool (more details on the carbon bal-
ance sub-module can be found in Goll et al., 2012).

Appendix B: CO2 station list

The stations of atmospheric CO2-observations used for as-
similation and evaluation are given in Table B1 resp. Table 65

B2.

Appendix C: Mapping variants

For performance reasons, the assimilation is not performed
in the physical parameter space but parameters p are trans-
formed to x expressed in multiples of the prior uncertainty, 70

the intrinsic units of the problem (Kaminski et al., 1999). The
most basic mapping is:

x=
p− p0

σprior
⇔ p= p0 +xσprior (C1)

An extension of this is to apply lower bounds in the mapping
back to physical space with 75

p= pmin +xlow/xσprior

only if

x < xlow =
pmin +σprior − p0

σprior

(C2)

with pmin the minimum allowed parameter value.

Appendix D: Parameter values

Some parameters were modified with a factor within the
MPI-CCDAS, because model structure did not allow to di- 80
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Table B1. CO2 stations used in the assimilation together with their
median uncertainty.

ID Longitude Latitude Median Uncertainty

MNM 153.97 24.30 1.4
SBL -60.02 43.93 5.9
ALT -62.52 82.45 1.8
ASC -14.42 -7.92 1.1
AZR -27.19 38.76 1.9
BHD 174.90 -41.40 1.0
CHR -157.17 1.70 1.0
CRZ 51.85 -46.45 1.0
EIC -109.45 -27.15 1.1
ESP -126.83 49.56 2.9
GMI 144.78 13.43 1.2
HBA -26.65 -75.58 1.0
ICE -20.21 63.30 1.9
KER -177.15 -29.03 1.0
KUM -154.82 19.52 1.6
MHD -9.90 53.33 2.4
MID -177.37 28.22 1.7
MQA 158.97 -54.48 1.0
RPB -59.43 13.17 1.1
SEY 55.17 -4.67 1.0
SHM 174.10 52.72 2.1
SIS -1.23 60.23 3.1

STM 2.00 66.00 3.2
TDF -68.48 -54.87 1.0
ZEP 11.88 78.90 2.3
MLO -155.58 19.53 1.1
SMO -170.57 -14.25 1.0
SPO -24.80 -89.98 1.0

rectly change these values and thus such an approach was
required. The parameter values are listed in Table D1.

Appendix E: PFT-distribution

The vegetation distribution of the PFT’s as prescribed in the
MPI-CCDAS is given in Fig. E1.5

Table B2. CO2 stations used for evaluation that have not been used
as constraints for the assimilation.

ID Longitude Latitude

PAL 24.12 67.97
PRS 7.70 45.93
RYO 141.83 39.03
YON 123.02 24.47
CBA -162.72 55.20
CFA 147.06 -19.28
CGO 144.70 -40.68
COI 145.50 43.15
CYA 110.52 -66.28
HAT 123.80 24.05
IZO -16.48 28.30
KEY -80.20 25.67
LEF -90.27 45.93
LJO -117.25 32.87
LMP 12.61 35.51
MAA 62.87 -67.62
NWR -105.60 40.05
PSA -64.00 -64.92
SUM -38.47 72.57
TAP 126.13 36.73
UTA -113.72 39.90
UUM 111.10 44.45
WIS 34.88 31.13
WLG 100.91 36.28
BRW -156.60 71.32
SYO 39.58 -69.00
CMN 10.70 44.18
SCH 7.92 47.92
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Table D1. Values of those parameters that have been changed with a multiplicative factor during the assimilation.

PFT TrBE TrBD ETD CE CD RS TeH TeCr TrH TrCr

Prior Λmax [m2/m2] 7.0 7.0 5.0 1.7 5.0 2.0 3.0 4.0 3.0 4.0
Joint Λmax [m2/m2] 6.9 4.1 4.9 1.7 3.2 2.7 1.9 2.5 1.6 2.1

Prior V cmax [µmol/m2s] 39.0 31.0 66.0 62.5 39.1 61.7 78.2 100.7 8.0 39.0
Joint V cmax [µmol/m2s] 29.2 33.3 65.1 59.2 40.6 62.1 75.4 67.9 8.3 34.1

Prior Jmax [µmol/m2s] 74.1 58.9 125.4 118.8 74.3 117.2 148.6 191.3 140.0 700.0
Joint Jmax [µmol/m2s] 55.5 63.3 123.7 112.5 77.2 117.9 143.2 129.0 145.0 611.2

TrBE TrBD

ETD CE

CD RS

TeH TeCr

TrH TrCr

0.0 0.2 0.4 0.6 0.8 1.0

Figure E1. Fractional vegetation coverage of the PFT’s as prescribed in the MPI-CCDAS. See Table 1 for abbreviations.
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