Author Response to Referee #1

The comments and suggestions from the referee #1 are greatly appreciated. All technical
corrections have been made. The comment to provide some details on dust source function
has been addressed, and the reference has been added for the CMAQ and NAM models.
Please see detailed response below.

Specific Comments:
Page 2, Line 17: Change "In additional to modulate" to "In addition to modulating".

Text has been changed as suggested.

Page 2, Line 23: Change "Large amount" to "Largeamounts".

Changed as suggested.

Page 7, Line 21: If DMS has not been previously defined, please define it here.
Text is changed from “DMS” to “dimethyl sulfide (DMS)”.

Page 8, Line 18: What sources of data are used to determine the surface bareness and
topographical features? Later on in the paragraph it is stated that a satellite observed
surface vegetation cover has been developed? Was this used to determine surface
bareness? Even though reference is provided, | think it would be useful to the reader to
provide some details about these satellite data.

The source map used in NGAC V1 is a static map derived from AVHRR. We revise the

manuscript (see below) and remove the reference to Kim et al. 2013 to avoid the confusion.

The text (P.8, Line 17) “The dust source function regridded on the T126 GFS grid (shown
in Fig. 2), representing the probability of dust uplifting, is determined from surface bareness
and topographical depression features.” is changed to “The dust source function,
representing the probability of dust uplifting, is determined from surface bareness and
topographical depression features. Surface bareness is identified from the 1%1° vegetation data

set derived from the advanced very high resolution radiometer (AVHRR) data (DeFries and



Townshend, 1994). The static dust source function has been regridded on the GFS native T126
Gaussian grid for NGAC V1.0 (shown in Fig. 2). “

Page 10, Line 20. Suggest changing "lower spatial resolution" to "coarser spatial
resolution”.

Revised as suggested.

Page 12, Line 13. Change "one and a half day" to "one and a half days".

Corrected as suggested.

Page 13, Line 21: Change "captures" to "capture".
Corrected as suggested.
Page 14, Line 26: Change "also contributes the" to "also contributes to the".

Corrected.

Page 15, Line 7: Correct the spelling ofindependent.

Spelling has been corrected.

Page 15, Line 14: Add references for the CMAQ and NAM models
Byun and Schere (2006) is added for CMAQ. The NAM webpage is included for NAM.



List of relevant changes:

Page 2, Line 17: "In additional to modulate" changed to "In addition to modulating".

Page 2, Line 23: "Large amount" changed to "Largeamounts".

Page 7, Line 21: “DMS” to “dimethyl sulfide (DMS)”.

Page 8, Line 18: The text “The dust source function regridded on the T126 GFS grid (shown
in Fig. 2), representing the probability of dust uplifting, is determined from surface bareness
and topographical depression features.” is changed to “The dust source function,
representing the probability of dust uplifting, is determined from surface bareness and
topographical depression features. Surface bareness is identified from the 1%1° vegetation data
set derived from the advanced very high resolution radiometer (AVHRR) data (DeFries and
Townshend, 1994). The static dust source function has been regridded on the GFS native T126
Gaussian grid for NGAC V1.0 (shown in Fig. 2). “

Page 8, Line 24: Remove the last sentence (on Kim et al. 2013)

Page 10, Line 20. "lower spatial resolution" changed to "coarser spatial resolution".

Page 12, Line 13. "one and a half day" changed to "one and a half days".

Page 13, Line 21: "captures" changed to "capture".

Page 14, Line 26: "also contributes the" changed to "also contributes to the".

Page 15, Line 7: “independent”

Page 15, Line 15: “CMAQ model” changed to “CMAQ model (Byun and Schere, 2006)”

Page 15, Line 16: “(NAM) model” changed to “(NAM) model (see see the NAM webpage at
http://www.emc.ncep.noaa.gov/?branch=NAM)”

Page 20, Line 15: Add “Byun, D. W. and Schere, K. L.: Review of the governing equations,
computational algorithms, and other components of the Models-3 Community Multiscale
Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-77, 2006.”

Page 21, Line 22: Add “DeFries, R. S., and Townshend, J. R. G.: NDVI-derived land cover
classification at global scale, Int. J. Remote Sensing, 15, 3567-3586, 1994.”

Page 22, Line 27: Remove Kim et al. 2013



Author Response to Referee #2

The comments and suggestions from the Referee #2 are greatly appreciated. Please see detailed
response below.

Specific Comment:

The validation part is good, but | do recommend including more AERONET stations. In fact,
what | wish the authors would have done is a validation effort similar in extent to what has
been presented in Huneeus et al 2011. As far as | know, they even developed a tool that is
straight-forwardly applicable. In doing so, the authors could test the model performance in all
regions of the globe rather than at just two AERONET stations next to the main Saharan desert
dust sources (which, arguably, are the most important sources). In addition, as pointed out
above, they can highlight the model skill in the context of other - presumably less performant
- models. In any case, | would kindly ask the authors to defend their minimalistic choice and to
justify why they did not use more or omit other AERONET stations. The same is true for the
choice of satellite remote sensing products. MISR, MSG Seviri or OMI are other data set
available for comparison.

The Referee is correct that this manuscript only presents concise descriptions of model
performance.

There are very limited, if any, peer-reviewed publications on NCEP’s ongoing NEMS development
and on NCEP’s emerging global aerosol modeling capability. This paper, therefore, seeks to
present the aerosol modeling capability in the programmatic aspects (such as the rationale, the
NCEP-GSFC collaborative approach, and aerosol-related applications) rather than providing an
extensive model evaluation/validation.

During the development phase, we compared NGAC V1 dust results with other models (ICAP
MME and GSFC’s GEOS-5), in-situ observations at multiple (> 2) AERONET sites, and aerosol
retrievals from satellites (MODIS, VIIRS, and CALIPSO). This paper, however, only provides brief
descriptions of NGAC V1 evaluation. Such choice, by no means, trivializes the importance of
model evaluation and validation. Efforts are ongoing at NCEP to evaluate and validate parallel
NGAC V2 (with dust, sea salt, OC/BC, and sulfate). The references on the approach for AeroCom
and NMMB/BSC-dust model are greatly appreciated and will certainly provide valuable guidance
on how to put NGAC V2 performance in better context with other aerosol models.

We have included additional sites (Sede Boker, llorin, Banizoumbou, and La Parguera sites) for
Figure 6¢-6f in Section 4.



Minor comments:

Section 2.1, p.7, line 4ff: Not sure it is relevant to mention the future development of WAM in
this context. Unless it takes any bearing on the further development of the aerosol module,
you may as well leave it out in order to avoid confusion.

The WAM-related discussions have been removed to avoid confusion.

Section 2.2, p.7/8: You are referring to the on-line capability of the model here. Later in section
2.3, p.9, line 19ff, you provide more details on how the on-line approach works. Are you talking
about the same thing here? Please try to make the text more coherent and merge the bits that
belong together.

The manuscript has been revised. The discussions on the on-line capability in p.9 line 19 have
been moved to Section 1. The end of 4t" paragraph in Section 1 (p.4) is changed from “The NGAC
consists of two key modeling components: (1) the GFS within the NEMS architecture (NEMS GFS)
and (2) the on-line aerosol module based on Goddard Chemistry Aerosol Radiation and
Transport (GOCART) model” to “NGAC is the first on-line (interactive) atmospheric aerosol
forecast system at NCEP. It consists of two key modeling components: (1) the GFS within the
NEMS architecture (NEMS GFS) and (2) the on-line aerosol module based on Goddard Chemistry
Aerosol Radiation and Transport (GOCART) model. The advantagesfortakingthe so-called on-line
approach include: (1) consistency: no spatial-temporal interpolation and the use of the same
physics parameterization, (2) efficiency: lower overall CPU costs and easier data management,
and (3) interaction: allows for aerosol feedback to meteorology.”

Section 2.2, p.8, line 13ff: Which dust emission scheme you are using? Also, which moisture
correction and surface roughness correction scheme you are using? Have you done any
sensitivity experiments in order to tune the model, e.g. wrt soil moisture, or did you just tune
the emission budget? As a side note: Ginoux’s topographical dust source function happens to
be very suitable for representing the major dust sources as they are linked to wind channelling
effects due to said orography.

Ginoux’s topographical dust source function is used, and the only tuning is for dust emission
budget. The following is added to 2" paragraph in section 2.3 (p.9, Line 15):



“GOCART in GEOS-4/5 has been implemented in NEMS GFS ‘as is’ except for emission budget.
As in GEOS-4/5 (Colarco et al., 2010), the spatial distribution and intensity of dust sources in
NGAC V1 follows from Ginoux et al. (2001). Owing to differences in the GEOS-4/5 meteorology
and resolution relative to NEMS GFS, the global scaling constant for dust emissions (see equation
(2) in Ginoux et al. (2001)) has been adjusted from C=0.375 pg s2 m™ asin GEOS-4/5to C=1 pg
s2m™ in NGAC. This adjustment is determined from sensitivity experiments, allowing NGAC V2
to obtain dust emission budget comparable to GEOS-4/5.“

Section 3, p.10, line 8: NCEP begins [_NCEP hasbegun

The technical correction has been made.

In the next line, you mention that dust forecasts are available online. On p.11, line 3, you do
actually provide an online resource which appears to be linked to these forecasts. | recommend
merging the two separated statements, which presumably, refer to the same thing.

The two statements (in 2" and 5™ paragraphs, respectively) have been merged. The 2"
paragraph now mentions the link for EMC NGAC webpage. The discussions on how NGAC is
initialized has been moved from 2"? paragraph to the end of section 3.

Section 3, p.10, line 27: | don’t quite understand this sentence: “This aerosol-radiation
decoupled configuration that GOCART aerosols are not radiatively coupled to the AGCM is
intended [...]”. Please rephrase!

The text has been modified (P10)“Note the interaction of GOCART aerosol fields and GFS's
radiation package has been disabled in NGAC V1.0. This configuration that aerosols are not
radiatively coupled to AGCM is intended to facilitate aerosol modeling development in the near
term. Once the prognostic aerosol capability reaches desired maturity level, this aerosol-radiation
decoupled configuration will be changed allowing the aerosol direct and semidirect radiative effects
to be accounted for.”

Section 4.2, p.12, line 16ff: Why did you only compare with MODIS? What about OMI, MISR,
MSG Seviri? In Fig 5: Why only monthly AOD means rather than seasonal means? At least it
has to be consistent! Text and Figure capture say different things.



This manuscript aims to provide a high-level description of NGAC from the programmatic
aspects, so does not cover detailed model evaluation/validation.

For Fig.5, the text in Page 12 Line 16 has been revised from “Figure 5 shows seasonal dust
distributions over the subtropical Atlantic region.” to “Figure 5 shows monthly-mean dust
distributions over the subtropical Atlantic region at different seasons.”

Section 4.2, p.13, line 9ff: As highlighted in the specific comment, | would kindly ask you to
either justify the choice of only two AERONET stations for comparison, or provide a more
comprehensive analysis. While the performance at the two stations shown in Fig 6 is really
good, it may well just be by chance. I’d rather know the model performing not so well in some
regions as opposed to not knowing at all. Also, what about Lidar observations? How do you
know the model is able to represent the vertical structure of the dust plume away from
sources? EARLINET and CALIOP are the tools to go with. Again, please justify why you didn’t
use either of those.

Four additional sites are added. The discussions in section 4.2 (p.13) are modified to “Among the
six stations included in the comparison, three sites are located in dust-prone Sahara-Sahel region (Dakar,
llorin, and Banizoumboul), one site is located in dust-prone Middle East area (Sede Boker), and two sites
are located in tropical Atlantic Ocean region (Cape Verde and La Parguera). The Dakar site is located in
Senegal, North Africa near the dust source region. The llorin site, located in Guinea Savanna
zone, experiences dust and episodic smoke aerosols. The Banizoumhou site, located in the Sahel
region, is influenced predominantly by dust transport from the Sahara. For the two ocean sites,
Cape Verde is influenced by dust outflow from Saharan sources while La Parguera is influenced
by long-range transport of Saharan dust. The Middle East site, Sede Boker, is located in the
Negev desert of Israel and experiences mainly dust and urban aerosols. At these sites except for
llorin, NGAC V1.0 simulations are found to capture the seasonal variability in the dust loading.
Overall, NGAC V1.0 shows similar seasonal variability to and is well correlated with the AERONET
observations.”

To justify why only concise model evaluation is presented, the last paragraph in Section 4.2 (p.13)
is moved to Section 4 (p.11).

In the original manuscript, the last paragraph in Section 4.2 (Page 13):

“NCEP is currently working toward the phase-two NGAC implementation (i.e., full-suite of
aerosols including dust, sea salt, sulfate, and carbonaceous aerosols using near-real-time smoke
emissions from satellite fire products). The planned NGAC upgrade will produce total AOD,



allowing us to evaluate NGAC results beyond dust- dominated regions.”

In the revised version, the 1t paragraph in Section 4 (Page 11) becomes:

“In this section, the results of operational NGAC V1.0 forecasts are presented. NCEP is currently
working toward the phase-two NGAC implementation (Lu et al., 2016). The NGAC V2 includes
full-suite of aerosols using near-real-time smoke emissions from satellite fire products. The NGAC
upgrade will produce total AOD, allowing us to evaluate NGAC results beyond dust-dominated
regions. Efforts are underway to evaluate experimental NGAC V2 with other models (ICAP MME
and GSFC’s GEOS-5), in-situ observations at AERONET sites throughout the globe, and aerosol
retrievals from multiple satellites, including MODIS, Visible Infrared Imaging Radiometer Suite
(VIIRS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). In this paper, only
concise model results are presented as the paper mainly provides the programmatic aspects of
NGAC development and implementation.”

Section 5.1, p.15, line 2ff: Fig 8 does not seem to add any extra value. Unless you compare NGAS
with ICAP directly, rather than showing the average of all ICAP models (MME), | don’t see any
benefit of putting the Figure and suggest to take it out.

Figure 8, showing the dust AOD regional ensemble products from the WMO SDS-WAS regional
center at BSC, has been removed. The text has been revised accordingly: (1) 2" paragraph in
Section 5.1 is shorten as the reference to Figure 8 (WMO SDS-WAS regional MME) is removed,
(2) 2" and 3" paragraphs are merged into one paragraphs, and (3) CMAQ results (previously
Figure 9) is now Figure 8.



List of relevant changes:

Page 4, Line 2: Change “The NGAC consists” to “NGAC is the first on-line (interactive)
atmospheric aerosol forecast system at NCEP. It consists of”

Page 4, Line 5: Add the following at the end of this paragraph: “The advantages for taking
the so-called on-line approach include: (1) consistency: no spatial -temporal interpolation
and the use of the same physics parameterization, (2) efficiency: lower overall CPU costs and
easier data management, and (3) interaction: allows for aerosol feedback to meteorology.”
Page 7, Line 6: Remove the WAM-related sentence

Page 9, Line 15: Add the following at the beginning of 2" paragraph: “GOCART in GEOS-4/5 has
been implemented in NEMS GFS ‘as is’ except for emission budget. Asin GEOS-4/5 (Colarco
et al., 2010), the spatial distribution and intensity of dust sources in NGAC V1 follows from
Ginoux et al. (2001). Owing to differences in the GEOS-4/5 meteorology and resolution
relative to NEMS GFS, the global scaling constant for dust emissions (see equation (2) in
Ginoux et al. (2001)) has been adjusted from C=0.375 ug s> m™ as in GEOS-4/5to C=1 pg
s2m™ in NGAC. This adjustment is determined from sensitivity experiments, allowing NGAC
V2 to obtain dust emission budget comparable to GEOS-4/5"

Page 9, Line 19: The text is removed

Page 10, Line 8: “begins” changed to “has begun”

Page 10, Line 10: Insert “Information on accessing NGAC model output is provided in the Appendix.
Daily web-based presentation of NGAC V1.0 forecasts is available at the EMC NGAC
webpage: http://www.emc.ncep.noaa.gov/gmb/NGAC/html/realtime.ngac.html. The
website displays Aerosol Optical Depth (AOD) at 550 nm and surface mass concentrations
over global domain and several regional domains (e.g., trans-Atlantic region, Asia, and
Continental US (CONUS) regions).”

Page 10, Line 10: Remove “Dust initial conditions are taken from the 24 h NGAC V1.0 forecast
from previous day while meteorological initial conditions are down-scaled from high-
resolution Global Data Assimilation System (GDAS) analysis.”

Page 10, Line 26: This paragraph has been revised to “Dust initial conditions are taken from

the 24 h NGAC V1.0 forecast from previous day while meteorological initial conditions are


http://www.emc.ncep.noaa.gov/gmb/NGAC/html/realtime.ngac.html

down-scaled from high-resolution Global Data Assimilation System (GDAS) analysis. Note
the interaction of GOCART aerosol fields and GFS’s radiation package has been disabled in
NGAC V1.0. This configuration that aerosols are not radiatively coupled to AGCM is
intended to facilitate aerosol modeling development in the near term. Once the prognostic
aerosol capability reaches desired maturity level, this aerosol-radiation decoupled
configuration will be changed allowing the aerosol direct and semidirect radiative effects to be
accounted for.”

Page 11, Line 3-7: The text is removed

Page 11, Line 9: Add the following: “NCEP is currently working toward the phase-two NGAC
implementation (Lu et al., 2016). The NGAC V2 includes full-suite of aerosols using near-
real-time smoke emissions from satellite fire products. The NGAC upgrade will produce total
AOD, allowing us to evaluate NGAC results beyond dust-dominated regions. Efforts are
underway to evaluate experimental NGAC V2 with other models (ICAP MME and GSFC’s
GEOQS-5), in-situ observations at AERONET sites throughout the globe, and aerosol retrievals
from multiple satellites, including MODIS, Visible Infrared Imaging Radiometer Suite (VIIRS)
and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). In this paper, only concise
model results are presented as the paper mainly provides the programmatic aspects of
NGAC development and implementation.”

Page 12, Line 19: “Figure 5 shows seasonal dust distributions over the subtropical Atlantic
region.” Is changed to “Figure 5 shows monthly-mean dust distributions over the subtropical
Atlantic region at different seasons.”

Page 13, Line 10: “two dust-prone stations” changed to “six stations”

Page 13, Line 18: The text is replaced by “Among the six stations included in the comparison,
three sites are located in dust-prone Sahara-Sahel region (Dakar, llorin, and Banizoumbou), one site
is located in dust-prone Middle East area (Sede Boker), and two sites are located in tropical Atlantic
Ocean region (Cape Verde and La Parguera). The Dakar site is located in Senegal, North Africa
near the dust source region. The llorin site, located in Guinea Savanna zone, experiences
dust and episodic smoke aerosols. The Banizoumhou site, located in the Sahel region, is

influenced predominantly by dust transport from the Sahara. For the two ocean sites, Cape



Verde is influenced by dust outflow from Saharan sources while La Parguera is influenced by
long-range transport of Saharan dust. The Middle East site, Sede Boker, is located in the
Negev desert of Israel and experiences mainly dust and urban aerosols. At these sites except
for llorin,”

Page 13, Line 24: The text is removed

Page 15, Line 2: The reference to Figure 8 is removed

Page 15, Line 6: Merge this paragraph with previous paragraph

Page 15, Line 19: “Figure 9” changed to “Figure 8”

Page 23: add “Lu, S., Wang, J., Bhattacharjee, P., Zhang, X., Kondragunta, S., da Silva, A.,
McQueen, J., Moorthi, S., Hou, Y., and Tallapragada, V.: The implementation of NEMS GFS
Aerosol Component (NGAC) version 2: Global aerosol forecasting at NCEP using satellite-
based smoke emissions, 5-8, Joint Center for Satellite Data Assimilation Quarterly, 53,
available at: http://www.jcsda.noaa.gov/news.php (last access: 24 April 2016),
doi;10.7289/V50C4SS7, 2016.

Page 34: Add Figures 6¢-6f

Page 36: Remove Figure 8

Page 37: Figure 9 is now Figure 8
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Abstract

The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS
GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with
NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing
5day dust forecasts at 1° x 1° resolution on a global scale, once per day at 00:00 Co-
ordinated Universal Time (UTC), since September 2012. This is the first global system
capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of
NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances
to NCEP operations, paving the way for NCEP to provide global aerosol products serv-
ing a wide range of stakeholders as well as to allow the effects of aerosols on weather
forecasts and climate prediction to be considered.

1 Introduction

Aerosols affect the energy balance of Earth’s atmosphere through the absorption
and scattering of solar and thermal radiation (Mitchell, 1971). Aerosols also affect
Earth’s climate through their effects on cloud microphysics, reflectance, and precipi-
tation (Twomey, 1974; Albrecht, 1989; Jones et al., 1994; Lohmann et al., 2000). In ad-
ditional-to-medulate Earth’s climate and hydrological cycle (Ramanathan et al., 2001),
aerosols are important for atmospheric chemistry, the biosphere, and public health.
Aerosols can be viewed in their role as air pollutants because of their adverse health
effects (Pdschl, 2005). Long range transport of aerosols can affect the air quality and
visibility far from the source regions (Prospero, 1999; Jaffe et al., 2003; Colarco et al.,
2004). In addition, aerosols may play a significant role in atmospheric oxidation pro-
cesses (Andreae and Crutzen, 1997; Dickerson et al., 1997). Large amount of mineral
dust are deposited to the oceans (Duce et al., 1991; Prospero et al., 1996) and the
atmospheric input is found to be important for marine productivity (Chen et al., 2007).
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While the importance of aerosols on climate has long been established, it is only
recently that the aerosol effects are being increasingly recognized as important for
weather predictions (Perez et al., 2006; Mulcahy et al., 2014). Haywood et al. (2005)
shows that the neglect of the radiative effects of mineral dust leads to systematic biases
in the top-of-the-atmosphere radiative budget in the UK Met Office (UKMO) numerical
weather prediction (NWP) model. By prescribing updated aerosol climatology in the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) NWP model, a shift in
the African Easterly Jet (AEJ) in better agreement with observations is demonstrated
in Tompkins et al. (2005) and improvements in local medium-range forecast skills and
global seasonal-mean are shown in Rodwell and Jung (2008). A number of studies
have suggested that aerosols can significantly impact severe weather, such as inten-
sifying Pacific storm track (Zhang et al., 2007; Wang et al., 2014), modifying hurricane
and tropical cyclones (Rosenfeld et al., 2012; Herbener et al., 2014), affecting deep
convective storms and tornado intensity in the US (Wang et al., 2009; Saide et al.,
2015), and enhancing catastrophic floods in Southwest China (Fan et al., 2015).

Despite recent progress in atmospheric aerosol modeling, the physical processes
crucial for modeling aerosol effects are either poorly represented or outright missing
in National Centers for Environmental Prediction (NCEP) global models. The NCEP’s
Global Forecast System (GFS) is the cornerstone of NCEP’s operational production
suite of numerical guidance. The atmospheric forecast model used in the GFS is global
spectrum model (GSM) with a comprehensive physics suite (see the GFS webpage
at http://www.emc.ncep.noaa.gov/GFS/doc.php). Until now, the model only considers
aerosol radiative effects and the aerosol distributions are prescribed based on a global
climatological aerosol database (Hess et al., 1998).

Efforts to develop prognostic aerosol capability in NCEP global models have been
underway in the last few years, which in turn is part of NCEP’s modeling development
efforts toward a unified modeling framework. Specifically, NCEP is developing NOAA
Environmental Modeling System (NEMS) as its next-generation operational system
(Black et al., 2007, 2009) and has collaborated with NASA/Goddard Space Flight Cen-
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ter (GSFC) to develop NEMS GFS Aerosol Component (NGAC) for predicting the
tribution of atmospheric aerosols (Lu et al., 2010, 2013). Fhe-NGAC consists of
key modeling components: (1) the GFS within the NEMS architecture (NEMS (
and (2) the on-line aerosol module based on Goddard Chemistry Aerosol Radi:

Line 2, Insert one sentence
"NGAC is the first on-line
(interactive) atmospheric

and Transport (GOCART) model.
NGAC Version 1.0 (NGAC V1.0) has
at NCEP since September 2012. It pre
of dust aerosols with global coverage.
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Line 5, add one sentence at the end of this paragraph: The
advantages for taking the so-called on-line approach include: (1)
consistency: no spatial -temporal interpolation and the use of the
same physics parameterization, (2) efficiency: lower overall CPU
costs and easier data management, and (3) interaction: allows for

by taking into account of aerosol effectsormrrauramomarocouus; (&) U MpTove uTe
handling of satellite observations by properly accounting for aerosol effects during the
assimilation procedure, (3) to provide aerosol (lateral and upper) boundary conditions
for regional air quality predictions; and (4) to provide global aerosol products to meet
the stakeholder needs such as air quality, UV index, visibility, ocean productivity, solar
energy production, and sea surface temperature (SST) retrievals.

Aerosol modeling, traditionally serving regional air quality and climate communities,
has seen rapid development at several operational and research NWP centers in the
last few years (Reid et al., 2011; Benedetti et al., 2011, 2014). This includes NCEP (dis-
cussed in this paper), ECMWF (Benedetti et al., 2009; Morcrette et al., 2009), UKMO
(Woodward, 2001, 2011), Naval Research Laboratory (NRL, Zhang et al., 2008; West-
phal et al., 2009), NASA Global Modeling and Assimilation Office (GMAO, Colarco
et al., 2010), Japan Meteorological Agency (JMA, Tanaka et al., 2003), and Barcelona
Supercomputing Centre (BSC, Perez et al., 2011; Basart et al., 2012). In addition, the
efforts to develop regional and global multi-model ensemble for aerosol prediction are
underway (Sessions et al., 2015), offering aerosol products for research applications
and eventually operational use. The implementation of NGAC V1.0 at NCEP not only
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contributes to the NCEP production suite but also to the international efforts for multi-
model ensembles.

In this paper, we describe the development and implementation of NGAC V1.0 at
NCEP. In Sect. 2, we describe the model configuration. In Sect. 3, we present the oper-
ational implementation of NGAC V1.0. In Sect. 4, we present the results of NGAC V1.0
forecasts and the comparisons to other global aerosol models and observations. In
Sect. 5, we demonstrate two examples of NGAC V1.0 applications. Section 6 provides
concluding remarks.

2 Model configuration
2.1 Atmospheric model: NEMS GFS

The efforts to develop a unified modeling framework to streamline the interaction
of forecast, analysis, and post-processing systems within NCEP have been under-
way since late 2000 (Black et al., 2007, 2009). Specifically, NCEP is developing
NEMS (http://www.emc.ncep.noaa.gov/index.php?branch=NEMS) with a component-
based architecture following the Earth System Modeling Framework (ESMF, see http:
//www.earthsystemmodeling.org). The ESMF is a community effort to promote the ex-
change and reusability of earth system modeling components and to facilitate faster
knowledge transfer and technology adaptation. The ESMF collaboration involves many
of the major climate, weather and data assimilation efforts in the United States, includ-
ing NOAA/NCEP, NASA/GMAO, NRL, NOAA Geophysical Fluid Dynamics Laboratory
(GFDL), and the National Center for Atmospheric Research (NCAR).

The development of NEMS aims to develop a common superstructure for NCEP
production suite. Other motivations include: (1) to reduce overhead costs and provide
a flexible infrastructure in the operational environment, (2) to modularize large pieces
of the systems with ESMF components and interfaces, and (3) to enable NOAA con-
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tribution to the National Unified Operational Prediction Capability (NUOPC) with Navy
and Air Force.

The NEMS is organized into collections of components with standardized interfaces,
arranged in a hierarchical structure. Currently the GFS, the B-grid version of the Non-
hydrostatic Multi-scale Model (NMM-B), and the Flow-following finite-volume Icosahe-
dral Model (FIM) have been placed under the NEMS-atmosphere framework. A unified
parallelized |/O package is developed to handle the synchronous production and writ-
ing of history files, which in turn has been linked with NCEP’s unified post-processing
system. The FIM atmosphere model is developed by NOAA Earth System Research
Laboratory (ESRL) for global weather prediction research. The NMM-B model, devel-
oped by NCEP, is the forecast model for the North American Meso-scale Forecast Sys-
tem (NAM) providing operational meso-scale weather forecasts since October 2011.
The NEMS version of GFS (referred to as NEMS GFS in this paper) consists of the
same spectral dynamic core and physics parameterizations as the operational GFS
with the following exceptions. First, GFS atmospheric model has been restructured to
include separate components for the model's dynamics and physics as well as a cou-
pler through which information is passed between the dynamics and physics. Despite
extensive use of ESMF superstructure, infrastructure and utilities in NEMS, the under-
lying science code, however, remains the same as the operational GFS. Second, en-
hanced 1/0 and post-processing capabilities are introduced in the NEMS GFS. These
include an option to output history files in native Gaussian grids instead of spectral
grids and an option to run model integration in parallel to post-processing. Third, GFS
physics parameterizations have been re-structured with a flexible interface, allowing it
to be called by other dynamic cores. This option to assemble GFS physics as the NEMS
unified physics package again reflects NCEP’s modeling strategy toward a unified and
yet flexible modeling infrastructure.

The NEMS has been under active development. Efforts to incorporate non-
atmospheric components, e.g., ocean, wave, and sea ice models, are underway. The
coupling infrastructure is based on the ESMF and NUOPC Layer code and conven-

6
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tions. Development is also made to enable emerging environmental prediction capa-
bilities. The aerosol forecasting capability, NGAC, discussed in this paper is virtually
NEMS GFS with the prognostic aerosol option turned on. Parallel efforts are underway
to extend NEMS GFS to 600km to model dynamical, physical, and chemical inter-
actions between the lower atmosphere and the upper atmosphere Jihe—devetepmeht

2.2 Aerosol model: GOCART

Funded mainly by NASA Earth Science programs, the GOCART model was developed
to simulate atmospheric aerosols (including sulfate, black carbon (BC), organic carbon
(OC), dust, and sea-salt), and sulfur gases (Chin et al., 2000, 2002, 2003, 2004, 2007,
2009; Ginoux et al., 2001, 2004; Bian et al., 2010; Colarco et al., 2010; Kim et al.,
2013). Originally GOCART was developed as an off-line Constituent Transport Model
(CTM), driven by assimilated meteorological fields from the Goddard Earth Observ-
ing System Data Assimilation System (GEOS DAS, e.g., Chin et al., 2002). As part of
the GEOS Version 4 (GEOS-4) atmospheric model development at NASA GMAO, an
ESMF compliant GOCART grid component has been developed (Colarco et al., 2010).
When running within versions 4 and 5 of GEOS (GEOS-4/5), the GOCART component
provides aerosol processes such as emissions, sedimentation, dry and wet deposi-
tion (Fig. 1). Dynamic sources (wind-speed dependent) are considered for DMS, dust
and sea salt. Emissions for SO, and carbonaceous aerosols arise from nature and
anthropogenic sources, including biogenic, biofuel, anthropogenic, and biomass burn-
ing emissions. Aerosol chemistry currently uses prescribed OH, H,O,, and NOj fields
for DMS and SO, oxidations. Aerosol sinks include wet removal (scavenging and rain-
out) and dry deposition (gravitational sedimentation and surface uptake). Advection,
turbulent and convective transport is outside the scope of the GOCART component,
being instead provided by the host atmospheric model. Unlike off-line CTM, this on-line
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aerosol module accurately utilizes winds, convective mass flux, and eddy diffusivity
valid at each time step, without the need for temporal or spatial interpolation of any
kind.

Research and development efforts have further enhanced GOCART modeling capa-
bilities. The transition from off-line to on-line coupling approach mentioned above is an
example. In addition, the GOCART grid component now has the option to ingest daily
biomass burning emissions from the Quick Fire Emission Dataset (QFED, Darmenov
and da Silva, 2015). QFED emissions are based on fire radiative power retrievals from
MODIS (Moderate Resolution Imaging Spectroradiometer, on board Aqua and Terra
satellites). The inclusion of such observation-based, time-dependent emissions is im-
portant for the model to capture the large temporal-spatial variation of biomass burning
emissions.

For dust, a topographic source function and mobilization scheme following Ginoux
et al. (2001) is used. The dust emission parameterization depends on 10 m wind, the
threshold velocity of wind erosion, and dust source function. The threshald velocitv of
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2.3 Coupling NEMS GFS with GOCART

The GOCART grid component originally developed for GEOS-4/5 is fairly independent
of the host atmospheric model, encapsulating the basic aerosol production and loss
functionality. Consistent with standard ESMF architecture, the interfaces linking GO-
CART and NEMS GFS have been isolated into coupler components. Figure 3 shows
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3 NGAC V1.0 operational implementation

A phased approach is used to manage the operational implementation of NGAC at
NCEP. The first phase is to produce dust-only guidance, the second phase is to pro-
duce the full suite of aerosol forecasts (including dust, sea salt, sulfate, and carbona-
ceous aerosols), and the third phase is to produce aerosol analysis using NGAC fore-
casts as first guess. Only the initial deployment undertaken in 2012 is discussed in thig

paper.
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in the near term and will be changed once the prognostic aerosol capability reaches

desired maturity level.
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Comparisons between Observations and Models (AeroCom) model intercomparison
studies (http://aerocom.met.no/aerocomhome.html). The three GOCART results are
from on-line GEOS4-GOCART (Colarco et al., 2010) and off-line GOCART CTM driven
by two versions of GEOS DAS meteorological analyses (Chin et al., 2009; Ginoux et al.,
2001).

Large difference (diversity) are found in emissions, burdens, and lifetimes within the
AeroCom models, which is primarily related to the differences in the emission parame-
terizations, the particles sizes, the meteorological fields and model configuration used
in the individual models (Textor et al., 2006). The simulated total dust emissions, an-
nual burden, and lifetime in NGAC V1.0 are within the range of the AeroCom models.
The annual emissions are similar in NGAC V1.0 and on-line GEOS4-GOCART (1980
vs. 1970 Tgyr'1). In NGAC V1.0, the lifetime is about one and a half day shorter than
in on-line GEOS4-GOCART (4.3days vs. 5.85days) and the annual burden is about
30 % lower (21.9 vs. 31.6 Tg). The results suggest more efficient removal processes in
NGAC V1.0 than in GEOS4.

4.2 Aerosol optical depth
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While elevated dust off the western Africa coast is persistent through the seasons,
the models and satellite observations show a clear latitudinal shift of the dust plume
over the tropical Atlantic from winter to summer. This seasonal shift has been attributed
to the movements of the Inter Tropical Convergence Zone (ITCZ) which occupies its
southernmost location in winter and northernmost location in summer (Huser et al.,
1997; Ginoux et al., 2001). The results are consistent with the seasonal cycle dis-
cussed in Knippertz and Todd (2012) in which detailed descriptions of meteorological
processes controlling the emissions and transport of African dust are provided.

The comparison of model forecasts to L1.5 AErosol RObotic NETuark (AERONETY
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window centered at NGAC synoptic output times of 03:00, 06:00, 09:00, 12:00, 15:00,
18:00, 21:00, and 24:00 UTC. The calculation of monthly mean requires a minimum
of 5days with valid values. We show the comparison of the model AOD to AERONET
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5 NGAC applications

NGAC V1.0 provides 2- and 3-dimensional aerosol products at 1° x 1° resolution on
a global scale. Potential usage for these aerosol products includes, but is not limited
to: AOD at 340 nm for UV index forecasts; AOD at 550 nm for multi-model ensem-
ble and aerosol data assimilation; AOD at 860 nm for Advanced Very High Resolution
Radiometer (AVHRR) SST retrievals; AOD at 11.1 um for the Atmospheric Infrared
Sounder (AIRS) temperature retrievals; three dimensional dust mixing ratios for atmo-
spheric correction; dust column mass density, emission and removal fluxes for aerosol
budget study; dust deposition fluxes for ocean productivity and dust surface mass con-
centrations for air quality. Here we present two examples of NGAC product applications.

5.1 Multi-model ensemble

The International Cooperative for Aerosol Prediction (ICAP), consisting of forecast-
ing center model developers and remote sensing data providers, began meeting in
April 2010 to discuss issues relevant to the operational aerosol forecasting (Benedetti,
2011; Reid et al., 2011). ICAP members created a developmental global multiple-model
ensemble (MME) to explore probabilistic aerosol prediction and assess relative differ-
ences among models (Sessions et al., 2015). Consensus ICAP forecasting began in
early 2011 and the experimental ICAP-MME became quasi-operational for public re-
lease in 2015. Current ICAP MME products include total AOD ensemble from four com-
plete aerosol forecast models from NRL, ECMWF, JMA, and GMAO and three dust-only
models from NCEP, UKMO, and BSC. Figure 7 shows the dust AOD from ICAP-MME
(with 7 members) and NGAC V1.0, valid at 12:00 UTC 4 July 2015. Spatial pattern of
dust loading from NGAC V1.0 is consistent with the ICAP-MME, with elevated dust
AOD located in the Sahara, the Arabian Peninsula, and Asia as well as evident long
range trans-Atlantic transport of Saharan dust reaching southeastern United States.
Dust forecasts from NGAC V1.0 also contributes the regional multi-model ensemble
produced by WMO Sand and Dust Storm Warning Advisory and Assessment System
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6 Conclusions

NASA/GMAQO’s GOCART aerosol module has been implemented into NEMS GFS at
NCEP through NOAA/NCEP-NASA/GSFC collaborations. While NGAC has the capa-
bility to forecast dust, sulfate, sea salt, and carbonaceous aerosols, the initial phase-
one implementation is to establish dust-only numerical guidance. NGAC Version 1.0,
implemented in September 2012, provides the first operational global dust forecasting
capability at NOAA. Its AOD product has been incorporated into global and regional
multi-model ensemble products (ICAP and WMO SDS-WAS, respectively) in quasi-
operational mode.

The NGAC V1.0 dust forecasts are routinely verified using AOD observations from
space-borne MODIS and ground-based AERONET. NGAC V1.0 results are also com-
pared with those from other similar aerosol models. It is shown that the NGAC V1.0
simulated spatial distributions and seasonal variations are consistent with the observa-
tions. In addition, the emissions, burdens, and lifetime of dust aerosols in NGAC V1.0
are within the range of similar aerosol models.

While the initial NGAC implementation is limited in its scope (a dust-only system
without aerosol data assimilation), it laid the ground work for various aerosol-related
applications. Future operational benefits associated with the global aerosol forecasting
system at NOAA includes:

— Enable operational global short-range multi-species aerosol prediction.

— Provide the first step toward an operational aerosol data assimilation capability at
NCEP.

— Allow aerosol impacts on medium range weather forecasts to be considered.

— Provide global aerosol information for various applications, including satellite radi-
ance data assimilation, satellite retrievals, SST analysis, and UV-Index forecasts.
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— Allow NCEP to explore aerosol-cloud-climate interaction in the Climate Forecast
System (CFS), as GFS is the atmosphere model of the CFS.

— Provide lateral aerosol boundary conditions for regional aerosol forecast system.

Appendix A: NGAC output

Output files and their contents for NGAC V1.0 (Q4FY12 Implementation)

(1) ngac.t00z.a2df$HR, where HR = 00, 03, ..., 120:
2-D products including
AER_OPT_DEP_at550: dust aerosol optical depth at 550 nm (dimensionless)
CR_AER_SFC_MASS_CON: coarse mode surface mass concentration (kg m_3)
FN_AER_SFC_MASS_CON: fine mode surface mass concentration (kg m'3)
CR_AER_COL_MASS_DEN: coarse mode column mass density (kg m‘z)
FN_AER_COL_MASS_DEN: fine mode column mass density (kg m'2)
DUST_EMISSION_FLUX: dust emission fluxes (kgm™2s™")
DUST_SEDIMENTATION_FLUX: dust sedimentation fluxes (kgm™2s™")
DUST_DRY_DEPOSITION_FLUX: dust dry deposition fluxes (kg m—2 3‘1)
DUST_WET_DEPOSITION_FLUX: dust wet deposition fluxes (kgm™2s™")

(2) ngac.t00z.a3df$HR, where HR = 00, 03, ..., 120:
3-D products at model levels including
PRES: pressure (Pa)
RH: relative humidity (%)
TEMP: temperature (K)
DUST?1: dust bin1 (0.1—1 micron) mixing ratio (kg kg‘1)
DUST2: dust bin2 (1-1.8 micron) mixing ratio (kg kg‘1)
DUSTS3: dust bin3 (1.8—3 micron) mixing ratio (kg kg‘1)
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DUST4: dust bin4 (3—6 micron) mixing ratio (kg kg‘1)
DUSTS5: dust bin5 (6—10 micron) mixing ratio (kg kg'1)

(3) ngac.t00z.aod_$NM, where NM = 11p1um, 1p63um, 340, 440, 550, 660, 860 nm:
Aerosol optical depth (dimensionless) at specified wavelengths (11.1, 1.63, 0.34, 0.44,
0.55, 0.66, and 0.86 micron)

Data and code availability

Products from the NCEP operational production suite are distributed and accessible
to general users, free of charge, in real-time (typically no later than 3 h after the data
are created) at NOAA Operational Model Archive and Distribution System (NOMADS).
Source code as well as relevant run scripts, parameters, and fixed field files can be
obtained from NCEP Central Operations (NCO) ftp site at the following location: http:
//'www.nco.ncep.noaa.gov/pmb/codes/nwprod/ngac.v1.0.0.

The NGAC V1.0 output is available in GRIdded Binary Version 2 (GRIB2) format on
1° x 1° degree grid, with 3 hourly output out to 120 h. Users can access the NGAC V1.0
digital products from NOMADS at the following location: http://nomads.ncep.noaa.gov/
pub/data/nccf/com/ngac.

NGAC V1.0 output instantaneous values of 3-dimensional dust mixing ratios for five
particle sizes with effective radius at 1, 1.8, 3, 6, and 10 micron. The model also output
time-averaged 2-dimensional diagnostics fields relevant to aerosol budget, such as
emission fluxes. These aerosol fields are written out at GFS native Gaussian grid, and
post-processed to GRIB2 format and regular 1° x 1° degree grid. Dust AOD at 550 nm
and other selected spectral is calculated from instantaneous dust distributions with
aerosol optical properties based on Chin et al. (2002). NGAC V1.0 GRIB2 output files
and their contents are listed in the Appendix.
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Table 2. Statistic results comparing CMAQ model results with EPA AIRNOW PM, ; The mean
bias (MB) and correlation (R) are calculated for the baseline run using static LBCs and the

experimental run using NGAC LBCs.

Domain/Period

CMAQ Baseline

CMAQ Experimental

Whole domain, 1 Jul-3 Aug

South of 38° N, East of 105° W 1 Jul-3 Aug
Whole domain, 18-30 Jul

South of 38° N, East of 105° W 18-30 Jul

MB=-2.82, R =0.42
MB = -4.54, R =0.37
MB=-2.79, R = 0.31
MB=4.79, R =0.27

MB=-0.88, # =0.44
MB=-1.76, R = 0.41
MB = -0.33, R =0.37
MB = -0.46, R = 0.41
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Figure 1. Schematic summary of the GOCART aerosol module as adapted and being imple-

mented in GEOS-4/5 at GMAO and NEMS GFS at NCEP.
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Figure 2. The dust source function or probability of dust uplifting, mapped to GFS T126 reso-
lution, used in NGAC V1.0.
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Figure 3. Primary integration runstream of NGAC.
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Figure 5. Comparisons of monthly-mean MODIS total AOD (left), NGAC V1.0 dust AOD (mid-
dle), and GEOS5 dust AOD (right) at 550 nm for October 2012, January 2013, February 2013,

and July 2013 periods.
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Figure 6. (a) NGAC V1.0 vs. L1.5 AERONET 550-nm AOD comparisons at Cape Verde for
the 2013-2014 period: a time series, scatterplot, and fractional distribution histogram. In the
time series, the model monthly means and standard deviation about the mean are shown in
the black symbols and lines. The AERONET monthly means and standard deviation about the
mean are shown in the red shading and orange bars. In the PDF plot, the model is indicated by
the black symbols and line, and the AERONET observations are indicated by orange bars. We
thank Didier Tanre for the efforts in establishing and maintaining Cape Verde and Dakar sites.
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Figure 7. Dust AOD valid at 12:00 UTC 4 July 2015 for ICAP multi-model ensemble (top) and
NGAC V1.0 (bottom). The ensemble is based on 7 members, including the models from NCEP
(NGAC V1.0), GMAO, ECMWF, NRL, JMA, UKMO, and BSC. These figures are produced by
the Naval Research Laboratory.
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Figure 8. Dust AOD regional ensemble products valid at 12:00 UTC 4 July 2015. The multi-
model products describing centrality (multi-model median and mean) and spread (standard
deviation and range of variation) are generated from multiple global and regional forecast mod-
els, including NGAC V1.0. This figure is produced by the Regional Center for Northern Africa,
Middle East and Europe of the WMO SDS-WAS program.
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Abstract

The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS
GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with
NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing
5day dust forecasts at 1° x 1° resolution on a global scale, once per day at 00:00 Co-
ordinated Universal Time (UTC), since September 2012. This is the first global system
capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of
NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances
to NCEP operations, paving the way for NCEP to provide global aerosol products serv-
ing a wide range of stakeholders as well as to allow the effects of aerosols on weather
forecasts and climate prediction to be considered.

1 Introduction

Aerosols affect the energy balance of Earth’s atmosphere through the absorption
and scattering of solar and thermal radiation (Mitchell, 1971). Aerosols also affect
Earth’s climate through their effects on cloud microphysics, reflectance, and precipi-
tation (Twomey, 1974; Albrecht, 1989; Jones et al., 1994; Lohmann et al., 2000). In ad-
ditional-to-medulate Earth’s climate and hydrological cycle (Ramanathan et al., 2001),
aerosols are important for atmospheric chemistry, the biosphere, and public health.
Aerosols can be viewed in their role as air pollutants because of their adverse health
effects (Pdschl, 2005). Long range transport of aerosols can affect the air quality and
visibility far from the source regions (Prospero, 1999; Jaffe et al., 2003; Colarco et al.,
2004). In addition, aerosols may play a significant role in atmospheric oxidation pro-
cesses (Andreae and Crutzen, 1997; Dickerson et al., 1997). Large amount of mineral
dust are deposited to the oceans (Duce et al., 1991; Prospero et al., 1996) and the
atmospheric input is found to be important for marine productivity (Chen et al., 2007).
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While the importance of aerosols on climate has long been established, it is only
recently that the aerosol effects are being increasingly recognized as important for
weather predictions (Perez et al., 2006; Mulcahy et al., 2014). Haywood et al. (2005)
shows that the neglect of the radiative effects of mineral dust leads to systematic biases
in the top-of-the-atmosphere radiative budget in the UK Met Office (UKMO) numerical
weather prediction (NWP) model. By prescribing updated aerosol climatology in the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) NWP model, a shift in
the African Easterly Jet (AEJ) in better agreement with observations is demonstrated
in Tompkins et al. (2005) and improvements in local medium-range forecast skills and
global seasonal-mean are shown in Rodwell and Jung (2008). A number of studies
have suggested that aerosols can significantly impact severe weather, such as inten-
sifying Pacific storm track (Zhang et al., 2007; Wang et al., 2014), modifying hurricane
and tropical cyclones (Rosenfeld et al., 2012; Herbener et al., 2014), affecting deep
convective storms and tornado intensity in the US (Wang et al., 2009; Saide et al.,
2015), and enhancing catastrophic floods in Southwest China (Fan et al., 2015).

Despite recent progress in atmospheric aerosol modeling, the physical processes
crucial for modeling aerosol effects are either poorly represented or outright missing
in National Centers for Environmental Prediction (NCEP) global models. The NCEP’s
Global Forecast System (GFS) is the cornerstone of NCEP’s operational production
suite of numerical guidance. The atmospheric forecast model used in the GFS is global
spectrum model (GSM) with a comprehensive physics suite (see the GFS webpage
at http://www.emc.ncep.noaa.gov/GFS/doc.php). Until now, the model only considers
aerosol radiative effects and the aerosol distributions are prescribed based on a global
climatological aerosol database (Hess et al., 1998).

Efforts to develop prognostic aerosol capability in NCEP global models have been
underway in the last few years, which in turn is part of NCEP’s modeling development
efforts toward a unified modeling framework. Specifically, NCEP is developing NOAA
Environmental Modeling System (NEMS) as its next-generation operational system
(Black et al., 2007, 2009) and has collaborated with NASA/Goddard Space Flight Cen-

3
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ter (GSFC) to develop NEMS GFS Aerosol Component (NGAC) for predicting the
tribution of atmospheric aerosols (Lu et al., 2010, 2013). Fhe-NGAC consists of
key modeling components: (1) the GFS within the NEMS architecture (NEMS (
and (2) the on-line aerosol module based on Goddard Chemistry Aerosol Radi:

Line 2, Insert one sentence
"NGAC is the first on-line
(interactive) atmospheric

and Transport (GOCART) model.
NGAC Version 1.0 (NGAC V1.0) has
at NCEP since September 2012. It pre
of dust aerosols with global coverage.
system in turn provides a first step tow
NCEP. The rationale for developing the @

capabilities at NCEP includes: (1) to imp aerosol feedback to meteorology

Line 5, add one sentence at the end of this paragraph: The
advantages for taking the so-called on-line approach include: (1)
consistency: no spatial -temporal interpolation and the use of the
same physics parameterization, (2) efficiency: lower overall CPU
costs and easier data management, and (3) interaction: allows for

by taking into account of aerosol effectsormrrauramomarocouus; (&) U MpTove uTe
handling of satellite observations by properly accounting for aerosol effects during the
assimilation procedure, (3) to provide aerosol (lateral and upper) boundary conditions
for regional air quality predictions; and (4) to provide global aerosol products to meet
the stakeholder needs such as air quality, UV index, visibility, ocean productivity, solar
energy production, and sea surface temperature (SST) retrievals.

Aerosol modeling, traditionally serving regional air quality and climate communities,
has seen rapid development at several operational and research NWP centers in the
last few years (Reid et al., 2011; Benedetti et al., 2011, 2014). This includes NCEP (dis-
cussed in this paper), ECMWF (Benedetti et al., 2009; Morcrette et al., 2009), UKMO
(Woodward, 2001, 2011), Naval Research Laboratory (NRL, Zhang et al., 2008; West-
phal et al., 2009), NASA Global Modeling and Assimilation Office (GMAO, Colarco
et al., 2010), Japan Meteorological Agency (JMA, Tanaka et al., 2003), and Barcelona
Supercomputing Centre (BSC, Perez et al., 2011; Basart et al., 2012). In addition, the
efforts to develop regional and global multi-model ensemble for aerosol prediction are
underway (Sessions et al., 2015), offering aerosol products for research applications
and eventually operational use. The implementation of NGAC V1.0 at NCEP not only
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contributes to the NCEP production suite but also to the international efforts for multi-
model ensembles.

In this paper, we describe the development and implementation of NGAC V1.0 at
NCEP. In Sect. 2, we describe the model configuration. In Sect. 3, we present the oper-
ational implementation of NGAC V1.0. In Sect. 4, we present the results of NGAC V1.0
forecasts and the comparisons to other global aerosol models and observations. In
Sect. 5, we demonstrate two examples of NGAC V1.0 applications. Section 6 provides
concluding remarks.

2 Model configuration
2.1 Atmospheric model: NEMS GFS

The efforts to develop a unified modeling framework to streamline the interaction
of forecast, analysis, and post-processing systems within NCEP have been under-
way since late 2000 (Black et al., 2007, 2009). Specifically, NCEP is developing
NEMS (http://www.emc.ncep.noaa.gov/index.php?branch=NEMS) with a component-
based architecture following the Earth System Modeling Framework (ESMF, see http:
//www.earthsystemmodeling.org). The ESMF is a community effort to promote the ex-
change and reusability of earth system modeling components and to facilitate faster
knowledge transfer and technology adaptation. The ESMF collaboration involves many
of the major climate, weather and data assimilation efforts in the United States, includ-
ing NOAA/NCEP, NASA/GMAO, NRL, NOAA Geophysical Fluid Dynamics Laboratory
(GFDL), and the National Center for Atmospheric Research (NCAR).

The development of NEMS aims to develop a common superstructure for NCEP
production suite. Other motivations include: (1) to reduce overhead costs and provide
a flexible infrastructure in the operational environment, (2) to modularize large pieces
of the systems with ESMF components and interfaces, and (3) to enable NOAA con-
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tribution to the National Unified Operational Prediction Capability (NUOPC) with Navy
and Air Force.

The NEMS is organized into collections of components with standardized interfaces,
arranged in a hierarchical structure. Currently the GFS, the B-grid version of the Non-
hydrostatic Multi-scale Model (NMM-B), and the Flow-following finite-volume Icosahe-
dral Model (FIM) have been placed under the NEMS-atmosphere framework. A unified
parallelized |/O package is developed to handle the synchronous production and writ-
ing of history files, which in turn has been linked with NCEP’s unified post-processing
system. The FIM atmosphere model is developed by NOAA Earth System Research
Laboratory (ESRL) for global weather prediction research. The NMM-B model, devel-
oped by NCEP, is the forecast model for the North American Meso-scale Forecast Sys-
tem (NAM) providing operational meso-scale weather forecasts since October 2011.
The NEMS version of GFS (referred to as NEMS GFS in this paper) consists of the
same spectral dynamic core and physics parameterizations as the operational GFS
with the following exceptions. First, GFS atmospheric model has been restructured to
include separate components for the model's dynamics and physics as well as a cou-
pler through which information is passed between the dynamics and physics. Despite
extensive use of ESMF superstructure, infrastructure and utilities in NEMS, the under-
lying science code, however, remains the same as the operational GFS. Second, en-
hanced 1/0 and post-processing capabilities are introduced in the NEMS GFS. These
include an option to output history files in native Gaussian grids instead of spectral
grids and an option to run model integration in parallel to post-processing. Third, GFS
physics parameterizations have been re-structured with a flexible interface, allowing it
to be called by other dynamic cores. This option to assemble GFS physics as the NEMS
unified physics package again reflects NCEP’s modeling strategy toward a unified and
yet flexible modeling infrastructure.

The NEMS has been under active development. Efforts to incorporate non-
atmospheric components, e.g., ocean, wave, and sea ice models, are underway. The
coupling infrastructure is based on the ESMF and NUOPC Layer code and conven-

6
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tions. Development is also made to enable emerging environmental prediction capa-
bilities. The aerosol forecasting capability, NGAC, discussed in this paper is virtually
NEMS GFS with the prognostic aerosol option turned on. Parallel efforts are underway
to extend NEMS GFS to 600km to model dynamical, physical, and chemical inter-
actions between the lower atmosphere and the upper atmosphere Jihe—devetepmeht

2.2 Aerosol model: GOCART

Funded mainly by NASA Earth Science programs, the GOCART model was developed
to simulate atmospheric aerosols (including sulfate, black carbon (BC), organic carbon
(OC), dust, and sea-salt), and sulfur gases (Chin et al., 2000, 2002, 2003, 2004, 2007,
2009; Ginoux et al., 2001, 2004; Bian et al., 2010; Colarco et al., 2010; Kim et al.,
2013). Originally GOCART was developed as an off-line Constituent Transport Model
(CTM), driven by assimilated meteorological fields from the Goddard Earth Observ-
ing System Data Assimilation System (GEOS DAS, e.g., Chin et al., 2002). As part of
the GEOS Version 4 (GEOS-4) atmospheric model development at NASA GMAO, an
ESMF compliant GOCART grid component has been developed (Colarco et al., 2010).
When running within versions 4 and 5 of GEOS (GEOS-4/5), the GOCART component
provides aerosol processes such as emissions, sedimentation, dry and wet deposi-
tion (Fig. 1). Dynamic sources (wind-speed dependent) are considered for DMS, dust
and sea salt. Emissions for SO, and carbonaceous aerosols arise from nature and
anthropogenic sources, including biogenic, biofuel, anthropogenic, and biomass burn-
ing emissions. Aerosol chemistry currently uses prescribed OH, H,O,, and NOj fields
for DMS and SO, oxidations. Aerosol sinks include wet removal (scavenging and rain-
out) and dry deposition (gravitational sedimentation and surface uptake). Advection,
turbulent and convective transport is outside the scope of the GOCART component,
being instead provided by the host atmospheric model. Unlike off-line CTM, this on-line

7
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aerosol module accurately utilizes winds, convective mass flux, and eddy diffusivity
valid at each time step, without the need for temporal or spatial interpolation of any
kind.

Research and development efforts have further enhanced GOCART modeling capa-
bilities. The transition from off-line to on-line coupling approach mentioned above is an
example. In addition, the GOCART grid component now has the option to ingest daily
biomass burning emissions from the Quick Fire Emission Dataset (QFED, Darmenov
and da Silva, 2015). QFED emissions are based on fire radiative power retrievals from
MODIS (Moderate Resolution Imaging Spectroradiometer, on board Aqua and Terra
satellites). The inclusion of such observation-based, time-dependent emissions is im-
portant for the model to capture the large temporal-spatial variation of biomass burning
emissions.

For dust, a topographic source function and mobilization scheme following Ginoux
et al. (2001) is used. The dust emission parameterization depends on 10 m wind, the
threshold velocity of wind erosion, and dust source function. The threshald velocitv of
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2.3 Coupling NEMS GFS with GOCART

The GOCART grid component originally developed for GEOS-4/5 is fairly independent
of the host atmospheric model, encapsulating the basic aerosol production and loss
functionality. Consistent with standard ESMF architecture, the interfaces linking GO-
CART and NEMS GFS have been isolated into coupler components. Figure 3 shows
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3 NGAC V1.0 operational implementation

A phased approach is used to manage the operational implementation of NGAC at
NCEP. The first phase is to produce dust-only guidance, the second phase is to pro-
duce the full suite of aerosol forecasts (including dust, sea salt, sulfate, and carbona-
ceous aerosols), and the third phase is to produce aerosol analysis using NGAC fore-
casts as first guess. Only the initial deployment undertaken in 2012 is discussed in thig

paper.
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in the near term and will be changed once the prognostic aerosol capability reaches

desired maturity level.
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Comparisons between Observations and Models (AeroCom) model intercomparison
studies (http://aerocom.met.no/aerocomhome.html). The three GOCART results are
from on-line GEOS4-GOCART (Colarco et al., 2010) and off-line GOCART CTM driven
by two versions of GEOS DAS meteorological analyses (Chin et al., 2009; Ginoux et al.,
2001).

Large difference (diversity) are found in emissions, burdens, and lifetimes within the
AeroCom models, which is primarily related to the differences in the emission parame-
terizations, the particles sizes, the meteorological fields and model configuration used
in the individual models (Textor et al., 2006). The simulated total dust emissions, an-
nual burden, and lifetime in NGAC V1.0 are within the range of the AeroCom models.
The annual emissions are similar in NGAC V1.0 and on-line GEOS4-GOCART (1980
vs. 1970 Tgyr'1). In NGAC V1.0, the lifetime is about one and a half day shorter than
in on-line GEOS4-GOCART (4.3days vs. 5.85days) and the annual burden is about
30 % lower (21.9 vs. 31.6 Tg). The results suggest more efficient removal processes in
NGAC V1.0 than in GEOS4.

4.2 Aerosol optical depth
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While elevated dust off the western Africa coast is persistent through the seasons,
the models and satellite observations show a clear latitudinal shift of the dust plume
over the tropical Atlantic from winter to summer. This seasonal shift has been attributed
to the movements of the Inter Tropical Convergence Zone (ITCZ) which occupies its
southernmost location in winter and northernmost location in summer (Huser et al.,
1997; Ginoux et al., 2001). The results are consistent with the seasonal cycle dis-
cussed in Knippertz and Todd (2012) in which detailed descriptions of meteorological
processes controlling the emissions and transport of African dust are provided.

The comparison of model forecasts to L1.5 AErosol RObotic NETuark (AERONETY

AOD at 550 nm for 2013-2014 period at twe-dust-prene statior| Line 10: changed
AERONET AOD at 550 nm is computed using logarithmic interp_t~ "=iv"

values at 440 and 675 nm. We bin the AERONET observations within one-hour time
window centered at NGAC synoptic output times of 03:00, 06:00, 09:00, 12:00, 15:00,
18:00, 21:00, and 24:00 UTC. The calculation of monthly mean requires a minimum
of 5days with valid values. We show the comparison of the model AOD to AERONET
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5 NGAC applications

NGAC V1.0 provides 2- and 3-dimensional aerosol products at 1° x 1° resolution on
a global scale. Potential usage for these aerosol products includes, but is not limited
to: AOD at 340 nm for UV index forecasts; AOD at 550 nm for multi-model ensem-
ble and aerosol data assimilation; AOD at 860 nm for Advanced Very High Resolution
Radiometer (AVHRR) SST retrievals; AOD at 11.1 um for the Atmospheric Infrared
Sounder (AIRS) temperature retrievals; three dimensional dust mixing ratios for atmo-
spheric correction; dust column mass density, emission and removal fluxes for aerosol
budget study; dust deposition fluxes for ocean productivity and dust surface mass con-
centrations for air quality. Here we present two examples of NGAC product applications.

5.1 Multi-model ensemble

The International Cooperative for Aerosol Prediction (ICAP), consisting of forecast-
ing center model developers and remote sensing data providers, began meeting in
April 2010 to discuss issues relevant to the operational aerosol forecasting (Benedetti,
2011; Reid et al., 2011). ICAP members created a developmental global multiple-model
ensemble (MME) to explore probabilistic aerosol prediction and assess relative differ-
ences among models (Sessions et al., 2015). Consensus ICAP forecasting began in
early 2011 and the experimental ICAP-MME became quasi-operational for public re-
lease in 2015. Current ICAP MME products include total AOD ensemble from four com-
plete aerosol forecast models from NRL, ECMWF, JMA, and GMAO and three dust-only
models from NCEP, UKMO, and BSC. Figure 7 shows the dust AOD from ICAP-MME
(with 7 members) and NGAC V1.0, valid at 12:00 UTC 4 July 2015. Spatial pattern of
dust loading from NGAC V1.0 is consistent with the ICAP-MME, with elevated dust
AOD located in the Sahara, the Arabian Peninsula, and Asia as well as evident long
range trans-Atlantic transport of Saharan dust reaching southeastern United States.
Dust forecasts from NGAC V1.0 also contributes the regional multi-model ensemble
produced by WMO Sand and Dust Storm Warning Advisory and Assessment System
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5.2 Dynamic lateral boundary conditions for regional models

An example on using NGAC dust information to improve regional air quality forecasts is
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6 Conclusions

NASA/GMAQO’s GOCART aerosol module has been implemented into NEMS GFS at
NCEP through NOAA/NCEP-NASA/GSFC collaborations. While NGAC has the capa-
bility to forecast dust, sulfate, sea salt, and carbonaceous aerosols, the initial phase-
one implementation is to establish dust-only numerical guidance. NGAC Version 1.0,
implemented in September 2012, provides the first operational global dust forecasting
capability at NOAA. Its AOD product has been incorporated into global and regional
multi-model ensemble products (ICAP and WMO SDS-WAS, respectively) in quasi-
operational mode.

The NGAC V1.0 dust forecasts are routinely verified using AOD observations from
space-borne MODIS and ground-based AERONET. NGAC V1.0 results are also com-
pared with those from other similar aerosol models. It is shown that the NGAC V1.0
simulated spatial distributions and seasonal variations are consistent with the observa-
tions. In addition, the emissions, burdens, and lifetime of dust aerosols in NGAC V1.0
are within the range of similar aerosol models.

While the initial NGAC implementation is limited in its scope (a dust-only system
without aerosol data assimilation), it laid the ground work for various aerosol-related
applications. Future operational benefits associated with the global aerosol forecasting
system at NOAA includes:

— Enable operational global short-range multi-species aerosol prediction.

— Provide the first step toward an operational aerosol data assimilation capability at
NCEP.

— Allow aerosol impacts on medium range weather forecasts to be considered.

— Provide global aerosol information for various applications, including satellite radi-
ance data assimilation, satellite retrievals, SST analysis, and UV-Index forecasts.
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— Allow NCEP to explore aerosol-cloud-climate interaction in the Climate Forecast
System (CFS), as GFS is the atmosphere model of the CFS.

— Provide lateral aerosol boundary conditions for regional aerosol forecast system.

Appendix A: NGAC output

Output files and their contents for NGAC V1.0 (Q4FY12 Implementation)

(1) ngac.t00z.a2df$HR, where HR = 00, 03, ..., 120:
2-D products including
AER_OPT_DEP_at550: dust aerosol optical depth at 550 nm (dimensionless)
CR_AER_SFC_MASS_CON: coarse mode surface mass concentration (kg m_3)
FN_AER_SFC_MASS_CON: fine mode surface mass concentration (kg m'3)
CR_AER_COL_MASS_DEN: coarse mode column mass density (kg m‘z)
FN_AER_COL_MASS_DEN: fine mode column mass density (kg m'2)
DUST_EMISSION_FLUX: dust emission fluxes (kgm™2s™")
DUST_SEDIMENTATION_FLUX: dust sedimentation fluxes (kgm™2s™")
DUST_DRY_DEPOSITION_FLUX: dust dry deposition fluxes (kg m—2 3‘1)
DUST_WET_DEPOSITION_FLUX: dust wet deposition fluxes (kgm™2s™")

(2) ngac.t00z.a3df$HR, where HR = 00, 03, ..., 120:
3-D products at model levels including
PRES: pressure (Pa)
RH: relative humidity (%)
TEMP: temperature (K)
DUST?1: dust bin1 (0.1—1 micron) mixing ratio (kg kg‘1)
DUST2: dust bin2 (1-1.8 micron) mixing ratio (kg kg‘1)
DUSTS3: dust bin3 (1.8—3 micron) mixing ratio (kg kg‘1)
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DUST4: dust bin4 (3—6 micron) mixing ratio (kg kg‘1)
DUSTS5: dust bin5 (6—10 micron) mixing ratio (kg kg'1)

(3) ngac.t00z.aod_$NM, where NM = 11p1um, 1p63um, 340, 440, 550, 660, 860 nm:
Aerosol optical depth (dimensionless) at specified wavelengths (11.1, 1.63, 0.34, 0.44,
0.55, 0.66, and 0.86 micron)

Data and code availability

Products from the NCEP operational production suite are distributed and accessible
to general users, free of charge, in real-time (typically no later than 3 h after the data
are created) at NOAA Operational Model Archive and Distribution System (NOMADS).
Source code as well as relevant run scripts, parameters, and fixed field files can be
obtained from NCEP Central Operations (NCO) ftp site at the following location: http:
//'www.nco.ncep.noaa.gov/pmb/codes/nwprod/ngac.v1.0.0.

The NGAC V1.0 output is available in GRIdded Binary Version 2 (GRIB2) format on
1° x 1° degree grid, with 3 hourly output out to 120 h. Users can access the NGAC V1.0
digital products from NOMADS at the following location: http://nomads.ncep.noaa.gov/
pub/data/nccf/com/ngac.

NGAC V1.0 output instantaneous values of 3-dimensional dust mixing ratios for five
particle sizes with effective radius at 1, 1.8, 3, 6, and 10 micron. The model also output
time-averaged 2-dimensional diagnostics fields relevant to aerosol budget, such as
emission fluxes. These aerosol fields are written out at GFS native Gaussian grid, and
post-processed to GRIB2 format and regular 1° x 1° degree grid. Dust AOD at 550 nm
and other selected spectral is calculated from instantaneous dust distributions with
aerosol optical properties based on Chin et al. (2002). NGAC V1.0 GRIB2 output files
and their contents are listed in the Appendix.
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Table 2. Statistic results comparing CMAQ model results with EPA AIRNOW PM, ; The mean
bias (MB) and correlation (R) are calculated for the baseline run using static LBCs and the

experimental run using NGAC LBCs.

Domain/Period

CMAQ Baseline

CMAQ Experimental

Whole domain, 1 Jul-3 Aug

South of 38° N, East of 105° W 1 Jul-3 Aug
Whole domain, 18-30 Jul

South of 38° N, East of 105° W 18-30 Jul

MB=-2.82, R =0.42
MB = -4.54, R =0.37
MB=-2.79, R = 0.31
MB=4.79, R =0.27

MB=-0.88, # =0.44
MB=-1.76, R = 0.41
MB = -0.33, R =0.37
MB = -0.46, R = 0.41
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Figure 1. Schematic summary of the GOCART aerosol module as adapted and being imple-

mented in GEOS-4/5 at GMAO and NEMS GFS at NCEP.
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Figure 2. The dust source function or probability of dust uplifting, mapped to GFS T126 reso-
lution, used in NGAC V1.0.
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Figure 3. Primary integration runstream of NGAC.
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Figure 5. Comparisons of monthly-mean MODIS total AOD (left), NGAC V1.0 dust AOD (mid-
dle), and GEOS5 dust AOD (right) at 550 nm for October 2012, January 2013, February 2013,

and July 2013 periods.
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Figure 6. (a) NGAC V1.0 vs. L1.5 AERONET 550-nm AOD comparisons at Cape Verde for
the 2013-2014 period: a time series, scatterplot, and fractional distribution histogram. In the
time series, the model monthly means and standard deviation about the mean are shown in
the black symbols and lines. The AERONET monthly means and standard deviation about the
mean are shown in the red shading and orange bars. In the PDF plot, the model is indicated by
the black symbols and line, and the AERONET observations are indicated by orange bars. We
thank Didier Tanre for the efforts in establishing and maintaining Cape Verde and Dakar sites.
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Figure captions: (¢) NGAC V1.0 vs.

AERONET 550 nm AOD comparisons at
Banizoumbou for the 2013 -2014 period: a

time series, scatterplot, and fractional
distribution histogram.
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Figure captions: (c) NGAC V1.0 vs. AERONET 550 nm AOD comparisons at Banizoumbou for the 2013 -2014 period:  a time series, scatterplot, and fractional distribution histogram.
(d) NGAC V1.0 vs. AERONET 550 nm AOD comparisons Ilorin for the 2013 -2014 period:  a time series, scatterplot, and fractional distribution histogram.
(e) NGAC V1.0 vs. AERONET 550 nm AOD comparisons at Sede Boker for the 2013 -2014 period:  a time series, scatterplot, and fractional distribution histogram.
(f) NGAC V1.0 vs. AERONET 550 nm AOD comparisons at L for the 2013 -2014 period:  a time series, scatterplot, and fractional distribution histogram.
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Figure 7. Dust AOD valid at 12:00 UTC 4 July 2015 for ICAP multi-model ensemble (top) and
NGAC V1.0 (bottom). The ensemble is based on 7 members, including the models from NCEP
(NGAC V1.0), GMAO, ECMWF, NRL, JMA, UKMO, and BSC. These figures are produced by
the Naval Research Laboratory.
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Figure 8. Dust AOD regional ensemble products valid at 12:00 UTC 4 July 2015. The multi-
model products describing centrality (multi-model median and mean) and spread (standard
deviation and range of variation) are generated from multiple global and regional forecast mod-
els, including NGAC V1.0. This figure is produced by the Regional Center for Northern Africa,
Middle East and Europe of the WMO SDS-WAS program.
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Model Predictions Compared to AIRNOW PMZ2.5
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Figure 9. Time series of PM, 5 from EPA AIRNOW observations (black dot
run using static LBCs (green dot) and CMAQ experimental run using NGAC L

6L 210 260 1AUG

TIME (UTC)

at Miami, FL (top panel) and Kenner, LA (bottom panel).
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