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Abstract.

This paper presents the first known application of multi-model ensembles to the forecasting of the

thermosphere. A multi-model ensemble (MME) is a method for combining different, independent,

models. The main advantage of using an MME is to reduce the effect of model errors and bias, since

it is expected that the model errors will, at least partly, cancel. The MME, with its reduced uncertain-5

ties, can then be used as the initial conditions in a physics-based thermosphere model for forecasting.

This should increase the forecast skill since a reduction in the errors of the initial conditions of a

model generally increases model skill. In this paper the Thermosphere-Ionosphere-Electrodynamic

General Circulation Model (TIE-GCM), the US Naval Research Laboratory Mass Spectrometer and

Incoherent Scatter radar Exosphere 2000 (NRLMSISE-00) and Global Ionosphere Thermosphere10

Model (GITM) have been used to construct the MME. As well as comparisons between the MMEs

and the ‘standard’ runs of the model, the MME densities have been propagated forward in time us-

ing TIE-GCM. It is shown that thermospheric forecasts of up to 6 hours, using the MME, have a

reduction in the root mean square error of greater than 60%. The paper also highlights differences in

model performance between times of solar minimum and maximum.15

1 Introduction

1.1 Background

NASA predicts that, by 2030, orbital collisions could become frequent enough to cause a cascade

(Kessler et al., 2010), with the potential to prevent the use of low Earth orbit (LEO) (Koller, 2012).

One way to prevent a Kessler cascade is to more accurately predict orbital trajectories to better20

plan satellite collision avoidance manoeuvres. A key component in orbital trajectory predictions is

an accurate description of the upper atmosphere, in particular the thermosphere, since drag due to

atmospheric density is one of the main forces that affect the orbit of satellites and space debris.

The neutral air density from 200 to 1000 km altitude (LEO) can change by 80% diurnally as well

as by at least one to two orders of magnitude during geomagnetic storms; sometimes in just a few25
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hours (Sutton et al., 2005; Lei et al., 2010). The upper atmosphere forecast models currently in use

for orbit prediction are empirical and include NRLMSISE-00, the Jacchia Reference Atmosphere

(Jacchia, 1977) and the NASA/MSFC Global Reference Atmospheric Model-1999 Version (Justus

and Johnson, 1999). They are finely tuned, but when applied to satellite orbit forecasts they can

result in large uncertainties in the orbital parameters. Often resulting in positional errors on the order30

of kilometres after a day (McLaughlin et al., 2011; Vallado and Finkleman, 2008).

One way to decrease the errors in satellite orbit forecasts is to reduce errors in thermospheric

density forecasting. It has been previously suggested that ensemble modelling could improve space

weather forecasts (Schunk et al., 2014). In this paper, multi-model ensembles (MMEs) are shown

to enhance forecasts of the thermospheric density. The main objective is to minimize the prediction35

errors and bias of the forecasts by improving the initial conditions of the model.

1.2 Multi-Model Ensembles (MMEs)

The idea of improving model forecasts by combining two or more independent models is based upon

a short note by Thompson (1977). Since then, MMEs have been extensively used in the climatology

community with great success. For example, Doblas-Reyes et al. (2000) showed that using three40

climate models in an MME improved forecast skill. They also noted that the mean of an ensemble

of forecasts has a smaller mean square error than any individual forecast. Evans et al. (2000) showed

that the use of MMEs for both deterministic and probabilistic climate forecast verification signif-

icantly outperformed the individual models. Rozante et al. (2014) showed that an MME approach

to forecasting had smaller root mean square errors (RMSEs) than any of the constituent models for45

most variables across their whole test scenario.

An MME relies on the idea that model forecasting can be improved by combining independent

models (Thompson, 1977) and thereby reducing the impact of errors from individual models. Model

errors arise in a variety of forms and include computational errors in physics model solvers (Rozante

et al., 2014). For example, many physical systems can be described by a series of partial differen-50

tial equations. Yet, in order to solve them, they have to be reduced to finite-dimensional ordinary

differential equations to be integrable on a computer. Whilst necessary, this reduction introduces in-

accuracies. Ridley et al. (2010) showed that solving the magnetohydrodynamics (MHD) equations

numerically rather than analytically can cause significant differences in global MHD code. The same

piece of code can give very different results by simply altering the numerical settings.55

It is clear that an MME cannot give a result better than the best individual model in all circum-

stances. For a hypothetical perfect model of a system forming an MME will always add worse

information. However in reality such perfect models do not exist and a successful MME should use

independent, skilful, models. It is important to use independent models since models with similar

error characteristics can find such characteristics amplified in the MME. It is impossible for the60

MME to be worse than all of the individual models (Hagedorn et al., 2005). However, if one model
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is shown to consistently perform less well than all other models, then this should be excluded from

the MME as it does not add useful information.

Although an MME may reduce the reported thermospheric density errors; it cannot alone forecast

densities and thus cannot be directly used to improve satellite orbit forecasts. Errors in the forecasts65

given by thermospheric models are due to approximations in the modelled physics and uncertainties

in the initial and boundary conditions. Pawlowski and Ridley (2009) showed that using different

parameters within a global ionosphere-thermosphere model can cause differences in the reported

temperatures and densities. As such some biases are expected in the models due to uncertainties

in the parameters. Since MMEs are expected to reduce errors in the densities, these improvements70

can be used as the initial conditions for a forecast run of a physics model. Reducing the errors in

the initial conditions is then expected to reduce the errors in the forecasted thermospheric densities.

This paper will explore the effectiveness of MMEs using both the a posteriori knowledge and as an

initial condition in a forecast model run.

One can construct an MME using a variety of different approaches, but they fall into two main75

categories, equal and unequal weightings.

1.3 Equally Weighted MMEs

There are a number of difficulties in constructing an MME. These include how the models should

be combined and the fact that different models do not all share common output variables. A further

problem is that there may not be observational data for each parameter, making it difficult to assess80

model performance for all parameters. One way to resolve the latter problem is to not take model

performance into account and use an equally weighted average. Such a simple method for MME

generation has been shown to increase model skill in climate studies. For example, Christensen et al.

(2010) found that using a variety of different weight schemes for the construction of the MME did not

provide consistent superiority over a simple averaging approach. Using a small dataset, Weisheimer85

et al. (2009) commented that finding a robust weighting system was difficult and suggested applying

equal weights to the models. Their approach, using five models in the MME, lead to a significant

improvement in seasonal-to-annual climate forecasts compared to any one individual model.

1.4 Weighted MMEs

Alternatively, the MME can use different weights for each model. There are different approaches for90

estimating the weights to be applied to individual models. These include a least-squares minimiza-

tion of differences between the model and observations (Krishnamurti, 1999), a best linear unbiased

estimate (BLUE) (Pavan and Doblas-Reyes, 2000) and a weighting scheme based upon the maximi-

sation of a posterior likelihood function (Rajagopalan et al., 2002). All of the approaches depend

on some measure of model skill. An appropriate skill measure must be chosen for each particular95

use of the MME. For example, Tebaldi and Knutti (2007) state that the skill of a (climate) model
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should not be judged from its ability to predict the future, but instead from its ability to predict mean

conditions, variability, and transient changes.

In the absence of existing MME work in the thermospheric literature, a sample mean square error

(MSE) has been used in this work:100

Skill = MSE = (µ2 +σ2). (1)

Where µ is the mean of the time series of errors (model minus observation) and σ is the standard

deviation of the errors. Weigel et al. (2008) has previously shown that the MSE can effectively be

used in a weighting scheme for MMEs to increase climate model forecast skill.

2 Models and Observations105

For this study three atmospheric density models have been used: NRLMSISE-00, TIE-GCM and

GITM. NRLMSISE-00 is an empirical density model whereas GITM and TIE-GCM are physics-

based models. The models are driven using standard geophysical indices: i.e. F10.7, which is the

solar flux at a wavelength of 10.7 cm at the Earth’s orbit and is used as a proxy for solar output

and Kp or Ap, which indicate the severity of the magnetic disturbances in near-Earth space. Physics110

models of the ionosphere-thermosphere often suffer from biases. These can usually be attributed to

the uncertainties in the model parameters which have a large impact on the final results (Pawlowski

and Ridley, 2009). These biases can be reduced by modifying particular parameters. For example

Burrell et al. (2015) showed that changing the photoelectron heating in GITM moves the baseline up

and down. For this study the models are compared to observations from the CHAMP satellite. Each115

model and the CHAMP data is described in the following sections.

2.1 NRLMSISE-00

The US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere

2000 (NRLMSISE-00), is a global, empirical model of the atmosphere. It uses the 81 day average

of F10.7, the daily F10.7 solar flux value of the previous day, and 3-hourly Ap to model the density120

and temperature of atmospheric components (Picone et al., 2002). It is based on the earlier MSIS-

86 (Mass Spectrometer and Incoherent Scatter radar 1986) (Hedin, 1987) and MSISE-90 (Mass

Spectrometer and Incoherent Scatter radar Exosphere 1990) (Hedin, 1991) models.

The model outputs number densities of helium, atomic oxygen, molecular oxygen, atomic nitro-

gen, molecular nitrogen, hydrogen and argon, as well as total mass density and the temperature at125

a given altitude. NRLMSISE-00 has been shown to offer a noticeable improvement over MSISE-90

(Picone et al., 2002) and Jacchia-70 (Jacchia, 1977).
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2.2 TIE-GCM

The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics

- General Circulation Model (TIE-GCM) is a three-dimensional model of the coupled thermosphere130

ionosphere system (Richmond et al., 1992). At each time step the continuity, energy and momentum

equations are solved for neutral and ion species using a fourth-order, centred finite difference scheme

(Roble et al., 1988). TIE-GCM has two different grid settings: single and double resolution. The lat-

itude values range from -87.5 to 87.5 in 5◦ steps at single resolution and 2.5◦ at double. In longitude

it ranges from -180◦ to 180◦. Altitude is calculated in pressure levels with half scale height for single135

resolution and quarter scale height for double. These correspond to heights from approximately 95

km to 550 km. For this work the single resolution grids have been used.

The model takes as input the daily F10.7, the 81 day F10.7 average and the Ap. It uses either

the Weimer or Heelis models for the ionospheric electric fields at high latitudes (Heelis et al., 1982;

Weimer, 2005). Throughout this work, the Heelis model has been used. The lower boundary condi-140

tion (atmospheric tides) are given by the Global Scale Wave Model (GSWM) (Hagan et al., 1999).

2.3 GITM

The Global Ionosphere Thermosphere Model (GITM) is a physics-based three-dimensional global

model that solves the full Navier-Stokes equations for density, velocity, and temperature for a number

of neutral and ion species (Ridley et al., 2006). The model also provides the total neutral density,145

electron density, electron, ion and neutral temperatures, neutral wind speed and plasma velocities.

For inputs, GITM uses F10.7 solar flux, hemispheric power (Emery et al., 2008) (available from

the National Oceanic and Atmospheric Administration (NOAA) website (U.S. Dept. of Commerce,

NOAA, 2015)), interplanetary magnetic field (IMF) data and solar wind velocity. The model allows

the user to select latitude and longitude grids and uses a static altitude grid for the height profile150

which is set at initialization. For this work 5◦ grids have been used to coincide with the TIE-GCM

grids.

To solve the continuity, energy and momentum equations, GITM uses an advection solver, whilst

the ion momentum equation is solved assuming a steady state (Ridley et al., 2006). GITM inherently

allows for non-hydrostatic solutions to develop which allows for realistic dynamics in the auroral155

zones (Ridley et al., 2006).

2.4 CHAMP

The performance of each model is compared against the atmospheric density fields derived from

the CHAllenging Minisatellite Payload (CHAMP) satellite (Reigber et al., 2002). CHAMP was in

operation from July 2000 to September 2010 and the reported neutral densities are derived from160

accelerometer data (Sutton, 2009). CHAMP was launched into a near polar orbit (87◦) with an orbital
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period of approximately 90 minutes. The initial altitude of the orbit was 454 km which decayed

during the lifespan of the mission to 296 km by February 2010 due to atmospheric drag. Neutral

densities were recorded approximately every 45 seconds. Accelerometer data was recorded every

second and averaged such that neutral densities were reported approximately every 45 seconds.165

3 Test Scenarios

Three separate test scenarios have been used during this study as (Table 1). For each of the test

scenarios TIE-GCM and GITM were run for two days prior to the start date so that the ‘spin up’

period did not affect the final results. Test scenario 1 was chosen since it included a geomagnetic

storm which took place on August 30th. The Ap index reached a high of 67 between 15UT and 18UT170

August 30th, whilst staying below 10 at other times. The F10.7 showed little variability throughout

the whole test period (Figure 1). To further verify the results a second solar minimum test scenario

was explored (scenario 2, November 19th to November 23rd 2008). Finally a solar maximum test

(scenario 3) was also used. This test scenario also includes a large geomagnetic storm in the middle

of the test period, where the Ap reached a high of 236.175

4 Results

4.1 Initial Model Comparisons

To compare NRLMSISE-00, TIE-GCM and GITM with CHAMP, the output of each model was

spatially mapped to the CHAMP position using trilinear interpolation. The model files were output

every 30 minutes and the CHAMP observation closest to the model time was used. Figure 2 shows180

the modified Taylor diagram (Elvidge et al., 2014) for total neutral density for NRLMSISE-00,

GITM and TIE-GCM compared to the CHAMP observations for each of the test studies. Figure 3 is

the time series plot for the first test scenario (2009; solar minimum) of neutral density of the models

and CHAMP for the same time period.

The NRLMSISE-00 empirical model results, as expected, show a reasonable mean approximation185

to the observed state, with the least bias of the tested models. However the model shows a larger

variability in its output than the CHAMP observations. GITM shows a negative bias with a very

small standard deviation compared to the observations (Figure 2), i.e. the range of values that GITM

produces is smaller than the observations. GITM and NRLMSISE-00 have a very similar correlation,

but GITM has the smaller error standard deviation. TIE-GCM has the strongest correlation of the190

models, but does show a positive bias and a standard deviation greater than that of the observation.

TIE-GCM is also the only model to show some reaction to the storm. Although there is no increase

in the maximum reported values, there is an increase in the minimum values (Figure 3).
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The results from second test scenario (2008; solar minimum) are similar to the first (Figure 4).

TIE-GCM again has a positive bias and its standard deviation is greater than the CHAMP obser-195

vations. TIE-GCM has a correlation to the CHAMP observations of ~0.5, the worst of the tested

models. GITM and NRLMSISE-00 perform quite similarly in this test, albeit with GITM showing a

negative bias. They have correlation coefficients compared to CHAMP of 0.87 and 0.89 (not statisti-

cally significantly different). Both models have normalised standard deviations less than unity (they

underestimate the range of observations).200

Finally, the third test scenario (2001; solar maximum) has results which are considerably different

to the other two test scenarios. The reported neutral densities compared to the CHAMP observations

can be seen in Figure 5. The variability between the models, seen previously in Figure 3 and Figure

4, is greatly reduced in this test scenario. During quiet times the models all perform very similarly.

There is some variability in the models during the peak of the storm, with GITM in particular not205

responding as much as TIE-GCM or NRLMSISE-00. None of the models show any real bias, with

a standard deviations close to the observations and similar error standard deviations. NRLMSISE-

00 has the strongest correlation with the observations (0.73), whilst TIE-GCM and GITM are not

significantly different (~0.5). This behaviour is to be expected since during solar maximum the

solar drivers, which are at a much higher level (Table 1), become dominant in the models. At solar210

minimum other internal and external dynamics dominate the evolution of the thermosphere densities.

These other drivers are what cause the variability between the models in the other two test scenarios.

It should be noted that the thermospheric densities during the extreme solar minimum of 2008/2009

were considerably lower than one would expect from the F10.7 levels (Solomon et al., 2010). This

could contribute to the poorer performance of the models compared to the CHAMP observations for215

the first two test scenarios.

The results from these test scenarios show that the models suffer from errors and biases, and

are unable to exactly match the observed density field from CHAMP. In order to provide better

forecasting abilities, MMEs can be used to combine the model output to minimize the impact of

model errors and bias.220

4.2 Multi-Model Ensembles (MMEs)

As described in Sections 1.3 and 1.4 there are two approaches to constructing MMEs, simple av-

eraging and more complicated weighting schemes. The mean square error has been chosen for the

weighting scheme (Eq. 1) in this paper. The MSE was calculated using the models’ neutral density

time series compared to the CHAMP observations. The model weights for the MME were then based225

upon the model skill. The inverse of the model skill was used to weight the models, so that the model
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with the lowest MSE was weighted most heavily. That is, given the model skill of NRLMSISE-00,

GITM and TIEGCM, SM , SG, and ST respectively, the weighting of model i was calculated using:

Weighting of model i=
1

Si

(
1

SM
+ 1

SG
+ 1

ST

) . (2)

The model skills and weighting of each model, for each test scenario, are given in Table 2. The230

large differences in model weightings between the different scenarios indicate that weighting the

MMEs based on short-term historic performance is heavily dependent on the current conditions.

Such an approach may not be suitable to forecasting.

For the first test scenario a further weighting scheme was used whereby before calculating the

MSE the model time series were restricted to times of low geomagnetic activity. Fuller-Rowell and235

Rees (1981) define quiet geomagnetic conditions as when the Kp index is between 0 and 1. In

this study Ap values between 0 and 3 were used, which corresponds to a Kp of 0 to 1-. However,

restricting the time series greatly reduces the number of data points (from 240 to 50). This means

the weights may not be generally applicable to the full time series (Hagedorn et al., 2005). It should

be noted that the weightings used here are calculated using the same data set as is used in the test240

scenarios. In an ideal situation weightings should be calculated using a different (historic) data set

and then used.

Figure 6 shows the neutral density time series of the observations, average and weighted MMEs

for the first test scenario. Figure 7 is the modified Taylor diagram for the same test. It is clear that the

MMEs perform better than any of the individual models. The MME weighted across the whole time245

period performs the best of the MMEs. The MMEs all have little or no bias, and have a correlation to

the CHAMP observations similarly to TIE-GCM. The all-times weighted MME in particular has a

standard deviation close to the observations. The quiet-time weighted MME is the worst of the three

MMEs and performs worse than the equally weighted MME. Therefore the quiet time weighted

MME was dropped from the analysis for the other two test scenarios.250

The time series and modified Taylor diagram for the second test scenario are shown in Figure 8

and Figure 9. In this case the weighted MME performs as well as the best of the individual mod-

els (NRLMSIS-00 in this case). Although the equally weighted MME performs worse in terms of

correlation compared to GITM and NRLMSISE-00, it still provides a significant improvement over

TIE-GCM and GITM in other regards (such as bias and standard deviation).255

Figure 10 and Figure 11 show the results for the third test scenario. The MMEs have the same

correlation as the best of the models (NRLMSISE-00) but also show a positive bias the weighted

MME in particular. This is because NRLMSISE-00 itself has a large bias, but is heavily weighted

(85.1%) in the MME. The MMEs offer some improvements in this test scenario (in correlation in

particular) but the improvement is not as pronounced as in the other scenarios. This is due to the260

dominant forcing of the solar drivers at solar maximum.
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It has been shown, in these test scenarios, that combining model results leads to increased skill at

matching the CHAMP derived data. In the following section this reduced uncertainty in atmospheric

densities is used to provide the initial conditions of a forecast run of a model. Such an approach has

been previously shown to increase climate model forecast skill (Tebaldi and Knutti, 2007).265

4.3 Using the MME for Forecasting with TIE-GCM

The objective is to use the MME, with its reduced uncertainties, as the initial conditions for TIE-

GCM. With the better initial conditions, it is expected that the forecast skill of TIE-GCM will be

increased. In order to use an MME as the initial conditions for a physics-based model (i.e. TIE-

GCM) more than just the combined neutral density is required. The MME of each density required270

by TIE-GCM (Table 3) has to be calculated. Where possible, the density for each model species

required by TIE-GCM (e.g. oxygen; O) was found by combining the densities from NRLSMSE-00,

GITM and TIE-GCM. However, for certain species (e.g. nitric oxide; NO) not all the models provide

a density (in this case NRLMSISE-00). In these cases, just the models which do provide a density

value were used. In cases where TIE-GCM has a density which no other model provides, the original275

data is used on its own. A similar approach is used for the temperatures and velocities.

To combine densities, temperatures and velocities from multiple models, the data must be in-

terpolated to common latitude, longitude and altitude grids. Therefore NRLMSISE-00 and GITM

grids were trilinearly interpolated to the TIE-GCM grid. The grids were then combined to form an

MME. Since TIE-GCM uses pressure levels instead of altitude grids the MME values needed to be280

mapped back onto pressure levels. TIE-GCM provides a mapping between the pressure levels and

geometric height for a given timestep. This mapping was used in reverse to morph the altitude grids

to TIE-GCM readable pressure levels.

For the new TIE-GCM run, the model was restarted using the MME state-vector as the initial

condition. TIE-GCM was then run for six hours with the model output recorded every 30 minutes.285

After the six-hour period, TIE-GCM was again restarted using the MME grid for the next six hour

period. For the forecast run, the model only used the values of Kp and F10.7 corresponding to the

initial conditions; i.e. they were not updated at each time step, but they were updated every six hours.

This was so a true forecast could be simulated. The equally weighted MME uses no prior information

so can be treated as true forecast. However, it should be noted that when using the weighted MME290

a true forecast is not obtained since the weighted MME is generated using the information from

the CHAMP observations. Figure 12 is a flow chart of the process used to run TIE-GCM with the

MME as its initial conditions for a six hour forecast, and Figure 13 is the procedure used for this test

scenario.

Using the MME densities to initialize a run of TIE-GCM will alter the outputs of the model. It295

was expected that over time the two versions would converge. However this does not seem to happen

over the six hour window used here. This is likely due to the fact that the model biases have a longer
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time scale than six hours. Figure 14 shows the difference between a standard run of TIE-GCM and

one started with the MME grid. It shows that the differences between the two models, started with

different initial conditions, are decreasing towards zero, as expected, but it takes approximately 70300

hours to reach these levels. The e-folding time of this is ~30 hours.

Figure 15 shows the modified Taylor diagram for neutral density compared to the CHAMP ob-

servations for the original TIE-GCM run, the NRLMSISE-00 (MSIS), GITM results and the results

of rerunning TIE-GCM using the average and both weighted MME (all times and quiet times sep-

arately) as the initial condition every six hours for the first test scenario. Figure 16 is the reported305

time series of neutral densities from the CHAMP observations, the original TIE-GCM run and the

results of rerunning TIE-GCM using the MMEs.

Using the MME densities as the starting point for TIE-GCM provides a clear improvement com-

pared to the original run of TIE-GCM. The reported densities show very low bias and have variabil-

ity close to the observations. In particular, the post-storm period is modelled very accurately in all310

but the quiet-time weighted MME. The average MME and all-times weighted initial conditions for

TIE-GCM improves upon the original TIE-GCM correlation. Each of the TIE-GCM MME runs sig-

nificantly improved the bias and all but the quiet-times improve the standard deviation of the model.

The new TIE-GCM run (using the average MME) offers an improvement in all tested parameters

compared to the neutral density MME calculated after the models were run (Figure 7). This is since315

the physics of one model, given initial conditions with lower errors, can propagate densities better

than the average of three models, each with poor initial conditions.

None of the contributing models, nor the MMEs, model the peak of the storm period (~65 hours

after August 28th 2009) with any accuracy. The best the models can do is to try and model the post-

storm period as well as possible. This is because the models do not react quickly enough to the sharp320

increase in Ap (in terms of reported neutral densities).

The RMS error for each TIE-GCM MME run as well as the original TIE-GCM run compared

to the CHAMP observations are shown in Table 4. The 95% confidence intervals are also reported.

These have been calculated in the standard way,√ n

χ2
1−α

2 ,n

RMSE,
√

n

χ2
α
2 ,n

RMSE

 , (3)325

where n is the sample size, and α is the required confidence interval.

Figure 17 and Figure 18 show the results of using the MMEs as the initial conditions in TIE-GCM

for test scenario 2. Again the improvements can be seen. The original TIE-GCM run had a correlation

of ~0.5 with a large positive bias. However, when using the MME densities to initialize TIE-GCM

a correlation of ~0.9 and no significant bias is achieved. The MME run provides results better than330

each of the constituent models. The reduction in RMS error between the original TIE-GCM run and

the MME runs are shown in Table 4.
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Finally Figure 19 and Figure 20 show the results for test scenario 3. In this case the NRLMSISE-

00 model still provides the overall best results. However the TIE-GCM runs using the MME have

less bias than NRLMSISE-00. The MME runs of TIE-GCM show an improvement in the post-storm335

modelling of neutral densities (Figure 20). The results from this test scenario once again highlight the

weaknesses of this method for solar maximum conditions. Even when using the MME to initialize

the model TIE-GCM still performs very similarly to when the conditions had not been changed. This

is due to the dominance of the solar drivers.

It has been shown that the use of the MME as the initial conditions in TIE-GCM improve the mod-340

els forecast skill considerably during solar minimum. The RMS error is reduced by approximately

60% (± 6% for the 95% confidence interval). However no improvement to RMS error is achieved

for the third test scenario (solar maximum).

5 Discussion and Conclusions

The work presented in this study shows the possibility of using multi-model ensembles (MMEs)345

to enhance the forecast skill of thermospheric models. Three models were used: an empirical model

(NRLMSISE-00) and two physics-based models (TIE-GCM and GITM). The models’ output density

has been compared against derived density fields from CHAMP, where the models vary in perfor-

mance compared to the observations depending on the test scenario. To improve the density estima-

tion, an MME averaging technique has been applied and tested. Two approaches for the MME were350

used, a simple average MME where all models have the same weight, and a weighted MME, where

each model is weighted according to its skill. Three different test scenarios have been used, two

during solar minimum and one during solar maximum. The results show a significant improvement

in both solar minimum cases. The MME was then used to initialize one of the physics-based mod-

els (TIE-GCM) to try and improve its forecast skill. During solar minimum test scenarios using the355

MME to initialize TIE-GCM shows a reduction in RMS error in neutral density of ~60% (Table 4).

For solar maximum each of the models perform similarly and the MME provides no improvement

to the model results. However it is important to note that the MME also does not degrade the results.

It has been shown that using an equally weighted MME often provides as good, if not better, results

than using a weighted MME. This is consistent with Hagedorn et al. (2005) who argued that for360

small data sets the most appropriate way to generate an MME is to use the unweighted average.

The results of this study show that the physics models suffer from large biases, as was discussed

in Section 2. However these have been shown to not be systematic. For a given model they could

be positive or negative, depending on the testing scenario. Burrell et al. (2015) argued that varying

particular parameters can move the biases up and down easily. This approach should be used in the365

construction of future MMEs. If a number of model biases were of the same sign then these would

likely end up contributing a bias to the MME. By running each model a number of times, with
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varied input parameters, reduced-bias physics model results could be found. One could then extend

the MME into a super-MME which contains both different models and different model settings. This

is similar to the approach used by Palmer et al. (2000) in the climatology community who used nine370

instances of four different models in the construction of their MME.

Figure 14 showed that the MME started TIE-GCM run did not merge completely with the standard

model run within 5 days. It takes over 70 hours for the two models to have zero differences in places.

Further work should investigate the long-term model effects of the starting conditions for TIE-GCM

(and physics models in general). Ridley et al. (2010) showed the influence of grid choice for global375

MHD code and it seems that something similar is happening with global ionospheric-thermospheric

models.

A number of improvements could be implemented in generating the MME. Firstly, a separate

‘training’ data set should be used to generate the model weights to make a fairer test. A weighting

scheme which varies based on longitude, latitude, height and time could also be implemented, as380

in Rozante et al. (2014)[Eq. 1]. A further approach would be to change the weighting scheme alto-

gether and adopt Reliability Ensemble Averaging (REA) which is often used to generate MMEs in

climatology studies (Giorgi and Mearns, 2002). In order to achieve this a larger number of models

would be required. Also, in order to further verify the results longer test scenarios should be used to

reduce the uncertainties in the statistics.385
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Table 1. Test scenario descriptions. The CHAMP average altitudes and average F10.7 values are taken from

across the 5 day test scenarios.

Scenario Number Start Time Stop Time CHAMP Average Altitude Average F10.7

1 August 28th 2009 September 1st 2009 325 km 68

2 November 19th 2008 November 23rd 2008 333 km 69

3 November 22nd 2001 November 26th 2001 431 km 179
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Table 2. Model skill and associated weighting (calculated by the inverse of model skill, Eq. (2)) for use in the

weighted MMEs for the three test scenarios.

Test Scenario 1 Test Scenario 2 Test Scenario 3

Model Skill Weight Model Skill Weight Model Skill Weight

NRLMSISE-00 2.6× 10−24 49.0% 3.08× 10−24 21.2% 2.26× 10−25 85.1%

GITM 4.52× 10−24 28.3% 1.77× 10−24 36.9% 3.01× 10−24 6.4%

TIE-GCM 5.61× 10−24 22.7% 1.56× 10−24 41.9% 2.25× 10−24 8.5%
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Table 3. NRLMSISE-00, TIE-GCM and GITM model outputs. mmr is the mass mixing ratio.

NRLMSISE-00 TIE-GCM GITM

He (cm−3) He (m−3)

O (cm−3) O (mmr) O (m−3)

O2 (cm−3) O2 (mmr) O2 (m−3)

N (cm−3) N (mmr) N (m−3)

N2 (cm−3) N2 (mmr) N2 (m−3)

Ar (cm−3)

H (cm−3) H (m−3)

NO (mmr) NO (m−3)

O+ (cm−3) O+ (m−3)

O+
2 (cm−3) O+

2 (m−3)

N+ (m−3)

N+
2 (m−3)

NO+ (cm−3) NO+ (m−3)

Ne (cm−3) Ne (m−3)

Neutral temp. (K) Neutral temp. (K) Neutral temp. (K)

Ion temp. (K) Ion temp. (K)

Electron temp. (K) Electron temp. (K)

Neutral meridional wind (cms−1) Neutral velocity (east) (ms−1)

Neutral zonal wind (cms−1) Neutral velocity (north) (ms−1)

Neutral vertical wind (cms−1) Neutral velocity (up) (ms−1)

Ion velocity (east) (ms−1)

Ion velocity (north) (ms−1)

Ion velocity (up) (ms−1)

O velocity (up) (ms−1)

O2 velocity (up) (ms−1)

N velocity (up) (ms−1)

N2 velocity (up) (ms−1)

NO velocity (up) (ms−1)
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Table 4. The RMS error of the original TIE-GCM run and running the model with the MME as the inital

conditions. The 95% confidence intervals are also reported.

RMS Error ×10−12 (kgm−3) 95% Confidence Interval

Test Scenario 1 (2009)

Equal MME 0.84 [0.78, 0.92]

Weight-quiet MME 1.2 [1.1, 1.3]

Weight-all MME 0.91 [0.83, 1.0]

TIE-GCM Original 2.4 [2.2, 2.6]

Test Scenario 2 (2008)

Equal MME 0.53 [0.49, 0.59]

Weight-all MME 0.53 [0.49, 0.59]

TIE-GCM Original 1.5 [1.4, 1.7]

Test Scenario 3 (2001)

Equal MME 1.2 [1.1, 1.4]

Weight-all MME 1.2 [1.1, 1.4]

TIE-GCM Original 1.3 [1.1, 1.4]
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Figure 1. Ap, F10.7 and DST index values for the three test scenarios. The spikes in Ap for the 2009 and 2001

test scenario seem to be due to a geomagnetic storms.
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Figure 2. Modified Taylor diagram (Elvidge et al., 2014) for NRLMSISE-00 (MSIS), TIE-GCM and GITM

for neutral density, compared with CHAMP for each of the three test scenarios. The azimuthal angle represents

the correlation of the models neutral density time series with the CHAMP observation. The radial distance

shows the standard deviation of the model time series and the semicircles, centred at a standard deviation of

1, is the standard deviation of the errors (model minus observation). The colour scale shows the bias (mean of

model minus mean of truth). Each quantity is normalized and the original values can be reformed using the

corresponding ‘factor’ in the top right of the diagram.
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Figure 3. CHAMP, GITM, TIE-GCM and NRLMSISE-00 reported neutral densities for the first test scenario

(2009; solar minimum). The fast oscillations are due to CHAMPs orbit (~90 minutes).
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Figure 4. CHAMP, GITM, TIE-GCM and NRLMSISE-00 reported neutral densities for the second test scenario

(2008; solar minimum).
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Figure 5. CHAMP, GITM, TIE-GCM and NRLMSISE-00 reported neutral densities for the third test scenario

(2001; solar maximum).
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Figure 6. Neutral density values of the three MMEs for the first test scenario, equally weighted, quiet-time

weighted and all-times weighted.
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Figure 7. Modified Taylor diagram for the three MMEs: equal, quiet-time weighted and all-time weighted as

well as GITM, TIE-GCM and NRLMSISE-00 (MSIS) compared to the CHAMP observations for the first test

scenario. Details of how to read the diagram are described in Figure 2.
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Figure 8. Neutral density values of the two MMEs for the second test scenario, equally weighted and all-times

weighted.

27



Figure 9. Modified Taylor diagram for the two MMEs: equal and all-time weighted as well as GITM, TIE-GCM

and NRLMSISE-00 (MSIS) compared to the CHAMP observations for the second test scenario. Details of how

to read the diagram are described in Figure 2.
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Figure 10. Neutral density values of the two MMEs for the third test scenario, equally weighted and all-times

weighted.
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Figure 11. Modified Taylor diagram for the two MMEs: equal and all-time weighted as well as GITM, TIE-

GCM and NRLMSISE-00 (MSIS) compared to the CHAMP observations for the third test scenario. Details of

how to read the diagram are described in Figure 2.
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Figure 12. Flow chart of the procedure for running TIE-GCM using the MME as its initial conditions for a six

hour forecast.
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Figure 13. Procedure for finding the TIE-GCM forecast using an MME as its initial conditions. The “run TIE-

GCM MME forecast" process refers to the procedure described in Figure 12.
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Figure 14. Differences between the standard TIE-GCM model run and TIE-GCM ran using the MME as its

initial conditions (at time 0). It can be seen that it takes over 70 hours for the models to start to converge again.

33



Figure 15. Modified Taylor diagram for NRLMSISE-00 (MSIS), TIE-GCM, GITM and for TIE-GCM using the

MMEs (equal, quiet-time weighted and all-time weighted) for its initial conditions every six hours, compared

with the CHAMP observations. Details of how to read the diagram are described in Figure 2.
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Figure 16. Top panel shows the neutral density from the CHAMP observations and the original TIE-GCM run.

The subsequent panels then show the CHAMP observations with each of the new TIE-GCM outputs using the

MMEs as the initial conditions every six hours.
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Figure 17. Modified Taylor diagram for NRLMSISE-00 (MSIS), TIE-GCM, GITM and for TIE-GCM using

the MMEs (equal and all-time weighted) for its initial conditions every six hours, compared with the CHAMP

observations. Details of how to read the diagram are described in Figure 2.
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Figure 18. Top panel shows the neutral density from the CHAMP observations and the original TIE-GCM run.

The subsequent panels then show the CHAMP observations with each of the new TIE-GCM outputs using the

MMEs as the initial conditions every six hours.
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Figure 19. Modified Taylor diagram for NRLMSISE-00 (MSIS), TIE-GCM, GITM and for TIE-GCM using

the MMEs (equal and all-time weighted) for its initial conditions every six hours, compared with the CHAMP

observations. N.B. The two markers for the MMEs overlap each other. Details of how to read the diagram are

described in Figure 2.
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Figure 20. Top panel shows the neutral density from the CHAMP observations and the original TIE-GCM run.

The subsequent panels then show the CHAMP observations with each of the new TIE-GCM outputs using the

MMEs as the initial conditions every six hours.
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