
The format of this reply to C. van Heerwaarden (referee) is as follows: 1	
  

 2	
  

In the first part, "Authors' Response to C. van Heerwaarden", we provide 3	
  

a point-by-point response to the referee's comments. We provide each of the referee's 4	
  

comments in bold font. After each comment that requires a response we provide a 5	
  

response (in regular font). If we modified the manuscript in response to a comment, we 6	
  

describe what the modification was, and indicate where it was made in the revised 7	
  

manuscript (the revised manuscript is provided at the end of the document). 8	
  

 9	
  

In the second section, Additional modifications to the manuscript, we 10	
  

describe modifications to the manuscript not made in response to any specific comment 11	
  

of either referee. For the most part these modifications are minor, however we did fix 12	
  

two errors in the final analytical solution (errors in the text, not the code; so these did 13	
  

not affect any of the presented results). 14	
  

 15	
  

In the third section, we provide the revised manuscript. 16	
  

  17	
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Authors' Response to Referee C. van Heerwaarden (Referee) 18	
  

 19	
  

General comments 20	
  

I recommend minor revisions. The paper presents a validation test for solvers for buoyancy 21	
  

driven flows. To the reviewer’s knowledge it is the first validation test for wall-bounded 22	
  

Boussinesq flows including buoyancy and therefore deserves publishing. I have tested the 23	
  

MicroHH (http://github.com/microhh/microhh) code against the analytical solution 24	
  

provided in the paper and it gives the correct solutions (see attached figures). Nonetheless, 25	
  

there are a couple of improvements that could be made. First of all, it would be great if the 26	
  

reference cases could be presented in a non-dimensional framework, to make them more 27	
  

general. Second, GMD suggests strongly to submit code for benchmarking papers. I would 28	
  

appreciate if the authors can provide their code, to enable the readers to use the test case 29	
  

with their own code. 30	
  

 We probably should have started the project in non-dimensional form, but since we did 31	
  

not, we are hesitant to recast the theory and code into non-dimensional forms. The changes, 32	
  

while straightforward for both the text and code, would be extensive and thus offer new 33	
  

possibilities for errors to creep in. 34	
  

 Yes, we agree that the test code should be freely available. The Fortran code for the 35	
  

analytical solution is now included as a supplement to the article. The code is named "square.f" 36	
  

("square" because the disturbance is a square wave) and it is configured for Test 1-A. A 37	
  

statement on code availability has been added just before the Acknowledgements statement. 38	
  

 39	
  

Abstract Maybe the authors can stress here that there are very few, or maybe even no 40	
  

analytical solutions for wall-bounded buoyancy driven flows around and their paper is 41	
  

therefore really a novelty. 42	
  

 In the abstract we have added the sentence: "The analytical solution is one of the 43	
  

few available for wall-bounded buoyancy-driven flows."   44	
  

 45	
  

Page 2850 Can the authors shortly explain how they got to their set of equations? 46	
  

 We have added a few lines describing the individual governing equations. We 47	
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also give a reference for the equations (Chandrasekhar 1961) and for the Brunt-Väisälä 48	
  

frequency N that appears in the thermal energy equation (Kundu 1990). 49	
  

 50	
  

Page 2857 It would be good if the authors can write some guidelines on how to use their 51	
  

validation test with a model with staggered grids. For instance, if u is interpolated, how fine 52	
  

does the analytical solution need to be in order to have reference data for which the error 53	
  

in the analytical solution is negligible to the model error? 54	
  

 The analytical solution can easily be output to a staggered grid. If one is coding 55	
  

the analytical solution from scratch (i.e., not using our computer code), one can input x 56	
  

and z locations that coincide with the staggered points. One can use a different set of x 57	
  

and z locations for any of the dependent variables. Our current computer code for the 58	
  

analytical solution is set up to use the same x and z locations for all variables (i.e., 59	
  

unstaggered arrangement), but it is straightforward to modify that code so the 60	
  

dependent variables are output on any desired grid. 61	
  

 62	
  

Formula 41 Why don’t the authors define the first Reynolds number as the vorticity 63	
  

advection divided by the vorticity diffusion? 64	
  

 Actually, in a continuum sense, since !b
!x
= !!2"  (from equation (2.5)), our 65	
  

definition R! !
max u !"!
max !b/!x

 is equivalent to the definition suggested by the referee, 66	
  

     

R! !
max u "#!

max "#2!
. In practice, however, the errors associated with discretizing !2!  may 67	
  

be worse than those associated with discretizing    !b/!x , so we prefer our definition. 68	
  

 69	
  

Page 2859 Why are 50.000 terms taken? Isn’t this an enormous amount? 70	
  

 Yes, for the two test cases presented the 50000 terms is an enormous amount. 71	
  

However, in the course of the testing (we only showed two tests, but have conducted 72	
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many additional tests, including tests over larger horizontal domains), we did not want 73	
  

to be burdened by having to go back and rerun a test in case we had too few terms. By 74	
  

choosing such a large number, we removed that parameter from further consideration. 75	
  

 76	
  

Page 2864 Do I understand correctly that the authors underline statements by previous 77	
  

papers that models on a staggered grid do not require a pressure boundary condition? 78	
  

 We were trying to be diplomatic in our statements on that page, and believe that the 79	
  

current phrasing in the original manuscript is accurate, but we do not want to make too much out 80	
  

of it. In going through both engineering and meteorological modeling literature, we were struck 81	
  

at how often key details related to the pressure boundary condition were glossed over or omitted. 82	
  

In many cases it was not possible to determine what was actually implemented. 83	
  

 84	
  

Page 2865 In the last statement the authors mention the numerical boundary layers. Are 85	
  

these a problem in explicit codes as they are using as well, or does this problem only play a 86	
  

role in case implicit diffusion has to be applied? 87	
  

 We did not observe the development of thin numerical boundary layers in any of our 88	
  

tests. However, we don't know whether this is because our code is explicit or is related to the 89	
  

nature of the test flows we considered. The thin numerical boundary layers reported in the 90	
  

literature have generally been for test flows dominated by advection rather than diffusion. 91	
  

 92	
  

Figure 6 Why are the results asymmetric? You are solving a purely symmetric system. 93	
  

Which process introduces the asymmetry in the solution? 94	
  

 The asymmetry is a result of nonlinearities in the numerically simulated flow. By 95	
  

the time the numerical solution has evolved to the point shown in Figure 6, the flow is 96	
  

no longer in a linear regime. If we consider the motion in one convective cell we have an 97	
  

ascending warm branch and a descending cooler branch, which would be symmetric if 98	
  

the system remained linear (and of course it is linear/symmetric in the analytical test 99	
  

case). However, in the numerically simulated flow, the (positive) buoyancy in the rising 100	
  

branch is transported laterally (nonlinear advection) at the top of the circulation cell to 101	
  

the top of the descending cell. This introduces an asymmetry to the circulation. Once 102	
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the symmetry of the flow is broken, the flow can become quite complicated. 103	
  

  104	
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Additional modifications to the manuscript (i.e., not made in 105	
  

response to the reviewers' comments) 106	
  

 107	
  

Please note that the third author would like his middle initial "A" included in his name: 108	
  

Jeremy A. Gibbs. 109	
  

 110	
  

We have added a new reference: Egger (1981). The Egger study was related to ours in 111	
  

that it was concerned with a linear analysis of the 2D Boussinesq governing equations 112	
  

for thermally driven flow. Egger's analysis was largely for slope flows, though with flat 113	
  

terrain (our focus) considered as a special case. However, Egger outlines how to get the 114	
  

analytical solution but does not actually provide the final analytical solution. We 115	
  

mention this Egger study in the second paragraph of Section 1. We also mention it in 116	
  

the paragraph right after (2.8): the restriction on acceptable surface buoyancies 117	
  

described in that paragraph was first noted by Egger, though without details. 118	
  

 119	
  

A correction was made to the original equations (2.39) and (2.40) [these now appear as 120	
  

equations (2.40) and (2.42), respectively]. The factor   k1/3  in the denominator of the 121	
  

term in front of the summation in (2.39) and the factor k 2/3  in the numerator of the 122	
  

term in front of the summation in (2.40) should be kept inside the summations. These 123	
  

factors were treated correctly in the computer code, so none of the presented results 124	
  

were affected. 125	
  

 126	
  

Section 3. We now make the number of points in the x and z direction unambiguous: 127	
  

instead of writing the number of points in test A-1 as (513, 1025) we write, "...consisted 128	
  

of  513  points in the x direction and 1025  points in the z direction,..." Similarly, for test 129	
  

A-2, we now write, "...was generated with 2049  points in the x direction and  513  points 130	
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in the z direction,..." 131	
  

 132	
  

In the Appendix we now write the time step as   !t  instead of !t  since the symbol !  133	
  

has already been used to represent the divergence of the velocity field.     134	
  

 135	
  

In several places in the manuscript we now use bold to indicate the vector u  (formerly 136	
  

we used   
!u ). 137	
  

 138	
  

We have slightly modified the acknowledgements statement (we now thank the 139	
  

anonymous reviewer). 140	
  

  141	
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An analytical verification test for numerically simulated convective flow 142	
  

above a thermally heterogeneous surface 143	
  

 by Alan Shapiro, Evgeni Fedorovich, and Jeremy A. Gibbs 144	
  

 145	
  

Abstract. An analytical solution of the Boussinesq equations for the motion of a 146	
  

viscous stably stratified fluid driven by a surface thermal forcing with large horizontal 147	
  

gradients (step changes) is obtained. This analytical solution is one of the few available 148	
  

for wall-bounded buoyancy-driven flows. The solution can be used to verify that 149	
  

computer codes for Boussinesq fluid system simulations are free of errors in formulation 150	
  

of wall boundary conditions and to evaluate the relative performances of competing 151	
  

numerical algorithms. Because the solution pertains to flows driven by a surface thermal 152	
  

forcing, one of its main applications may be for testing the no-slip, impermeable wall 153	
  

boundary conditions for the pressure Poisson equation. Examples of such tests are 154	
  

presented.  155	
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1  Introduction 156	
  

Thermal disturbances associated with variations in underlying surface properties can 157	
  

drive local circulations in the atmospheric boundary layer (Atkinson, 1981; Briggs, 1988; 158	
  

Hadfield et al., 1991; Segal and Arritt, 1992; Simpson, 1994; Mahrt et al., 1994; Pielke, 159	
  

2001; McPherson, 2007; Kang et al., 2012) and affect the development of the convective 160	
  

boundary layer (Patton et al., 2005; van Heerwaarden et al., 2014). Computational fluid 161	
  

dynamics (CFD) codes for modeling such flows commonly solve the Boussinesq 162	
  

equations of motion and thermal energy for a viscous/diffusive stably stratified fluid. In 163	
  

this paper we present an analytical solution of the Boussinesq equations for flows driven 164	
  

by a surface thermal forcing with large gradients (step changes) in the horizontal. The 165	
  

solution can be used to verify that CFD codes for Boussinesq fluid system simulations 166	
  

are free of errors, and to evaluate the relative performances of competing numerical 167	
  

algorithms. Such verification procedures are important in the development of CFD 168	
  

models designed for research, operational, and classroom applications. 169	
  

 We solve the linearized Navier-Stokes and thermal energy equations analytically 170	
  

for the case where the surface buoyancy varies laterally as a square wave (Fig. 1). 171	
  

Attention is restricted to the steady state. No boundary-layer approximations are made; 172	
  

the solution is non-hydrostatic, and both horizontal and vertical derivatives are included 173	
  

in the viscous stress and thermal diffusion terms. The solution is similar to that of 174	
  

Axelsen et al. (2010) for katabatic flow above a cold strip, but is easier to evaluate (no 175	
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slope present) and applies to the more general scenario where the viscosity and 176	
  

diffusivity coefficients can differ. The flow is also similar to a special case (no slope) 177	
  

considered by Egger (1981), although a final analytical solution was not provided in 178	
  

that study. Strictly speaking, the linearized Navier-Stokes equations apply to a class of 179	
  

very low Reynolds number motions known as creeping flows. Such flows appear in 180	
  

studies of lubrication, locomotion of microorganisms, lava flow, and flow in porous 181	
  

media. Of course, for the task at hand, if our linear solution is to serve as a benchmark 182	
  

for a nonlinear numerical model solution, it is essential that the parameter space be 183	
  

restricted to values for which the model's nonlinear terms are negligible. 184	
  

 Because the solution pertains to flows driven by a surface thermal forcing, one of 185	
  

its main applications may be as a test for surface boundary conditions in the pressure 186	
  

Poisson equation. In models of atmospheric boundary layer flows, the buoyancy is a 187	
  

major contributor to the forcing term in the Poisson equation and also appears in the 188	
  

associated surface boundary condition. The pressure boundary condition on a solid 189	
  

boundary in incompressible (Boussinesq) fluid flows is an important and complex issue 190	
  

that has long been fraught with technical difficulties and controversies (Strikwerda, 191	
  

1984; Orszag et al., 1986; Gresho and Sani, 1987; Gresho, 1990; Temam, 1991; Henshaw, 192	
  

1994; Petersson, 2001; Sani et al., 2006; Rempfer, 2006; Guermond et al., 2006; 193	
  

Nordström et al., 2007; Shirokoff and Rosales, 2011; Hosseini and Feng, 2011; Vreman, 194	
  

2014). Typical fractional-step solution methodologies and associated pressure (or 195	
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pseudo-pressure) boundary-condition implementations are often verified using various 196	
  

prototypic flows such as Poiseuille flows, lid-driven cavity flows, flows over cylinders or 197	
  

bluff bodies, viscously decaying vortices, and dam-break flows. We are unaware of 198	
  

verification tests in which flows were driven by a heterogeneous surface buoyancy 199	
  

forcing. Our solution is designed to fill this gap. 200	
  

 The analytical solution is derived in Sect. 2. In Sect. 3, this solution is compared 201	
  

to numerically simulated fields in a steady state. Two versions of a numerical code are 202	
  

run: a version in which the correct surface pressure boundary condition is applied, and a 203	
  

version in which the pressure condition is mis-specified. A summary follows in Sect. 4. 204	
  

 205	
  

2  Analytical solution 206	
  

We derive the solution for steady flow over an underlying surface along which the 207	
  

buoyancy varies laterally as a single harmonic function. This single-harmonic solution is 208	
  

then used as a building block in a Fourier representation of the square-wave solution. 209	
  

 210	
  

2.1  Governing equations 211	
  

Consider the flow of a viscous stably stratified fluid that fills the semi-infinite domain 212	
  

above a solid horizontal surface (placed at z = 0). This surface undergoes a steady 213	
  

thermal forcing that varies periodically in the right-hand Cartesian x direction, but is 214	
  

independent of the y direction. The two-dimensional (x, z) flow is periodic in x, and 215	
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satisfies the linearized (assuming the disturbance is of small amplitude) governing 216	
  

equations under the Boussinesq approximation, 217	
  

 
    
0 =!

"#
"x

+ !$2u ,           (2.1) 218	
  

 
    
0 =!

"#
"z

+b + !$2w ,          (2.2) 219	
  

 0 =!N 2w +!"2b ,           (2.3) 220	
  

 !u
!x
+
!w
!z
= 0 .           (2.4) 221	
  

Apart from notational differences, (2.1)–(2.4) are the two-dimensional steady state 222	
  

versions of (55)–(57) of Sect. II of Chandrasekhar (1961). Equations (2.1) and (2.2) are 223	
  

the horizontal (x) and vertical (z) equations of motion, respectively, (2.3) is the thermal 224	
  

energy equation (differential form of the first law of thermodynamics) expressed in 225	
  

terms of the buoyancy variable (defined below), and (2.4) is the incompressibility 226	
  

condition. Here u and w are the horizontal and vertical velocity components,  ! "  227	
  

    [p! pe(z)]/!w  is the kinematic pressure perturbation [p is pressure,   pe(z)  is pressure in a 228	
  

hydrostatic environmental state in which the density profile is !e(z) ,   !w  is a constant 229	
  

reference density, say,    !e(0) ], and     b !"g[!"!e(z)]/!w  is the buoyancy, where  !  is the 230	
  

actual density, and g is the acceleration due to gravity. The Brunt-Väisälä frequency231	
  

    N ! "(g/!w)d!e/dz  of the ambient fluid (Kundu 1990), kinematic viscosity ! , and 232	
  

thermal diffusivity !  are taken constant. 233	
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 We obtain our solution using a standard vorticity/streamfunction formulation. 234	
  

Cross-differentiating (2.1) and (2.2) yields the vorticity equation, 235	
  

 0 =!"b
!x
+ !!2" ,           (2.5) 236	
  

where ! ! "u/"z #"w/"x  is the vorticity. Eliminating b from (2.3) and (2.5) yields 237	
  

 
    
!4! =

N 2

"#
"w
"x

.           (2.6) 238	
  

Introducing a streamfunction !  defined through 239	
  

 u = !!/!z, w ="!!/!x ,         (2.7) 240	
  

guarantees that (2.4) is satisfied, and transforms (2.6) into a single equation for  ! , 241	
  

 
    
!6!+

N 2

"#
"2!

"x2 = 0 .           (2.8) 242	
  

The dependent variables are assumed to vanish far above the surface (z !" ). On the 243	
  

surface we apply no-slip (u = 0 ) and impermeability (   w = 0 ) conditions, and specify a 244	
  

periodic (in x) buoyancy distribution. As we will now see, restricting the dependent 245	
  

variables to steady periodic forms that vanish as   z !"  also restricts acceptable 246	
  

distributions of the surface buoyancy. The restriction was first noted by Egger (1981, 247	
  

Sect. 3c), though without details. Averaging (2.3) over one period (using w =!"!/"x ) 248	
  

yields d2b /dz2 = 0 , which integrates to   b = A + Bz  ( b  is the average of b; A and B are 249	
  

constants). Taking    b! 0  as   z !" , implies that b ! 0  as   z !" , in which case A =250	
  

   B = 0 , and b (z)= 0 . In particular, at the surface,    b (0) = 0 . If a surface distribution 251	
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b(x,0) violates this condition, the ground acts as a net heat source/sink. In an unsteady 252	
  

model, such a source/sink would force a continually upward-developing disturbance, and 253	
  

a steady state could never be attained.   254	
  

 255	
  

2.2  Single-harmonic forcing 256	
  

For a surface buoyancy of the form    b(x,0)! sinkx , (2.3) indicates that  !  is of the form 257	
  

     ! = A(z)coskx .           (2.9) 258	
  

Application of (2.9) in (2.8) yields 259	
  

 
    

d2

dz2 !k2
"

#

$$$$$

%

&

'''''

3

A!N 2k2

!"
A = 0 ,        (2.10) 260	
  

which has solutions of the form A ! eMz  for M satisfying 261	
  

 (M 2 !k2)3 = N
2k2

!"
.          (2.11) 262	
  

Taking the one-third power of (2.11) yields a useful intermediate result: 263	
  

 
    
M 2!k2 =

N 2/3k2/3

!1/3"1/3 e2n#i/3 ,         (2.12) 264	
  

where n is an integer. Rearranging (2.12) and taking the square root yields 265	
  

 M = ± k2 + N
2/3k2/3

!1/3"1/3
e2n#i/3 .        (2.13) 266	
  

Equation (2.13) furnishes six roots, two for each of n = 0, 1, 2. To ensure that    A(z)! 0  267	
  

as z !" , we reject the roots with a positive real part. With the radicand of (2.13) 268	
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expressed in polar form, the physically acceptable roots are 269	
  

 
    
M0 =! k2 +

N 2/3k2/3

!1/3"1/3 , (n = 0),             (2.14a) 270	
  

 M1 =!r
1/2ei!/2 ,  (n = 1),             (2.14b) 271	
  

 M2 =!r
1/2e!i!/2 ,  (n = 2),             (2.14c) 272	
  

where the subscript on M denotes the associated value of n, and r and  !  are defined by 273	
  

 r ! k2 + N
2/3k2/3

!1/3"1/3
cos 2#

3
"

#
$$$$

%

&
''''

(

)

*
*
*

+

,

-
-
-

2

+
N 2/3k2/3

!1/3"1/3
sin 2#

3
"

#
$$$$

%

&
''''

(

)

*
*
*

+

,

-
-
-

2

,     (2.15) 274	
  

 
    
cos! =

1
r

k2 +
N 2/3k2/3

"1/3#1/3 cos 2$
3
!

"
####

$

%
&&&&

'

(

)
)
)

*

+

,
,
,
,      sin! = 1

r
N 2/3k2/3

!1/3"1/3

!

"

#####

$

%

&&&&&
sin 2#

3
!

"
####

$

%
&&&&
> 0 .  (2.16) 275	
  

While solving (2.16) for ! , care must be taken when evaluating arcsin or arccos 276	
  

functions that !  appears in the correct quadrant (!  should be in quadrant I or II so 277	
  

  !/2  should always be in quadrant I). Also note from (2.14b) and (2.14c) that   M2  is the 278	
  

complex conjugate of   M1  (   M2 = M1*), a fact that will often be used below. 279	
  

 With the general solution for !  written as 280	
  

 ! = (BeM0z +CeM1z +DeM2z )coskx ,       (2.17) 281	
  

where B, C, and D are constants, the vorticity becomes, 282	
  

 
    
! = B(M0

2!k2)eM0z +C(M1
2!k2)eM1z + D(M2

2!k2)eM2z"
#
$

%
&
' coskx ,   (2.18) 283	
  

and the buoyancy follows from (2.3) as 284	
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b =

kN 2

!
B

M0
2!k2 eM0z +

C
M1

2!k2 eM1z +
D

M2
2!k2 eM2z

"

#

$$$$$

%

&

''''''
sinkx +bh ,   (2.19) 285	
  

where !2bh = 0 . In view of (2.12), equation (2.19) becomes 286	
  

 
    
b =

k1/3!1/3N 4/3

"2/3 (BeM0z +e!2#i/3CeM1z +e!4#i/3 DeM2z )sinkx +bh .   (2.20) 287	
  

Applying (2.18) and (2.20) in (2.5) yields an equation for    !bh/!x , which upon use of 288	
  

(2.12) and    M2 = M1* reduces to    !bh/!x = 0 . So  bh  is, at most, a function of z. Since 289	
  

   !
2bh = 0 ,  bh  is, at most, a linear function of z, and since b should vanish as   z !" , 290	
  

that linear function must be 0. Thus, bh = 0 . 291	
  

 The pressure follows from (2.1) and (2.12) as 292	
  

 ! =
!2/3N 2/3

k1/3!1/3
(BM0 e

M0z +CM1e
2!i/3eM1z +DM2e

4!i/3eM2z )sinkx +G(z) ,  (2.21) 293	
  

where G(z) is a function of integration. Applying (2.21) in (2.2), and using (2.11) yields 294	
  

   dG/dz = 0 , so G is constant. For  !  to vanish as   z !" , this constant must be zero. 295	
  

 The surface conditions determine B, C, and D. The surface buoyancy is 296	
  

  b(x,0)= b0 sinkx ,          (2.22) 297	
  

where   b0  is a constant forcing amplitude. Application of (2.20) in (2.22) yields 298	
  

 B+e!2!i/3C +e!4!i/3D =
b0"

2/3

k1/3#1/3N 4/3
.       (2.23) 299	
  

In view of (2.7) and (2.17), the impermeability condition    w(x,0) = 0  and no-slip 300	
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condition u(x,0)= 0  yield 301	
  

 B +C +D = 0 ,          (2.24) 302	
  

 BM0 +CM1 +DM2 = 0 .         (2.25) 303	
  

Straightforward but lengthy manipulations yield the solution of (2.23)–(2.25): 304	
  

 B =!
b0 !

2/3

3 k1/3"1/3N 4/3

"

#

$$$$$

%

&

''''''

2r1/2sin(#/2)
M0 + 2r

1/2cos($/3+#/2)
,     (2.26) 305	
  

 
    
C =!i

b0 !
2/3

3 k1/3"1/3N 4/3

"

#

$$$$$

%

&

''''''

M2!M0
M0 + 2r1/2cos(#/3 +$/2)

,     (2.27) 306	
  

 D = i
b0 !

2/3

3 k1/3"1/3N 4/3

!

"

#####

$

%

&&&&&&

M1'M0
M0+ 2r

1/2cos(#/3+$/2)
.     (2.28) 307	
  

Applying (2.26)–(2.28) in (2.17), (2.20), and (2.18), with (2.12) used in the latter 308	
  

equation, and noting that B is real, while D =C *  (since    M2 = M1*), we obtain309	
  

 b =
2b0
3
e!Zc [µ cos(Zs+ !/6)+ cos(Zs+ !/6+"/2)]!e

M0zsin("/2)
µ+ 2cos(!/3+"/2)

sinkx ,  (2.29) 310	
  

 ! =
2b0 "

2/3

3 k1/3#1/3N 4/3
e!Zc [µ sinZs + sin(Zs+$/2)]!e

M0zsin($/2)
µ+ 2cos(%/3+$/2)

coskx ,  (2.30) 311	
  

where 312	
  

 Zs ! z r
1/2 sin(!/2), Zc ! z r

1/2 cos(!/2), µ !M0/r
1/2 .    (2.31) 313	
  

Application of (2.30) in (2.7) yields the velocity components as 314	
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u =

2b0 !
2/3r1/2

3 k1/3!1/3N 4/3
e!Zc [µ sin(!/2!Zs)! sinZs ]!µe

M0zsin(!/2)
µ+ 2cos(!/3+!/2)

coskx   (2.32) 315	
  

 
    
w =

2b0 !
2/3k2/3

3 "1/3N 4/3
e!Zc [µ sinZs + sin(Zs+#/2)]!eM0z sin(#/2)

µ + 2cos($/3 +#/2)
sinkx .   (2.33) 316	
  

 317	
  

2.3  Piecewise constant (square wave) forcing 318	
  

Next, consider the case where the surface buoyancy varies horizontally as a square 319	
  

wave, with a distribution over one period L given by 320	
  

 
   
b(x,0) =

bmax, 0 < x < L/2,
!bmax, L/2 < x < L.

"
#
$$

%$$
         (2.34) 321	
  

Such a distribution can be expressed as the Fourier series: 322	
  

 b(x,0)= bn
n=1

!

" sin n!x
L
#

$
%%%%

&

'
((((
,         (2.35) 323	
  

 bn =
2
L

b(x,0)sin n!x
L
!

"
####

$

%
&&&&0

L

' .         (2.36) 324	
  

Application of (2.34) in (2.36) yields 325	
  

 
    
bn =

2bmax
n !

1!2cos(n !/2)+ cos(n !)"
#$

%
&' .      (2.37) 326	
  

The solutions for b,  ! , u, and w can then be written as summations over the single-327	
  

harmonic solutions (2.29), (2.30), (2.32), and (2.33), with k related to n by  328	
  

 
   
k =

n !
L

,           (2.38) 329	
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and with   b0  replaced by  bn : 330	
  

b = 2
3

bn
e!Zc [µ cos(Zs+ !/6)+ cos(Zs+ !/6+!/2)]!e

M0zsin(!/2)
µ+ 2cos(!/3+!/2)n=1

"

# sin n!x
L
$

%
&&&&

'

(
))))
,  (2.39) 331	
  

! =
2!2/3

3 !1/3N 4/3
bn
k1/3

e!Zc [µ sinZs + sin(Zs+!/2)]!e
M0zsin(!/2)

µ+ 2cos(!/3+!/2)
cos n!x

L
"

#
$$$$

%

&
''''n=1

(

) ,  (2.40) 332	
  

u = 2!2/3

3 !1/3N 4/3
bn
r1/2

k1/3
e!Zc [µ sin(!/2!Zs)! sinZs ]!µe

M0zsin(!/2)
µ+ 2cos(!/3+!/2)

cos n!x
L
"

#
$$$$

%

&
''''n=1

(

) , (2.41) 333	
  

w = 2!2/3

3 !1/3N 4/3
bnk

2/3 e
!Zc [µ sinZs + sin(Zs+!/2)]!e

M0z sin(!/2)
µ+ 2cos(!/3+!/2)

sin n!x
L
"

#
$$$$

%

&
''''n=1

(

) .  (2.42) 334	
  

 335	
  

3  Verification tests 336	
  

A solution of the linearized equations may be used to verify a nonlinear code if the 337	
  

nonlinear terms are sufficiently small. Unfortunately, a priori estimates of such terms 338	
  

expressed, for example, through a Reynolds number, are not straightforward since the 339	
  

relevant velocity and length scales in our problem are only evident after a solution has 340	
  

been obtained. We thus seek an appropriate set of test parameters through trial and 341	
  

error, guided by a posteriori linear solution estimates of the terms    u !"b  and u !"!  342	
  

[u = (u,w)]  present in nonlinear versions of (2.3) and (2.5), respectively. Specifically, for 343	
  

any computed candidate solution, we formed the ratios of the largest values of those 344	
  

nonlinear terms to the largest values of the corresponding linear terms, that is, the 345	
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terms actually present in (2.3) and (2.5). We need only consider one such linear term 346	
  

per ratio since (2.3) and (2.5) are comprised of two terms of equal magnitude. A 347	
  

solution was deemed to be sufficiently linear if 348	
  

 

     

R! !
max u "#!
max $b/$x

< ", and Rb !
max u "#b

max ##2b
< " ,      (3.1) 349	
  

where  !  (<< 1) is a prescribed threshold. The suitability of this approach was 350	
  

confirmed by the very close agreement between the analytical solutions and the 351	
  

numerical solutions obtained with the correct surface pressure condition. 352	
  

 The numerical model employed in our tests is a variant of a direct numerical 353	
  

simulation (DNS) code used in the boundary-layer and slope-flow studies of Fedorovich 354	
  

et al. (2001), Fedorovich and Shapiro (2009a,b), and Shapiro and Fedorovich (2013, 355	
  

2014). The model solves the Boussinesq governing equations on a staggered (Arakawa 356	
  

C) grid. Although designed for three-dimensional simulations, the model was run in a 357	
  

two-dimensional (x, z) mode. The overall solution procedure is patterned on a fractional 358	
  

step method proposed by Chorin (1968). In our version, the prognostic equations are 359	
  

integrated using a filtered leapfrog scheme with explicit treatment of the viscous term. 360	
  

The pressure is diagnosed from a Poisson equation (equation (A3b), discussed in the 361	
  

Appendix), which is solved using a fast Fourier transform technique in horizontal 362	
  

planes, and a tridiagonal matrix inversion in the vertical. The surface condition on 363	
  

pressure is the inhomogeneous Neumann condition (INC) that arises from projecting the 364	
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vertical equation of motion into the vertical, and imposing the impermeability condition 365	
  

(Vreman, 2014; also see the Appendix). We also run a version of the code in which the 366	
  

surface pressure condition is mis-specified as a homogeneous Neumann condition (HNC). 367	
  

We hasten to add, however, that our implementation of the HNC may be quite different 368	
  

from implementations described in the literature. We elaborate on these technical 369	
  

differences and review general aspects of the problem of surface pressure specification in 370	
  

the Appendix. 371	
  

 The analytical solution was evaluated on an un-staggered (x, z) grid extending 372	
  

over one period of the square wave (x = 0 to x = L). The series were truncated at 373	
  

 50000  terms. The governing parameters were adjusted so that the linearity criteria 374	
  

were satisfied in comparisons with    ! = 5!10"3 .  375	
  

 In the first test, we set ! = " = 0.001m2 s!1 , N = 0.02s!1 ,    L = 5.12m , and bmax376	
  

  = 1!10"5m s"2 . For the analytical solution A-1, the (x, z) grid consisted of  513  points 377	
  

in the x direction and 1025  points in the z direction, with grid spacings 378	
  

!x =!z = 0.01m . The linearity criteria (3.1) were satisfied with R! ! 8.2"10
#5  and 379	
  

   Rb ! 2.8"10#3 . The analytical b and w fields shown in Fig. 2 depict a broad zone of 380	
  

ascent above the warm surface and a compensating zone of descent over the cold 381	
  

surface, roughly for    z <1.8m . In the upper part of these zones (at roughly 382	
  

   0.9m<z <1.8m ), adiabatic expansion/compression has reversed the senses of the 383	
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buoyancy fields. Surprisingly, the numerical fields in the inhomogeneous INC-1 and 384	
  

homogeneous HNC-1 cases are very similar to each other and to the A-1 fields. The u 385	
  

fields from A-1, INC-1, and HNC-1 shown in Fig. 3 are visually indistinguishable from 386	
  

one another. 387	
  

 To understand why the INC-1 and HNC-1 simulations are so similar, and to 388	
  

identify simulation parameters that might evince more substantial differences, we 389	
  

consider the idealized problem in which a specified buoyancy     b = b0e
!!z sinkx  (    ! = h!1 , 390	
  

where h is the e-folding depth scale) is the only forcing term in the Poisson equation 391	
  

  !2" =    !b/!z , with Neumann surface condition 
   
!"/!z 0= b(x,0) . This idealized 392	
  

problem is solved as  393	
  

 
    
!INC

* =
b0

!2"k2 ke"kz " !e"!z( )sinkx .        (3.2) 394	
  

The corresponding solution obtained with the homogeneous Neumann condition, 395	
  

!"/!z
0
= 0 , is 396	
  

 !HNC
* =

b0
!2 !k2

!2

k
e!kz ! !e!!z

!

"
####

$

%
&&&&&
sinkx .        (3.3) 397	
  

The relative error (RE) in the vertical pressure gradient force associated with (3.2) and 398	
  

(3.3), defined as the local absolute error in that force divided by the local buoyancy, is 399	
  

calculated as 400	
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 RE ! "#INC
* /!z "!#HNC

* /!z
b

= e(a!1)kz ,       (3.4) 401	
  

where     a ! !/k . Written in terms of the depth scale h and wavelength     ! = 2"/k , a can 402	
  

be interpreted as an aspect ratio characterizing the width to depth scales of the 403	
  

disturbance,     a = !/(2"h)! !# . From (3.4) we see that RE decreases exponentially with 404	
  

z for disturbances characterized by small aspect ratios, a < 1  (which we refer to as deep 405	
  

disturbances) and increases exponentially with z for disturbances characterized by large 406	
  

aspect ratios,    a >1  (which we refer to as shallow disturbances). The buoyancy in Fig. 2 407	
  

is suggestive of a < 1, which indicates that the first test could be classified as a deep 408	
  

(error-forgiving) simulation. 409	
  

 The preceding analysis suggests that simulations with shallow thermal 410	
  

disturbances (a > 1) might yield large differences between cases with inhomogeneous 411	
  

and homogeneous Neumann conditions. There did not appear to be a straightforward 412	
  

way to increase the effective a by systematically varying the parameters (e.g., increasing 413	
  

L tended to increase the effective h), but a set of suitable parameters were identified 414	
  

through trial and error and were used as the basis for the second test case. 415	
  

 In the second test, we set ! = " = 	
   0.0001m2s!1 , N = 0.2s!1 ,    L = 10.24m , and 416	
  

bmax = 5!10
"6ms"2 . The analytical solution A-2 was generated with 2049  points in the 417	
  

x direction and  513  points in the z direction, with grid spacings of    !x =!z = 0.005m . 418	
  

The linearity criteria were satisfied with 
    
R! ! 4.8"10#5  and Rb ! 3.8"10

#3 . In 419	
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contrast to the counter-rotating convection rolls seen in the first test, the analytical b 420	
  

and w fields shown in Fig. 4 depict narrow updraft/downdraft pairs straddling the 421	
  

buoyancy discontinuities. Between the narrow updrafts is a broad region of relatively 422	
  

weak ascent. The w and b fields above the cold surface are mirror images of the fields 423	
  

above the warm surface. Note the change in the scales of the x and (especially) the z 424	
  

axes between Figs. 4 and 2: the low-level thermal disturbance in the second test is much 425	
  

shallower than the disturbance in the first test (and is suggestive of a > 1). In this 426	
  

second test case we find dramatic differences between the inhomogeneous INC-2 and 427	
  

homogeneous HNC-2 cases. Specifically, while the INC-2 and A-2 fields are in excellent 428	
  

agreement, the HNC-2 fields showed no signs of even approaching a steady state. Long 429	
  

after the INC-2 simulation had reached a steady state, the HNC-2 fields continued to 430	
  

amplify and develop asymmetric structures associated with flow nonlinearities. The very 431	
  

close agreement between the A-2 solution and the steady state in the INC-2 simulation 432	
  

is shown for the u field in Fig. 5. The u field in the disastrous HNC-2 simulation, at a 433	
  

time when a steady state had already been attained in the INC-2 simulation, is shown 434	
  

in Fig. 6. 435	
  

 436	
  

4  Summary 437	
  

The linearized Boussinesq equations for the motion of a viscous stably stratified fluid 438	
  

are solved analytically for a surface buoyancy that varies laterally as a square wave. 439	
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The solution describes two-dimensional laminar convective structures such as thermal 440	
  

convective rolls and updraft/downdraft pairs. The main applications of the solution may 441	
  

be in code verification and the evaluation of different implementations of the surface 442	
  

pressure condition for the pressure Poisson equation. Tests have been conducted for 443	
  

cases where the aspect ratios of the thermal disturbance have been large and small. 444	
  

With attention restricted to disturbances of sufficiently small amplitude, the linear 445	
  

solution and numerically simulated fields with the inhomogeneous Neumann condition 446	
  

for pressure (which is appropriate in the context of the particular fractional step 447	
  

procedure adopted in our DNS code) have been found to be in excellent agreement for 448	
  

both tests. However, in tests with a mis-specified Neumann condition, an excellent 449	
  

agreement with the analytical solution has been found only for the deep (small aspect 450	
  

ratio) disturbance case; errors in the shallow (large aspect ratio) disturbance case have 451	
  

been catastrophic.  452	
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Appendix A: Comment on the pressure condition at a lower solid surface 453	
  

 Consider a three-dimensional Boussinesq system with equation of motion, 454	
  

 !u
!t
=!"#+ !!2u+F .          (A1) 455	
  

Here u = (u, v,w)  is the three-dimensional velocity vector, !  is a kinematic pressure 456	
  

perturbation, !  is the kinematic viscosity coefficient, and F  is the sum of nonlinear 457	
  

acceleration and buoyancy terms. Applying the incompressibility condition, 458	
  

 !"u = 0 ,             (A2) 459	
  

in the equation that results from taking the divergence of (A1) (e.g., Orszag et al., 1986) 460	
  

yields the Poisson equation,  461	
  

 !2" =!#F .          (A3a) 462	
  

 Although (A1) and (A2) imply (A3a), the reverse statement is not generally true. 463	
  

Indeed, eliminating  !  from between (A3a) and the equation arising from taking the 464	
  

divergence of (A1) yields the diffusion equation     !!/!t = ""2!  for the velocity 465	
  

divergence ! ! "#u , whose solution is (A2) only if !  is zero initially and on all 466	
  

boundaries (Orszag et al., 1986; Gresho and Sani, 1987, Vreman 2014).  467	
  

 The same steps leading to (A3a) also lead to an alternative Poisson equation, 468	
  

 !2! ="# !!2u+F( ) .          (A3b) 469	
  

Although !"!!2u  was omitted in (A3a) [this term is zero if (A2) is satisfied], without 470	
  

further constraints on !  (described above), (A2) may not be satisfied. Gresho and Sani 471	
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(1987) showed that the retention of !"!!2u  in (A3b) assures that (A2) is satisfied, 472	
  

and thus leads to the paradox: "If you include it, you don't need it; if you don't include 473	
  

it, you need it." Vreman (2014) revisited this paradox, and showed that for a standard 474	
  

staggered method, the discretized form of (A3b) is equivalent to that of (A3a) 475	
  

supplemented with the constraint that    !"!2u = 0  (!2! = 0)  on points adjacent to the 476	
  

solid boundary [with the same inhomogeneous Neumann boundary condition for !  477	
  

implied for (A3a) and (A3b)]. When supplemented with this !2! = 0  near-wall 478	
  

condition, the diffusion equation for !  led to    ! = 0  for all time. We note that (A3b) is 479	
  

the form adopted in our numerical code. 480	
  

 Evaluating the vertical component of (A1) on the surface, where the 481	
  

impermeability condition applies, yields the inhomogeneous Neumann condition, 482	
  

 !"
!z 0

= !
!2w
!z2 0

+Fz 0 ,          (A4) 483	
  

where w ! k "u ,    Fz ! k "F , k  is the upward unit vector, and 
 
( )0  is a surface value. It 484	
  

has been argued that (A4), by itself, is not a proper boundary condition because it does 485	
  

not provide new information (it is not independent of the governing equations) and does 486	
  

not enforce the incompressibility condition (A2) at the boundary (Strikwerda, 1984; 487	
  

Henshaw, 1994; Sani et al., 2006). However, as pointed out by Henshaw (1994), many 488	
  

studies that impose (A4) (or a variant of it) also apply (A2) on the boundary. 489	
  

 In our numerical model, (A1) is integrated using a fractional step procedure with 490	
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explicit treatment of the viscous term. First, a provisional velocity field !u  that does not 491	
  

satisfy (A2) is obtained by integrating a discretized form of (A1) in which the pressure 492	
  

gradient is omitted. The provisional velocity is equal to the velocity at the end of the 493	
  

previous time step plus the sum of the forcing terms (nonlinear acceleration, buoyancy, 494	
  

and viscous stress) multiplied by the time step   !t . With the forcing terms explicitly 495	
  

evaluated, !u  is readily computed throughout the flow domain, including on the surface, 496	
  

where, in surface-forced flows, the buoyancy will make a substantial contribution. In 497	
  

terms of !u  and its vertical component   !w , (A3b) and (A4) become, 498	
  

 !2! =
"# !u
!t

,            (A5) 499	
  

 !"
!z 0

!
1
"t
!w
0
= 0 .           (A6) 500	
  

In the second step, a velocity field that does satisfy (A2) is obtained by solving (A5) for 501	
  

!  and then adding the pressure gradient force associated with  !  (multiplied by !t ) to 502	
  

!u .  503	
  

 In some explicit fractional step procedures (including the DNS code used in our 504	
  

study), the problem of solving (A5) subject to (A6) with 
   
!u 0  evaluated from model data 505	
  

is replaced by what appears to be an entirely different (but is actually equivalent) 506	
  

problem: solving (A5) subject to the homogeneous Neumann condition, 507	
  

 !"
!z 0

= 0,             (A7) 508	
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in concert with 
   
!u 0  being set to 0, obviating the need to calculate 

   
!u 0  from model data. 509	
  

It can be shown that 
   
!w 0  and the discretized form of !"/!z

0
 appear in the discretized 510	
  

form of (A5) valid half a grid point above the physical surface as !"/!z
0
! !w

0
/!t , that 511	
  

is, in the same combination as they appear in (A6). Thus, setting 
   
!w 0  and !"/!z

0
 to 0, 512	
  

is equivalent to implementing (A6) with the model-computed values of 
   
!w 0 : the 513	
  

discretized form of (A5) near the surface is the same in either case. Moreover, on the C 514	
  

grid, setting the tangential components 
   
!u 0  and !v

0
 to 0 only affects the values of !u  and 515	
  

  !v  half a grid point beneath the physical boundary. These values do not appear in the 516	
  

discretized form of (A5) at any z-level, and thus have no bearing on the solution. In 517	
  

essence, the errors associated with the conflation of the two physically unjustifiable 518	
  

specifications (homogeneous Neumann condition for pressure, and !u
0
= 0 ) cancel out. 519	
  

 The homogeneous Neumann condition for pressure can be the source of confusion 520	
  

if the context in which the condition is applied is not made clear: it would be a correct 521	
  

condition if 
   
!u 0  is set to zero (per the equivalence described above), but it would be an 522	
  

incorrect condition if the explicit model-computed values of 
   
!u 0  are used. In the 523	
  

experiments with the mis-specified condition described in Sect. 3, the homogeneous 524	
  

condition is imposed in the latter context. Unfortunately, in many numerical model 525	
  

descriptions, the nature of the surface pressure condition is left vague, for example, by 526	
  



	
   30	
  

not indicating whether a Neumann condition is homogeneous or inhomogeneous, or, if a 527	
  

homogeneous Neumann condition is indicated, not mentioning how 
   
!u 0  is treated. 528	
  

 Finally, we note that in fractional step procedures that treat the viscous term 529	
  

implicitly (e.g., Kim and Moin, 1985; Gresho, 1990; Armfield and Street, 2002; 530	
  

Guermond et al., 2006, and many others), the homogeneous Neumann condition is often 531	
  

applied as a surface condition for a Poisson equation, but it is again different from our 532	
  

implementation described in Sect. 3. In the implicit treatments, the provisional velocity 533	
  

is obtained as the solution of a boundary value problem (
   
!u 0  should be specified; often 534	
  

it is set to 0) in which the relevant Poisson equation resembles (A5) but applies to a 535	
  

scalar function (sometimes called a pseudo-pressure) that is not the real pressure. 536	
  

Temam (1991) refers to this scalar as, "... a technical quantity, a mathematical 537	
  

auxiliary..." and advocates that it should not even be considered as an approximation of 538	
  

the pressure. Interestingly, in the context of implicit treatments, the homogeneous 539	
  

Neumann condition on the pseudo-pressure has sometimes been implicated as corrupting 540	
  

solution accuracy through the development of spurious numerical boundary layers 541	
  

adjacent to solid boundaries (Gresho, 1990; Guermond et al., 2006; Hosseini and Feng, 542	
  

2011). 543	
  

 544	
  

Code availability 545	
  

The Fortran program used to generate output data files from the analytical solution is 546	
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available as a supplement to this article. That program (square.f) is configured for test 547	
  

A-1, but can be easily adjusted to run test A-2 or other tests. Running square.f 548	
  

automatically generates an output file for each dependent variable (e.g., u.dat) as well 549	
  

as an output file (square.out) that summarizes the test parameters and gives the 550	
  

computed values of the linearity ratios 
  
R!  and Rb  defined in (3.1). 551	
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 648	
  

Figure 1. Schematic of two-dimensional (x, z) thermal convection induced by a surface 649	
  

buoyancy that varies horizontally (x) as a square wave. Red denotes positive surface 650	
  

buoyancy, blue denotes negative surface buoyancy. 651	
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 658	
  

Figure 2. Vertical cross section of the analytical (A-1) buoyancy b and vertical velocity 659	
  

w fields from the first test case. Color bar units are   m s!2  for b, and m s!1  for w. 660	
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 667	
  

Figure 3. Vertical cross section of u from the first test case. A-1 is the analytical 668	
  

solution. INC-1 is the numerical simulation with inhomogeneous Neumann condition for 669	
  

pressure. HNC-1 is the numerical simulation with the homogeneous Neumann condition 670	
  

for pressure. Color bar units are m s!1 . 671	
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Figure 4. Vertical cross section of the analytical (A-2) buoyancy b and vertical velocity 679	
  

w fields from the second test case. Color bar units are   m s!2  for b, and m s!1  for w. 680	
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 686	
  

Figure 5. Vertical cross section of u from the second test case. A-2 is the analytical 687	
  

solution. INC-2 is the numerical simulation with inhomogeneous Neumann condition for 688	
  

pressure. Color bar units are m s!1 . 689	
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Figure 6. Vertical cross section of u from HNC-2, the numerical simulation with 695	
  

homogeneous Neumann condition for pressure in the second test case. Color bar units 696	
  

are m s!1 . 697	
  


