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Abstract 12 

The Emission Scenario Projection (ESP) method produces future-year air pollutant emissions for 13 

mesoscale air quality modeling applications. We present ESP v2.0, which expands upon ESP v1.0 by 14 

spatially allocating future-year non-power sector emissions to account for projected population and land 15 

use changes. In ESP v2.0, U.S. Census Division-level emission growth factors are developed using an 16 

energy system model. Regional factors for population-related emissions are spatially disaggregated to 17 

the county level using population growth and migration projections. The county-level growth factors are 18 

then applied to grow a base-year emission inventory to the future. Spatial surrogates are updated to 19 

account for future population and land use changes, and these surrogates are used to map projected 20 

county-level emissions to a modeling grid for use within an air quality model.  We evaluate ESP v2.0 by 21 

comparing US 12 km emissions for 2005 with projections for 2050. We also evaluate the individual and 22 

combined effects of county-level disaggregation and of updating spatial surrogates. Results suggest that 23 

the common practice of modeling future emissions without considering spatial redistribution over-24 

predicts emissions in the urban core and under-predicts emissions in suburban and exurban areas. In 25 

addition to improving multi-decadal emission projections, a strength of ESP v2.0 is that it can be applied 26 

to assess the emissions and air quality implications of alternative energy, population and land use 27 

scenarios. 28 

1 Introduction 29 

Emission projections are often the dominant factor influencing the outcome of future-year air quality 30 

modeling studies (e.g., Tagaris et al., 2007; Tao et al., 2007; Avise et al, 2009).  Thus, building plausible 31 

emission scenarios and correctly allocating emissions to modeling grids are critical steps in conducting 32 

those studies.  The Emission Scenario Projection v1.0 (ESP v1.0) method, described by Loughlin et al. 33 

(2011), facilitates the development of future-year air pollutant emission inventories by producing U.S. 34 

Census Division level-, source category- and pollutant-specific emission growth factors. For most 35 

emission categories, multiplicative emission growth factors are developed using the MARKet ALlocation 36 

(MARKAL) energy system model (Fishbone and Abilock 1981; Loulou et al., 2004). These factors are 37 

applied to a base-year emissions inventory, such as the United States Environmental Protection Agency 38 
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(US EPA) National Emissions Inventory (NEI) (US EPA, 2010), using the Sparse Matrix Operator Kernel 1 

Emission (SMOKE) model (Houyoux  et al., 2000). The resulting future-year emission inventory is then 2 

temporally and spatially allocated to a gridded modeling domain for use by an air quality model such as 3 

the Community Multi-scale Air Quality (CMAQ) model (Byun and Schere, 2006), typically at 4 to 36 km 4 

grid resolution.  5 

Since the release of ESP v1.0, a number of improvements to the method and its components have been 6 

made. For example, in ESP v1.0, pollutants represented explicitly in the MARKAL database were carbon 7 

dioxide (CO2), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter less than 10 microns in 8 

diameter (PM10). The pollutant coverage in the ESP v2.0 MARKAL database has been expanded to 9 

include carbon monoxide (CO), methane (CH4), nitrous oxide (N2O), volatile organic compounds (VOCs), 10 

PM less than 2.5 microns in diameter (PM2.5), black carbon (BC), and organic carbon (OC). Furthermore, 11 

while the ESP v1.0 MARKAL database was calibrated to the 2006 Annual Energy Outlook (AEO) (US EIA, 12 

2006), the ESP v2.0 MARKAL database used here is calibrated to AEO 2010 (US EIA, 2010), and the 13 

method accommodates MARKAL databases calibrated to more recent AEO projections. As a result, 14 

developments such as the economic recession of 2008 and the increased availability of natural gas can 15 

now be considered. Additional detail in the electric sector also facilitates consideration of coal plant 16 

retirements and improvements in the cost-effectiveness of renewables.       17 

Another aspect of the method that has been improved is the spatial representation of future-year 18 

emissions. In ESP v1.0, the application of multiplicative emission growth factors resulted in emissions 19 

being grown (or shrunk) in place. This approach does not account for any spatial redistribution of 20 

emissions resulting from population shifts or land use changes. The grow-in-place assumption is 21 

common in air quality modeling applications, most of which project emissions only 5 to 15 years into the 22 

future (Woo et al., 2008; Zhang et al., 2010). For modeling time horizons within this range, the grow-in-23 

place assumption may be reasonable in light of the many other uncertainties associated with predicting 24 

future emissions. The EPA’s Office of Research and Development (ORD) is increasingly interested in air 25 

quality modeling applications that extend well beyond 2030, however.  In its Global Change Air Quality 26 

Assessment, ORD examined the impacts of climate change on air quality through 2050 (e.g. Nolte et al., 27 

2008; US EPA, 2009b; Weaver, 2009). Similarly, the GEOS-Chem LIDORT Integrated with MARKAL for the 28 

Purpose of Scenario Exploration (GLIMPSE) framework is being used to examine climate and air quality 29 

management strategies through 2055 (Akhtar et al., 2013). The rationale for growing emissions in place 30 

is weaker when modeling over multi-decadal time horizons, where trends such as population growth 31 

and migration, as well as urbanization, may result in a very different future spatial distribution of 32 

emissions.  33 

Land use change models are useful tools for investigating alternative assumptions regarding the spatial 34 

distribution of future-year emissions.  For example, the Integrated Climate and Land Use Scenarios 35 

(ICLUS) model (Theobald, 2005; US EPA, 2009a; Bierwagen et al., 2010) was developed to provide a 36 

consistent framework for producing future-year population and land use change projections.  ICLUS 37 

outputs have been generated over the US for a base case scenario, as well as several alternatives that 38 

are consistent with those described in the Intergovernmental Panel on Climate Change (IPCC) Special 39 

Report on Emission Scenarios (IPCC, 2000).   40 
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The key advancement of ESP v2.0 is the integration of ICLUS results to adjust the spatial allocation of 1 

future-year emissions in the residential, commercial, transportation, and agricultural sectors. ICLUS 2 

results are integrated into ESP v2.0 in three places. First, we use ICLUS population projections to adjust 3 

energy demands in MARKAL, including passenger vehicle miles traveled, lumens for lighting, and watts 4 

per square foot of space conditioning.  Second, county-level population projections also are used to 5 

disaggregate the regional emission growth factors derived from MARKAL into county-level growth 6 

factors. Finally, ICLUS outputs are used to develop new future-year spatial surrogates that map county-7 

level emissions to an air quality modeling grid.  The incorporation of ICLUS into ESP v2.0 is depicted in 8 

Fig. 1. The two steps associated with spatial allocation of emissions are listed as 1 and 2 in the figure. 9 

The objective of this paper is to describe, demonstrate and evaluate the new spatial allocation features 10 

within ESP v2.0.  First, the typical approach for spatial allocation in emission processing is described. 11 

Next, the new spatial allocation method is presented and evaluated.  The method is then applied using 12 

an experimental design that isolates separately the impacts of using projected spatial surrogates and 13 

those of mapping regional growth factors to the county level.  Conclusions and future plans for ESP v3.0 14 

are presented in the last section.    15 

2 Background 16 

In most air quality modeling applications with CMAQ, the SMOKE model is used to transform an 17 

emission inventory, such as the NEI, from a textual list of sources and their respective annual emissions 18 

to a gridded, temporally allocated, and chemically speciated air quality model-ready binary file.  Major 19 

steps in the generation of future emissions for an air quality model include the application of 20 

multiplicative emission growth and control factors to produce a future-year emission inventory, 21 

temporal allocation of emissions by season, day and hour, and spatial allocation of hourly emissions 22 

onto a 2-dimensional grid over the modeling domain.  A major component of the spatial allocation 23 

process is the use of other high-resolution data, such as census block group population or road 24 

networks, as surrogates to map county-level emissions to grid cells.   25 

Spatial surrogate computation for emission allocation is rarely mentioned in the documentation of air 26 

quality modeling studies.  In the US, surrogate shapefiles (a standard file format for representing spatial 27 

data) are released by the US EPA Emissions Modeling Clearinghouse and are used to compute spatial 28 

surrogates to be used in SMOKE.  Most of the surrogate shapefiles used at the time this analysis was 29 

conducted were created from 2000 census data (e.g. population and roads), as well as many other 30 

spatial datasets (such as building square footage and agricultural areas) that were generated around 31 

that time period. Note that the spatial surrogate shapefiles were subsequently updated in the 2011 EPA 32 

modeling platform (US EPA, 2011; US EPA, 2014).  33 

The surrogate shapefiles are processed to create gridded surrogates using the Surrogate Tools software 34 

package (Ran, 2014), a part of the Spatial Allocator (SA) system (UNC, 2014a). Fig. 2 provides an example 35 

of the computation of a population-based spatial surrogate for a 12 km grid cell within Wake County, 36 

North Carolina, which includes the state’s capital, Raleigh.   37 

The total population range for each census block group area for Wake County and some adjacent 38 

counties (dark purple boundaries) in North Carolina is displayed.  The surrogate value for any grid cell (i) 39 

and county (j) is computed as: 40 
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Wake County’s total population, found by summing the population of each of its census block groups, 2 

was 627,846 in 2000.  A population of 98,681 lived within the grid cell indicated by the arrow.  The 3 

population-based spatial surrogate value for this grid cell and county is calculated as 98,681/627,846, or 4 

0.1572. Thus, 15.72% of Wake County population-related emissions are allocated to this grid cell.  5 

Spatial surrogate values always range from 0 to 1; 0 indicates that no emissions are allocated to the grid 6 

cell (e.g., the grid cell does not intersect the county), and 1 indicates that all the county’s emissions are 7 

allocated to the grid cell (e.g., the county is completely located within the grid cell).  While the example 8 

grid cell lies within just one county, quite often a grid cell can cross multiple county boundaries.  When 9 

this happens, a weighting method (area for polygons, length for lines, or number of points) is used.   10 

As of April 2014, EPA has 91 different spatial surrogate shapefiles (e.g. population, housing, urban 11 

primary road miles) available via the EPA Emissions Modeling Clearinghouse (US EPA, 2014b).  Since 12 

each surrogate has to be generated for each modeling grid domain, and air quality modeling often 13 

includes multiple nested domains, the Surrogate Tools and their associated quality assurance functions 14 

make surrogate computation much easier for preparing emission input to air quality models.  15 

Accurate spatial allocation is particularly important for finer resolution modeling (e.g. 12 km or less) 16 

when multiple modeling grid cells are located within a county.  While most previous CMAQ studies of 17 

future air quality have been conducted at relatively coarse resolutions (≥36 km) (Hogrefe et al., 2004; 18 

Tagaris et al., 2007; Nolte et al., 2008), finer resolutions are becoming more common with the rapid 19 

advancement of computing capabilities (Zhang et al., 2010; Gao et al., 2013; Trail et al., 2014).  Thus, 20 

considering landscape changes due to human activities becomes particularly important in emission 21 

spatial allocation for high resolution air quality modeling over long time horizons into the future.          22 

3 Method 23 

Spatial allocation in ESP v2.0 involves the two-step process displayed in Fig. 1.  The models used in the 24 

method are listed and described briefly in Table 1. For this paper, the method is demonstrated for a 25 

2050 emission scenario, projecting 2005 base-year emissions using growth factors from MARKAL. We 26 

use ICLUS-produced population and housing density projections that assume county-level population 27 

growth in line with the US Census Bureau projections and a land use development pattern that follows 28 

historic trends (US EPA, 2009a).  Following the business-as-usual (BAU) development assumption, the 29 

method is applied to the conterminous US (CONUS) study area, excluding Mexico and Canada, with 30 

additional analysis conducted on the Southeast US.  The MARKAL emission projection regions, CMAQ 12 31 

km modeling domain, and the Southeast area are depicted in Fig. 3. The grid uses a Lambert conformal 32 

conic projection with 299 rows and 459 columns. 33 

Fig. 4 shows county-level population growth factors over the CONUS as well as 2005 and 2050 housing 34 

densities in the North Carolina, South Carolina, and Georgia area.  In the ICLUS projection, there is a 35 

distinct trend of population shifts towards big cities (e.g. Atlanta, Georgia and Charlotte, North Carolina) 36 

and a resulting increase in housing density around those urban areas.  In general, county populations 37 

increase in most southern and coastal counties, but decrease in northern and inland rural counties.  The 38 
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approaches for using these ICLUS projections to disaggregate regional emission growth factors and 1 

create future-year spatial surrogates are presented below.   2 

3.1 Developing County-Level Emission Growth Factors 3 

MARKAL outputs include regional growth factors for energy-related Source Category Codes (SCCs).  4 

SMOKE projection packets with growth factors for each species and source category of interest were 5 

generated, as described by Loughlin et al. (2011).  The six emission source sectors (US EPA, 2011) 6 

included in this projection were:  7 

1. Point sources from the Electric Generating Utility (EGU) sector  8 

2. Non-EGU point sources  (e.g. airports)  9 

3. Remaining nonpoint sources (area sources not in agriculture and fugitive dust sectors)  10 

4. Onroad mobile sources (e.g. light duty vehicles) 11 

5. Nonroad mobile sources (e.g. construction equipment) 12 

6. Mobile emissions from aircraft, locomotives, and commercial marine vessels 13 

Though MARKAL-generated regional growth factors capture large-scale emission growth patterns, they 14 

do not capture variation in growth from one state to another or from one county to another within the 15 

region. To capture this spatial variation while maintaining the overall regional growth pattern from 16 

MARKAL, we introduce an adjustment calculation.   17 

Let Fp denote the regional population growth factor and fp denote the county-level population growth 18 

factor.  The ratio of fp over Fp captures the relative population growth rate of a county in comparison to 19 

its region (e.g. fp/Fp = 1 means the same growth rate and fp/Fp > 1 means the county population growth 20 

is faster than the regional average growth).  The regional emission growth factor Fe is adjusted by this 21 

ratio in computing the initial county emission growth factor f’e: 22 
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where r is the region, j is a county within r, and s is the species.  To ensure that the total regional 24 

projected emission is preserved after applying the county-level growth factors, the projected county 25 

emissions are re-normalized as: 26 

  ),,(),,,(),,,('),,,( 20052050 sSCCrRsSCCjresSCCjrfsSCCjre ree        (3.2)  27 

where e2005 and e2050 are county-level emissions for 2005 and 2050 and Rre is the ratio of regional 28 

emissions computed using regional growth factors to regional emissions derived from county growth 29 

factors:  30 
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The final county emission growth factors (fe) are then computed as:  32 
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For source categories expected to have emissions changes correlated with population changes, the 2 

resulting set of fe(r,j,SCC,s) factors are then used to grow the matching county-level emissions into the 3 

future. A spreadsheet with example calculations is included in the supplemental files that accompany 4 

this manuscript. 5 

Changes in the spatial distribution of some emissions will not necessarily be correlated with population 6 

shifts, however. For example, we use regional emission growth factors, Fe(r,SCC,s), for electric utilities, 7 

large external combustion boilers, and petroleum refining.   8 

We applied ESP v2.0 to grow the 2005 NEI (US EPA, 2010) inventory to 2050.  Fig. 5 displays 9 

representative county-level emission growth factors.  The two plots on the left are the MARKAL regional 10 

growth factors for NOx from highway Light Duty Gasoline Vehicles (LDGV) and for SO2 from residential 11 

stationary source fuel combustion, both of which would be expected to be correlated with population. 12 

The overall regional emission trends are driven by population growth, fuel switching and regulations 13 

that limit emissions. The county-level growth factors illustrate the effects of projected county-by-county 14 

population changes on these overall trends.  Using county-level emission growth factors, we then 15 

generated SMOKE projection packets and used SMOKE to grow the emission inventory to 2050.     16 

3.2 Updating Surrogate Shapefiles and Emission Surrogates 17 

The next step in spatial allocation is to create surrogate shapefiles using ICLUS-projected population and 18 

housing density.  Standard EPA population and housing surrogate shapefiles are slightly different from 19 

2005 ICLUS data.  To avoid this discrepancy and ensure that surrogate shapefiles are generated 20 

consistently for comparison, ICLUS data are used to develop both the 2005 base and the 2050 shape 21 

files.  22 

3.2.1 Surrogate Shapefiles 23 

Using ICLUS data, we created four new surrogate shapefiles for both 2005 and 2050. The first shapefile 24 

contains census block group polygons with associated population, housing units, urban, and level of 25 

development (e.g., no, low or high).  The census polygons boundaries are based on the EPA 2002 26 

population surrogate shapefiles.  For each census block group, ICLUS housing units are spatially 27 

allocated to the census polygons using the area weighted method. Then, ICLUS county population is 28 

allocated to each census block group within a county according to the fraction of the county’s housing 29 

units within that block group.  Using ICLUS outputs for 2000, 2005, 2040, and 2050, we computed 30 

housing unit changes from 2000 to 2005 and from 2040 to 2050, which are needed for housing unit 31 

change surrogate computation for 2005 and 2050.  For both 2005 and 2050, we classified census block 32 

groups as urban if their ICLUS-produced population density per square mile is ≥ 1000.  This criterion is 33 

partially consistent with the US Census Bureau’s definition of an urban area, although for simplicity, we 34 

did not use the Census Bureau’s requirement of the surrounding area having a total population of 35 

50,000 or more. In addition, census block groups were classified into no, low, or high development areas 36 

based on housing density.   37 



8 

 

Fig. 6 shows the change in population and urban surrogate shapefile data over the Southeast region 1 

between 2005 and 2050.  The figure indicates expansion of urban areas, including Atlanta, Charlotte, 2 

Greensboro, and Raleigh. However, some rural areas, particularly in the north and south of this region, 3 

display slightly decreasing population densities.     4 

The second surrogate shapefile we generated contains road networks.  Though road networks are likely 5 

to expand in the future, it is very difficult to project future road networks.  We use existing current road 6 

surrogate shapefiles with the ICLUS-identified urban areas to classify roads into four categories: rural 7 

and urban primary roads and rural and urban secondary roads.  These categories are required for 8 

surrogate computation for mobile emission allocations.  The third surrogate shapefile we generated 9 

contains rural land classification.  We created this shapefile from the EPA 2002 rural land surrogate 10 

shapefile using urban and non-urban areas identified in the first shapefile.  The last surrogate shapefile 11 

we created contains agricultural land classes.  This shapefile was created from the EPA 2002 agricultural 12 

land surrogate file by excluding urban areas identified in the first shapefile.   13 

3.2.2 Surrogates Computation 14 

With the ICLUS-based surrogate shapefiles, we computed 2005 and 2050 surrogates using the Surrogate 15 

Tools. As noted previously, EPA employs a set of 65 spatial surrogates to allocate emissions from various 16 

source sectors to a gridded modeling domain.  The 17 surrogates listed in Table 2 were computed using 17 

the four ICLUS-based shapefiles.  We assumed that the other 48 surrogates remain unchanged from 18 

current EPA surrogates.   19 

The percentage change of ICLUS population-based surrogates from 2005 to 2050 is shown in Fig. 7.  As 20 

expected, population-based surrogate changes on the 12 km grid follow the trends shown in Fig. 4.  21 

Since surrogates for the grid cells intersecting a county necessarily sum to 1, large surrogate increases 22 

(red colors) in some grid cells are often accompanied by large decreases (blue colors) in other grid cells 23 

within the same county.  Large percentage changes are particularly obvious in sparsely populated areas, 24 

such as parts of California, Nevada, Arizona, New Mexico, Texas, and Florida.  The mean change of 25 

population-based surrogates from 2005 to 2050 is 6.23%, although a standard deviation of 46.96% 26 

indicates a wide range across the grid cells.       27 

4 Application 28 

We applied ESP v2.0 to generate 2005 and 2050 CMAQ-ready gridded emission files. Only the six sectors 29 

listed above from the 2005 NEI were used in the 2050 projection. Emissions from any SCCs not included 30 

in the projection packets were held constant from 2005.We used the Emission Modeling Framework 31 

(Houyoux et al., 2006) to conduct SMOKE modeling tasks.   32 

Next, two additional 2050 inventories were created, one using the regional growth factors from 33 

MARKAL and one using the surrogates based upon 2005 ICLUS results. The four resulting gridded 34 

inventories that were developed are listed in Table 3.  35 

Future represents the result of the full ESP v2.0 projection method. Comparing Future with Base thus 36 

reveals the projected changes in both magnitude and location of emissions over the 45-year period. 37 

Comparing Future with Future-RegGF isolates the effects of disaggregating regional growth factors to 38 
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the county level. Similarly, comparing Future with Future-05Surr identifies spatial changes resulting from 1 

updating the future spatial surrogates.    2 

The Fractional difference (FD) metric is used to evaluate grid-level differences among the inventories.  3 

For a model grid cell (i) and species (s), the FD is calculated as: 4 

 Fractional Difference (FD) = 100*
),(),(

),(),(
*2 













siesie

siesie

BA

BA
 (4.1) 5 

where eA(i,s) and eB(i,s)  are the emissions of species s in grid cell i for the gridded inventories, A and B, 6 

that are being compared. FD is generally called fractional bias when it is used to evaluate errors of 7 

modeling results against observations (e.g. Morris et al., 2006).  FD is a symmetric metric ranging from -8 

200% to +200%.  A value of 67% for FD represents that eA is larger than eB by a factor of 2, while an FD of 9 

0 means that values are the same. The mean and standard deviation of FD values across groups of grid 10 

cells provide information about the magnitude and variability of differences between two gridded 11 

inventories. Other statistical metrics can be used to evaluate differences from one gridded inventory to 12 

another. Several such metrics are described and applied in the supplemental information to this paper. 13 

4.1 Base and Future Emission Differences 14 

Fig. 8 shows FDs between annual emissions in the Base and Future for each of the six projected pollutant 15 

species.  These plots reflect the combined effects of population growth and migration, economic growth 16 

and transformation, fuel switching, technological improvements, land use change, and various 17 

regulations limiting emissions (Loughlin et al., 2011).  Most of the US has more than a 30% reduction 18 

(green and blue colors) in modeled NOx, SO2, CO, VOC, PM2.5 and PM10.  Grids with emission increases 19 

for these six species are mainly located in areas projected to have high population growth (e.g. Los 20 

Angeles and Atlanta).  Among the six species, NOx and SO2 show reductions of more than a factor of 2 in 21 

many areas because of control requirements on electricity production, transportation, and many 22 

industrial sources. Emissions of CO, VOC, PM2.5 and PM10 also fall across most of the domain.   23 

4.2 Region-to-County Growth Disaggregation 24 

Next, we evaluate the effect of disaggregating regional growth factors to the county level by examining 25 

the differences between Future and Future-RegGF. Grid cell-level FD values are shown in Fig. 9 for the 26 

six projected pollutants. The spatial distribution of FD indicates that regional-to-county disaggregation 27 

results in increased emissions around urban areas (e.g. Los Angeles, Las Vegas and Dallas in the West 28 

and Atlanta in the Southeast) as those areas expand into surrounding counties.  Many grid cells at the 29 

fringe of large urban areas have FD values exceeding 30%, indicating a large increase in emissions as a 30 

result of using county-level growth factors.  Large reductions in emissions, indicated by FD values ≤ -31 

20%, are particularly obvious in rural areas in the West and South regions.  Using county growth factors 32 

have high impacts on emission allocations in the regions of the West and South, particularly for SO2.   33 

Another way to analyze FD results is to calculate mean FD (MFD) values across grid cells with common 34 

characteristics. For example, in Fig. 13, we provide mean FDs for each pollutant over grid cells that are in 35 

the same population density range.    36 
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For areas with greater density, the trend is that emission differences become increasingly positive, 1 

reflecting that ICLUS population algorithm typically results in migration of people to more dense areas.  2 

However, as described above, the ICLUS predicts continued urban sprawl such that the positive MFD in 3 

the urban cores (population density >= 200k/grid, about 1400/km2) is slightly less than in the more 4 

moderately dense areas, where density is between 130k and 200k/grid.  Thus, projecting emission 5 

changes by region without using the county growth allocation method significantly underestimates the 6 

future emissions in the more populated areas.  7 

4.3 Updating Emission Surrogates  8 

Next, we evaluate the effects of adjusting future surrogates by comparing Future and Future-05Surr.  9 

The two gridded emission files were generated from the same 2050 county-level emission growth 10 

factors, but using ICLUS-derived surrogates for 2050 and 2005, respectively.  Thus, emission differences 11 

are introduced only from different spatial surrogates.  Fig. 11 presents the resulting FD values for the six 12 

projected pollutants.   13 

In Fig. 11, it is apparent that large increases (FD > 20%) often occur in the grid cells surrounding large 14 

cities. Further, FD% increases are particularly obvious in the West and Southwest regions, where urban 15 

expansion moves into previously low density grid cells.  The counties in these regions tend to be large; 16 

thus, changes in spatial surrogates affect a larger number of grid cells. In contrast, changes in gridded 17 

emissions tend to be less pronounced in areas with small counties that are closer in size to the 12x12 km 18 

grid cells. Updating the spatial surrogates has a small or negligible impact in rural areas with limited 19 

urbanization.  Among the six compared species, SO2 has the least changes. SO2 emissions from mobile 20 

sources would have been reduced considerably by regulations limiting sulfur content in fuels. Most of 21 

the remaining SO2 emissions originate from electricity production and industrial sources. In the ESP v2.0 22 

method, we do not adjust the spatial surrogates for either category, assuming that they are not 23 

correlated with population. In contrast, incorporating the 2050 surrogates has particularly high impacts 24 

on CO and VOC. Major sources for these pollutants are the transportation, residential and commercial 25 

sectors, all of which are linked to population- and land-use base surrogates.  26 

Fig. 12 also provides an indication of how updating surrogates affects emissions by land use class.  Mean 27 

fractional differences (MFD) for each of 6 pollutants by 2050-population density ranges are shown in Fig. 28 

12. This figure indicates a complicated relationship. There is a small decrease in emissions in rural areas, 29 

and a larger decrease in the densest areas. Conversely, there is an increase in emissions from categories 30 

ranging in density from 5k to 80k per cell.  Thus, emissions using 2050 surrogates allocate more 31 

emissions to the suburban areas as they densify, while emissions allocated to the high density urban 32 

core grid cells are reduced.  This does not mean that populations in cities are projected to decline, but 33 

rather that the projected urban emissions are partially re-distributed to the fringe areas since county 34 

emission totals are the same for both scenarios.  This analysis demonstrates that the common practice 35 

of projecting future emissions without projecting future surrogates can lead to over-prediction of urban 36 

core emissions and under-prediction of suburban/exurban emissions.   37 

5 Conclusions 38 

Gridded emission data are key inputs to air quality models.  Pollutant growth factors play a dominant 39 

role in determining regional emission and air quality patterns (Tao et al., 2007; Avise et al., 2009). It is 40 
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commonplace in such applications to apply these growth factors such that emissions are grown in place. 1 

In this paper, we demonstrate that the region-to-county growth factor disaggregation and county-to-2 

grid allocation approaches included in ESP v2.0 yield a different spatial pattern of emissions.  For a given 3 

population and land use change scenario, the region-to-county growth disaggregation enables the 4 

distinction of different growth levels among counties, and updating spatial surrogates provides a more 5 

realistic mapping of emissions to grid cells.    6 

Conversely, growing residential emissions in place and applying current spatial surrogates to future-year 7 

emissions may result in an overprediction of urban core emissions and under-prediction of suburban 8 

emissions. Thus, ignoring these shifts may overstate future improvements in human exposure and 9 

health risk due to air pollution mitigation as more dense urban cores yield greater opportunities for 10 

human exposures (e.g. Post et al., 2012; West et al., 2013; Silva et al., 2013).          11 

There are many uncertainties in future air quality studies associated with emissions, climate, and 12 

changes of landscape.  Improving emission allocation in SMOKE will help reduce uncertainties in 13 

outcomes (e.g. O3 and PM2.5 concentrations and climate forcing from gases and aerosols) from regional 14 

climate and air quality modeling systems such as the coupled WRF/CMAQ (Wong et al., 2012) and help 15 

improve confidence in making air quality policies related to human health and environment.  Another 16 

important aspect of the approach presented here is that it could be applied to examine alternative 17 

development scenarios.  For example, a smart growth scenario would project greater growth factors in 18 

cities and less in suburban/exurban areas than the BAU scenario on which ICLUS was based. 19 

Furthermore, within the larger ESP v2.0 framework, emissions and resulting impacts could be examined 20 

for wide ranging scenarios that differ in assumptions about population growth and migration, economic 21 

growth and transformation, technology change, land use change, and various energy, environmental 22 

and land use policies. 23 

While ESP v2.0 represents a state-of-the-art method for generating multi-decadal air pollutant emission 24 

projections for non-power sector sources, there are a number of limitations that must be considered in 25 

evaluating its utility for specific applications. One such limitation is the current omission of a mechanism 26 

to change the spatial distribution of power sector and large industrial emission sources. Spatial re-27 

allocation of these “point” source emissions requires a siting algorithm, the development or application 28 

of which is beyond the scope of ESP v2.0. We acknowledge that this is a desirable capability, however, 29 

and that considerable research has been conducted in this area (e.g., Cohon et al., 1980; Hobbs et al., 30 

2010; and Kraucunas et al., 2015).  31 

Another limitation of ESP v2.0 is that temporal reallocation of emissions is not included at this time. Our 32 

research suggests that the changing role of technologies and fuels in electricity production may affect 33 

seasonal and diurnal emission patterns. For example, natural gas historically has been used within 34 

combustion turbines to generate electricity for meeting summer afternoon air conditioning demands. 35 

With expanded access to natural gas resources, however, electric utilities are incrementally shifting gas 36 

to baseload electricity production. Thus, over the coming decades, the temporal profile of gas-related 37 

emissions will change both seasonally and diurnally.  38 

ESP will always be limited by the limitations of its components. The MARKAL energy modeling system, 39 

for example, does not account for economic feedbacks associated with changes in energy prices. Also, 40 

real-world electric sector decisions are influenced by many factors, some of which act at a much finer 41 
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resolution than the spatial and temporal resolution of MARKAL. For example, on hot summer days, 1 

electric utility dispatch decisions must factor in meteorological conditions that both increase energy 2 

demands and tropospheric ozone formation (Chen et al., 2015). Dispatch decisions thus might result in 3 

temporal and spatial changes that could not be captured by MARKAL. ESP v2.0 is more suited to longer-4 

range projections with the intent on capturing long-term trends and the multi-decadal effects of 5 

transformations in energy, economic and land use. Alternatively, there may be approaches for using ESP 6 

in conjunction with a more detailed dispatch model.  7 

Another current limitation is the inability to evaluate the effects of climate change on energy demands. 8 

Climate-related changes currently would need to be evaluated outside of ESP v2.0. However, exogenous 9 

estimates of increased energy demands could be input into MARKAL to evaluate how they would affect 10 

energy system emissions.  11 

These various limitations are driving our current ESP v3.0 development process. For example, we are 12 

working towards generating scenario-specific temporal adjustment factors, and we plan to explore the 13 

inclusion of point source siting algorithms. Furthermore, future ESP iterations will incorporate more 14 

recent versions of ICLUS and MARKAL, and thus utilize updated population, land use, economic, and 15 

energy projections, as well as recent emission regulations.  16 

Other possible updates are being considered. To improve compatibility with other long-term 17 

projections, it may be advantageous to harmonize the population, land use and energy assumptions 18 

with the IPCC’s Representative Concentration Pathways (RCP) (Van Vuuren et al., 2011) and Shared 19 

Socioeconomic Scenarios (Van Vuuren et al., 2012). Also, while the baseline spatial surrogates used here 20 

were developed in 2000, these could be updated to the 2010 surrogate files that are now used within 21 

the EPA’s 2011 modeling platform.  22 
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Most of the modeling components that comprise this methodology are publically available. SMOKE and 32 

the Spatial Allocator can be downloaded from the Community Modeling & Analysis System Center 33 

(http://www.cmascenter.org). ICLUS modeling tools and land use projections can be obtained from the 34 

U.S. EPA (http://www.epa.gov/ncea/global/iclus/). The MARKAL model is distributed by the Energy 35 

Technology Systems Analysis Program of the International Energy Agency (http://www.iea-etsap.org). 36 

Executing MARKAL requires licensing and additional software. Please contact Dan Loughlin 37 

(loughlin.dan@epa.gov) for information about obtaining the U.S. EPA’s database, which allows MARKAL 38 

to be applied to the U.S. energy system. The EPA’s MARKAL 9-region database used in this study, as well 39 

as more recent versions, are available upon request at no cost. Regional- and county-level emission 40 

http://www.cmascenter.org/
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Table 1. Models used in the ESP v2.0 method. 1 

Model Description 

MARKAL MARKet ALlocation (MARKAL) is an energy system optimization model (Loulou et al., 

2004). We use MARKAL with the ESP v2.0 database to characterize scenarios of the 

transition of the U.S. energy system from 2005 through 2055 in 5-year increments. ESP 

v2.0 is an updated version of the EPAUS9r_2010_v1.3 MARKAL database (Lenox et al., 

2012). The following major sectors are included: electricity production, refineries, other 

energy-intensive industries, residential, commercial, and transportation. Spatial 

coverage is the U.S., and spatial resolution is the U.S. Census Division. Outputs include 

regional-level, energy-related technology penetrations, fuel use, and emissions of air 

pollutants and greenhouse gases. The ESP v2.0 baseline scenario is calibrated to 

approximate the AEO 2010. The primary environmental regulations included in the 

baseline are the Cross State Air Pollution Rule (CSAPR), Tier II mobile emission 

requirements, and the corporate average fuel efficiency standard that requires 54.5 

miles per gallon by 2025. Regulations that have not been finalized are not included.    

ICLUS The Integrated Climate and Land-Use Scenarios (ICLUS) model is used to develop U.S. 

population and land use projections through 2100 (US EPA, 2009). The demographic 

model consists of a cohort-component model and a gravity model. Together, these 

produce future county-level population estimates. A land use change model then 

computes corresponding housing density at the hectare resolution, or 10,000 sq. m. 

Input assumptions regarding household size and travel times can be adjusted to allow 

different scenarios to be represented. We use a baseline scenario intended to be 

generally consistent with U.S. Census Bureau projections.  

SMOKE The Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system is used to 

transform an emissions inventory into the emissions format needed for air quality 

modeling (UNC, 2014b). Specific steps carried out by SMOKE typically include: applying 

growth and control factors, spatially allocating emissions to a modeling grid, temporally 

allocating emissions to represent seasonal and diurnal patterns, and speciating emissions 

to provide more detail and account for additional factors such as temperature.  

Surrogate 

tools 

A set of programs used to develop spatial surrogate files for SMOKE (UNC, 2014a). These 

surrogates are then used to map emissions to grid cells.  

CMAQ The Community Scale Air Quality (CMAQ) modeling system is used to characterize 

meteorology, pollutant transport and chemical transformation, and result air pollutant 

concentrations (UNC, 2012). CMAQ can be applied at a variety of scales, and is 

commonly used for urban, state, and regional air quality modeling applications within 

the U.S. and around the world. 
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Table 2. ICLUS-based surrogates generated for 2005 and 2050. 1 

Surrogate Name Surrogate 

Code 

Population 100 

Urban population 110 

Rural population 120 

Housing change 130 

Housing change and population 137 

Urban primary road miles 140 

Rural primary road miles 200 

Urban secondary road miles 210 

Rural secondary road miles 220 

Total road miles 230 

Urban primary plus rural primary road miles 240 

0.75 total roadway miles plus 0.25 population 255 

Low intensity residential 300 

Total agriculture 310 

Rural land area 400 

Residential – High density 500 

      2 

3 
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Table 3. Standard and sensitivity runs for ESP v2.0 demonstration and evaluation. 1 

Inventory ID Inventory Year ICLUS Surrogates Growth Factors 

Base 2005 2005 N/A 

Future 2050 2050 County 

Future05Surr 2050 2005 County 

FutureRegGF 2050 2050 Regional 

 2 

3 
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Figure captions: 1 

 2 

Figure 1. Schematic diagram showing components of Emission Scenario Projection v2.0 system. Dashed 3 

blue box contains enhancements from ESP v1.0. 4 

 5 

Figure 2. Population-based spatial surrogate computation for CMAQ 12 km modeling grid (blue cells) 6 

over Wake County (dark purple polygon), North Carolina area from 2000 census population at the 7 

census block group level (grey color polygons).    8 

 9 

Figure 3. CMAQ 12 km modeling domain showing MARKAL nine emission projection regions (dark 10 

purple) and the Southeast area (black box). 11 

 12 

Figure 4. County-level population growth factors (2050/2005) (top) and ICLUS housing densities at 2005 13 

and 2050 (bottom) for the Southeast area shown in Figure 3.  Areas in white are designated as 14 

undevelopable. 15 

 16 

Figure 5. Light duty gasoline vehicle (LDGV) regional NOx growth factors, generated by MARKAL, are 17 

shown in the top left panel. The top right panel shows corresponding county-level growth factors after 18 

adjustments are made to account for ICLUS county-level population changes. Similarly, the bottom two 19 

panels show regional- and county-level SO2 growth factors for residential combustion, before and after 20 

population-based adjustments have been made.   21 

 22 

Figure 6. ICLUS population density and urban shapefiles for 2005 are shown on the left. Difference plots 23 

indicating ICLUS-predicted changes to these metrics from 2005 to 2050 are shown to the right. 24 

 25 

Figure 7. Population-based surrogate change (%) for CMAQ 12 km modeling grids.    26 

 27 

Figure 8. Fractional difference (FD, %) of annual emissions, Future minus Base, over the 12 km CONUS 28 

domain. (Future: 2050 inventory, 2050 surrogates, county growth factors; Base: 2005 inventory, 2005 29 

surrogates) 30 

 31 

Figure 9. Fractional difference (%) of annual 2050 emissions, Future minus FutureRegGF, for grid cells in 32 

the CONUS 12 km domain. (Future: 2050 inventory, 2050 surrogates, county growth factors; 33 

FutureRegGF: 2050 inventory, 2050 surrogates, regional growth factors) 34 
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 1 

Figure 10. Mean fractional difference (MFD, %) of 2050 annual emissions, Future minus FutureRegGF, 2 

stratified by grid cell population at 2050. (Future: 2050 inventory, 2050 surrogates, county growth 3 

factors; FutureRegGF: 2050 inventory, 2050 surrogates, regional growth factors) 4 

 5 

Figure 11 Fractional Difference (%) of annual 2050 emissions, Future minus Future05Surr, for grid cells in 6 

the CONUS 12 km domain. (Future: 2050 inventory, 2050 surrogates, county growth factors; 7 

Future05Surr: 2050 inventory, 2005 surrogates, county growth factors) 8 

 9 

Figure 12. Mean fractional difference (MFD, % ) of 2050 annual emissions, Future minus Future05Surr, 10 

stratified by 2050 grid cell population. (Future: 2050 inventory, 2050 surrogates, county growth factors; 11 

Future05Surr: 2050 inventory, 2005 surrogates, county growth factors) 12 

. 13 

 14 


