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Abstract

To explore the intrinsic spatial patterns of N,O emissions in agricultural systems, not
only should the spatial and temporal variability in N,O emissions be analyzed sep-
arately, but the joint spatio-temporal variability should also be explored by applying
spatio-temporal semivariogram models and interpolation methods. In this study, we ex-
amined the spatio-temporal variability in N,O emissions from a tea-planted soil from
28 April 2014 to 27 May 2014 using 96 static mini chambers in an approximately
regular grid on a 40 m? tea field (sampling 30 times), and the results were com-
pared with long-term observations of the N,O emissions recorded using large static
chambers (sampling 5 times). The N,O fluxes observed by the mini chambers dur-
ing a 30 min snapshot (10:00-10:30 a.m. China Standard Time) ranged from —-2.99 to
487.0mgN m=2d~" and were positively skewed with a median of 13.6 mgN m=2d~".
The N,O flux data were then log-transformed for normality. After detrending the in-
fluences from the chamber placement positions (Position) and the precipitation ac-
cumulated over two days (Rain2), the log-transformed N,O fluxes (FLUX30t) exhibited
strong spatial, temporal and joint spatio-temporal autocorrelations, which were used as
three components of spatio-temporal semivariogram models and were characterized
by models based on Stein’s parameterized Matérn (Ste) function, exponential function
and again the Ste function, respectively. The spatio-temporal experimental semivari-
ogram of the N,O fluxes was fitted using four spatio-temporal semivariogram models
(separable, product-sum, metric and sum-metric). The sum-metric model performed
the best and provided meaningful effective ranges of spatial and temporal dependence,
i.e.,, 0.41m and 5.4 days, respectively. Four spatio-temporal regression-kriging inter-
polations were applied to estimate the spatio-temporal distribution of N,O emissions
over the study area. The cross-validation results indicated that the four interpolations
exhibited similar performances (r = 0.817-0.824, RMSE = 0.456-0.486, p < 0.001),
and outperformed the multiple linear regression prediction (r = 0.735, RMSE = 0.560,
p < 0.001). The predictions of the four kriging interpolations for the total N,O emissions
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from the 40 m? tea field ranged from 18.3 to 18.5 g N; these values were approximately
25 % higher than the results predicted using the observations of large static cham-
bers. Furthermore, compared with the other three models, the metric model exhibited
weak sensitivity for peak prediction, although the cross-validation results indicated that
they had same prediction capabilities. Our findings suggested: (i) that the size of large
static chambers used for long-term observations of N,O fluxes should be no less than
0.4 m and the time interval for gas sampling should be constrained to approximately 5
days; and (ii) that more efficient testing methods should be adopted to replace the con-
ventional cross-validation methods for evaluating the performance of spatio-temporal
kriging.

1 Introduction

Each year, 2.8 (1.7-4.8) Tg of nitrous oxide (N,O) is emitted from agro-ecosystems,
significantly contributing to global warming (Ravishankara et al., 2009; IPCC, 2013).
Accurate estimates of the amount and characteristics of N,O emissions are impor-
tant prerequisites for reducing N,O emissions from agro-ecosystems (Akiyama et al.,
2013; Ambuset al., 1994; Han et al., 2013; Kiese et al., 2003; Konda et al., 2008,
2010; Lin and Han, 2009; Mosier et al., 1996, 1998; Turner et al., 2008). However,
N,O is microbially mediated; it is produced via microbial processes of nitrification un-
der aerobic conditions and denitrification under anaerobic conditions (Firestone and
Davidson, 1989; Hayatsu, 1993; Mathieu et al., 2006; Venterea and Rolston, 2000;
Wrage et al., 2004; Yanai et al., 2003), and thus, its emissions from soils are strongly
affected by certain spatio-temporally variable environmental factors, such as climate,
vegetation type, atmospheric deposition, terrain, land management practices, and soil
properties (Tokuda and Hayatsu, 2004). Consequently, in agricultural systems, N,O
emissions possess inherent purely spatial, purely temporal and joint spatio-temporal
heterogeneities, which have not been sufficiently thoroughly researched because of
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both the inherent complexities of N,O emissions and our own epistemic defects (Li
et al., 2013).

The importance of simultaneously studying the spatial and temporal aspects of N,O
emission processes is well-known (Gorres et al., 1998; Van Kessel et al., 1993; Velthof
et al., 1996). To obtain complete information regarding N,O emissions from soils, clas-
sical continuous temporal observations using static box methods and micro meteoro-
logical methods (Davidson et al., 1993, 2000), as well as purely spatial-structure-based
research (Ball et al., 1997; Clemens et al., 1999; Réver et al., 1999; Folorunso et al.,
1984; Li et al., 2013) have been applied in recent decades and have yielded significant
results. However, these studies failed to provide a sufficient description of the process
of the evolution of N,O emissions over space and time (Fu et al., 2015). One reason
for this failure is that the structural analysis of such spatio-temporal processes is more
difficult than that of purely spatial or temporal processes because of the different scales
and causality principles that are relevant to the space and time domains (Hengl et al.,
2011). In addition to the inherent complexity (ontological factors) of N,O emissions,
e.g., spatio-temporal heterogeneity, our own epistemic defects, which can be primarily
attributed to incomplete information, are another important factor that may impact the
accuracy of estimates of the total amount of N,O emissions (Huang et al., 2007).

Traditionally, geostatistical interpolation methods are considered to be state-of-
the-art statistical approaches to spatial analysis (Cressie and Wikle, 2011; Kilibarda
et al., 2014). The principle goals in geostatistical analysis are to estimate and model
the correlations of a spatial process (Goovaerts, 1997; Webster, 1985; Webster and
Oliver, 2001). Thus, geostatistics provides several statistical tools to address static
spatial variables, including exploring and modeling spatial structures, predicting the
unsampled locations and assessing their uncertainties (Webster and Oliver, 2001).
In recent years, geostatistical methods for the analysis of spatio-temporal data have
garnered considerable interest in many areas of application, but such methods are
less well developed than those for the analysis of purely spatial or purely temporal
data, partly because of the lack of suitable covariance models, which must satisfy the
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positive definiteness constraint (Hengl et al., 2012; Ma, 2003a). As mentioned above,
a purely spatial interpolation approach, which ignores temporal dependencies, can be
regarded as a spatio-temporal interpolation in which all temporal correlations are set
to zero (Ma, 2004). Therefore, conversional geostatistics needs to be extended with
methods of estimating and quantifying spatio-temporal variations and applying them in
spatio-temporal interpolations and stochastic simulations (Heuvelink et al., 2010).

In recent decades, several spatio-temporal semivariogram models have been con-
structed to address and analyze the spatio-temporal autocorrelation of variables that
vary in both time and space (De laco et al., 2011, 2013, De laco and Posa, 2013;
Huang et al., 2007; Kolovos et al., 2004; Ma, 2003a, b, 2004; Xu and Shu, 2014),
such as soil water content (Snepvangers et al., 2003), surface water quality (Kolovos
et al., 2004), the spread of diseases (Gething et al., 2007), terrestrial daily temperature
(Hengl et al., 2012; Kilibarda et al., 2014), soil heavy metals (Yang et al., 2015) and
PM,, (Gréaler et al., 2015). In summary, there are two types of spatio-temporal semivar-
iogram models: separable and non-separable (Hengl et al., 2012). The main difference
between them is the different structures of the spatio-temporal covariance functions. In
the separable context, several geometrically anisotropic models and several separable
covariance structures that yield the product or sum of a purely spatial and a purely tem-
poral covariance have been proposed (Dimitrakopoulos and Lou, 1994). This approach
allows efficient estimation and inference, but separable models suffered from unrealis-
tic assumptions and properties, e.g., the spatio-temporal process is considered to be
temporally independent (Heuvelink and Griffith, 2010; Sampson and Guttorp, 1992).
Therefore, many non-separable spatio-temporal covariance structures that can handle
zonal and/or geometric anisotropies and negative covariances have been proposed
(Gréaler et al., 2015; Heuvelink and Griffith, 2010; Mateu et al., 2008), e.g., the sum-
metric model.

Although many different classes of space—time covariance functions are now avail-
able, the selection of an appropriate class of models for a particular variable remains
difficult (Fuentes, 2006). In practical modeling, the researcher must face the impor-
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tant decision of which spatio-temporal model is the best for fitting his or her empirical
data. In the literatures, there are few published papers that present the comparisons
of the performance of various spatio-temporal models (Huang et al., 2007). The selec-
tion of an appropriate spatio-temporal model might be achieved based on its geomet-
ric features and theoretical properties, i.e., by accounting for the tradeoff among the
goodness-of-fit, model complexity and prediction accuracy (Huang et al., 2007). In this
study, one of the goals is to compare the spatio-temporal prediction preference among
four representative semivariogram models.

The estimation process of kriging for spatio-temporal interpolation does not fun-
damentally differ, in a mathematical or statistical sense, from those of spatial kriging
(Heuvelink et al., 2012). Several geostatistical methods, including simple kriging (SK),
ordinary kriging (OK), regression kriging (RK) and cokriging (CK), can be used to pre-
dict the N,O fluxes at the unsampled locations (Goovaerts, 1997; Hengl et al., 2004;
Odeh et al., 1995; Webster and Oliver, 2001). In purely spatial interpolation, OK uses
theoretical semivariogram models to interpolate the spatial distributions and uncer-
tainty. As more sophisticated kriging technologies, RK and CK methods generally out-
perform OK and are widely used to predict the spatial distributions of many soil proper-
ties (McBratney et al., 2000). Other related auxiliary variables and multiple regressions,
such as linear regressions, generalized linear models, generalized added models and
regression tree models, are included in the RK and CK methods (Hengl et al., 2004).
Compared with CK, spatio-temporal RK has achieved several breakthroughs in spatio-
temporal interpolation over the past decade with regard to theoretical concepts and
various real-world applications (Hengl et al., 2012).

Many researchers have demonstrated that tea planted soils are important sources of
N,O emissions because of their high levels of N fertilizer application and optimal con-
ditions for N,O emitting microbe activity (e.g., low soil pH, high temperature and ample
moisture). For example, Fu et al. (2010, 2012) found that the annual dynamics of N,O
emissions from a tea field with a nitrogen fertilizer application rate of 450 kg N ha™’ yr‘1
fertilizer application was approximately 17.2kgN ha™’ yr‘1 in 2010. Hirono and Non-
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aka (2012) found that the total N,O emissions from a tea field with 520 kg N ha™’ yr‘1

fertilizer applications were 10.6 and 14.8 kg N ha™" yr‘1 in 2008 and 2009, respectively.
Li et al. (2013) and Fu et al. (2015) investigated the spatial structures of N,O fluxes
from tea-planted soils during the dry and wet seasons, respectively, and found that
the spatial distributions of the N,O fluxes were primarily associated with field eleva-
tion (r = —-0.42, p < 0.001) in the dry season, and with soil ammonium-N (NH,4N), soil
nitrate-N (NO3N) and soil organic carbon (SOC) (r = 0.57-0.71, p < 0.001) in the wet
season. To the best of our knowledge, no researchers have yet attempted to address
and interpolate the daily values of N,O emissions from tea-planted soils using spatio-
temporal regression-kriging at a high resolution. Obviously, investigations of this addi-
tional source of information have the potential to improve the mapping and estimation
of N,O emissions.

This study was conducted to further explore the spatio-temporal structures of N,O
emissions from tea-planted soils. The objectives of this study were (i) to evaluate the
spatio-temporal variability of N,O emissions from tea-planted soils in subtropical cen-
tral China, (ii) to compare the prediction performances among four spatio-temporal
variogram models, i.e., the separable, product-sum, metric and sum-metric model; and
(iii) to assess the accuracy of the traditional in situ static chamber observation methods
by comparison with spatio-temporal regression interpolation.

2 Materials and Methods
2.1 Site description

The field experiment was conducted in a small tea field (40 m2) in Jinjing, Changsha, in
Hunan Province, China (28°32'50" N, 113°19'58" E; elevation 100 m) (Fig. 1). The re-
gion has a subtropical monsoon climate, with a mean annual air temperature of 17.5°C
and a mean annual precipitation of 1400 mm (from 1979 to 2014). On average, 70 %
of the annual precipitation occurs in April, May and June. The daily air temperature
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and precipitation for 2014 were recorded by an automatic weather station (Intelimet A,
IMET-ADV2, Dynamax, USA) located next to the studied tea field (Fig. 2). The soil of the
field was a Haplic Alisol (FAO/UNESCO soil taxonomy) that was derived from a granitic
parental material. Tea (Camellia sinensis L., cv. Baihaozao) was contour-planted in the
catchment 10 years ago using an inter-row spacing of 0.5m. The N average fertilizer
application rates in the tea field was 450 kg N ha™" yr'1 , separated into two treatments:
one single fertilization treatment of 300 kg N ha™’ yr_1 with urea during March or April
and one treatment of 150 kg N ha™' yr'1 with oilseed residues, banded 10—15 cm below
the soil surface at the fertilization point (Fu et al., 2012). The SOC, total soil nitrogen
and total soil phosphorous contents of the topsoil (0-20cm) were 11.10, 0.86 and
0.37g kg‘1 , respectively.

2.2 Design of the field experiment
2.2.1 Spatio-temporal gas sampling and measurements

In the 40 m? tea-planted field, 3 centerlines of tea tree rows were recorded using a lo-
cally calibrated differential Geographic Positioning System (DGPS) receiver (Sanding
Southern Survey Co., China), and were then used to generate the land use data (at
a spatial resolution of 0.1 m, respectively, as shown in Fig. 1c and d). The land use
data show the four positions at which the mini chambers were placed, including the
inter-row position (8.20 m?), fertilization point (3.60 m?), under the tea tree (3.60 m?)
and in the tea tree row (24.6 m2), as described by Li. et al. (2013). Overall, 96 sampling
points were determined, and the Euclidean distances between each point and its near-
est neighbors ranged from 0.15 to 0.27m. The x-y coordinates and the information
about gas sampling positions (inter-row position, fertilization point, under the tea tree
and in the tea tree row along the tea row transects) were recorded.

Gas samples were collected at each grid point using a closed mini chamber tech-
nique. Each mini chamber set was composed of PVC and had two parts (base and
chamber). The base was 0.15m in diameter and 0.05 m high. The chamber was 0.15m
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in diameter and 0.15 m high. For the field operations, the base was gently inserted ver-
tically into the soil two days (26 April 2014) before gas sampling, and the chamber was
clipped onto the base, with sponge seals in between to prevent gas leakage, before gas
sampling on each day from 28 April to 27 May 2014. Therefore, the effective volume of
the static chambers equaled 0.002651 m>. The gas samples were collected from the
headspace between 10:00 and 10:30 a.m. To ensure simultaneous sampling, 4 persons
skilled in gas sampling assisted in the field sampling. Each person was responsible for
24 sampling positions (Fig. 1) and began sampling at the same time of 10:00a.m. At
each point, three gas sample replicates were collected from the headspace into pre-
evacuated 12 mL vials (Exetainers, Labco, UK) at 0 and 30 min after the chamber body
was clipped onto the base. The N,O concentrations of the gas samples were analyzed
using a gas chromatograph (Agilent 7890A, Agilent, USA) that was fitted with a ®3N-
electron capture detector and an automatic sample injector system.

2.2.2 Long-term observations

Beginning on 1 January 2010, four static opaque chambers were set at approximately
10m intervals near the spatio-temporal sampling points (Fig. 1), to observe the dy-
namic variations in the N,O fluxes under conventional tea-field management practice
(Fu et al., 2012).

Unlike in the mini chamber technique used for spatio-temporal gas sampling, in each
long-term experimental plot, a chamber base collar made of stainless steel that was
0.80m in width and length and 0.20 m in height was permanently inserted into the
soil. The large static chamber was 0.80m in width and length and had a height of
1.20m. The gas sampling was carried out between 09:00 and 10:00 a.m. local time at
approximately one-week intervals from 1 January 2010 to the present. Each time, to
measure the N,O flux, five gas samples were withdrawn at a interval of 10 min using
60 mL gas-tight plastic syringes after the chamber was inserted into the base collar,
which was filled with liquid water as a seal (Chen et al., 2015; Fu et al., 2012). From 28
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April 2014 to 27 May 2014, all 5 gas samples collected from the large static chambers
on each date were available.

2.3 Data analyses

Descriptive statistical and geostatistical analyses were performed using R (R Devel-
opment Core Team, 2014) with the spacetime (Pebesma, 2012) and gstat packages
(DGUU, 2010). Before the spatio-temporal geostatistical analysis was performed, the
spatial and temporal semivariograms were calculated and the theoretical semivari-
ogram models were fit.

2.3.1 N>O fluxes

The N, O fluxes (FLUX30, gN m~2 d‘1) in this study were calculated based on the equa-
tion described by Li et al. (2013).

My,o h T 1 2-M
FLUX30 = (Cp — Cg) - —— - — + ———. Qi
(630 = Co) Vo At To+Ty 1000 My o

24 (1)

where c3; and ¢, are the N,O concentrations in the mini chamber’s headspace at 0
and 30 min, respectively, after the lid of the mini chamber was closed (ppmv); My, is
the molecular weight of N,O (g mol_1); V, is the molecular volume (22.4 x 1073 m3) of
N,O under standard conditions (T, = 273 K and pressure = 1013 hPa); My is the atomic
weight of nitrogen (g mol_1); h is the chamber height (0.18 m); At is the incubation pe-
riod (0.5 h); T, is the air temperature inside the mini chamber (°C); and 24 represents
the conversion factor for converting hours to days.
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2.3.2 Spatio-temporal regression kriging

The N,O fluxes were assumed to consist of the overall trend and a spatio-temporal
residual:

z(s,t)=m(s,t) +v(s,t) (2)

where s and t are the space—time coordinates; z is the finite set of observed N,O
flux data points; m is the trend representing the deterministic part of the variation,
which can be empirically explained using a linear function of auxiliary variables; and
v is a zero-mean stochastic residual, which may exhibit spatio-temporal dependencies
from which a variogram can be calculated. The residuals at the observation locations
can be interpolated via kriging.

In general, the trend m is represented by a function of known covariables over the
spatio-temporal domain; for example, elevation, soil ammonium content (NH,N) and
soil nitrate content (NO3N) have all been used to explain a portion of the variation in
the N,O flux (Fu et al., 2015; Li et al., 2013). The linear trend model is given by the
following equation:

M(s,t) = D Bif;(s,t)+Bo (3)

i=1

where the G; are the regression coefficients; 3, is the intercept of the linear model; the
f;(s,t) are the covariables over the spatio-temporal domain, which must be fully known
(Heuvelink and Giriffith, 2010); and n is the number of covariables.

However, this trend cannot explain all of the variation in the flux, although the co-
variables are spatially, temporally and spatio-temporally varying (Hengl et al., 2012;
Heuvelink and Griffith, 2010). Thus, the residual of v (s,t) is assumed to be a second-
order stationary spatio-temporal random field. In other words, the variance of v is con-
stant, and the covariance of v at points (s,t) and (s + h, t + v) depends only on the
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distances h and u, where h is the Euclidean spatial distance and v is the temporal
interval, e.g., in hours, days or months. The following formulas are the covariance and
the variogram, respectively:

Cs t(s,h)=Cov[Z(s+h,t +u),Z(s,h)] (4)

Vol = o220 2 2 (5P 5)

Because the space and time domains are associated with different scales and causal-
ity principles, their corresponding procedures for semivariance estimation and variable
value prediction are inherently different (Hengl et al., 2012). In practice, several simpli-
fying statistical assumptions and constraints can be introduced to fit the spatio-temporal
semivariogram, allowing its coefficients to be estimated and ensuring its positive def-
initeness (Hengl et al., 2012; Huang et al., 2007). In essence, there are two main
types of approaches: separable and non-separable. Separable models are composed
of purely spatial and purely temporal semivariogram models, and it is assumed that
the spatial and temporal processes are uncorrelated (Huang et al., 2007). Conversely,
non-separable models assume that there is a correlation between the spatial and tem-
poral processes, and these models include purely spatial, purely temporal, and/or joint
spatio-temporal semivariogram models (Kolovos et al., 2004). In this study, the sep-
arable, product-sum, metric and sum-metric models were used to explore the spatio-
temporal structures of N,O fluxes in a tea field. These models are described as follows
(Gréler et al., 2015):

Separable model

A separable covariance function is assumed to satisfy:

Cs t(h,u) = Cs(h)-Cy(u) (6)
Its variogram is given as follows:

Vsep(h,u) = sill- I_?s(h) + ?t(u) - Vs(h) Vt(u)] (7)
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In addition, it is assumed that the sill of the pure spatial and temporal semivariogram is
equal to 1. Therefore, 5 parameters (spatial range, spatial partial sill, temporal range,
temporal partial range and spatio-temporal sill) must be optimized during the fitting
process. The simple structure of the separable model facilitates efficient estimation
and inference, but the assumption of separability is highly restrictive and often requires
unrealistic assumptions (Hengl et al., 2012; Heuvelink and Griffith, 2010).

Product-sum model

The product-sum covariance is assumed to satisfy:

Cps (h,u) = Cs (M) + Cy(U) + k- Cs (h) - Cy (u) (8)

Yos (1) = <k~sillyt(u) + 1) Yo (h) + <k~sillys(h) + 1) v, () - kv, (B) - (u) 9)
_ Psilly, * Ps”'vt(u). = Silly h.u) 10)

psilly, ) - psilly, )

where k > 0 ensures the positive definite condition (De laco et al., 2011).

Metric model

Cm(h,u)zcjoint< h2+(K'U)2) (11)

Ym(h,u) = Yjoint ( h? + (K'u)2> (12)

In the metric model, the temporal domain is simply rescaled to match the spatial domain
through the application of a spatio-temporal anisotropy correction k, which projects
a three-dimensional geographic space into a two-dimensional spatio-temporal space.
Compared with the sum-metric model, the metric model ignores the zonal anisotropies
of the experimental variogram.
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Sum-metric model
Cam (h,) = C (h) + Cy () + Cpom ( H + (k- u)z) (13)

Vsm(hsu)=Vs(h)+yt(u)+yjoint< /72+(K-U)2) (14)

where Cg,,(h,u) is the covariance at a distance / in space and a distance v in time;
Cs(h)+C(u) allows for the presence of zonal anisotropies (different semivariogram sills

in different directions); and Cjoim(\/h2 + (k - u)?) allows for the presence of a geometric
anisotropy, represented by the ratio x. The sum-metric model is treated as a sum of
independent stationary spatial, temporal and spatio-temporal components (Heuvelink
and Giriffith, 2010). The y¢,,(h, u) term contain ten parameters, including three sets of
nuggets, sills and ranges for the spatial, temporal and spatio-temporal semivariogram
models as well as the anisotropy ratio «.

The four spatio-temporal semivariogram models were fitted by applying the L-BFGS-
B parameter optimization algorithm (Gréaler et al., 2015). A prerequisite for fitting spatio-
temporal models is to find the best overall semivariogram surface. Thus, the parame-
ters and structures of the purely spatial, purely temporal and joint components of the
above spatio-temporal covariance and semivariogram models are not necessarily the
same (Gréler et al., 2015). These semivariances can be calculated for any spatio-
temporal distance (h, u) once these parameters have been estimated from the ob-
served residuals. The four spatio-temporal semivariogram models were used to predict
the spatio-temporal distribution of the N,O emissions from the tea-planted soils investi-
gated in this study. The prediction formula for spatio-temporal kriging is similar to those
for spatial kriging as follows:

0 =X(So,t0) - B+V'V - [V (s,1;) - X- B (15)

where x(sy,ty) is the vector of the predictors at the prediction points; B is the vec-
tor of regression coefficients estimated using the generalized least-squares method
14
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(Heuvelink and Giriffith, 2010), v'V~" is the vector of weight values for simple kriging,
v is the vector of the observations v (s;, t;), and X is the design matrix of the predictor
variables at the observation points.
The final prediction for variable Z at location (s;, ¢;) is defined as:

2(spt)) =m(s;t;) +0 (16)
where m(s;,t;) is the trend estimated in the multiple linear regression analysis. In this
study, the N,O flux data were log-transformed for normality. It was therefore neces-
sary to back-transform the predictions and the kriging standard deviations of the N,O
fluxes to the original data scale. To satisfying the best linear unbiased estimator prin-
ciple, trans-Gaussian kriging algorithms adopted from Cressie (1993) were used to
back-transform the predicted N,O fluxes and to compute the kriging standard deviation
(Denby et al., 2008; Gréler et al., 2012).

8 (sint)”

A (17)

Z(s/’tj) = eXp ZA(SI',tj) +

o(s;t;) = V{exp [a“ (s,-,z‘/-)z] —1}-exp [2-2“(3,-,2‘/-) +6(s,~,t/-)2] (18)
Where 6(s;, ;) is the kriging standard deviation at log-transformed data scale.

2.3.3 Accuracy assessment

The quality of all methods was assessed using statistical measures. For example, the
root mean square error (RMSE) and the Pearson’s correlation coefficient (r) between
the predictions and measurements at known locations were calculated using leave-
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one-out cross-validation.

1 n
T 2

i=1 j=1

m

RMSE = (19)

~2(su))]°

z“ s,,z‘

where Z (s;,t;) -z (s;,t;) is the difference between the cross-validation prediction and
the observed N,O flux at the space-time point (s;, ;), and n is the number of N,O flux
observations (n = 2880).

2.3.4 Total amount of NoO emissions

The total amount of N,O emissions over the study area (40 m2) from 28 April to 27
May 2014 was calculated. From the result of the spatio-temporal kriging interpolation,
the total amount (Sy,o ) of N,O emissions (gN) from 28 April to 27 May 2014 was
estimated by the following equation:

30 4000

SN,0 st = z z PRE,-a

t=1 j=1

(20)

where 4000 is the number of grid cells in the study area; PRE is the value predicted
by the spatio-temporal regression-kriging; a is the area of a grid cell (0.01 m?); 30 is
the total number of sampling days; and the subscripts ¢ and j are indices representing
days and cells, respectively.

For the large static chamber measurements of the N,O fluxes, the total predicted
amount (Sy,o ) of N,O emissions (g N) from 28 April 2014 to 27 May 2015 was esti-
mated using the following equation:

f1 +f, 2
Sn,0.t = +

i=1

(frq + 1) DOY,+1—DOY)> 30 L 21)

'DOY, - DOY, +1 1000
16
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where f is the daily N,O flux (mgN m=2d™ ), the subscript / represents the index of the
day corresponding to the discrete daily N,O flux, DOY denotes the day of the year on
the Julian calendar, and A is the total study area (= 40 m2).

3 Results
3.1 Exploratory data analyses

In the 40m? tea-planted field, the N,O fluxes observed using the mini chambers in
30 min one-time measurements (n = 2880) performed from 28 April to 27 May 2014
ranged from -2.99 to 487 mgNm_2 d”', with a median of 13.6 mgNm_z d~' and
a CV of 143%. The N,O flux data were positively skewed (Fig. 4a), and their log-
transformations were approximately normally distributed (Fig. 4b). As shown in Fig. 3,
the N,O fluxes were the highest at the fertilization points, and the differences in the
FLUX30t values among the chamber placement positions were statistically significant
(p < 0.001). Moreover, the N,O fluxes at the fertilization and under tea tree points were
periodically fluctuating. Compared with the N,O fluxes observed using the mini cham-
bers, the five N,O fluxes observed using the large static chambers were approximately
equal to the N,O fluxes in the inter-row and in tea-tree row positions, with relatively low
N, O flux values.

By applying a stepwise multiple linear regression analysis, a prediction model was
developed to estimate the log-transformed N,O fluxes using the following equation
(adjusted R? = 0.54, n = 2880, p < 0.001; see Table 1):

FLUX30t ~ Position + Rain2 (22)

A categorical variable representing the chamber placement positions (Position) and
a continuous variable representing the precipitation accumulated over two days (Rain2)
were selected as the predictors, which explained 54 % of the total spatio-temporal vari-
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ability in FLUX30t. Therefore, Position and Rain2 were potential candidates to be used
as auxiliary predictors for spatio-temporal regression kriging.

3.2 Spatio-temporal variability in NoO emissions

Prior to the evaluation of the spatio-temporal variability of the N,O emissions, the purely
spatial and purely temporal variability were each analyzed (Fig. 5a and b). Because
the N,O fluxes were significantly correlated with Position and Rain2, two types of semi-
variogram models were calculated for the N,O fluxes. First, FLUX30t was found to
exhibit no spatial autocorrelation and a moderate temporal dependency (nug = 0.45;
psill = 0.23); these data were characterized by an exponential semivariogram model
(Exp) and a theoretical temporal distance parameter of 1.17 days (equivalent to an ef-
fective range of 3.51 days). Then, by detrending the influence of Position and Rain2, the
spatial and temporal semivariogram sills of the N,O fluxes both decreased. The N,O
fluxes showed a strong spatial autocorrelation and were characterized by Exp, a theo-
retical distance parameter of 0.22 (equivalent to an effective range of 0.66) and a zero
nugget. The temporal structure was still characterized by an Exp model (psill = 0.14,
nug = 0.18) and a theoretical temporal distance parameter of 1.63 (equivalent to an
effective range of 4.89). The regression residuals exhibited clear autocorrelations in
both space and time. Therefore, spatio-temporal kriging of the residuals was certainly
applicable, and these parameters from the purely spatial and temporal semivariograms
could be used to derive the parameters of the spatio-temporal semivariogram (Gréler
et al., 2015).

Figures 5¢c and 6 show the sampled (regression residuals) spatio-temporal semivar-
iogram and the four fitted models. Table 2 summarizes the parameter estimates for
the four semivariogram models. Note that the spatial semivariogram components were
all modeled using Stein’s parameterized Matérn (Ste) function, the temporal semivari-
ogram components were all modeled using an exponential function, and the joint com-
ponents were all modeled using the Ste function. As reflected by its lower RMSE value,
the sum-metric model was the best-fitting model. In the sum-metric model, the zero
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nugget effect in the purely spatial, purely temporal and spatio-temporal components
indicated that the model could yield better precision. The three range parameters were
different, indicating that the residuals were correlated over distances of approximately
0.41 m on the spatial scale and 5.4 days on the temporal scale; these values could be
used as criteria for selecting local neighborhoods in spatio-temporal regression-kriging
(Heuvelink and Griffith, 2010; Graler et al., 2015). Furthermore, the spatio-temporal
anisotropy indicated that data at a temporal lag of 1 day exhibited a correlation similar
to that of observations that were approximately 0.865 m apart. Apparently, compared
with the other semivariogram models, the range (57 m) of the separable model in this
study was not rational, indicating that the separable model had no physical significance.

3.3 Performance of the spatio-temporal interpolation of the NoO emissions

As reflected by the lower RMSE and higher r values in the cross-validation results
(Table 3), all of the spatio-temporal kriging interpolations (r = 0.817-0.824, RMSE =
0.456—-0.486, p < 0.001) outperformed the multiple linear regression prediction (r =
0.735, RMSE = 0.561, p < 0.001). For the four spatio-temporal kriging interpolations,
the separable, product-sum, metric and sum-metric semivariogram models exhibited
similar performances (Fig. 7).

The spatio-temporal distributions and kriging standard deviation maps of the N,O
emissions interpolated using the four models are presented in the Supplement
(Figs. S1-S8). For an in-depth comparison of the spatio-temporal prediction perfor-
mances of the four models, we recalculated the total amounts of N,O emissions pre-
dicted at the four positions over the 30 days and the amounts for the total study area
on each day, respectively. As shown in Table 4, the different models presented dif-
ferent results for the same position, although the cross-validation indicated that they
had same prediction capabilities. Compared with the other three models, the metric
model exhibited insignificant sensitivity to the peak values (Figs. 8 and 9). Moreover,
the amounts of N,O emissions from tea field from 28 April to 27 May 2014 that were
predicted by the four spatio-temporal kriging interpolations were 18.3—-18.5gN; these

19

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://dx.doi.org/10.5194/gmd-2015-251
http://www.geosci-model-dev-discuss.net/9/1/2016/gmdd-9-1-2016-print.pdf
http://www.geosci-model-dev-discuss.net/9/1/2016/gmdd-9-1-2016-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

values were approximately 25 % higher than that estimated based on the large static
chamber measurements. According to the results of the high-intensity sampling using
the mini chambers and the spatio-temporal regression-kriging analysis with the best
performance, the total amount of N,O emitted from the tea field from 28 April to 27
May 2014 was approximately 18 gN.

4 Discussion
4.1 N,O fluxes in the tea field

The N,O emissions from soils exhibit obvious spatio-temporal fluctuations and are sig-
nificantly higher in rainy conditions (Fu et al., 2012, 2015; Konda et al., 2008). In this
study, the median (13.6 mgN m~2 d‘1) and CV (143 %) of N,O fluxes measured in the
tea field were all found to be higher than those in other agricultural systems, such
as grasslands (Ambus and Christensen, 1994; Turner et al., 2008),winter wheat (Ball
et al., 1997; Clemens et al., 1999; Mathieu et al., 2006), and summer maize (Clemens
et al., 1999); the findings were similar to the results for the wet season reported by Fu
et al. (2015), predominantly because of the optimal conditions for soil microbe activity
(e.g., low soil pH, high temperature and ample moisture) provided by tea planted soils
(Li et al., 2013). The observations indicate that tea-planted soils are a source of high
emissions, especially in rainy and moist periods (Fu et al., 2015; Li et al., 2013). More-
over, among the four mini chamber positions used in this study, the fertilization points
had obviously higher N,O fluxes values (Fig. 3), indicating that fertilization (300 kg ha™,
occurred on 19 February 2014) is another important factor of influence on the magni-
tude of N,O emissions from tea-planted soils. The primary reason for this effect is that
fertilization supplies higher magnitudes of N for soil microbial nitrification and denitri-
fication at the fertilization point, which combined with the optimal conditions for N,O
emissions as mentioned above, results in large amounts of N,O emissions from tea-
planted soils (Fu et al., 2015). The findings are in sharp contrast with the observations
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reported by Li et al. (2013) for the same research area during the dry season, with no
fertilization and less rainfall. The reason for this difference may be that the variations in
N,O emissions are impacted by intermittent rainfall (Figs. 2 and 3).

A comparison with the observations from four mini chamber positions reveals that
the N,O fluxes sampled using the large static chambers were obviously lower than
those sampled by the mini chamber positions at the fertilization points and did not ex-
hibit fluctuations (Fig. 3). These differences can be primarily attributed to the large size
of the static chambers, which covered all four positions and monitored their mean val-
ues. Moreover, the mini chambers captured the temporal variations in the N,O fluxes,
whereas the large chambers reflected a trend that was stationary in time. One rea-
son was that the one week interval between gas sampling instances unintentionally
avoided the N,O emission peak, which can strongly influence the accuracy of regional
N,O emissions estimates (Akiyama et al., 2013; Ambus and Christensen et al., 1994;
Kiese et al., 2003; Mosier et al., 1996, 1998). Thus, a suitable temporal interval for gas
sampling should be determined based on an analysis of the spatio-temporal structure
of the N,O emissions from the tea-planted field.

4.2 Spatio-temporal structure of the N.O emissions from the tea field

The complex spatio-temporal structural characteristics of N,O emissions from tea-
planted soils can be attributed to influences from factors that also exhibit spatial
or spatio-temporal heterogeneity, such as soil types, topography, land management
strategies and climate (Firestone and Davidson, 1989; Fu et al., 2015; Hayatsu, 1993;
Li et al., 2013; Mathieu et al., 2006; Venterea and Rolston, 2000; Wrage et al., 2004). In
this study, three types of structures were analyzed: purely spatial, purely temporal and
spatio-temporal. The structures of the N,O emissions from the tea-planted soils differed
significantly between the purely spatial and purely temporal scales. The primary reason
for this difference was that the land management procedures, e.g., fertilization, directly
impacted the spatial structure and the climate, e.g., rainfall and temperature, directly
impacted the temporal structure. No spatial dependence was observed in the spatial
21
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structure of the N,O emissions from the tea field in contrast to the results reported by
Li et al. (2013) and Fu et al. (2015). This discrepancy can be primarily attributed to the
gas sampling scales, i.e., 40 m? in this study and 40 000 m? in the previous two studies.
Moreover, in this study, although the disturbance of tea-planted soil was very low, the
strong influences of fertilization and precipitation still affected the spatial structure of
the N,O emissions on a small scale (Fig. 5).

For a more in-depth analysis of the primary factors influencing the spatio-temporal
structures of the N,O emissions from the tea planted field, we detrended the data with
regard to the influence of environmental factors (Position and Rain2) when calculating
the spatial, temporal and spatio-temporal semivariograms of the N,O fluxes. Because
the influence of the chamber position on the spatial structure was more relevant than
the influence of rain2 on temporal structure, detrending with respect to the influences
of Position and Rain2 had more obvious effect on the spatial structure than on the
temporal structure (Fig. 5). The effective range of spatial dependence was approxi-
mately 0.4 m; this finding could be used as a scientific basis for the design of monitor-
ing scheme using large static chambers in tea-planted fields. Furthermore, the effective
range of temporal dependence (5.3 days) could be used to define the time interval for
gas sampling in tea-planted fields. Generally, the gas sampling interval for long-term
observations of N,O emissions using large static chambers was one week (Chen et al.,
2015; Fu et al., 2012), which may miss several key peaks in N,O emissions as well as
in this study (Fig. 3).

Unlike in previous studies of the purely spatial structure of N,O emissions from tea-
planted soils (Li et al., 2013; Fu et al., 2015), in this study, no soil samples were col-
lected from the soils inside the mini chambers during the sampling period. Therefore,
the soil properties, e.g., NH4N, NO3N, soil volumetric water content (SWC), could not
be directly considered to determine the key environmental factors controlling N,O emis-
sions or to improve the prediction accuracy of the kriging interpolations. However, the
N, O fluxes were found to be significantly related to Position and Rain2, which reflected
the influences of fertilization (NH4,N and NO3N) and the soil moisture status (SWC), re-
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spectively. Our findings were similar to those of Fu et al. (2015) for a fertilized tea field
during the wet season. As in other agricultural soils (Ball et al., 1997; Mathieu et al.,
2006; Yanai et al., 2003), fertilization contributes to the spatial pattern of the N,O fluxes
from the tea-planted fields, with the highest average fluxes being observed at the fertil-
ization points (Fu et al., 2015). With regard to rainfall, it is possible that rainfall affects
the soil moisture and then regulates the variations in the availability of oxygen in tea
planted soils, thereby causing spatio-temporal heterogeneity in N,O emissions by in-
ducing different degrees of soil nitrification and denitrification (Firestone and Davidson,
1989; Fu et al., 2015; Konda et al., 2010).

In this study, considering the tradeoff between the goodness-of-fit and the model
complexity, four spatio-temporal semivariogram models were used to fit experimental
semivariograms to determine which approach could yield the most appropriate spatio-
temporal semivariogram and most accurately predict the spatio-temporal N,O emis-
sions. The performances of the models differed significantly because of the different
model assumptions and properties (De laco et al., 2011; Huang et al., 2007). For ex-
ample, the sum-metric model, which was the best-performing model in this study, fits
both zonal anisotropies and the geometric anisotropy (Hengl et al., 2012), whereas
the metric model considers only the geometric anisotropy and is unable to fit different
semivariogram sills in different directions. The same limitation is also present in the
separable model (Ma, 2003a, b and 2004).

4.3 Spatio-temporal interpolation of NoO emissions

In accordance with the different fitting performances of the four spatio-temporal semi-
variogram models, four regression-kriging interpolations were applied to predict the
spatio-temporal distributions of the N,O emissions from the tea-planted soils. All four
regression-kriging interpolations outperformed the multiple linear regression, indicat-
ing that spatio-temporal regression-kriging is an appropriate method for studying the
spatio-temporal variations in N,O emissions from tea-planted soils. Nevertheless, in
contrast to the obvious differences among the fits of the semivariogram models, the
23
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cross-validation results for the regression-kriging interpolations were not significantly
different (Table 4). A similar discrepancy was also observed by Gréler et al. (2015) and
can be predominantly attributed to two factors. First, cross-validation methods may be
not applicable to spatio-temporal kriging studies. Compared with purely spatial kriging,
spatio-temporal kriging encounters more difficulty and uncertainty in predicting the val-
ues for unsampled locations, which amplifies the deficiency of cross-validation methods
that they are ineffective at reflecting information that is not directly present in the data
(Webster, 1985; Webster and Oliver, 2001). Second, the discrepancy between the fit
performance and the interpolation performance as evaluated via cross-validation may
be due to the inherent complexities of the N,O emission process, e.g., nitrification and
denitrification (Mathieu et al., 2006; Venterea and Rolston, 2000; Wrage et al., 2004;
Yanai et al., 2003), and problems of causality in the temporal domain, e.g., the use of
values from the future to explain and estimate the past being conceptually awkward
and leading to artifacts (Hengl et al., 2012; Huang et al., 2007; Snepvangers et al.,
2003).

Although the cross-validation results for the four spatio-temporal regression-kriging
interpolations were superficially similar, there were obvious differences among the
spatio-temporal distributions and total amounts of N,O emissions from the tea-planted
soils that were predicted by the four spatio-temporal regression-kriging interpolations
(Figs. S1-S4). These differences can be directly attributed to the weight values esti-
mated using the semivariogram models during the kriging prediction process (Huang
et al., 2007). The different structures of the spatio-temporal semivariogram models
were the inherent reason for these differences (Gréler et al.,, 2015). As mentioned
above, both zonal anisotropies and geometric anisotropy play important roles in spatio-
temporal structure analysis (Hengl et al., 2012). Zonal anisotropies arise when the
amount of variation on temporal scale is smaller or greater than that on spatial scale
or the joint spatio-temporal scale (Heuvelink et al., 2010). In this study, the separable,
product-sum and sum-metric models all included a zonal anisotropy component, i.e.,
the sum component of the semivariogram model function, whereas the metric model in-
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cluded only a geometric anisotropy component for the prediction of unsampled points.
This fact could also explain why the metric model, which yielded a relatively poor fit,
demonstrated better performance in the cross-validation and a lower sensitivity for pre-
dicting peak values (Table 4; Fig. 9). In summary, the separable and metric models
suffer from unrealistic assumptions and properties and poor spatio-temporal prediction
performance, respectively (Hengl et al., 2012; this study). Thus, the product-sum and
sum-metric models are considered to be better choices for studying spatio-temporal
structure of N,O emissions.

The total amount of N,O emissions predicted based on the data from the mini cham-
bers was 25 % greater than that observed by the large chambers. This phenomenon
can be primarily attributed to the gas sampling interval (7 days) used for the large static
chambers, which could not completely capture the temporal pattern of the N,O emis-
sions. In particular, two peaks in the N,O emissions, on 4 and 11 May, were missed
(Fig. 3). This observation is also consistent with the effective range of the temporal
variability reported above (5.3 days) based on the spatio-temporal structure analysis.
However, even if the gas sampling interval for the large static chambers is reduced to
5 days, the strong spatial variability in the N,O emissions from tea-planted soils will
be another important factor giving rise to differences between the results recorded us-
ing mini and large static chambers. One may argue that the 25 % differences between
the two methods should be due to the differences in barometric pressure between the
mini and large static chambers. To address this possibility, several experiments were
performed, which demonstrated that any such influence was very subtle and could not
be monitored. In summary, both the gas sampling interval and the effects of spatial
variability contributed to the difference in the values obtained using the two methods.
Thus, in future studies, the gas sampling frequency for large static chambers should
be increased and the stainless steel sampling bases should be moved to positions that
are several meters away from their previous positions.
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5 Conclusions

During a 30day in situ field investigation (28 April to 27 May 2014), once-daily 30 min
measurements of N,O emissions from a 40 m* red-soil tea field in the subtropical re-
gion of central China were recorded at 96 points, and the results were compared with
long-term observations of the N,O emissions recorded using large static chambers.
The N,O fluxes exhibited obvious spatio-temporal differences. Four spatio-temporal
semivariogram models, i.e., the separable, product-sum, metric and sum-metric mod-
els, were used to fit experimental semivariograms of the N,O fluxes, and to predict
the spatio-temporal N,O flux distribution using spatio-temporal regression-kriging. The
sum-metric model performed best and yielded meaningful effective ranges of the spa-
tial and temporal autocorrelations. The four spatio-temporal regression-kriging interpo-
lations outperformed predictions based on multiple linear regression prediction. The
predictions of the four kriging interpolations regarding the total N,O emissions of the
40 m? tea field were approximately 25 % higher that the result observed using the large
static chambers.

More spatio-temporal semivariogram models should be created to properly fit the
complex surface of the three-dimensional structures of the spatio-temporal variables.
More efficient testing methods should be adopted to replace the conventional cross-
validation methods because such methods are incapable of evaluating the performance
of different spatio-temporal semivariogram models in spatio-temporal kriging. Long-
term observations of N,O emissions should be recorded in a higher density sampling
experiment, in which the spatial and temporal sampling intervals should be adjusted to
improve the accuracy of the N,O flux estimates and avoid wasting resources. Moreover,
various ecological management treatments, such as intercropping green manure, deep
fertilization and the combined application of organic manure and chemical fertilizer,
must be applied to reduce N,O emissions.
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Table 1. Coefficients and standard errors of the multiple linear regressions model for predicting

the log-transformed N,O fluxes (n = 2880).

Predictor Coefficient Standard error ¢ value P value
Intercept 5.95 2.24x1072 267  <0.001"
Position2 1.45 2.95x 1072 495 <0.001"
Position3 0.738 2.95x 1072 252 <0.001"
Position4 0.293 2.95x 1072 9.91 <0.001"
Rain2 8.09x 1073 0 19.4  <0.001

* Significant at P < 0.001. Rain2 = cumulative precipitation over 2 d before
sampling; POSITION2 = fertilization point; POSITION3 = under the tea tree;

POSITION4 = in the tea tree row.
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Table 2. Parameters of the fitted separable, product-sum, sum-metric and metric models for
the N,O flux regression residuals.
Model Fitting Nugget, Sill;  Range;  Nugget, Sill, Range; Nugget; Silly; Rangey  Anisotropy
RMSE (m) (days) ratio (m d'1)
Separable 1.16x 1072 0.236 - 56.8 0.257 - 10.4 - 0.430 - -
Product-sum 7.71x107° 0 0.159 0.276 0 0.178 1.72 0 0.284 - -
Metric 365x1072 7.93x107% 0.421 3.57 - - - - - - 0.345
Sum-metric  6.68 x 107° 0 0.112 0.186 0 9.39x 1072 1.72 0 0.137 1.56 0.865
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Table 3. Accuracy assessment parameters for the spatio-temporal regression kriging models.
r,, and rg yxsor denote the Pearson’s correlation coefficients between observations and cross-
validation predictions of the N,O flux regression residuals (rr) and the log-transformed N,O
fluxes (FLUX30t), respectively. The N,O flux regression residuals obtained from the multiple
linear regression with the chamber placement positions (Position) and precipitation accumu-

lated over two days (Rain2) as the predictors.

Model me (dimen- RMSE (dimen- e FELUX30t
sionless) sionless)

Separable  8.23x 107* 0.456 0.563 0.821

Product-sum 8.14x 107* 0.456 0.566 0.822

Metric 544 x107° 0.486 0.564 0.824

Sum-metric  5.82x107* 0.461 0.558 0.817
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Table 4. Total amounts (g) of N,O emissions from the tea-planted soil at the four positions
predicted by the spatio-temporal regression-kriging and multiple linear regression models.

Position (area in m?) Separable Metric Product- Sum-  Longterm
sum metric observation

Inter-row position (8.20) 5.07 5.06 5.13 5.10 -

Fertilization point (3.60) 5.00 5.02 5.03 5.03 -

Under the tea tree (21.6) 7.46 7.44 7.34 7.44 -

In the tea tree row (3.60) 0.861 0.868 0.842 0.867 -

Total amount (40) 18.4 18.4 18.3 18.5 14.7
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Figure 1. (a, b) Location and (c) land use map of the tea planted catchment, (d) a vertical
transect of a tea tree row and a large static chamber and (e) the mini static chambers used
to measure N,O emissions from the tea field. The red circles in (b, d) represent the sampling
points for researching the spatio-temporal structure of the N,O fluxes, and the purple squares
in (d) represent the sampling points for the long-term observation of the N,O fluxes. The tea
field is located in Jinjing Town, which is located 70 km northeast of Changsha, the capital city
of Hunan Province, China.
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Figure 2. Daily (a) air temperatures and (b) precipitation during 2014.
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Figure 3. Dynamic temporal variations observed in the N,O fluxes (mgN m~2d~") at the four
positions (inter-row position, fertilization point, under the tea tree, and in the tea tree row) using
the mini static chambers and at the tea tree row transect using the large static chambers. The
numbers near the points indicate the standard error on the mean (n = 96).

39

| Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

GMDD

doi:10.5194/gmd-2015-251

Spatio-temporal
variability in N,O
emissions

X. L. Liu et al.

(8)
K ()


http://www.geosci-model-dev-discuss.net
http://dx.doi.org/10.5194/gmd-2015-251
http://www.geosci-model-dev-discuss.net/9/1/2016/gmdd-9-1-2016-print.pdf
http://www.geosci-model-dev-discuss.net/9/1/2016/gmdd-9-1-2016-discussion.html
http://creativecommons.org/licenses/by/3.0/

WY
2000
]

1000 1500
1

Frequency

500
Il
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Figure 5. Semivariogram of the original data (pluses) and the residuals (open circles) of the
N, O fluxes from the multiple linear regression with the chamber placement positions (Position)
and precipitation accumulated over two days (Rain2) as the predictors at the (a) spatial and (b)
temporal scales. (¢) The spatio-temporal semivariogram of the N, O flux residuals.
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Figure 6. Sampled semivariogram and the fitted separable, product-sum, metric and sum-
metric models of the N, O flux residuals with Position and Rain2 as the predictors.
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Figure 7. Cross-validation plots for (a) the multiple regression linear model and (b-e) the
spatio-temporal regression-kriging models: (b) separable, (¢) product-sum, (d) metric, and (e)

sum-metric.

43

| Jadeq uoissnosiqg | Jaded uoissnasiq

Jaded uoissnosiq

Jaded uoissnosiq

GMDD

doi:10.5194/gmd-2015-251

Spatio-temporal
variability in N,O
emissions

X. L. Liu et al.

(8)
K ()


http://www.geosci-model-dev-discuss.net
http://dx.doi.org/10.5194/gmd-2015-251
http://www.geosci-model-dev-discuss.net/9/1/2016/gmdd-9-1-2016-print.pdf
http://www.geosci-model-dev-discuss.net/9/1/2016/gmdd-9-1-2016-discussion.html
http://creativecommons.org/licenses/by/3.0/

20

N.O (gNd™")
10 15

0.5

0.0

—8— Separable

-4 Product-sum
-6 Metric

- Sum-metric

2014-04-27

Figure 8. The temporal dynamics of the daily amounts of N,O emissions (g Nd‘1) obtained

2014-05-02

2014-05-07

2014-05-12

2014-05-17

2014-05-22

T
2014-05-27

using the four models to fit the semivariograms in spatio-temporal regression-kriging.
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Figure 9. Spatio-temporal interpolations of the daily N,O fluxes (mgN m~2 d'1) on 30 April
with the lowest daily amount of N,O emissions and 11 May with the highest daily amount of
N,O emissions, obtained using the four models to fit the semivariograms in spatio-temporal

regression-kriging.
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