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Main authors response:  

The referees clearly highlight that major challenges in debris flow model research are the 
accurate treatment of the phase interactions between the granular and fluid components, and 
taking physical processes related to granular flow into account. We agree.  In response to the 
Referees’ comments, we point out that in our model the fluid‐grain and grain‐grain interactions 
of larger particles are introduced with a coupled Lagrangian particle approach.  The Referees 
mainly objected to our relatively simple treatment of the coupling, where we neglect inter‐phase 
momentum exchange.  To help justify our plans to present the solver as it is now, we include 
additional Figures in this response letter (not intended to be included in the final manuscript). 
The two main points that we would like to illustrate is that there are advantages arising from the 
3‐dimensional approach, even without inter‐phase momentum exchange, and that the inter‐
phase momentum exchange is of relatively minor importance in the applications described in 
this manuscript, which in turn is due to the large concentration of fine material.  

The main point that we would like to make in this manuscript is that we can model, in 3D, many 
practical aspects of the flow of muddy debris flows with only one free parameter (Figure 1, in 
this letter–please note that this Figure is an application of a previous version of this model and is 
not appropriate for inclusion within this manuscript).  If we were to include the extensions 
proposed by the Referees, we must then introduce more coefficients that must be fitted (instead 
of independently measurable quantities) which would in turn introduce additional uncertainties 
in the application to real‐world engineering problems. Because the basic method itself follows a 
new strategy by solving the transport equations in 3D and by limiting the number of free model 
parameters, we think that the basic method is already of interest and should be presented and 
published before including the extensions. As it stands, the model is already of use to 
practitioners due to the small number of adjustable coefficients which can be defined based on 
measurable material properties.  

We are already working on the development of an additional diffusive term (drift‐flux approach) 
in the advection‐dispersion equation of the gravel phase that depends on the local Savage 
number, to permit modelling of the phase separation in the grain‐inertia flow regime (abstract 
submitted to the 2016 EGU meeting).  However, this approach also includes a coupled 
Langrangian particle simulation. In our opinion, these new extensions would overwhelm the 
present manuscript and dilute our main point with the introduction of additional parameters.  
We mention that these extensions are in development, however, to help the reader to see the 
longer‐term trajectory of this modeling effort.  
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Fig.  1: Debris flow impact into a flexible barriers, experiments and corresponding simulations performed with the CFD 
solver interDyMFoam coupled to the DEM code FARO. Upper left: measured and simulated final barrier deformation, 
upper right: side‐view of the barrier under maximal load and corresponding CFD material body with FSI interface (white). 
Bottom: comparison of simulated and modeled rope forces (scaled to maximal load = 100) within the barrier structure 
for two different barrier types and material mixtures. A Herschel‐Bulkley rheology model was used. 

 

Authors’ responses to issues raized by Referee #1 and Referee #2 

Referee #1 stated that the rheological models and the basis of the CFD software already exist and 
that the manuscript did not present substantial advancement in modelling debris flows. According 
to referee #1 the main deficiency lies in the Volume Of Fluid approach without momentum 
exchange between the granular and the fluid phase and that one thereby neglects parts of the 
physics of the two phase flow problem.  It is stated that the passive and very weak connection 
between the phases via cell­averaged bulk kinematic viscosity isn’t a sufficient interaction between 
phases and that drag etc. must be included in momentum and transport equations to be justified 
physically. 
 
Yes, we agree that we use existing CFD software (as well as existing concepts) to make our main 
point in the manuscript. However, this paper combines them in a unique and useful manner. All 
currently applied debris flow models that use a two‐phase description of the debris‐flow 
material are depth‐averaged or 2D. Three dimensional debris‐flow models with momentum 
exchange between phases have, up to now, been limited to academic cases, because their 



3 
 

numerical costs are about ten times higher than the Volume of Fluid (VOF) approach.  The 
currently available models also contain many parameters that must be fitted to site‐specific field 
data, severely limiting their applicability to real‐world problems and also their usefulness for 
scientific hypothesis testing. 

Our approach seeks to overcome some of these limitations.  Our model has to be seen as a first 
step and it is already at the limit of feasibility due to high computational costs. We aim to gain 
experience from the applied community's use of the Volume of Fluid approach, which allows us 
to face real‐world problems. The main new points in this paper are the new ability to move 
beyond the depth‐averaged perspective, to account for the three‐dimensional flow structure and 
its interaction with a pressure‐dependent rheology model, and to reduce the number of free 
parameters. The phase effects presented here arise from pressure‐ and shear‐rate‐sensitive 
viscosity that depends on the local phase concentrations. Our assumptions are valid for viscous 
debris flows with high contents of clay, silt and sand that damp the granular collisions between 
gravel particles, so our model is indeed limited to a specified range of debris flows. As described 
above, the manuscript is an introduction into the new model concept. Therefore the introduction 
of dynamically changing phase concentrations distracts from the main idea. In the revised 
manuscript, we now introduce the solver concept in the beginning to make this clear. We now 
highlight the first‐stage level of the model with its focus on phase‐dependent rheology and the 
possibilities to introduce inter‐phase momentum exchange with future extensions: 

“Multiphase flows of gas, fluid and sediment can be addressed with the so‐called mixture‐ or driftflux 
model in cases where the local difference in phase velocities is small (Bohorquez, 2008). The properties of 
all phases are cell‐averaged to derive a single mass continuity and momentum balance 
equation describing the entire mixture. The model presented here has to be seen as a first step, assuming 
that the local velocity of the gravel is about the same as the velocity of the surrounding 
fluid, thus allowing us to neglect the drift‐flux. This assumption would not be valid for debris flows 
with little interstitial fluid, or with interstitial fluid of small viscosity (i. e., a slurry with low concentrations 
of fine material). The assumption of equal velocities of both phases in one cell leads to 
a constant composition of the mixture by means of phase concentrations over the entire flow process. 
This basic model can be seen as a counterpart to the mixture model of Iverson and Denlinger (2001), 
extended by resolving the three dimensional flow structure in combination with a pressure and 
shear‐rate‐dependent rheology linked to the material composition. In future work, we aim to relax the 
constraint of equal phase velocities and allow dispersion of constituents by introducing 
relative velocities of the gravel phase with respect to the fine sediment suspension according to 
Bohorquez (2012) and Damián (2013) together with a coupled Lagrangian particle simulation that can 
account for larger grains. The basic model presented here focuses on the role of pressure‐dependent 
flow behavior of the gravel, in combination with the shear‐dependent rheology of the slurry.” 
 
 
 
Referee #1 questioned the model name DebrisInterMixing­2.3 
 
The model is a direct derivative of the OpenFOAM solver branch “interMixing“ extended for 
debris flows. The Numbers in the title indicate the corresponding version number of the 
OpenFOAM release. 

Referee 1 points out a discrepancy in our statements, where we mention the change in phase 
compositions as one source for the limited applicability of previous models, while our model cannot 
handle dynamic change in granular and viscous concentrations during the flow process itself.  
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We applied the model to debris flows with high concentrations of fine particle suspensions that 
were released in a homogeneous mixture with gravel. In this range of application, the dynamic 
change in concentrations has a minor effect on the flow process, compared to the influence of 
the pressure and shear rate dependency of the rheology. Our advance in modeling debris flows 
is from accounting for the role of the pressure as part of the energy dissipation in dependency to 
the gravel content which allows us to introduce a material‐composition‐dependent influence of 
the three‐dimensional pressure field on the flow. We revised the manuscript accordingly to 
more clearly focus on the main points of pressure dependency and automated adaptation of the 
rheology to changed material compositions. However, since we see the importance of changing 
phase compositions in case of debris flows  that are dominated by granular flow processes, we 
mention the change in phase compositions as one factor that limits the applicability of debris‐
flow models. We use this statement  to explain why we implemented the advection‐diffusion 
equation for each mixing phase separately. We explain the strategy accordingly: 
 
“However, to allow evolving phase concentrations between the mixing phases of the slurry and 
the gravel in future releases, our modified version of the interMixingFoam solver applies eq. 6 
separately to each mixing phase including diffusion:” 
 
Referee #1 states that  as the density and viscosity of the air are negligible as compared to those 
values of interstitial fluid in the debris mixture, considering ambient air (calling it a third phase), 
which has no extra mechanical consequence in the flow dynamics, is of little, or no use. 

The gas phase has mechanical consequence through the free surface formation that may lead to 
large air inclusions in case of impacts or flows over steps, as can be seen in the standard case 
included in Fig. 5. We now clearly position our model as an extension of the mixture model of 
Iverson & Dendlinger (2001) but with the capability to be extended to a multiphase flow model 
with inter‐phase momentum exchange and phase concentrations as a dynamic field variable. 
However, here we focus on the capability of modeling debris flows in complex  geometries with a 
single free model parameter. 

Referee #1 says that we should try to understand the real and important physics of flow, 
deformation and interactions between phases rather than neglecting or avoiding it, that the recent 
debris flow modelling trend is trying to address these challenges. It is stated that substantial recent 
research works on two­phase debris flows with non­zero relative velocity between phases and other 
higher order interacting terms and advanced physics of flow were not addressed in the manuscript.  
 
This comment made us aware that the main point of our paper was not explained sufficiently.  
As described elsewhere, we have strengthened the focus on application.  We are not aware of the 
work Referee 1 refers to here (no citations were provided), however we would certainly be 
happy to include relevant references to such work, especially if they are applicable to solving 
real‐world problems. Our approach is not primarily aimed at advancing the state of the art in 
theoretical models used in research, but rather at improving the models that are applied to real‐
world problem‐solving, and our literature review was oriented toward the latter rather than the 
former. We have tried to make this clearer in the revision.  

Referee #1 raises several concerns about how the governing equations and boundary conditions  
are applied to the granular phase. 
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The original manuscript did not cover the equations as applied in the model, instead we 
presented a brief introduction into the Finite Volume approach. We have now rewritten the 
manuscript accordingly to show the applied concept of the Volume Of Fluid implementation in 
detail. 

Referee #2 states that the main weakness of the paper is that the authors promise a two (or 
three?) phase debris flow model (abstract, introduction), but it turns out that effectively it is a one­
phase flow model without substantial new insights of the real physics of deforming sediment fluid 
mixtures. An “equivalent fluid” approach might better describe the model.  
 
The VOF approach is a numerical method for multiphase flow simulations. The VOF method is a 
surface‐tracking technique that allows calculating the volume fraction of each fluid by solving 
one single momentum equation. However, the core of the method is to efficiently model 
immiscible multiphase flows, and it is used here to distinguish between the air phase and the 
bulk mixture. The interFoam solver we use is widely validated for applications like dam break 
events. Within the interFoam solver family, the interMixingFoam solver subdivides one of the 
phases into a two‐phase mixture, a concept that may be seen viewed as an “equivalent fluid” 
approach but it goes beyond that due to the incorporation of concentration gradients. We 
demonstrate in figure 5 that our solver is able to simulate three‐phase flows as accurately as 
drag‐force‐based multi‐phase solvers with momentum exchange. We modified the manuscript to 
clearly explain the limitation of phase interactions and the corresponding motivation.  

Referee #2 points out that there is not one reference in the introduction to related earlier work, 
but only unproven statements of the authors, and he  strongly recommends to re­write the 
introduction including recent work on modeling the constitutive flow behavior of grain­fluid 
mixtures. 

In the revised manuscript, we aim to clearly point out that the motivation of the model 
presented is its application for natural hazards protection rather than the detailed simulation of 
grain‐fluid mixtures. We therefore include previous models in the beginning of the modeling 
approach description where we now include the work of Bohorquez (2008) as an example for 
modeling grain‐fluid mixtures with a VOF approach. In general, we moved parts of the literature 
review to the accompanying paper to become part of a detailed discussion section that embeds 
the validation results. 

Referee #2 asks for a definition of interactions between a granular flow and a viscous force. 

We now mention the drag force and pore pressure as examples. 

Referee #2 recommends to be more cautious with using the term “viscous”. 

In  the revised manuscript we either use the term “fluid” or “visco‐plastic”. 

Referee #2 does not see the connection between the statement “the coupling between driving 
forces, topography and three dimensional flow­dependent internal friction can be addressed for 
each phase separately, accounting for the fundamental differences in flow mechanisms of granular 
and visco­plastic fluid flow” and Figure 1. 
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We now state more precisely: “the fundamental differences in flow mechanisms of granular and 
visco‐plastic fluid flow that arise from the presence or absence of Coulomb friction” and in 
Figure 1 we now point out that the Coulomb friction is part of the viscosity distribution shown 
for the gravel phase of the release body. 

Referee #2 wonders about the effect of buoyancy and excess fluid pressure in our model. 

Due to our phase‐averaged approach, excess fluid pressure can’t be modeled. Buoyancy is 
affecting cells of different density and affects the gravel phase and the fluid phase if they are 
initialized in separate regions like in Fig. 5. 

In our presentation of the gravel phase rheology, Referee #2  questions how we know that the 
shear thinning fluid behavior of the fluid is important for flow resistance and if it is as important as 
the flow resistance of the grains. 

We now state that the dominant role of the shear thinning during high‐speed flow is a feature of 
our model. 

Referee #2 wonders if the pressure p is the effective normal stress experienced only by the grains, 
or the bulk total normal stress? 

The pressure p is derived from the phase‐averaged flow field and the phase‐averaged densities. 
The question of the influence of effective fluid density is an interesting point. In our model we do 
not exclude a fluid pressure from the stress carried by the granular phase. This may only be valid 
for interstitial fluid of small viscosity and therefore is part of our limitation to flows where the 
drift flux can be neglected. 

Referee #3: 

SUMMARY REMARKS  
As a preface to my comments I will disclose that I reviewed this paper because I was asked to 
review its companion paper (part 2: model validation). I felt that it was necessary to have a 
firm understanding of the first paper (part 1: model description) in order to understand the 
second. Consequently, I decided to review paper 1 as well as paper 2. However, after reading 
paper 1, I still lack a firm understanding of the authors’ model. The paper provides an 
unsatisfying “model description” because it presents neither derivations of the model 
equations nor much in the way of data to support them. Instead, it presents a brief summary of 
the equations and a qualitative description of the computational strategy used to solve the 
equations. It would be more satisfying to see a precise derivation of the model equations as 
well as illustrations of how they’re constrained by data. As it stands, the paper leaves much 
room for doubt about how the model actually works. My comments below elaborate this view.  
 
General Response: The intention of the paper was not to derive new equations of motion to 
describe the debris‐flow process, but rather to combine existing theory and discretizations with 
a well‐known numerical solver. As part of this work we had to make some optimizations and 
modifications to the solver, however we emphasize that we did not change the underlying 
equations. For this reason, we prefer to rely on previously published arguments on the validity 
of the equations (Berberovic et al. 2009, Hoang et al. 2012, Deshpande et al. 2012, Haensch et al. 
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2013), rather than repeating existing validations. We regret that this was not fully apparent in 
the original manuscript, and we therefore have focused on making this clearer in the revised 
manuscript.   
 
The numerical model is well validated (citations in the manuscript) for describing two‐phase 
flows of immiscible and incompressible fluids. A subset of this so‐called InterFoam solver family 
treats one of the immiscible phases as a mixture of two fluids. In our model these two ‘fluids’ are 
the granular sediment and the interstitial fluid. At the moment the solver describes this mixture 
of fluids as a complex rheology (another phase accounts for the immiscible air phase). The solver 
architecture is setup in a way that allows the composition to evolve, which will permit diffusion 
and phase separation in future releases. Therefore we prefer to present this as a strongly‐
coupled two‐phase model.  
 
COMMENTS ON MODEL EQUATIONS’ INCONSISTENCIES  
I’m perplexed by several mathematical attributes of the model. Parts of it appear to be 
internally inconsistent.  
The text characterizes the model as “multiphase,” and the forms of equations (13) through 
(16) (eq. (1) to (9) in the revised manuscript) do indeed imply that the concentrations of 
different mixture constituents can evolve during transport. (Evolution of constituents’ 
concentrations is a central feature of the continuum theory of multiphase mixtures.) Yet 
elsewhere in the text and equations, the velocities of all constituents are treated as identical, 
and dispersion of constituents by diffusion or other means is explicitly neglected. Thus, I can 
find no evidence of any physical process that would allow the concentrations of different 
constituents to evolve. As a result, it appears that the model is not really a multiphase mixture 
model but is instead a one-phase model that calculates the behavior of a fluid with an 
evolving free upper surface but with a fixed composition and complex rheology described by 
equations (1) through (9) (eq. (16) to (27) in the revised manuscript). The authors should 
either clarify or refute this key point. (I will also mention that a 50-year history exists of using 
complex, nonlinear rheological models to simulate the behavior of single-phase debris flows. 
Much of the research community has abandoned such models in favor of mixture models that 
simulate interactions of solid and fluid phases with evolving concentrations.) 
 
Yes, the equations are written in a general way to permit phase evolution to account for inter‐
phase momentum exchanges in future developments of the solver. However, in the basic method 
we presented we constrain the momentum exchange of the individual phases to always remain 
small to avoid violating the inter‐phase momentum exchange relation.  
 
Two approaches have been commonly used in the 50+ year history of non‐Newtonian 
rheological debris‐flow modeling: pressure‐dependent rheologies accounting for grain collisions 
and shear dependent rheologies for viscous fluids. One novel part of our manuscript is to 
combine the two using a modern representation of each phase and a way to solve the equations. 
One interesting feature of this combined rheological approach is that it may be possible to 
explain much of the rheological behavior using only one free parameter. We lack the resources 
to explicitly test this hybrid rheology in the laboratory, however we show the applicability in the 
companion paper. We have attempted to make this point more clearly in the manuscript.   
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If the authors’ model somehow does allow for differential advection of constituents with 
different densities, then this advection prohibits the use of a single momentum-conservation 
equation for the mixture as a whole (i.e., the authors’ equation (10)) (eq. (14) in the revised 
manuscript). (One cannot calculate the evolving momentum of a multiphase mixture by simply 
summing the momenta of the phases, because the nonlinear advective acceleration terms in 
the momentum-conservation equations for each phase do not sum to yield the advective 
acceleration of a mixture whose density is the concentration-weighted sum of the densities of 
the constituents. See, for example, Iverson, “The physics of debris flows,” Reviews of 
Geophysics, 1997).  
 
We agree with Dr. Iverson that one cannot calculate the momentum of an evolving mixture 
simply by summing the momenta of the individual phases. We are grateful for this clear 
statement of the underlying problem! However, we have to point out that the phases in the 
model presented in this manuscript cannot change in composition, so in a strict sense our 
approach does not require a solution to this momentum‐evolution problem. However, we would 
prefer to highlight this problem as a non‐validated assumption in our model. We added this 
cautionary note to the manuscript and we also point out that a solution based on the drift‐flux 
method would be suitable.   
 
Additionally, equation (10) includes no gravitational body force. Isn’t such a force necessary 
to drive debris-flow motion? 
 
We now include a more complete set of equations in the manuscript, clearly showing the 
gravitational driving force.   
 
COMMENTS ON THE RHEOLOCIAL MODEL  
Assuming that the authors’ model is, indeed, a one-phase model that calculates the behavior 
of a homogeneous, constant-density fluid with a complex rheology described by equations (1) 
through (9), then issues exist concerning how the rheological model is presented. First and 
foremost, the complete rheological model should be written in an explicit form that shows 
how all components of the amalgamated mixture stress tensor are related to those of the 
mixture rate-of-deformation tensor. At present the rheological model is presented piecemeal, 
and several of the pieces have issues.  
For example, why is equation (1) presented as a scalar equation? Isn’t a frame-invariant 
vector-tensor form of the equation required in order to apply it in 3-D computations? The 
information provided by the authors is insufficient for me to try to guess how they’ve 
implemented equation (1) in 3-D. Thirty years ago I addressed a similar 3-D rheology 
problem involving nonlinear, pressure-dependent viscoplasticity (Iverson, “A constitutive 
equation for mass-movement behavior”, J. Geology, 1985). I subsequently abandoned that 
approach as suitable for describing the behavior of debris flows and landslides, but the 
approach highlighted some issues concerning material frame invariance, which the authors 
do not address.  
Some equations that are presented in vector-tensor form by the authors also have issues. For 
example, consider equation (6) (eq. 24 in the revised manuscript) [...] in which Ts is defined 
as the Cauchy stress tensor, p as the normalized pressure, I as the identity tensor, as the 
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kinematic viscosity, and D as the rate-of -deformation tensor. (To discover the definition of 
the “normalized” pressure, which is not provided by the authors, I had to consult the paper 
by Domnik and Pudasaini, 2012. That paper defines normalized pressure as pressure divided 
by density.) With these definitions in hand, equation (6) is dimensionally inhomogeneous and 
consequently invalid. (The inhomogeneity follows immediately from the fact that Ts has 
dimensions of M/LT2, p has dimensions of L2/T2, νs has dimensions of L2/T, and D has 
dimensions of 1/T.) It appears that what the authors intended was for Ts also to be 
“normalized” by dividing it by the density, but their paper mentions neither this definition nor 
the formal definition of p. Instead, as a reader, I’ve had to decipher the authors’ intent 
through my own detective work.  

Another issue with equation (6) is that Ts must be a stress deviator tensor, and not the 
full “normalized” Cauchy stress tensor. This distinction is evident from the fact that the 
isotropic stress component pI has been isolated from Ts. With this interpretation, equation (6) 
is precisely the standard constitutive equation for an incompressible Newtonian fluid with a 
rate-and state dependent kinematic viscosity, which is defined in equation (9). It would be 
helpful for the authors to explain, in physical terms, why they believe that stresses within a 
deforming granular material can be accurately modeled using this approach. A comparison 
with data would be especially helpful. (Merely citing precedents of usage in other papers 
places the burden of seeking an explanation on the shoulders of readers, which is unfair. In 
scientific literature, the burden of explanation should be borne by authors, not by readers.)  

The physical idea behind equation (6) (eq. 24 in the revised manuscript) is the introduction of a 
pressure‐dependent energy dissipation. The model we chose is a stable pressure‐dependent 
rheology which has already been applied to debris flows (Domnik & Pudasaini 2013). We tried 
the 3‐parameter model  of Forterre & Pouliquen (2008), but it was less stable with our solver. 
The solver presented does not model inter‐phase momentum exchange and grain collisions and 
we justify the simplifications with the damping effect of the interstitial fluid. The model is not 
applicable to granular flow which makes it difficult to apply it to standard test cases. Coulomb‐
friction is part of the chosen approach of the rheology model of (Domnik & Pudasaini 2013). 
Actually the authors do not believe that the stresses within a granular material can be accurately 
modeled using this Coulomb‐viscoplastic rheology.  Instead we prefer to present this as a 
modern way to introduce pressure dependency based on the granular proportion. This is not 
explicitly tested in this manuscript, rather we demonstrate the plausibility for viscous mixtures 
in the companion paper. The inhomogeneity in dimensions resulted from not mentioning the 
dimension of the model parameter my due to the corresponding notation in (Domnik & 
Pudasaini 2012). It was implemented with the dimension time (OpenFOAM does not allow 
calculations with inconsistent dimensions) and the notation in the revised manuscript was 
altered accordingly. 

Another mathematical issue appears in equations (7) and (9) (eq. (25) and (27) in 
the revised manuscript). Those equations employ the function exp( −m

y 
D ) , where m

y 
is a 

pure number that the authors set equal to 2, and  

|D |= [2 tr(D2 )] ½   |D |= [2 tr(D2 )] ½   is a norm of the deformation-rate tensor. The authors 
fail to clarify why this particular norm provides an appropriate gauge of the magnitude of 
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the tensor (as other scalar norms and tensor invariants of D also exist), but in any case the 
physical dimensions of D are the same as those of D, and are equal to 1/T. This constraint 
indicates that exp( −my D ) is an invalid mathematical operation, because mathematical 
functions can operate only on pure numbers, and not on quantities with physical 
dimensions. (As an aside, a rate-of-deformation tensor is not the same as a “strain rate” 
tensor, yet the authors use the terms interchangeably when referring to D. See the classic 
continuum mechanics text by L.E. Malvern for a detailed clarification of this point.)  
We regret that we didn’t explain what we meant by ‘normalized’ (it is normalized by density), 
and we also now realize that we were imprecise in the naming of stress deviator tensor in 
Equation 6. Furthermore, D is the strain rate tensor and my has the unit [s]. We corrected the 
unit issue in the manuscript accordingly, and we changed to non‐normalized notations for 
clarity. This change, combined with the other changes described above, involved extensive re‐
writing of the equations: Instead of an imprecise and general introduction into the Finite Volume 
Method we now present the governing equations step by step in the form as applied in the 
model. We now first introduce the volumetric phase fractions to be able to initially present the 
continuity equation together with a transport equation and a momentum equation (eq. (3) to (5) 
in the revised manuscript) in the first subsection of the modeling approach. We then describe in 
detail how the transport and momentum equations are applied in our model and we provide a 
detailed set of equations governing the solution algorithm in an appendix, where it is shown 
how the divergence‐free velocity field is found based on the momentum equation in an iterative 
procedure. 
 

• Eq. (6), (7) and (9) are reformulated as eq. (24), (25) and (27) using the dynamic 
viscosity   

• The density‐normalized pressure is replaced by the pressure and is divided by density 
in equations 6 (now 24) and 9 (now 27)   

• The momentum equation (10, now 5 and 14) is not divided by density and includes the 
source terms gravity and surface tension. 

• The discretization of the momentum equation and the implementation of the solution 
procedure based on Issaa (1986) is now described in detail in the appendix. 

 
 
 
 
OTHER COMMENTS KEYED TO PAGE  NUMBERS 
 
 On p. 6352 the authors note that they employ linear averaging of concentration-weighted 
phase viscosities in order to obtain an effective viscosity for the mixture. It would be helpful 
to see a formal mathematical demonstration of this averaging procedure that includes all 
components of the 3-D stress tensor.  
 
We rewrote the corresponding section accordingly. In the revised manuscript we introduce the 
deviatoric viscous stress tensor T with the momentum equation (5) and then show the relation 
to the phase‐averaged dynamic viscosity µ in eq. (12) as 
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We then present the phased averaged viscosity as the sum of concentration‐weighted 
contributions in eq. (13). 
 
On p. 6359 the authors advocate use of 3-D rather than depth-averaged models on the basis 
of improved fits to data from dam-break experiments. However, few if any natural debris 
flows begin with dam breaks that impose large instantaneous force imbalances. Instead, 
debris flows generally arise from small perturbations to statically balanced initial states. This 
observation motivates a key question: how does the authors’ model compute the initial stages 
of motion of a debris flow triggered by a small stress-state perturbation such as a pore-water 
pressure perturbation? Because their model takes no account of solid-fluid drag, it may be 
incapable of representing this effect. Yet this type of scenario is far more prevalent in nature 
than is a sudden dam break.  
 
We include a large‐scale natural debris flow release, the Johnson Landing Landslide Hazard of 
July 2012, in the validation work in the companion paper to illustrate the applicability and 
limitations, and we aim to model the irrigation‐triggered shallow landslide experiment of 
Rüdlingen (Brönnimann 2011). The user can reset phase concentrations locally using the 
setFields utility of OpenFOAM, which would allow one to perform a stepwise increase in liquid 
phase concentrations within chosen parts of the release body to investigate the effect of 
infiltration. Besides that, the user could alter the water content of the liquid phase. However, we 
agree that the transition from a state of rest to phase mobilization due to solid‐fluid drag cannot 
be accounted for in the present solver.  We now explicitly state that we do not address the 
initiation issue in the manuscript.  
 
On pages 6365-6367 the Discussion section begins with a literature review rather than a 
discussion of the authors’ results. It then transitions to a brief description of findings from 
some test computations. Neither of these topics is addressed thoroughly, and neither really 
constitutes “discussion” material, in my view. Generally a discussion section follows a 
presentation of results, but the authors’ paper lacks a “results” section.  
On p. 6368 the Conclusions section states that, “… we have developed a debris flow model 
whose parameters can be estimated directly from the site geometry and material composition, 
rather than from extensive calibration.” This is a strong statement that is not supported by the 
evidence presented in the paper.  
 

We limited the corresponding statement and it will be moved to the companion paper where we 
can explore the range of validity of this statement using specific examples. Within the context of 
the validation experiments, we aim to highlight that the model is valuable in complex  
geometries on a local scale and that it cannot yet reproduce the evolution in material 
compositions that appears over longer distances, e.g. grain size sorting and the formation of 
granular fronts and viscous tails. 
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Abstract. Here we present a three-dimensional fluid dynamic solver that simulates debris flows

as a mixture of two fluids (a Coulomb-Viscoplastic model of the gravel mixed with a Herschel-

Bulkley representation of the fine material suspension) in combination with an additional unmixed

phase representing the air and the free surface. We link all rheological parameters to the material

composition, i. e., to water content, clay content and mineral composition, content of sand and5

gravel, and the gravel’s friction angle; the user must specify only a single free model parameter.

The Volume-of-Fluid (VOF) approach is used to combine the mixed phase and the air phase into a

single cell-averaged Navier-Stokes equation for incompressible flow, based on code adapted from

standard solvers of the Open-Source CFD software OpenFOAM. The VOF method saves computa-

tional costs compared to drag-force based multiphase models. Thus depth-averaging is not necessary10

and complex three-dimensional flow structures can be simulated while accounting for the pressure-

and shear-rate-dependent rheology.

1 Introduction

Debris flows typically occur in steep mountain channels. They are characterized by unsteady flows

of water together with different contents of clay, silt, sand, gravel, and larger particles, resulting in15

a dense and often rapidly moving fluid mass. They are often triggered by heavy rainfall and can

cause massive damage (Petley et al., 2007; Hilker et al., 2009). Their importance has increased

due to intense settlement in mountainous regions and also due to their sensitivity to climate change
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(Guthrie et al., 2010). Their damage potential is not limited to direct impact; severe damage can

also be caused by debris flows blocking channels and thus inducing over-topping of the banks by20

subsequent flows.

Modeling debris flows is a central part of debris-flow research, because measuring the detailed

processes in debris-flow experiments or in the field is challenging. It is still uncertain how laboratory

tests can be scaled to represent real flow events, and the inhomogeneous mixture of gravel and fine

material brings about interactions of granular flow and viscous forces like drag and pore-pressure that25

are difficult to track with the present measurement techniques at reasonable cost. As a consequence,

the rheological behavior of debris flow material is incompletely understood.

Typically, current numerical modeling approaches cannot predict run-out distances or impact pres-

sures of debris flows in known terrain without prior parameter calibration, based on simulating pre-

vious well-documented events that happened at the same site. This clearly represents a challenge30

in practical applications, because reliable calibration data are rarely available. In addition, the in-

teractions between the granular and fluid phases, and the dynamic change in granular and fluid

concentrations during the flow process, limit simple models to the narrow range of simulations that

they have been calibrated for, where the fitted parameters account for these interactions. Complex

models such as depth-averaged fluid simulations coupled to three dimensional particle methods are35

associated not only with high computational costs but also with a large number of model parameters,

making model calibration the key issue for application to specific cases. This limits the possibilities

of using debris flow models as a valid standard application in practice, because the user’s ability to

estimate values of poorly constrained parameters influences the results.

Here, we present an improved multiphase modeling approach as an alternative. We provide a40

coarse but effective solution linking the rheological model of the debris-flow material to field values

such as grain size distribution and water content. The approach aims to link the knowledge of field

experts for estimating the release volume and material composition with recent advances that account

for complex flow phenomena using three-dimensional computational fluid dynamics. The parameters

of the two resulting rheology models for the two mixing fluids are linked to material properties such45

that the model setup can be based on material samples collected from the field, yielding a model

that has only one free parameter for calibration. One mixing phase represents the suspension of finer

particles with water (also simply called slurry in this paper) and a second mixing phase accounts

for the pressure-dependent flow behavior of gravel. A third gas phase is kept unmixed to model

the free surface. The focus is on the flow and deposition process and the release body needs to be50

user-defined. Although, some aspects of material mobilization can be addressed by locally altering

the concentration of the slurry phase and the water content of the slurry defined in the material

properties, this is not within the scope of this paper.
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Table 1. Nomenclature

α phase fraction

αm fraction of the debris mixture (slurry + gravel)

U velocity

Uc inter-facial compression velocity

t = time

T, Ts deviatoric viscous stress tensor (s for granular phase)

D strain rate tensor

ρ phase-averaged density, ρi(i= 1,2,3) density of phase i, ρexp is a bulk density in experiment

p, pd pressure resp. modified pressure

Ddiff diffusion constant

φ volumetric flux (φρ denotes mass flux, φr a surface-normal flux)

I identity matrix

µ phase-averaged dynamic viscosity, µi(i= 1,2,3) viscosity of phase i

µ0 maximal dynamic viscosity

µmin minimal dynamic viscosity

µs Coulomb-viscoplastic dynamic viscosity

∇ gradient

σ free surface tension coefficient

κ free surface curvature

g gravitational acceleration

τ shear stress

τy yield stress of slurry phase (τy−exp is a measured yield stress )

k Herschel-Bulkley consistency factor

n Herschel-Bulkley exponent

γ̇ shear rate

C volumetric solid concentration

P0 volumetric clay concentration

P1 reduced P0 in case of high clay content

τ00 free model parameter (affects slurry phase rheology)

τ0 modified τ00 in case of high C

τ0s yield stress of granular phase modeled with Coulomb friction

β slope angle

δ internal friction angle approximated as angle of repose

my constant model parameter (would affect gravel phase rheology)

3



2 Modeling approach

The debris flow material can be subdivided into a combination of a granular phase mixed with an55

interstitial fluid composed of the fine material suspension. The latter was successfully modeled in the

past as a shear-rate dependent Herschel-Bulkley fluid (Coussot et al., 1998). Because pressure and

shear drive the energy dissipation of particle-to-particle contacts, the shear rate substantially influ-

ences the energy dissipation within the granular phase. While the two-phase models of Iverson and

Denlinger (2001) and Pitman and Le (2005) treated the granular phase as a shear-rate independent60

Mohr-Coulomb plastic material, dry granular material has been successfully modeled as a viscoplas-

tic fluid by Ancey (2007), Forterre and Pouliquen (2008), Balmforth and Frigaard (2007) and Jop

et al. (2006). We follow the suggestions given by Pudasaini (2012) to account for the non-Newtonian

behavior of the fluid and the shear- and pressure-dependent Coulomb-viscoplastic behavior of the

granular phase, as applied by Domnik et al. (2013). Several modeling approaches to account for the65

two-phase nature of debris flows used depth-averaged Navier-Stokes equations for each phase cou-

pled by drag models (eg. Bozhinskiy and Nazarov (2000), Pitman and Le (2005), Pudasaini (2012)

and Bouchut et al. (2015)). We apply the numerically more efficient method of Iverson and Denlinger

(2001) and treat the debris flow material as one mixture with phase-averaged properties described

by a single set of Navier-Stokes equations. The resulting reduction in numerical costs allows us to70

model the three-dimensional momentum transfer in the fluid as well as the free-surface flow over

complex terrain and obstacles.

Multiphase flows of gas, fluid and sediment can be addressed with the so-called mixture- or drift-

flux model in cases where the local difference in phase velocities is small (Bohorquez, 2008). The

properties of all phases are cell-averaged to derive a single mass continuity and momentum balance75

equation describing the entire mixture. The model presented here has to be seen as a first step, as-

suming that the local velocity of the gravel is about the same as the velocity of the surrounding

fluid, thus allowing us to neglect the drift-flux. This assumption would not be valid for debris flows

with little interstitial fluid, or with interstitial fluid of small viscosity (i. e., a slurry with low con-

centrations of fine material). The assumption of equal velocities of both phases in one cell leads to80

a constant composition of the mixture by means of phase concentrations over the entire flow pro-

cess. This basic model can be seen as a counterpart to the mixture model of Iverson and Denlinger

(2001), extended by resolving the three dimensional flow structure in combination with a pressure-

and shear-rate-dependent rheology linked to the material composition. In future work, we aim to

relax the constraint of equal phase velocities and allow dispersion of constituents by introducing85

relative velocities of the gravel phase with respect to the fine sediment suspension according to Bo-

horquez (2012) and Damián (2013) together with a coupled Lagrangian particle simulation that can

account for larger grains. The basic model presented here focuses on the role of pressure-dependent

flow behavior of the gravel, in combination with the shear-dependent rheology of the slurry.
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We base our model concept on the well-established finite volume solver interFoam, which is de-90

signed for incompressible two-phase flow simulations of immiscible fluids (Deshpande et al., 2012).

A standard extension named interMixingFoam introduces two mixing phases without momentum

exchange coupled to a third unmixed phase by surface tension. Numerical costs are kept reasonable

due to the Volume-of-Fluid (VOF) method (Hirt and Nichols, 1981), which solves only one Navier-

Stokes equation system for all phases. The viscosity and density of each grid cell is calculated as a95

concentration-weighted average between the viscosities of the phases that are present in the cell. Be-

tween the two mixing phases of gravel and slurry, the interaction reduces to this averaging of density

and viscosity. In this way, the coupling between driving forces, topography and three dimensional

flow-dependent internal friction can be addressed for each phase separately, accounting for the fun-

damental differences in flow mechanisms of granular and visco-plastic fluid flow that arise from the100

presence or absence of Coulomb friction (Fig. 1). We apply linear concentration-weighted averaging

of viscosities for estimating the bulk viscosity of a mixture for simplicity. Non-linear averaging of

viscosity between phases as suggested by Gao and Li (2012) may be introduced in the future.

2.1 Governing Equations

Assuming isothermal incompressible phases without mass transfer, we separate the modeled space105

into a gas region denoting the air and a region of two mixed liquid phases. The VOF method used here

determines the volume fractions of all phases in an arbitrary control volume by using an indicator

function which yields a phase fraction field for each phase. The phase fraction field represents the

probability that a phase is present at a certain point in space and time (Hill, 1998). The air fraction

may be defined in relation to the fraction of the mixed fluid αm as110

α1 = 1−αm (1)

and the mixed fluid αm may be defined as the sum of the constant fractions of the mixing phases α2

and α3:

αm = α2 +α3. (2)

The flow is defined by the continuity equation together with the transport and momentum equa-115

tions:

∇ ·U = 0, (3)

∂αm
∂t

+∇ · (Uαm) = 0, (4)

5



and

∂(ρU)

∂t
+∇ · (ρU ×U) =−∇p+∇ ·T+ ρf , (5)120

where U represents the velocity field shared by all phases, T is the deviatoric viscous stress tensor,

ρ is the phase-averaged density, p denotes pressure and f stands for body forces per unit mass like

gravity.

An efficient technique of the VOF method is to convect the phase fraction field αm as an invariant

with the divergence-free flow field U that is known from previous time steps:125

∂αm
∂t

+∇ · (Uαm) +∇ · (α1Uc) = 0, (6)

where t denotes time and Uc is an artificial inter-facial compression velocity acting perpendicular to

the interface between the gas region and the mixed liquid phases. The method allows a reconstruc-

tion of the free surface with high accuracy if the grid resolution is sufficient (Berberović et al., 2009;

Hoang et al., 2012; Deshpande et al., 2012; Hänsch et al., 2013). The details about the interface130

compression technique, the related discretization and numerical schemes to solve eq. 6 are given

in Deshpande et al. (2012). However, to allow evolving phase concentrations between the mixing

phases of the slurry α2 and the gravel α3 in future releases, our modified version of the interMixing-

Foam solver applies eq. 6 separately to each mixing phase including diffusion:

∂αi
∂t

+∇ · (Uαi)−Ddiff∇2αi +∇ · (α1Uc) = 0, (7)135

where i= 2,3 denote the slurry and gravel phases and Ddiff is the diffusion constant that is set to a

negligible small value within the scope of this paper.

The discrete form of eq. 7 is derived by integrating over the volume V of a finite cell of a grid-

discretization of the simulated space, which is done in the finite volume method by applying the

Gauss Theorem over the cell faces. The advective phase fluxes φ1..3 are obtained by interpolating140

the cell values of α1, α2 and α3 to the cell surfaces and by multiplying them with the flux φ through

the surface, which is known from the current velocity field. To keep the air phase unmixed, it is

necessary to determine the flux φr through the interface between air and the debris flow mixture,

and to subtract it from the calculated phase fluxes φ1..3. Inherited from the original interMixingFoam

solver (OpenFOAM-Foundation, 2016a), limiters are applied during this step to bound the fluxes to145

keep phase concentrations between 0 and 1. With known fluxes φ1..3, the scalar transport equation

without diffusion for each phase takes the form

∂

∂t
αi +∇(φi) = 0. (8)

Equation 8 is solved using first-order Euler schemes for the time derivative terms, as has been rec-

ommended for liquid column breakout simulations (Hänsch et al., 2013).150
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After solving the scalar transport equations, the complete mass flux φρ from the updated volumetric

phase concentrations is constructed:

φρ = φ1 · ρ1 +φ2 · ρ2 +φ3 · ρ3, (9)

where ρ1..3 denote the constant densities of the corresponding phases and φ1..3 are the corresponding

fluxes.155

Fig. 2 illustrates how the phase volume distributions α1 (air), α2 (slurry) and α3 (gravel) are used

to derive cell-averaged properties of the continuum.

The conservation of mass and momentum is averaged with respect to the phase fraction α of each

phase. The density field is defined as

ρ=
∑
i

ρiαi (10)160

where ρi denotes density of phase i and the density is assumed to be constant.

The deviatoric viscous stress tensor T is defined based on the mean strain rate tensor D that

denotes the symmetric part of the velocity gradient tensor derived from the phase-averaged flow

field:

D =
1

2
[∇U + (∇U)T ], (11)165

and

T = 2µD− 2

3
µ(∇ ·U)I. (12)

I is the identity matrix and µ is the phase-averaged dynamic viscosity, which is simplified in

analogy to eq. 10 as the concentration-weighted average of the corresponding phase viscosities:

µ=
∑
i

µiαi (13)170

The term ∇ ·T in the momentum equation 5 is decomposed as ∇ · (µ∇U) +∇U · ∇µ to ease

discretization. The body forces f in the momentum equation account for gravity and for the effects

of surface tension. The surface tension at the interface between the debris flow mixture and air is

modeled as a force per unit volume by applying a surface tension coefficient σ. The momentum

conservation including gravitational acceleration g and surface tension is defined in our model as:175

∂(ρU)

∂t
+∇ · (ρU ×U) =−∇pd +∇ · (µ∇U) + (∇U) · ∇µ− g ·x∇ρ+σκ∇α1 (14)
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where κ denotes the local inter-facial curvature and x stands for position. The modified pressure

pd is employed in the solver to overcome some difficulties with boundary conditions in multiphase

flow simulations. In case the free surface lies within an inclined wall forming a no-slip boundary

condition, the normal component of the pressure gradient must be different for the gas phase and180

the mixture due to the hydrostatic component ρg. It is common to introduce a modified pressure pd

related to the pressure p by

pd = p− ρg ·x. (15)

The gradient of the modified pressure includes the static pressure gradient and contributions that

arise from the density gradient as well as a body force due to gravity (Berberović et al., 2009).185

Together with the continuity equation 3 for the multi-phase flow, eq. 14 allows us to calculate

the pressure and gravity driven velocities. The corresponding discretization and solution procedure

with the PISO (Pressure-Implicit with Splitting of Operators (Issa, 1986)) algorithm is provided

in appendix A. In the following section we present the rheology models that define the viscosity

components for eq. 13.190

2.2 Rheology model for the fine sediment suspension

The viscosity of the gas phase, µ1 is chosen constant. The introduction of two mixing phases is nec-

essary to distinguish between the pressure-dependent flow behavior of gravel and the shear-thinning

viscosity of the suspension of finer particles with water. The rheology of mixtures of water with

clay and sand can be described by the Herschel-Bulkley rheology law (Coussot et al., 1998), which195

defines the shear stress in the fluid as:

τ = τy + kγ̇n (16)

where τy is a yield stress below which the fluid acts like a solid, k is a consistency factor for the

viscosity of the sheared material, γ̇ is the shear rate and n defines the shear-thinning (n < 1) or

shear-thickening (n > 1) behavior. In OpenFOAM, the shear rate is derived in 3D from the strain200

rate tensor D:

γ̇ =
√

2 ·D : D (17)

The shear rate is based on the strain rate tensor to exclude the rotation velocity tensor that does

not contribute to the deformation of the fluid body. The model can be rewritten as a generalized
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Newtonian fluid model to define the shear-rate-dependent effective kinematic viscosity of the slurry205

phase as:

µ2 = k|γ̇|n−1 + τy|γ̇|−1 (18)

if the viscosity is below an upper limit µ0 and

µ2 = µ0 (19)

if the viscosity is higher, to ensure numerical stability.210

With n= 1 the model simplifies to the Bingham rheology model that has been widely used to

describe debris-flow behavior in the past. It may be reasonable to imagine the rheology parameters to

be dependent on the state of the flow. However, even with the implicit assumption that the coefficients

are a property of the material and not of the state of the flow, the Herschel-Bulkley rheology law was

rarely applied in debris-flow modeling due to the large number of rheology parameters. We avoid215

this problem by assuming the rheology parameters to be defined by measurable material properties

as described below.

2.2.1 Determination of rheology model parameters based on material properties

Results from recent publications allow the reduction of the number of free Herschel-Bulkley pa-

rameters to one. If the coarser grain fraction is confined to the gravel phase, the Herschel-Bulkley220

parameters for the finer material can be linked to material properties as measured using simple stan-

dard geotechnical tests. According to Coussot et al. (1998), the exponent n can be assumed constant

as 1/3, and k can be roughly estimated as b · τy , where the constant b= 0.3s−n for mixtures with

maximum grain-sizes < 0.4 mm (Coussot et al., 1998). An approach for estimating the yield stress

τy based on water content, clay fraction and composition, and the solid concentration of the entire225

debris flow material was proposed by Yu et al. (2013) as:

τy = τ0C
2e22(C·P1) (20)

where C is the volumetric solid concentration of the mixture, P1 = 0.7P0 when P0 > 0.27 and P1 =

P0 if P0 <= 0.27, and

P0 = Ckaolinite+chlorite + 1.3Cillite + 1.7Cmontmorillonite (21)230

where the subscript of C refers to the volumetric concentration (relative to the total volume of all

solid particles and water) of the corresponding mineral. The discontinuity of P1 at a modified clay
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concentration of P0 = 0.27 is a coarse adjustment to a more-or-less sudden change observed in the

experimental behavior.

For C < 0.47, τ0 is equal to τ00 and otherwise τ0 can be calculated by235

τ0 = τ00e
5(C−0.47) (22)

where τ00 is the remaining free parameter which we use to account for the grid size dependency

of the shear rate (Yu et al., 2013). We recommend a value of τ00 = 30 Pa as a starting point for

calibration. Yu et al. (2013) compared this method of estimating the yield stress τy to experimental

results they obtained from a set of 514 flume experiments with mixtures of water and clay with fine240

and coarse sand and less than 5 % gravel. They determined the yield stress by releasing the material

mixture from a reservoir into an inclined channel of 0.2 m width and by increasing the inclination

slightly until remobilization occurred after the material came to rest. The experimental yield stress

τy−exp was then determined as:

τy−exp = ρexpghsin(β), (23)245

where ρexp is the density of the applied mixture, g the acceleration due to gravity, h the maximum

accumulation thickness of the deposit, and β the slope inclination. In addition, they compared the

calculated yield stress of eq. 20 with experimental yield stresses reported by a number of authors

including Coussot et al. (1998) and Ancey and Jorrot (2001). Ancey and Jorrot (2001) used 2 mm

and 3 mm glass beads in a kaolinite dispersion as well as fine sand-kaolinite-water mixtures. Up250

to yield stresses of about 200 Pa the yield stresses estimated by eq. 20 fit the observed ones well.

Thus, the yield stresses of sand-clay mixtures with water can be estimated using eq. 20 based on the

volumetric concentration of the debris in the water-solids mixture and based on the percentages of

different clays in the fraction of fine material. Adjustments to the numbers for calculating P0 may

be necessary to account for the activity of other clays.255

The remaining uncertainties concern our assumptions that n is constant at a value of 1/3, and that

k can be defined in such simple dependency to τy in the presence of coarser sand. Experiments seem

to confirm that n increases in presence of coarser material (Imran et al., 2001), but further research is

needed to quantify this effect. Remaitre et al. (2005) found n to vary from 0.27 to 0.36. Schatzmann

et al. (803) used n= 0.33 to reproduce measured curves obtained with a mixture of 27.5 volumetric260

percent slurry with 30 % gravel where gravel grain-sizes ranged from 3 to 10 mm, and used n= 0.5

to fit the Herschel-Bulkley model to the experiment with 22.5 % slurry and 30 % gravel. Based on

the laboratory scale experiments that are presented in v. Boetticher et al. (2015) we have chosen

n= 0.34 to obtain the best fit for the simulation presented by large-scale debris-flow experiments.
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2.3 Representation of gravel by a Coulomb-viscoplastic rheology265

During acceleration and high-speed flow, the shear-thinning behavior of both the fluid and the gran-

ular phase dominate the viscosity in our model. However, pressure-dependent friction becomes im-

portant as soon as the material experiences high pressures, accompanied by reduction in shear due

to decelerations caused by channel slope reduction. Flows of granular material could be modeled as

viscoplastic fluids (Ancey, 2007; Forterre and Pouliquen, 2008; Balmforth and Frigaard, 2007; Jop270

et al., 2006) as cited by Domnik and Pudasaini (2012). Based on Ishii (1975), the granular stress

deviator tensor Ts can be written as:

Ts =−p
ρ
I+ 2µsD, (24)

where pI is the pressure times the identity matrix and µs is the corresponding dynamic viscosity,

which was modeled by Domnik and Pudasaini (2012) as:275

µs = µmin +
τ0s
||D||

[1− e−my||D||], (25)

where µmin is a minimal dynamic viscosity, τ0s is a yield stress, and ||D|| is the norm of the strain-

rate tensor defined by the authors as:

||D||=
√

2tr(D2). (26)

In eq. 25, my is a model parameter with units of s which we will keep constant, for reasons outlined280

in the following section. Domnik et al. (2013) suggested replacing the yield stress by a pressure-

dependent Coulomb friction, psin(δ) where δ is the internal friction angle:

µ3 = µmin +
psin(δ)

ρ3||D||
[1− e−my||D||] (27)

Here, this Coulomb-viscoplastic rheology model is used to describe the gravel phase. The pressure-

and shear-dependent viscosity is calculated in every cell with the corresponding local pressure p and285

strain-rate tensor D derived from the phase-averaged flow field.

2.3.1 Gravel phase properties

The Coulomb-viscoplastic rheology law developed by Domnik et al. (2013) includes two parameters:

the friction angle δ, and the parameter my influencing the transition between yielded and unyielded

regions. For smaller values of my , the transition is smoother. In the absence of shear, to achieve a290

viscosity representing a Coulomb friction equal to p ·sin(δ) where p is the local pressure, my needs

11



to be equal to 1 s. However, the development of µs under large pressure or strong shear is the same

for both my = 1 s and my = 0.2 s, but parts of the nearly immobile material that face little pressure

(in general, immobile material close to the surface) show a significant reduction in viscosity when

my = 0.2 s (Fig. 3). As a consequence, my minimally affects debris flow release and flow at large295

scales, but material with a shallow flow depth in a run-out plane close to deposition may develop

front fingering (which is dependent on, and sensitive to, the value of my) by allowing sudden local

solidification. We choose my to be constant and equal to 0.2 s for all simulations.

For small friction angles, the modeled viscosity of the gravel phase decreases rapidly with increasing

shear. Larger friction angles increase the viscosity and extend the pressure dependency to larger300

shear rates (Fig. 4). We estimated the friction angle δ based on the maximum angle of repose in tilt-

table tests of the gravel. In our laboratory experiments, we determined the friction angle in a simple

adaptation of the method of Deganutti et al. (2011) by tilting a large box with loose material until a

second failure of the material body occurred.

In analogy to the Herschel-Bulkley implementation, an upper limit for the viscosity is imple-305

mented to maintain numerical stability. Pressure-dependent viscosity in the incompressible Navier-

Stokes equations causes numerical instability as soon as the eigenvalues of the symmetric part of

the local velocity gradient become larger than 1/(2(δµ/δp)). Following Renardy (1986), we locally

limit the viscosity to keep it below a corresponding local stability limit.

3 Quality characteristics of the model310

3.1 Effects of time step size on rheology

Because most debris-flow models are depth-averaged and use shallow-water approximations, one

could ask why a three-dimensional approach is necessary. Brodani-Minussi and deFreitas Maciel

(2012) compared dam-break experiments of a Herschel-Bulkley fluid and its numerical simulations

using the VOF approach with published shallow-water-equation-based models. Especially for the315

first instant after the material release, the application of shallow-water equations seems to introduce

errors that are propagated throughout the process, leading to erroneous run-out estimates. A similar

problem arises when modeling debris-flow impacts on obstacles. Simulating the impact of material

with velocity-dependent rheology that is kept constant over the time step although it actually changes

with the changing flow leads to an accumulating over- or underestimation of energy dissipation.320

In our model, during release of immobile material that accelerates, the viscosity is overestimated

over each time step. As a consequence, the velocity at the end of the time step is underestimated,

which again amplifies the overestimation of viscosity in the next time step. Conversely, at an impact,

the sudden deceleration causes an underestimation of viscosity over the time step length, leading

to an overestimated velocity that again amplifies the underestimation of the viscosity in the next325

time step. As a result, flow velocities change with changing time step size. Avalanche codes such as
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RAMMS (Christen et al., 2007) deal with this problem by calibrating the model to data from previous

events at the same location and similar conditions. But changes in release volume or position can

lead to different accelerations and corresponding changes in the automatic time step control can

alter the development of rheology over time. As long as a flow stage is reached where the flow330

stops accelerating, the influence on the final front velocity should be negligible. Other debris flow

models, which do not iteratively adjust viscosity, cannot accurately simulate impacts. Here, our

model constitutes a significant improvement, since in the three-dimensional solver we presented,

the viscosity bias was reduced by implementing a corrector step: taking the average between the

viscosity at the beginning of the time step and the viscosity that corresponds to the velocity field335

at the end of the time step, the time step is solved again, leading to a better calculation of the

velocity. This step can be repeated, according to user specifications, to correct the viscosity several

times. Although this procedure increases numerical calculation time, it clearly reduces the time-step

dependency of the simulation. Some dependency on the time step is still present when modeling the

collapse of material columns, but the origin of this problem is different because it occurs also for340

Newtonian fluids.

3.2 Effect of grid resolution on rheology

Since the shear rate influences both viscosity models, a strong influence of grid resolution on vis-

cosity results, because the shear rate is averaged over the cell size. For flows over rough topography

this may be less critical, but for laboratory flume experiments with thin shear bands the results may345

depend on grid resolution. When simulating laboratory flume experiments where debris-flow mate-

rial accelerated in a relatively narrow and short channel (Scheidl et al., 2013), a cell height of 1.5

mm, which is of the order of the laboratory rheometer gap, was still not fine enough to reach the

limit of grid sensitivity. The free model parameter τ00 influences the shear-rate-dependent term of

the visco-plastic rheology model and can be used to adjust the simulation to the grid resolution. As350

long as the gravel phase and grid resolution do not change, it should be possible to model different

water and clay contents based on one calibration test. However, as the composition changes, both

τy and τ00 must change commensurately, since a change in yield stress affects the shear rate. Our

procedure for adjusting to different mixtures based on one calibrated test is to perform one iteration

step for the yield stress of the new mixture; by calculating τy based on the original τ00 value from the355

calibration test but with the new material composition, an updated yield stress of the new mixture is

determined. Raising or lowering τ00 by the same ratio as the change from the original yield stress of

the calibration test to the updated yield stress generates the final τy as it is applied to the simulation

of the new mixture.

The viscosity of the granular phase is averaged over the cell faces to avoid discontinuous viscosity360

jumps between cells, which may cause instability due to the sensitivity of incompressible solvers to

pressure-dependent viscosity. However, thin cells that allow a precise calculation of the shear gra-
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dient lead to a preferred direction of the smoothing of the granular phase’s viscosity which may in-

troduce physically unrealistic behavior. Cell length (in the flow direction), cell width and cell height

should at least be of the same order. Especially when front fingering is of interest, a grid resolution365

test should be carried out, ensuring that front instability is not caused by a large aspect ratio of the

cell dimensions.

4 Discussion

Because the purpose of this paper is to illustrate the solver structure and model basis, we defer a de-370

tailed discussion of model performance to the accompanying paper, in which the model is validated

against laboratory tests, large scale experiments and natural hill-slope debris flow events. Here, we

discuss only the efficiency of the solver itself, together with a general test about the model accuracy

in a gravity-driven open channel flow. The lack of standard benchmark test cases for debris-flow

solvers was the motivation to select a numerical test case to compare model speedup between our375

approach and a closely related drag-force-based Eulerian multiphase model, and to select a well-

defined gravity-driven turbulent open channel flow experiment with clear water to inspect the solver

validity.

In comparison to drag-force-based Eulerian multiphase models, the Volume of Fluid approach

applied here provides significant reduction in calculation time. For an estimate we compared our380

model with the OpenFOAM standard solver multiphaseEulerFoam. We selected the official tutorial

case damBreak4phaseFine, but turned the water phase into mercury to gain a three-phase test case,

and applied the standard solver settings from the case to our model. On a CentOS 6.3 Linux machine

with 31 GiB memory and sixteen Intel Xeon CPU E5-2665 @ 2.40 GHz processors, our model

resulted in a 5.5 times faster calculation with a comparable collapse of the modeled mercury and385

oil columns (Fig. 5). For the sake of completeness our calculation included one iterative viscosity

correction step, thus the model efficiency can be estimated to be about ten times higher than a drag-

force-based phase coupling approach.

The model was also applied to an open clear water channel experiment with about 50.6 l/s dis-

charge in a 40 m long and 1.1 m wide rectangular smooth channel with 0.026% inclination (Fischer,390

1966). The slurry phase was initialized as water together with a zero gravel phase concentration.

A Hybrid URANS-LES model was applied to account for the turbulent flow. Instead of an inlet

discharge the model applied periodic inlet and outlet boundary conditions and the flow was driven

by gravity. The debrisInterMixingFoam solver predicted the discharge of the turbulent channel flow

with an underestimation of 15% and underestimated the corresponding surface elevation by 2.5%.395

However, the deviations in predicted and measured average flow velocities are probably related to

shortcomings of the URANS turbulence model at the bottom boundary, as a comparison between a
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measured and simulated vertical velocity profile suggests (Fig. 6). Due to the lack of a clearly defined

benchmark test case for debris flow models, we have chosen this setup as a well-defined larger-scale

laboratory test case where the solver faces varying modeled fluid viscosity due to turbulence.400

5 Conclusions

The new debris-flow solver has two main strengths. First, it can model three-dimensional flows and

their impact against complexly shaped objects, representing the processes at a high level of detail.

Second, its design allows simulating different debris flow material compositions without recalibrat-

ing the one free parameter, as long as the simulation grid does not change. Due to the solver’s405

pressure- and shear-dependent rheology, realistic deposit geometries and release dynamics can be

achieved, as presented and discussed on the basis of test cases in the accompanying paper. By sys-

tematically excluding unknown parameters from the model architecture and by accounting for known

flow phenomena in a simplified way, we have developed a debris flow model whose parameters can

be roughly estimated based on material composition, leaving only a single calibration parameter.410

The concept is promising, however important parts of phase interactions are neglected in favor of

lower numerical costs and shorter calculation times. The model is still limited to small simulations

of several hundred square meters in surface area unless a powerful computer cluster can be used.

Appendix A: A

The following section describes the detailed implemetation of the PISO iteration procedure as de-415

scribed in Deshpande et al. (2012). By applying the continuum surface force model of Brackbill

et al. (1992), the volume integral of eq. 14 is given as

∫
Ωi

∂ρU

∂t
dV +

∫
∂Ωi

(ρUU) ·ndS =

−
∫
Ωi

∇pddV −
∫
Ωi

g ·x∇ρdV +

∫
Ωi

σκ∇α1dV +

∫
∂Ωi

(µ∇U) ·ndS+

∫
Ωi

∇U · ∇µdV. (A1)420

The computational domain is discretized into finite-volume cells. Each cell is considered as the

owner of exactly one face that it shares with an adjacent neighbor cell, thus each face has a defined

owner cell. A surface normal vector Sf with magnitude equal to the surface area of the face is

defined on the face pointing outward from the owner cell (Fig. 7). The value at face f of any variable

χ calculated in the cell centers as χP and χN (Fig. 7) can be derived by interpolation using a mixture425

of central and upwind schemes:

χf = γ(χP −χN ) +χN , (A2)

15



with a weighting factor γ that can account for the flow direction based on the chosen interpolation

scheme and flux limiter. In case of a linear interpolation scheme and a flux limiter ψ, γ can be defined

as430

γ = ψ
fN

d
+ (1−ψ)

φf
|φf |

, (A3)

where d is the distance between the cell centers P andN and fN is the distance from the face center

to the cell center N . The face flux denoted as φf serves as a switch to account for the flow direction

since it turns negative when the flow is from N to P (Berberović et al., 2009). Several limiters are

implemented (OpenFOAM-Foundation, 2016b); we chose the vanLeer scheme and assumed uniform435

grid spacing to simplify the following explanations with fN/d= 0.5.

Variables that are evaluated at the cell faces are subscripted by f . Due to stability problems that

arise from the pressure-velocity coupling in collocated meshes (Ferziger and Peric, 2002), the pres-

sure is solved for the cell centers whereas the velocity is interpolated to the cell faces within the

PISO loop.440

With the switch function

ζ(φf ) =
φf
|φf |

(A4)

the velocity Uf at face f can be written based on eq. A2 and A3 as

Uf =
UP

2
(1 + ζ(φf )(1−ψ)) +

UN

2
(1− ζ(φf )(1−ψ)), (A5)

and the corresponding face-perpendicular velocity gradient is given by Deshpande et al. (2012) as445

∇⊥fU =
UN −UP

|d|
. (A6)

At the present time step tn the phase averaged density of the next time step ρn+1 is known from

solving the transport equations. In a first approximation, the corresponding viscosity field µn+1 can

be derived accordingly. A simplified formulation of the momentum equation A1 without pressure,

surface tension and gravity terms discretized for cell P could then be formulated as450

(ρn+1Ũ)− (ρnUn)

∆t
|ΩP |+

∑
f∈∂Ωi

ρnfφ
n
f Ũf =

∑
f∈∂Ωi

µn+1
f∇⊥f Ũ |Sf |+∇Un · ∇µn+1|ΩP |.

(A7)

The tilde stands for the velocity at cell P predicted in the current iterative step, for which eq. A7

yields an explicit expression. For that purpose, eq. A5 and A6 are inserted into eq. A7 using the
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velocity of the prior iteration step, Um, in all neighbor cells (Deshpande et al., 2012). The explicit

expression for the estimated velocity is455

AP Ũ =H(Um), (A8)

and by including surface tension and gravity this leads to

Ũ =
H(Um)

AP
+
σκ∇αn+1

1

AP
− g ·x∇ρ

AP
. (A9)

The detailed composition of H(Um) and AP formulated with respect to the splitting between

neighbor and owner cells can be found in Deshpande et al. (2012); here it is sufficient to keep in460

mind that H(Um) contains all off-diagonal contributions of the linear system.

The next step is to assemble the approximated face flux

φ̃f =
(H(Um)

AP

)
f
·Sf +

( (σκ)n+1(∇⊥fα1)n+1

AP

)
f
|Sf |−

( (g ·x)n+1(∇⊥fρ)n+1

AP

)
f
|Sf | (A10)

where the subscript f indicates that the variable values at the faces are used. The final flux is found

by adding the pressure contribution465

φm+1
f = φ̃f −

(∇⊥fpm+1
d

AP

)
f
|Sf |. (A11)

The sum of the flux over the cell faces needs to be zero due to mass conservation for the incom-

pressible flow∑
f∈∂Ωi

φm+1
f = 0, (A12)

Thus the pressure is defined by the linear equation system for the updated pressure pdm+1470 ∑
f∈∂Ωi

(∇⊥fpm+1
d

AP

)
f
|Sf |=

∑
f∈∂Ωi

φ̃f , (A13)

and can be solved with the preconditioned conjugate gradient (PCG) algorithm, to mention one

of several options implemented in OpenFOAM. With the updated pressure pdm+1, the face fluxes

φm+1
f are derived from eq. A11 and the updated velocity filed Um+1 is obtained from the explicit

velocity correction475

Um+1 = Ũ +
( 1

AP

)( ∑
f∈∂Ωi

(Sf ⊗Sf )

|Sf |

)−1

•
( ∑
f∈∂Ωi

(
φm+1

f − Ũf ·Sf
( 1
AP

)f

)
Sf
|Sf |

)
(A14)

which is the end of the PISO loop. After updating the index m to m+ 1, the iteration restarts with

recalculating H with the updated velocity from equation A8, repeating the loop until a divergence-

free velocity field is found.
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A1 Code availability480

The source-code can be downloaded from the supplement application.zip. Please follow the instruc-

tions given in the README.pdf file for installation.
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Figure 1. Viscosity distribution (indicated by color scale) along a 28 cm long section through the modeled

0.01 m3 release block 0.2 s after release, corresponding to the experimental setup of Hürlimann et al. (2015).

The starting motion (black velocity arrows) with corresponding viscosity distribution of the mixture (left) is

a consequence of blending pure shear-rate dependent slurry-phase rheology (center) with the pressure- and

shear-rate-dependent gravel phase rheology that accounts for Coulomb friction (right). Because the gravel con-

centration in this example is low, its effect on the overall viscosity is small.

Figure 2. Longitudinal section through a debris flow front discretized with finite volume-cells, showing the

constitutive equations for one cell with density ρ and viscosity µ given the densities ρ1..3, viscosities µ1..3 and

proportions α1..3 of phases present. 1 denotes air (white colored cell content), 2 the mud and 3 the gravel phase,

respectively.
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Figure 3. Dependency of the kinematic gravel phase viscosity νs (normalized by density) on the norm of the

strain rate tensor ||D|| at different levels of pressure normalized by density, for my = 1 s and my = 0.2 s and

a friction angle δ = 36◦.

23



Figure 4. Dependency of the kinematic gravel phase viscosity (for friction angle δ = 25◦ and 50◦) on the norm

of the strain rate tensor ||D|| at different levels of pressure normalized by density, for my = 0.2 s
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Figure 5. Phase positions in a dam break standard test-case simulation using a drag-based three phase multi-

phaseEulerFoam simulation (air is transparent, blue indicates mercury and orange represents oil) as background

shapes with the corresponding phase positions of our model as wire frame in front (with white mercury as slurry

phase and black oil as gravel phase). The visualized time steps correspond to 0, 0.1, 0.2, 0.3, 0.4 and 0.5 seconds.

Figure 6. Comparison of simulated and measured average vertical velocity profiles 27 cm away from the chan-

nel sidewall of a 1.1 m wide and 40 m long rectangular channel with smooth surface (z is the corresponding

height above the bed). In the experiment (Fischer, 1966), a 50.6 l/s inlet discharge was combined with a 0.026%

channel inclination resulting in 12.8 cm average flow depth. The simulation applied periodic inlet and outlet

boundary conditions and a symmetry plane at the channel center line. Additional calibration of the turbulence

model may improve the result.
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Figure 7. Sketch of two adjacent cells P and N and the shared face f owned by cell P . Sf is the face surface

normal vector while d denotes the distance vector from cell center P to cell center N.
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Abstract. Here we present a three-dimensional fluid dynamic solver that simulates debris flows as a

mixture of two phases (gravel and
::::
fluids

::
(a

:::::::::::::::::::
Coulomb-Viscoplastic

:::::
model

::
of

:::
the

::::::
gravel

:::::
mixed

::::
with

::
a

::::::::::::::
Herschel-Bulkley

::::::::::::
representation

::
of

:::
the fine material suspension) with a third

::
in

::::::::::
combination

::::
with

:::
an

::::::::
additional unmixed phase representing the air and the free surface. We link all rheological parameters

to the material composition, i. e., to water content, clay content and mineral composition, content of5

sand and gravel, and the gravel’s friction angle; the user must specify only a single free model pa-

rameter. The Volume-Of-Fluid
:::::::::::::
Volume-of-Fluid

:
(VOF) approach is used to combine the three phases

:::::
mixed

:::::
phase

::::
and

:::
the

:::
air

:::::
phase into a single cell-averaged Navier-Stokes equation for incompress-

ible flow, based on code adapted from standard solvers of the Open-Source CFD software Open-

FOAM. We present a stable implementation of a Coulomb-Viscoplastic model that represents the10

pressure-dependent flow behavior of the granular phase, and a Herschel-Bulkley representation of

the interstitial fluid. The VOF method saves computational costs compared to drag-force based multi-

phase models. Thus depth-averaging is not necessary and complex three-dimensional flow structures

can be simulated
::::
while

::::::::::
accounting

::
for

:::
the

::::::::
pressure-

::::
and

:::::::::::::::::
shear-rate-dependent

:::::::
rheology.

1 Introduction15

Debris flows typically occur in steep mountain channels. They are characterized by unsteady flows

of water together with different contents of clay, silt, sand, gravel, and larger particles, resulting in

a dense and often rapidly moving fluid mass. They are often triggered by heavy rainfall and can

1



cause massive damage (Petley et al., 2007; Hilker et al., 2009). Their importance has increased

due to intense settlement in mountainous regions and also due to their sensitivity to climate change20

(Guthrie et al., 2010). Their damage potential is not limited to direct impact; severe damage can

also be caused by debris flows blocking channels , and thus inducing over-topping of the banks by

subsequent flows.

Modeling debris flows is a central part of debris-flow research, because measuring the detailed

processes in debris-flow experiments or in the field is challenging. It is still uncertain how laboratory25

tests can be scaled to represent real flow events, and the inhomogeneous mixture of gravel and fine

material brings about interactions of granular flow and viscous forces
:::
like

::::
drag

:::
and

:::::::::::
pore-pressure

:
that

are difficult to track with the present measurement techniques at reasonable cost. As a consequence,

the rheological behavior of debris flow material is incompletely understood.

Typically, existing
::::::
current numerical modeling approaches cannot predict run-out distances or im-30

pact pressures of debris flows in known terrain without prior parameter calibration, based on simulat-

ing previous well-documented events that happened at the same site. Clearly, this
::::
This

:::::
clearly

:
repre-

sents a challenge in practical applications, because often reliable calibration data are unavailable
::::
rarely

:::::::
available. In addition, the interactions between the granular and viscous

::::
fluid

:
phases, and the dy-

namic change in granular and viscous
::::
fluid

:
concentrations during the flow process, limit simple35

models to the narrow range of simulations that they have been calibrated for, where the fitted pa-

rameters account for these interactions. Complex models such as depth-averaged fluid simulations

coupled to three dimensional particle methods are associated not only with high computational costs

but also with a large number of model parameters, making model calibration the key issue for appli-

cation to specific cases. This limits the possibilities of using debris flow models as a valid standard40

application in practice, because the user’s ability to estimate values of poorly constrained parameters

influences the results.

Here, we present an improved three-phase
:::::::::
multiphase

:
modeling approach as an alternative. We

provide a coarse but effective solution linking the rheological model of the debris-flow material to

field values such as grain-size
::::
grain

:::
size

:
distribution and water content. The approach aims to link the45

knowledge of field experts for estimating the release volume and material composition with recent

advances that account for complex flow phenomena using three-dimensional computational fluid

dynamics. The parameters of the two resulting rheology models for the two mixing phases
:::::
fluids are

linked to material properties such that the model setup can be based on material samples collected

from the field, yielding a model that has only one free parameter for calibration.50

2 Modeling approach

1.1 A two phase model with pressure- and shear-rate-dependent rheology

2



Based on a Finite Volume solver for a mixed three-phase incompressible Navier-Stokes equation,

we apply two rheology models for two phases that can mix: one for
:::
One

::::::
mixing

:::::
phase

:::::::::
represents the

suspension of fine material and water , and one for gravel. We allow interactions of both rheologies,55

while keeping a third phase unmixed, accounting for the air forming the
::::
finer

:::::::
particles

:::::
with

:::::
water

::::
(also

::::::
simply

:::::
called

:::::
slurry

::
in

:::
this

::::::
paper)

:::
and

:
a
::::::
second

::::::
mixing

:::::
phase

:::::::
accounts

:::
for

:::
the

::::::::::::::::
pressure-dependent

::::
flow

:::::::
behavior

::
of

::::::
gravel.

:::
A

::::
third

:::
gas

:::::
phase

::
is
::::
kept

::::::::
unmixed

::
to

::::::
model

:::
the

:
free surface. In this way,

the coupling between driving forces, topography and flow-dependent internal friction
::::
The

:::::
focus

:
is
:::

on
:::
the

:::::
flow

:::
and

:::::::::
deposition

:::::::
process

::::
and

:::
the

:::::::
release

::::
body

::::::
needs

::
to

:::
be

:::::::::::
user-defined.

:::::::::
Although,60

::::
some

:::::::
aspects

::
of

:::::::
material

:::::::::::
mobilization

:
can be addressed for each phase separately, accounting for

the fundamental differences in flow mechanisms of granular and viscous flow (Fig. 1) . Numerical

costs are kept reasonable by using the Volume of Fluid method such that only one Navier-Stokes

equation system is solved for all three phases. We calculate the viscosityand density of each grid

cell as a concentration-weighted average between the viscosities of the phases that are present in the65

cell. Phase interaction is reduced to this averaging of density and viscosity with the aim to avoid the

standard approach of
::
by

::::::
locally

:::::::
altering

:::
the

:::::::::::
concentration

:::
of

:::
the

:::::
slurry

:::::
phase

:::
and

:::
the

:::::
water

:::::::
content

::
of

:::
the

:::::
slurry

::::::
defined

::
in

:::
the

:::::::
material

:::::::::
properties,

::::
this

:
is
:::
not

::::::
within

:::
the

:::::
scope

::
of

::::
this

:::::
paper.
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Table 1.
:::::::::::
Nomenclature

:
α
: :::::

phase
:::::::
fraction

:::
αm ::::::

fraction
::
of

:::
the

:::::
debris

:::::::
mixture

::::::
(slurry

:
+
:::::::
gravel)

::
U

: :::::::
velocity

:::
Uc

: :::::::::
inter-facial

:::::::::::
compression

:::::::
velocity

:
t

:
=
:::::
time

::
T,

:::
Ts: ::::::::

deviatoric
:::::::
viscous

::::
stress

::::::
tensor

::
(s

:::
for

:::::::
granular

::::::
phase)

::
D

:::::
strain

:::
rate

::::::
tensor

:
ρ
: :::::::::::::

phase-averaged
::::::
density,

::::::::::::
ρi(i= 1,2,3)

::::::
density

::
of

:::::
phase

::
i,

::::
ρexp::

is
:
a
::::
bulk

::::::
density

:::
in

:::::::::
experiment

::
p,

::
pd: ::::::

pressure
:::::
resp.

:::::::
modified

::::::::
pressure

:::::
Ddiff: :::::::

diffusion
::::::::
constant

:
φ
: :::::::::

volumetric
::::
flux

:::
(φρ::::::

denotes
:::::
mass

::::
flux,

:::
φr ::::::::::::

surface-normal
:::::
flux)

:
I
: ::::::

identity
::::::
matrix

:
µ
: ::::::::::::

phase-averaged
:::::::
dynamic

::::::::
viscosity,

::::::::::::
µi(i= 1,2,3)

::::::::
viscosity

::
of

:::::
phase

:::::
phase

:
i

::
µ0: :::::::

maximal
:::::::
dynamic

::::::::
viscosity

::::
µmin: :::::::

minimal
:::::::
dynamic

::::::::
viscosity

::
µs: ::::::::::::::::::

Coulomb-viscoplastic
:::::::
dynamic

::::::::
viscosity

::
∇

:::::::
gradient

:
σ
: :::

free
::::::
surface

:::::::
tension

:::::::::
coefficient

:
κ
: :::

free
:::::::
surface

::::::::
curvature

:
g
: ::::::::::

gravitational
:::::::::::
acceleration

:
τ
: :::::

shear
:::::
stress

::
τy: ::::

yield
:::::
stress

:::
of

:::::
slurry

:::::
phase

:::::::
(τy−exp :

is
::
a
::::::::
measured

::::
yield

:::::
stress

::
)

:
k
: :::::::::::::::

Herschel-Bulkley
:::::::::
consistency

::::::
factor

:
n
: ::::::::::::::

Herschel-Bulkley
::::::::
exponent

:̇
γ
: ::::

shear
::::
rate

::
C

:::::::::
volumetric

::::
solid

::::::::::::
concentration

::
P0: ::::::::

volumetric
::::
clay

::::::::::::
concentration

::
P1: ::::::

reduced
:::
P0::

in
::::
case

::
of

::::
high

::::
clay

:::::::
content

:::
τ00 :::

free
::::::
model

::::::::
parameter

:::::::
(affects

:::::
slurry

:::::
phase

::::::::
rheology)

::
τ0 :::::::

modified
:::
τ00::

in
::::
case

::
of

::::
high

:::
C

:::
τ0s ::::

yield
:::::
stress

:::
of

:::::::
granular

:::::
phase

:::::::
modeled

::::
with

::::::::
Coulomb

:::::::
friction

:
β
: :::::

slope
:::::
angle

:
δ
: ::::::

internal
::::::
friction

:::::
angle

::::::::::::
approximated

::
as

:::::
angle

::
of

::::::
repose

:::
my :::::::

constant
::::::
model

::::::::
parameter

::::::
(would

:::::
affect

::::::
gravel

:::::
phase

::::::::
rheology)
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2
::::::::
Modeling

:::::::::
approach

:::
The

::::::
debris

::::
flow

:::::::
material

:::
can

:::
be

:::::::::
subdivided

::::
into

:
a
:::::::::::

combination
::
of

::
a
:::::::
granular

:::::
phase

::::::
mixed

::::
with

:::
an70

::::::::
interstitial

::::
fluid

:::::::::
composed

::
of
::::

the
:::
fine

:::::::
material

::::::::::
suspension.

::::
The

:::::
latter

::::
was

::::::::::
successfully

:::::::
modeled

:::
in

::
the

::::
past

:::
as

:
a
:::::::::
shear-rate

::::::::
dependent

:::::::::::::::
Herschel-Bulkley

::::
fluid

:
(Coussot et al., 1998).

:::::::
Because

::::::::
pressure

:::
and

:::::
shear

:::::
drive

:::
the

::::::
energy

:::::::::
dissipation

:::
of

:::::::::::::::
particle-to-particle

::::::::
contacts,

:::
the

:::::
shear

::::
rate

:::::::::::
substantially

::::::::
influences

:::
the

::::::
energy

::::::::::
dissipation

::::::
within

:::
the

:::::::
granular

::::::
phase.

:::::
While

:::
the

:::::::::
two-phase

:::::::
models

::
of

:
Iver-

son and Denlinger (2001)
:::
and

:
Pitman and Le (2005) , we apply linear averaging for simplicity,75

although non-linear averaging of viscosity between phases may be introduced in the future. The

central assumption for concentration-weighted averaging is
:::::
treated

:::
the

:::::::
granular

:::::
phase

::
as

:
a
:::::::::
shear-rate

::::::::::
independent

:::::::::::::
Mohr-Coulomb

::::::
plastic

:::::::
material,

::::
dry

:::::::
granular

:::::::
material

:::
has

:::::
been

::::::::::
successfully

::::::::
modeled

::
as

:
a
:::::::::::

viscoplastic
::::
fluid

:::
by Ancey (2007),

:
Forterre and Pouliquen (2008)

:
, Balmforth and Frigaard

(2007)
:::
and Jop et al. (2006)

:
.
:::
We

:::::
follow

:::
the

::::::::::
suggestions

:::::
given

::
by

:
Pudasaini (2012)

:
to

:::::::
account

:::
for

:::
the80

::::::::::::
non-Newtonian

::::::::
behavior

::
of

:::
the

:::::
fluid

:::
and

:::
the

::::::
shear-

:::
and

::::::::::::::::
pressure-dependent

:::::::::::::::::::
Coulomb-viscoplastic

:::::::
behavior

::
of

:::
the

::::::::
granular

:::::
phase,

:::
as

::::::
applied

:::
by

:
Domnik et al. (2013).

:::::::
Several

::::::::
modeling

::::::::::
approaches

::
to

::::::
account

:::
for

::::
the

::::::::
two-phase

::::::
nature

::
of
::::::

debris
:::::
flows

::::
used

:::::::::::::
depth-averaged

::::::::::::
Navier-Stokes

:::::::::
equations

::
for

::::
each

::::::
phase

::::::
coupled

:::
by

::::
drag

::::::
models

::::
(eg. Bozhinskiy and Nazarov (2000),

:
Pitman and Le (2005)

:
,

Pudasaini (2012)
:::
and

:
Bouchut et al. (2015)

:
).

:::
We

:::::
apply

:::
the

:::::::::::
numerically

::::
more

::::::::
efficient

::::::
method

:::
of85

Iverson and Denlinger (2001)
:::
and

::::
treat

:::
the

:::::
debris

::::
flow

:::::::
material

:::
as

:::
one

:::::::
mixture

::::
with

:::::::::::::
phase-averaged

::::::::
properties

::::::::
described

:::
by

:
a
:::::
single

:::
set

::
of

::::::::::::
Navier-Stokes

::::::::
equations.

::::
The

:::::::
resulting

::::::::
reduction

::
in

:::::::::
numerical

::::
costs

::::::
allows

:::
us

::
to

::::::
model

:::
the

::::::::::::::::
three-dimensional

::::::::::
momentum

:::::::
transfer

::
in

:::
the

:::::
fluid

::
as
:::::

well
::
as

::::
the

::::::::::
free-surface

::::
flow

::::
over

:::::::
complex

::::::
terrain

:::
and

::::::::
obstacles.

:::::::::
Multiphase

:::::
flows

:::
of

::::
gas,

::::
fluid

::::
and

::::::::
sediment

:::
can

:::
be

:::::::::
addressed

::::
with

:::
the

::::::::
so-called

::::::::
mixture-

:::
or90

:::::::
drift-flux

::::::
model

::
in

:::::
cases

:::::
where

:::
the

:::::
local

::::::::
difference

::
in

:::::
phase

:::::::::
velocities

::
is

::::
small

:
(Bohorquez, 2008)

:
.

:::
The

:::::::::
properties

::
of

:::
all

::::::
phases

:::
are

::::::::::::
cell-averaged

::
to

::::::
derive

:
a
::::::
single

::::
mass

:::::::::
continuity

::::
and

::::::::::
momentum

::::::
balance

::::::::
equation

:::::::::
describing

:::
the

:::::
entire

:::::::
mixture.

::::
The

::::::
model

::::::::
presented

::::
here

:::
has

::
to
:::

be
::::
seen

::
as

::
a
::::
first

::::
step,

::::::::
assuming that the local velocity of the gravel is about the same as the velocity of the surround-

ing fluid,
::::
thus

::::::::
allowing

::
us

:::
to

::::::
neglect

:::
the

::::::::
drift-flux. This assumption would not be valid for debris95

flows with little interstitial fluidcontent, or with interstitial fluid of small viscosity (i. e., a slurry

with low concentrations of fine material). The assumption of equal velocities of both phases in one

cell leads to a constant distribution of
::::::::::
composition

:::
of

::
the

:::::::
mixture

:::
by

:::::
means

::
of

:
phase concentrations

over the entire flow process. Nevertheless, this assumption avoids the need to model the drag forces

between gravel
:::
This

:::::
basic

::::::
model

:::
can

::
be

:::::
seen

::
as

:
a
::::::::::
counterpart

::
to

:::
the

:::::::
mixture

:::::
model

:::
of Iverson and100

Denlinger (2001),
::::::::
extended

:::
by

:::::::
resolving

:::
the

:::::
three

::::::::::
dimensional

::::
flow

::::::::
structure

::
in

::::::::::
combination

::::
with

::
a

:::::::
pressure-

:
and interstitial fluid, while still accounting for

:::::::::::::::::
shear-rate-dependent

:::::::
rheology

::::::
linked

::
to the

:::::::
material

:::::::::::
composition.

::
In

:::::
future

:::::
work,

:::
we

::::
aim

::
to

:::::
relax

:::
the

::::::::
constraint

:::
of

:::::
equal

:::::
phase

::::::::
velocities

::::
and

::::
allow

:::::::::
dispersion

:::
of

::::::::::
constituents

::
by

::::::::::
introducing

:::::::
relative

::::::::
velocities

::
of

:::
the

::::::
gravel

:::::
phase

::::
with

:::::::
respect

::
to

:::
the

:::
fine

::::::::
sediment

:::::::::
suspension

:::::::::
according

::
to Bohorquez (2012)

:::
and

:
Damián (2013)

::::::
together

::::
with

::
a105
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::::::
coupled

::::::::::
Lagrangian

::::::
particle

:::::::::
simulation

::::
that

:::
can

::::::
account

:::
for

:::::
larger

::::::
grains.

::::
The

::::
basic

::::::
model

::::::::
presented

:::
here

:::::::
focuses

::
on

:::
the

::::
role

::
of

:
pressure-dependent flow behavior of the gravel,

:
in combination with the

shear-dependent rheology of the slurry.

Because pressure and shear drive the energy dissipation of particle-to-particle contacts, the shear

rate substantially influences the energy dissipation within the granular phase. While the
::
We

:::::
base110

:::
our

:::::
model

:::::::
concept

:::
on

:::
the

::::::::::::::
well-established

:::::
finite

::::::
volume

::::::
solver

:::::::::
interFoam,

::::::
which

::
is

::::::::
designed

:::
for

::::::::::::
incompressible

:
two-phase models of

::::
flow

::::::::::
simulations

::
of

::::::::::
immiscible

:::::
fluids and (Deshpande et al.,

2012)treated the granular phase as a shear-rate independent Mohr-Coulomb plastic material, dry

granular material was successfully modeled as a viscoplastic fluid
:
.
::
A

:::::::
standard

:::::::::
extension

::::::
named

::::::::::::::
interMixingFoam

:::::::::
introduces

::::
two

::::::
mixing

::::::
phases

:::::::
without

::::::::::
momentum

::::::::
exchange

:::::::
coupled

:::
to

:
a
:::::
third115

:::::::
unmixed

:::::
phase

:::
by

::::::
surface

:::::::
tension.

:::::::::
Numerical

::::
costs

:::
are

::::
kept

:::::::::
reasonable

::::
due

::
to

:::
the

::::::::::::::
Volume-of-Fluid

:::::
(VOF)

:::::::
method (Hirt and Nichols, 1981)

:
,
:::::
which

::::::
solves

::::
only

:::
one

::::::::::::
Navier-Stokes

::::::::
equation

::::::
system

:::
for

::
all

:::::::
phases.

:::
The

::::::::
viscosity

::::
and

:::::::
density

::
of

::::
each

::::
grid

::::
cell

::
is

:::::::::
calculated

::
as

::
a
::::::::::::::::::::
concentration-weighted

::::::
average

:::::::
between

:::
the

:::::::::
viscosities

:::
of

:::
the

::::::
phases

:::
that

:::
are

:::::::
present

::
in

:::
the

::::
cell.

::::::::
Between

:::
the

:::
two

:::::::
mixing

:::::
phases

:::
of

:::::
gravel

:::
and

::::::
slurry,

:::
the

:::::::::
interaction

::::::
reduces

:::
to

:::
this

::::::::
averaging

::
of

:::::::
density

:::
and

::::::::
viscosity.

::
In

::::
this120

::::
way,

:::
the

:::::::
coupling

:::::::
between

::::::
driving

::::::
forces,

:::::::::
topography

::::
and

::::
three

::::::::::
dimensional

:::::::::::::
flow-dependent

:::::::
internal

::::::
friction

:::
can

:::
be

::::::::
addressed

:::
for

:::::
each

:::::
phase

:::::::::
separately,

:::::::::
accounting

:::
for

:::
the

:::::::::::
fundamental

:::::::::
differences

:::
in

::::
flow

::::::::::
mechanisms

::
of

::::::::
granular

:::
and

:::::::::::
visco-plastic

:::::
fluid

::::
flow

:::
that

:::::
arise

::::
from

::::
the

:::::::
presence

:::
or

:::::::
absence

::
of

::::::::
Coulomb

::::::
friction

:::::
(Fig.

:::
1).

:::
We

:::::
apply

:::::
linear

::::::::::::::::::::
concentration-weighted

::::::::
averaging

:::
of

:::::::::
viscosities

:::
for

::::::::
estimating

:::
the

::::
bulk

::::::::
viscosity

::
of

::
a

::::::
mixture

:::
for

:::::::::
simplicity.

:::::::::
Non-linear

:::::::::
averaging

::
of

:::::::
viscosity

::::::::
between125

:::::
phases

::
as
:::::::::
suggested by Gao and Li (2012) ,

::::
may

::
be

:::::::::
introduced

::
in

:::
the

::::::
future.

2.1
:::::::::
Governing

:::::::::
Equations

::::::::
Assuming

:::::::::
isothermal

:::::::::::::
incompressible

::::::
phases

::::::
without

:::::
mass

:::::::
transfer,

:::
we

:::::::
separate

:::
the

::::::::
modeled

:::::
space

:::
into

:
a
:::
gas

::::::
region

:::::::
denoting

:::
the

:::
air

:::
and

:
a
::::::
region

::
of

:::
two

:::::
mixed

:::::
liquid

:::::::
phases.

:::
The

::::
VOF

:::::::
method

::::
used

::::
here

:::::::::
determines

:::
the

::::::
volume

::::::::
fractions

::
of

:::
all

::::::
phases

::
in

:::
an

:::::::
arbitrary

::::::
control

:::::::
volume

::
by

:::::
using

:::
an

::::::::
indicator130

:::::::
function

:::::
which

::::::
yields

:
a
:::::
phase

:::::::
fraction

::::
field

:::
for

::::
each

::::::
phase.

::::
The

:::::
phase

:::::::
fraction

::::
field

:::::::::
represents

:::
the

:::::::::
probability

:::
that

::
a
:::::
phase

::
is

::::::
present

::
at

::
a

::::::
certain

::::
point

::
in
:::::
space

::::
and

::::
time

:
(Hill, 1998)

:
.
:::
The

:::
air

:::::::
fraction

:::
may

:::
be

::::::
defined

::
in

:::::::
relation

::
to

:::
the

:::::::
fraction

::
of

:::
the

:::::
mixed

::::
fluid

::::
αm ::

as

α1 = 1−αm
::::::::::

(1)

:::
and

:::
the

:::::
mixed

::::
fluid

::::
αm ::::

may
::
be

::::::
defined

:::
as

::
the

::::
sum

::
of

:::
the

:::::::
constant

::::::::
fractions

::
of

:::
the

::::::
mixing

::::::
phases

:::
α2135

:::
and

:::
α3:

αm = α2 +α3.
::::::::::::

(2)
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:::
The

::::
flow

::
is

::::::
defined

::
by

:::
the

:::::::::
continuity

:::::::
equation

:::::::
together

::::
with

:::
the

:::::::
transport

:::
and

::::::::::
momentum

::::::::
equations:

∇·
::

U= 0,
:::

(3)

∂αm
∂t

+∇ · (
::::::::::

Uαm) = 0
:::::::

, (4)140

:::
and

∂(ρU)

∂t
+∇ · (ρ

::::::::::::

U×
:
U) =−∇p+∇ ·T+ ρ

:::::::::::::::::
f , (5)

:::::
where

::
U

:::::::::
represents

::
the

:::::::
velocity

::::
field

::::::
shared

::
by

:::
all

::::::
phases,

::
T

::
is

::
the

:::::::::
deviatoric

::::::
viscous

:::::
stress

::::::
tensor,

:
ρ
::
is

:::
the

:::::::::::::
phase-averaged

:::::::
density,

:
p
:::::::
denotes

:::::::
pressure

:::
and

::
f
::::::
stands

:::
for

::::
body

::::::
forces

:::
per

::::
unit

::::
mass

::::
like

::::::
gravity.145

::
An

:::::::
efficient

:::::::::
technique

::
of

:::
the

::::
VOF

:::::::
method

:
is
::
to

:::::::
convect

:::
the

:::::
phase

::::::
fraction

::::
field

::::
αm ::

as
::
an

::::::::
invariant

::::
with

::
the

:::::::::::::
divergence-free

::::
flow

::::
field

:::
U

:::
that

::
is
::::::
known

::::
from

::::::::
previous

::::
time

:::::
steps:

∂αm
∂t

+∇ · (
::::::::::

Uαm) +∇ · (α1
:::::::::::

Uc) = 0,
::::

(6)

:::::
where

:
t
::::::
denotes

:::::
time

:::
and

:::
Uc::

is
::
an

:::::::
artificial

:::::::::
inter-facial

:::::::::::
compression

:::::::
velocity

:::::
acting

::::::::::::
perpendicular

::
to

::
the

::::::::
interface

:::::::
between

:::
the

:::
gas

:::::
region

::::
and

::
the

::::::
mixed

:::::
liquid

::::::
phases.

::::
The

::::::
method

::::::
allows

:
a
::::::::::::
reconstruction150

::
of

:::
the

:::
free

::::::
surface

::::
with

::::
high

::::::::
accuracy

::
if

:::
the

:::
grid

:::::::::
resolution

::
is

:::::::
sufficient

:
and (Berberović et al., 2009;

Hoang et al., 2012; Deshpande et al., 2012; Hänsch et al., 2013). We follow the suggestions given

by
:::
The

::::::
details

:::::
about

:::
the

:::::::
interface

:::::::::::
compression

:::::::::
technique,

:::
the

::::::
related

::::::::::::
discretization

:::
and

:::::::::
numerical

:::::::
schemes

::
to

:::::
solve

:::
eq.

::
6
::::

are
:::::
given

::
in

:
Deshpande et al. (2012)to account for the non-Newtonian

behavior of the fluid and the pressure-dependent Coulomb-viscoplastic behavior of the granular155

phase
:
.
::::::::
However,

::
to

:::::
allow

::::::::
evolving

:::::
phase

::::::::::::
concentrations

::::::::
between

:::
the

::::::
mixing

::::::
phases

::
of

:::
the

::::::
slurry

::
α2::::

and
:::
the

:::::
gravel

:::
α3 ::

in
:::::
future

:::::::
releases,

:::
our

::::::::
modified

::::::
version

:::
of

:::
the

::::::::::::::
interMixingFoam

:::::
solver

:::::::
applies

::
eq.

::
6
::::::::
separately

:::
to

::::
each

::::::
mixing

:::::
phase

::::::::
including

::::::::
diffusion:

∂αi
∂t

+∇ · (
:::::::::

Uαi)−Ddiff∇2αi +∇ · (α1
::::::::::::::::::::::

Uc) = 0,
::::

(7)

:::::
where

::::::
i= 2,3

::::::
denote

:::
the

:::::
slurry

::::
and

:::::
gravel

::::::
phases

:::
and

::::::
Ddiff :

is
:::
the

::::::::
diffusion

:::::::
constant

::::
that

::
is

::
set

::
to

::
a160

::::::::
negligible

:::::
small

:::::
value

:::::
within

:::
the

:::::
scope

::
of

::::
this

:::::
paper.

:::
The

:::::::
discrete

:::::
form

::
of

::::
eq.

:
7
:::

is
::::::
derived

:::
by

::::::::::
integrating

::::
over

:::
the

:::::::
volume

:::
V

::
of

::
a
:::::
finite

:::
cell

:::
of

::
a

:::::::::::::::
grid-discretization

::
of

:::
the

::::::::
simulated

:::::
space,

::::::
which

:
is
:::::
done

::
in

:::
the

::::
finite

::::::
volume

:::::::
method

::
by

::::::::
applying

:::
the

:::::
Gauss

::::::::
Theorem

::::
over

:::
the

:::
cell

::::::
faces.

:::
The

:::::::::
advective

:::::
phase

:::::
fluxes

:::::
φ1..3 :::

are
:::::::
obtained

:::
by

:::::::::::
interpolating

::
the

::::
cell

:::::
values

:::
of

::
α1, as applied by

:::
α2 :::

and
:::
α3 ::

to
:::
the

:::
cell

:::::::
surfaces

::::
and

::
by

::::::::::
multiplying

:::::
them

::::
with

:::
the165
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:::
flux

::
φ

:::::::
through

:::
the

:::::::
surface,

:::::
which

::
is
:::::::

known
::::
from

:::
the

:::::::
current

:::::::
velocity

::::
field.

:::
To

:::::
keep

:::
the

::
air

::::::
phase

:::::::
unmixed,

::
it
::
is
:::::::::
necessary

::
to

::::::::
determine

:::
the

::::
flux

:::
φr:::::::

through
:::
the

::::::::
interface

:::::::
between

:::
air

:::
and

:::
the

::::::
debris

::::
flow

:::::::
mixture,

:::
and

:::
to

:::::::
subtract

:
it
:::::
from

:::
the

:::::::::
calculated

:::::
phase

:::::
fluxes

:::::
φ1..3.

::::::::
Inherited

:::::
from

:::
the

:::::::
original

::::::::::::::
interMixingFoam

::::::
solver (OpenFOAM-Foundation, 2016a)

:
,
:::::::
limiters

:::
are

::::::
applied

::::::
during

::::
this

:::
step

:::
to

:::::
bound

:::
the

:::::
fluxes

::
to

:::::
keep

:::::
phase

::::::::::::
concentrations

:::::::
between

::
0

:::
and

::
1.

::::
With

::::::
known

::::::
fluxes

:::::
φ1..3,

::
the

::::::
scalar170

:::::::
transport

:::::::
equation

:::::::
without

::::::::
diffusion

:::
for

::::
each

:::::
phase

::::
takes

:::
the

:::::
form

∂

∂t
αi +∇(φi) = 0.

:::::::::::::::

(8)

:::::::
Equation

::
8
::
is
::::::

solved
:::::

using
:::::::::

first-order
:::::
Euler

::::::::
schemes

:::
for

:::
the

:::::
time

::::::::
derivative

::::::
terms,

:::
as

:::
has

:::::
been

:::::::::::
recommended

:::
for

:::::
liquid

:::::::
column

:::::::
breakout

::::::::::
simulations

:
(Hänsch et al., 2013).

But instead of solving Navier-Stokes equationsfor each phasecoupled by drag models, we apply175

the numerically more efficient method of and treat the debris flow material as one mixture with

::::
After

::::::
solving

:::
the

:::::
scalar

::::::::
transport

::::::::
equations,

:::
the

::::::::
complete

::::
mass

::::
flux

::
φρ:::::

from
::
the

:::::::
updated

:::::::::
volumetric

:::::
phase

::::::::::::
concentrations

::
is

::::::::::
constructed:

φρ = φ1 · ρ1 +φ2 · ρ2 +φ3 · ρ3,
:::::::::::::::::::::::::

(9)

:::::
where

::::
ρ1..3::::::

denote
:::
the

:::::::
constant

:::::::
densities

::
of

:::
the

::::::::::::
corresponding

::::::
phases

:::
and

::::
φ1..3:::

are
:::
the

::::::::::::
corresponding180

:::::
fluxes.

:::
Fig.

::
2

::::::::
illustrates

::::
how

:::
the

:::::
phase

::::::
volume

:::::::::::
distributions

::
α1:::::

(air),
::
α2:::::::

(slurry)
:::
and

:::
α3:::::::

(gravel)
:::
are

::::
used

::
to

:::::
derive

:::::::::::
cell-averaged

:::::::::
properties

::
of

:::
the

:::::::::
continuum.

:::
The

:::::::::::
conservation

::
of

::::
mass

::::
and

:::::::::
momentum

::
is
::::::::
averaged

::::
with

::::::
respect

::
to

:::
the

:::::
phase

:::::::
fraction

:
α
:::
of

::::
each

:::::
phase.

::::
The

::::::
density

::::
field

::
is

::::::
defined

::
as185

ρ=
∑
i

ρiαi

::::::::::

(10)

:::::
where

::
ρi:::::::

denotes
::::::
density

::
of

:::::
phase

:
i
::::
and

:::
the

::::::
density

::
is

:::::::
assumed

::
to

:::
be

:::::::
constant.

:::
The

:::::::::
deviatoric

:::::::
viscous

:::::
stress

:::::
tensor

:::
T

::
is

::::::
defined

::::::
based

:::
on

:::
the

:::::
mean

:::::
strain

::::
rate

:::::
tensor

:::
D

::::
that

::::::
denotes

:::
the

:::::::::
symmetric

:::
part

::
of

:::
the

:::::::
velocity

:::::::
gradient

:::::
tensor

::::::
derived

:::::
from

:::
the phase-averaged properties

described by a single Navier-Stokes equation. The resulting reduction in numerical costs allows us190

to model the three-dimensional momentum transfer in the fluid
:::
flow

:::::
field:

D =
1

2
:::::

[∇
:
U+(∇

::::
U)T

::
], (11)
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:::
and

T = 2µD− 2

3
µ(∇·

:::::::::::::::

U)I.
::

(12)

:
I
::
is

:::
the

:::::::
identity

::::::
matrix

::::
and

::
µ

::
is

:::
the

:::::::::::::
phase-averaged

::::::::
dynamic

::::::::
viscosity,

::::::
which

::
is

::::::::
simplified

:::
in195

::::::
analogy

::
to
:::
eq.

:::
10

::
as

:::
the

:::::::::::::::::::
concentration-weighted

:::::::
average

::
of

:::
the

::::::::::::
corresponding

:::::
phase

:::::::::
viscosities:

µ=
∑
i

µiαi

::::::::::

(13)

:::
The

::::
term

::::::
∇ ·T

::
in

:::
the

::::::::::
momentum

:::::::
equation

::
5
::
is

::::::::::
decomposed

:::
as

:::::::::::::::::::
∇ · (µ∇U) +∇U · ∇µ

:::
to

::::
ease

:::::::::::
discretization.

::::
The

::::
body

::::::
forces

::
f

::
in

:::
the

:::::::::
momentum

::::::::
equation

:::::::
account

::
for

:::::::
gravity

:::
and

:::
for

:::
the

::::::
effects

::
of

::::::
surface

:::::::
tension.

::::
The

::::::
surface

:::::::
tension

::
at

:::
the

:::::::
interface

::::::::
between

:::
the

:::::
debris

:::::
flow

::::::
mixture

::::
and

:::
air

::
is200

:::::::
modeled

::
as

::
a
:::::
force

:::
per

::::
unit

::::::
volume

:::
by

::::::::
applying

::
a

::::::
surface

::::::
tension

::::::::::
coefficient

::
σ.

::::
The

::::::::::
momentum

::::::::::
conservation

::::::::
including

:::::::::::
gravitational

::::::::::
acceleration

::
g

:::
and

::::::
surface

:::::::
tension

:
is
:::::::
defined

::
in

:::
our

:::::
model

:::
as:

∂(ρU)

∂t
+∇ · (ρ

::::::::::::

U×
:
U) =−∇pd +∇ · (µ∇

:::::::::::::::::
U) + (∇

:::::
U) · ∇µ−

::::::
g·x∇ρ+σκ∇α1

:::::::::::
(14)

:::::
where

::
κ

::::::
denotes

:::
the

:::::
local

:::::::::
inter-facial

::::::::
curvature

:::
and

:
x

:::::
stands

:::
for

:::::::
position.

::::
The

:::::::
modified

::::::::
pressure

::
pd::

is
::::::::
employed

::
in
:::
the

::::::
solver

::
to

::::::::
overcome

:::::
some

:::::::::
difficulties

::::
with

::::::::
boundary

:::::::::
conditions

::
in

::::::::::
multiphase205

::::
flow

::::::::::
simulations.

::
In

::::
case

:::
the

::::
free

:::::::
surface

:::
lies

::::::
within

::
an

:::::::
inclined

:::::
wall

:::::::
forming

:
a
::::::
no-slip

:::::::::
boundary

::::::::
condition,

:::
the

::::::
normal

::::::::::
component

::
of

:::
the

::::::::
pressure

:::::::
gradient

::::
must

:::
be

::::::::
different

:::
for

:::
the

:::
gas

:::::
phase

::::
and

::
the

:::::::
mixture

::::
due

::
to

:::
the

:::::::::
hydrostatic

::::::::::
component

:::
ρg.

:
It
::
is
::::::::
common

::
to

::::::::
introduce

:
a
::::::::
modified

:::::::
pressure

:::
pd

:::::
related

::
to
:::
the

::::::::
pressure

:
p
:::
by

pd = p− ρ
::::::::

g·x. (15)210

:::
The

:::::::
gradient

:::
of

:::
the

::::::::
modified

:::::::
pressure

:::::::
includes

::::
the

:::::
static

:::::::
pressure

:::::::
gradient

::::
and

:::::::::::
contributions

::::
that

::::
arise

::::
from

:::
the

::::::
density

::::::::
gradient as well as the free-surface flowover complex terrain and obstacles.

:
a

::::
body

:::::
force

:::
due

::
to

::::::
gravity

:
(Berberović et al., 2009)

:
.

2.1.1 Rheology model for the fine sediment suspension

:::::::
Together

::::
with

::::
the

:::::::::
continuity

:::::::
equation

::
3
:::

for
::::

the
::::::::::
multi-phase

:::::
flow,

:::
eq.

:::
14

::::::
allows

::
us

:::
to

::::::::
calculate215

::
the

::::::::
pressure

:::
and

::::::
gravity

::::::
driven

:::::::::
velocities.

:::
The

::::::::::::
corresponding

::::::::::::
discretization

:::
and

:::::::
solution

:::::::::
procedure

::::
with

:::
the

:::::
PISO

:::::::::::::::
(Pressure-Implicit

::::
with

::::::::
Splitting

::
of

:::::::::
Operators

:
(Issa, 1986))

:::::::::
algorithm

::
is

::::::::
provided

::
in

::::::::
appendix

::
A.

:::
In

:::
the

::::::::
following

:::::::
section

:::
we

::::::
present

:::
the

::::::::
rheology

::::::
models

::::
that

::::::
define

:::
the

::::::::
viscosity

::::::::::
components

::
for

:::
eq.

:::
13.

:
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2.2
::::::::
Rheology

:::::
model

:::
for

:::
the

::::
fine

::::::::
sediment

::::::::::
suspension220

The
:::::::
viscosity

::
of

:::
the

:::
gas

:::::
phase,

:::
µ1::

is
::::::
chosen

::::::::
constant.

:::
The

:
introduction of two

::::::
mixing

:
phases is nec-

essary to distinguish between the pressure-dependent flow behavior of gravel and the shear-thinning

viscosity of the suspension of finer particles with water. The rheology of mixtures of water with

clay and sand can be described by the Herschel-Bulkley rheology law (Coussot et al., 1998), which

defines the shear stress in the fluid as:225

τ = τy + k̇γn (16)

where τy is a yield stress below which the fluid acts like a solid, k is a consistency factor for the

viscosity of the sheared material, γ
:̇
γ
:

is the shear rate and n defines the shear-thinning (n < 1) or

shear-thickening (n > 1) behavior.
:
In

:::::::::::
OpenFOAM,

::::
the

::::
shear

::::
rate

::
is

:::::::
derived

::
in

:::
3D

::::
from

::::
the

:::::
strain

:::
rate

:::::
tensor

:::
D:230

γ̇ =
√

2 ·D : D (17)

:::
The

:::::
shear

::::
rate

::
is

:::::
based

:::
on

:::
the

:::::
strain

::::
rate

::::::
tensor

::
to

:::::::
exclude

:::
the

:::::::
rotation

:::::::
velocity

::::::
tensor

:::
that

:::::
does

:::
not

::::::::
contribute

:::
to

:::
the

::::::::::
deformation

:::
of

:::
the

::::
fluid

:::::
body.

::::
The

::::::
model

:::
can

:::
be

::::::::
rewritten

::
as

::
a
::::::::::
generalized

:::::::::
Newtonian

::::
fluid

:::::
model

::
to
::::::
define

:::
the

:::::::::::::::::
shear-rate-dependent

:::::::
effective

:::::::::
kinematic

:::::::
viscosity

:::
of

:::
the

:::::
slurry

:::::
phase

::
as:235

µ2 = k|γ̇|n−1 + τy|γ̇|−1 (18)

:
if
:::
the

::::::::
viscosity

::
is

:::::
below

::
an

:::::
upper

:::::
limit

::
µ0::::

and

µ2 = µ0
::::::

(19)

:
if
:::
the

::::::::
viscosity

::
is

::::::
higher,

::
to

:::::
ensure

:::::::::
numerical

:::::::
stability.

With n= 1 the model simplifies to the Bingham rheology model that was
::
has

:::::
been widely used to240

describe debris-flow behavior in the past. It may be reasonable to imagine the rheology parameters to

be dependent on the state of the flow. However, even with the implicit assumption that the coefficients

are a property of the material and not of the state of the flow, the Herschel-Bulkley rheology law was

rarely applied in debris-flow modeling due to the large number of rheology parameters. We avoid

this problem by assuming the rheology parameters to be defined by measurable material properties245

as described below.
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2.2.1 Determination of rheology model parameters based on material properties

Results from recent publications allow the reduction of the number of free Herschel-Bulkley pa-

rameters to one. If the coarser grain fraction is confined to the gravel phase, the Herschel-Bulkley

parameters for the finer material can be linked to material properties as measured using simple stan-250

dard geotechnical tests. According to Coussot et al. (1998), the exponent n can be assumed constant

as 1/3, and k can be roughly estimated as 0.3 · τy ::::
b · τy ,

::::::
where

:::
the

:::::::
constant

:::::::::
b= 0.3s−n

:
for mixtures

with maximum grain-sizes < 0.4 mm (Coussot et al., 1998). An approach for estimating the yield

stress τy based on water content, clay fraction and composition, and the solid concentration of the

entire debris flow material was proposed by Yu et al. (2013) as:255

τy = τ0C
2e22(C·P1) (20)

where C is the volumetric solid concentration of the mixture, P1 = 0.7P0 when P0 > 0.27 and P1 =

P0 if P0 is smaller
::::::::::
P0 <= 0.27, and

P0 = Ckaolinite+chlorite + 1.3Cillite + 1.7Cmontmorillonite (21)

where the subscript of C refers to the volumetric concentration of
::::::
(relative

::
to
::::

the
::::
total

::::::
volume

:::
of260

::
all

:::::
solid

:::::::
particles

::::
and

:::::
water)

:::
of the corresponding mineral. The discontinuity of P1 at a modified

clay concentration of P0 = 0.27 is a coarse adjustment to a more or less
::::::::::
more-or-less

:
sudden change

observed in the experimental behavior.

For C < 0.47, τ0 is equal to τ00 and otherwise τ0 can be calculated by

τ0 = τ00e
5(C−0.47) (22)265

where τ00 is the remaining free parameter which we use to account for the grid size dependency

of the shear rate (Yu et al., 2013). We recommend a value of τ00 = 30Pa
:::::::
τ00 = 30 Pa as a starting

point for calibration. Yu et al. (2013) compared this method of estimating the yield stress τy to

experimental results they gained
:::::::
obtained

:
from a set of 514 flume experiments with mixtures of

water and clay with fine and coarse sand and less than 5 % gravel. They determined the yield stress270

by releasing the material mixture from a reservoir into an inclined channel of 0.2 m width and by

increasing the inclination slightly until remobilization occurred after the material came to rest. The

experimental yield stress τy−exp was then determined as:

τy−exp = ρexp
::
ghsin(φβ

:
), (23)

11



where ρ
:::
ρexp:is the density of the

::::::
applied mixture, g the acceleration due to gravity, h the maximum275

accumulation thickness of the deposit, and φ
:
β
:
the slope inclination. In addition, they compared the

calculated yield stress of eq. 20 with experimental yield stresses reported by a number of authors

including Coussot et al. (1998) and Ancey and Jorrot (2001). Ancey and Jorrot (2001) used 2 mm

and 3 mm glass beads in a kaolinite dispersion as well as fine sand-kaolinite-water mixtures. Up

to yield stresses of about 200 Pa the yield stresses estimated by eq. 20 fit the observed ones well.280

Thus, the yield stresses of sand-clay mixtures with water can be estimated using eq. 20 based on the

volumetric concentration of the debris in the water-solids mixture and based on the percentages of

different clays in the fraction of fine material. Adjustments to the numbers for calculating P0 may

be necessary to account for the activity of other clays.

The remaining uncertainties concern our assumptions are that n is constant at a value of 1/3, and285

that k = 0.3 · τy in
:
k
:::
can

:::
be

::::::
defined

::
in

::::
such

::::::
simple

::::::::::
dependency

::
to

::
τy::

in
:
the presence of coarser sand.

Experiments seem to confirm that n increases in presence of coarser material (Imran et al., 2001), but

further research is needed to quantify this effect, and
:
. Remaitre et al. (2005) found n to vary from

0.27 to 0.36. Schatzmann et al. (803)
:::
used

::::::::
n= 0.33

::
to

:::::::::
reproduce

::::::::
measured

::::::
curves

:::::::
obtained

::::
with

::
a

::::::
mixture

::
of

::::
27.5

::::::::::
volumetric

::::::
percent

:::::
slurry

::::
with

:::
30 %

:::::
gravel

:::::
where

::::::
gravel

:::::::::
grain-sizes

::::::
ranged

::::
from

::
3290

::
to

::
10

::::
mm,

::::
and

::::
used

::::::
n= 0.5

:::
to

::
fit

:::
the

::::::::::::::
Herschel-Bulkley

::::::
model

::
to

:::
the

:::::::::
experiment

::::
with

::::
22.5

:
%

:::::
slurry

:::
and

::
30

:
%

::::::
gravel. Based on the laboratory scale experiments that are presented in v. Boetticher et al.

(2015) we have chosen n= 0.34 to obtain the best fit for the simulation of
::::::::
presented

:::
by large-scale

debris-flow experiments.

2.2.2 Representation of gravel by a Coulomb-viscoplastic rheology295

2.3
::::::::::::
Representation

:::
of

:::::
gravel

:::
by

::
a

::::::::::::::::::
Coulomb-viscoplastic

::::::::
rheology

For a satisfactory prediction of run-out and impact, an adequate simulation of the deposition process

is necessary. During acceleration and high-speed flow, the shear-thinning behavior of both the viscid

::::
fluid and the granular phase dominate the viscosity

:
in

::::
our

:::::
model. However, pressure-dependent

friction becomes important as soon as the material experiences high pressures, accompanied by300

reduction in shear due to decelerations caused by channel slope reduction. Flows of granular ma-

terial have been successfully
:::::
could

::
be

:
modeled as viscoplastic fluids (Ancey, 2007; Forterre and

Pouliquen, 2008; Balmforth and Frigaard, 2007; Jop et al., 2006) as cited by Domnik and Pudasaini

(2012). Based on Ishii (1975), the granular Cauchy stress tensor Ts :::::
stress

:::::::
deviator

:::::
tensor

:::
Ts can be

written as:305

Ts =−p−p
ρ

:::

I+ 2νsDµsD,
::::

(24)
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where D is the rate-of-deformation tensor, pI is the normalized pressure times the identity matrix

and νs ::
µs:is the corresponding kinematic

:::::::
dynamic

:
viscosity, which was modeled by Domnik and

Pudasaini (2012) as:

νµ
:
s = νµ

:
min +

τ0s
||D||

[1− e−my||D||], (25)310

where νmin ::::
µmin:is a minimal kinematic

:::::::
dynamic viscosity, τ0s is a density-normalized yield stress,

and ||D|| is the norm of the strain-rate tensor
::::::
defined

:::
by

:::
the

::::::
authors

::
as:

||D||=
√

2tr(D2). (26)

In eq. ??
::
25, my is a model parameter

::::
with

::::
units

::
of

:
s which we will keep constantas reasoned

:
,
:::
for

::::::
reasons

:::::::
outlined

:
in the following section. Domnik et al. (2013) suggested replacing the yield stress315

by a pressure-dependent Coulomb friction, p · sin(δ)
::::::
psin(δ)

:
where δ is the internal friction angle:

νsµ3
::

= νµ
:
min +

p · sin(δ)

||D||
[1− e−my||D||]

psin(δ)

ρ3||D||
::::::

[1− e−my||D||
:::::::::::

] (27)

Here, this Coulomb-viscoplastic rheology model is used to describe the gravel phase, by calculating

the .
::::

The
:
pressure- and shear-dependent viscosity

::
is

::::::::
calculated

:
in every cell

::::
with

:::
the

::::::::::::
corresponding

::::
local

:::::::
pressure

::
p

:::
and

:::::::::
strain-rate

:::::
tensor

::
D

:::::::
derived

::::
from

:::
the

:::::::::::::
phase-averaged

::::
flow

::::
field.320

2.3.1 Gravel phase properties

The Coulomb-viscoplastic rheology law developed by Domnik et al. (2013) includes two parameters:

the friction angle δ, and the parameter my influencing the transition between yielded and unyielded

regions. For smaller values of my , the transition is smoother. In the absence of shear, to achieve a

viscosity representing a Coulomb friction equal to p ·sin(δ) where p is the local pressure, my needs325

to be equal to one
:
1
:
s. However, the development of νs ::

µs under large pressure or strong shear is

the same for both my = 1 s and my = 0.2 s, but parts of the nearly immobile material that face

little pressure (in general, immobile material close to the surface) show a significant reduction in

viscosity when my = 0.2 s (Fig. 3). As a consequence, my minimally affects debris flow release and

flow at large scales, but material with a low
::::::
shallow flow depth in a run-out plane close to deposition330

may develop front fingering (which is dependent on, and sensitive to, the value of my) by allowing

sudden local solidification. We choose my to be constant and equal to 0.2 s for all simulations.

For small friction angles, the modeled viscosity of the gravel phase decreases rapidly with increasing

shear. Larger friction angles increase the viscosity and extend the pressure dependency to larger

shear rates (Fig. 4). We estimated the friction angle δ based on the maximum angle of repose in tilt-335

table tests of the gravel. In our laboratory experiments, we determined the friction angle in a simple
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adaptation of the method of Deganutti et al. (2011) by tilting a large box with loose material until a

second failure of the material body occurred.

In analogy to the Herschel-Bulkley implementation, an upper limit for the viscosity is imple-

mented to maintain numerical stability. Pressure-dependent viscosity in the incompressible Navier-340

Stokes equations causes numerical instability as soon as the eigenvalues of the symmetric part

of the local velocity gradient become larger than 1/(2(δη/δp)) (where η is the local dynamic

viscosity)
:::::::::::
1/(2(δµ/δp)). Following Renardy (1986), we locally limit the viscosity to fulfill this

stability criterion
:::
keep

::
it
:::::
below

::
a
::::::::::::
corresponding

::::
local

:::::::
stability

::::
limit.

3 Solver description
:::::::
Quality

:::::::::::::
characteristics

::
of

:::
the

::::::
model345

The assumption of negligible velocity differences between the gravel particles and the slurry within

a finite-volume cell allows the solution of an averaged Navier-Stokes equation for the three phases

air, gravel and fluid. Each phase is treated as a continuum. The phases for the slurry and for the

gravel inter-penetrate each other, while the air phase is kept separate. The conservation of mass

and momentum is averaged with respect to the phase fraction α of each phase. The phase fraction350

is the probability that a phase is present at a certain point in space and time . With the phase

fractions as a representation of the phase volume distribution, a transport equation for each phase

can be solved to obtain the change of phase distribution over the last time step. With the updated

phase distribution, the pressure and velocity fields are calculated by solving the phase-averaged

Navier-Stokes equations. The Volume-of-fluid (VOF) method is used to reconstruct the free surface355

with convection schemes from the volume fraction distribution . The method allows a surface reconstruction

with high accuracy if the grid resolution is sufficient . Fig. 2 illustrates how the phase volume

distributions α1 (air), α2 (slurry) and α3 (gravel) are used to derive cell-averaged properties of the

continuum.

3.1
:::::
Effects

:::
of

::::
time

::::
step

:::
size

:::
on

::::::::
rheology360

Because most debris-flow models are depth-averaged and use shallow-water approximated equations,

it could be questioned
:::::::::::::
approximations,

:::
one

:::::
could

:::
ask

:
why a three-dimensional approach is neces-

sary. Brodani-Minussi and deFreitas Maciel (2012) compared dam-break experiments of a Herschel-

Bulkley fluid and its numerical simulations using the VOF approach with published shallow-water

equation based
::::::::::::::::::::::::
shallow-water-equation-based

:
models. Especially for the first instant after the mate-365

rial release, the application of shallow-water equations seems to introduce errors that are propagated

throughout the process
:
, leading to erroneous run-out estimates. In addition to the three-dimensional

approach, we introduced an iterative step to determine the shear-dependent viscosity without delay

for the model to be able to deal with the challenges of a dam-break release.
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We describe the solver below, beginning with a brief introduction to the PISO (Pressure-Implicit370

with Splitting of Operators ) algorithm for solving the incompressible Navier-Stokes equations for

phase-averaged mass and momentum conservation. We then address the numerical solution for each

phase flow using advection-diffusion equations with focus on the mixing, and finally we describe

some aspects of the dependencies between grid resolution, rheology models and solver stability are

described.375

3.2 Calculation of the velocity field

The solver is based on an adaption and extension of the interMixingFoam solver, which is one of
::
A

::::::
similar

:::::::
problem

:::::
arises

:::::
when

::::::::
modeling

::::::::::
debris-flow

:::::::
impacts

::
on

:::::::::
obstacles.

:::::::::
Simulating

:::
the

::::::
impact

:::
of

:::::::
material

::::
with

:::::::::::::::
velocity-dependent

::::::::
rheology

:::
that

::
is

::::
kept

:::::::
constant

::::
over

::
the

::::
time

::::
step

:::::::
although

::
it
:::::::
actually

::::::
changes

:::::
with the standard solvers of the open source Finite Volume Code OpenFOAM . The Finite380

Volume method used here is based on a discretization of the incompressible Navier-Stokes equation

to describe the fluid dynamics.

The incompressible Navier-Stokes momentum equation takes the form:

∂ui
∂t

+
∂uiuj
∂xj

=−∂p/ρ
∂xi

+µ
∂2ui
∂xj∂xj

,

where ui and uj (i, j = 1,2,3) are the velocity components in the Cartesian directions 1,2,3 at a385

place with coordinates xi and xj::::::::
changing

:::
flow

:::::
leads

::
to

::
an

::::::::::::
accumulating

::::
over-

::
or

::::::::::::::
underestimation

::
of

:::::
energy

::::::::::
dissipation.

::
In

:::
our

::::::
model,

::::::
during

::::::
release

::
of
:::::::::

immobile
:::::::
material

:::
that

::::::::::
accelerates,

:::
the

::::::::
viscosity

:
is
::::::::::::

overestimated
::::
over

:::::
each

::::
time

:::::
step.

:::
As

:
a
::::::::::::
consequence,

:::
the

:::::::
velocity

::
at

:::
the

::::
end

::
of

:::
the

:::::
time

::::
step

:
is
::::::::::::::

underestimated,
::::::
which

:::::
again

::::::::
amplifies

:::
the

:::::::::::::
overestimation

:::
of

::::::::
viscosity

::
in

:::
the

:::::
next

::::
time

:::::
step.

:::::::::
Conversely,

::
at
:::

an
:::::::
impact,

:::
the

::::::
sudden

::::::::::
deceleration

::::::
causes

:::
an

:::::::::::::
underestimation

:::
of

:::::::
viscosity

:::::
over

:::
the390

::::
time

:::
step

::::::
length,

:::::::
leading

::
to

::
an

::::::::::::
overestimated

::::::
velocity

::::
that

:::::
again

:::::::
amplifies

:::
the

::::::::::::::
underestimation

::
of

:::
the

:::::::
viscosity

::
in

:::
the

::::
next

::::
time

::::
step. p stands for the local pressure and µ and ρ denote kinematic viscosity

and density of the fluid. Integrating eq. 14 over the volume V of a finite cell of a grid-discretization

of the simulated space leads to a cell-surface based conservation of momentum for the volume V by

applying the Gauss Theorem. Integrals over the volume are thereby replaced by integrals over the395

cell surface:

∂

∂t

∫
V

idV +

∮
∂V

ijdAj =−
∮
∂V

p/ρdAi +

∮
∂V

µ
∂ui
∂xj

dAj .

The Finite Volume Method replaces the integral over a cell surface by a discrete value, obtaining

eq. ?? from eq. ??. The index k denotes values at cell face k, and field parameters without indices

denote the corresponding value in the middle of the cell.400
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∂

∂t
V +

∑
k

k
i
k
jA

k
j =−

∑
k

pk

ρ
Aki +

∑
µ
∂uki
∂xj

Akj

Together with the conservation of mass, this leads to an equation system defining the velocities

depending on pressure for an incompressible fluid. To reduce the system of equations to the number

of unknowns it is necessary to calculate the values at the cell surfaces from interpolation between

the values at the cell centers of neighboring cells using interpolation schemes,
::
As

::
a
:::::
result,

:::::
flow405

::::::::
velocities

::::::
change

::::
with

::::::::
changing

::::
time

::::
step

::::
size.

:::::::::
Avalanche

:::::
codes

::::
such

:::
as

::::::::
RAMMS (Christen et al.,

2007) gives a brief description and summary of implemented schemes. All simulations were carried

out using first-order Euler schemes for the time derivative terms, as has been recommended for liquid

column breakout simulations . Standard Gaussian finite volume integration with linear interpolation,

which is of second order with unbounded numerical behavior, was chosen for the gradient derivative,410

convection and Laplacian terms. A limited surface-normal gradient scheme was applied that blends

corrected and uncorrected treatment of cell orthogonality. An unconventional compressive scheme

could be used to sharpen the interface, but here a conventional upwind scheme was used, because

more research is necessary on the performance of the compressive scheme
::::
deal

::::
with

:::
this

:::::::
problem

:::
by

:::::::::
calibrating

:::
the

:::::
model

::
to

::::
data

:::::
from

:::::::
previous

::::::
events

::
at

:::
the

::::
same

:::::::
location

::::
and

::::::
similar

:::::::::
conditions.

::::
But415

::::::
changes

::
in
:::::::
release

::::::
volume

::
or

:::::::
position

:::
can

::::
lead

::
to

::::::::
different

::::::::::
accelerations

::::
and

::::::::::::
corresponding

:::::::
changes

::
in

:::
the

:::::::::
automatic

::::
time

::::
step

::::::
control

:::
can

::::
alter

:::
the

:::::::::::
development

::
of

::::::::
rheology

::::
over

::::
time.

The PISO algorithm uses an optional implicit predictor for the velocity field followed by explicit

corrector steps. The predictor uses the pressure field of the old time step to estimate a velocity field

for the current time stepwhich is in general not divergence-free. With the idea that a correct velocity420

field should be divergence-free due to continuity, a Poisson equation for the first corrected pressure

field at the current time step is formed by taking the divergence of the equation that defines velocity

as a function of pressure. With the corrected pressure, a corrected velocity field can be calculated

and the corrector step can be repeated until divergence-free velocities are found. For a detailed

description with the corresponding matrix equations, implementation and further literature see .425

3.2 Solving the multi-phase flows

By knowing the velocity field from the previous time step , the current timestep starts with calculating

the current phase concentrations, accounting for the changes by advection and dispersion.

∂αi
∂t

+ (×∇)αi−Ddiff∇2αi = 0,

where Ddiff is
::
As

::::
long

:::
as

:
a
::::
flow

:::::
stage

::
is

:::::::
reached

:::::
where

:::
the

::::
flow

:::::
stops

:::::::::::
accelerating, the diffusion430

constant. Because diffusion is neglected in our model, equation 7 reduces to the advection equation,

which can be solved based on the advective phase fluxes φ1..3 for each phase.
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The phase fluxes are obtained by interpolating the cell values of α1, α2 and α3 to the cell surfaces

and by multiplying them with the flux φ through the surface, which is known from the current

velocity field. To keep the air phase unmixed, it is necessary to determine the flux φr through435

the surfaces between air and the debris flow mixture, and to subtract it from the calculated phase

fluxes φ1..3 to achieve an impermeable surface. Inherited from the original interMixingFoam solver

, limiters are applied during this stepto bound the fluxes to keep phase concentrations between 0 and

1. With known fluxes φ1..3 for each phase, the scalar transport equation for each phase takes the

form440

∂

∂t
αi+(φi) = 0

where i= 1,2,3 denote the phases air, slurry and gravel.

It is necessary to limit the fluxes or the phase concentrations such that the sum of volumetric

concentrations in each cell adds up to one; otherwise the concept of incompressible flow is violated.

However, this limiting constraint can lead to changes of total phase volumes conflicting with the445

conservation of mass. The standard implementation of the interMixingFOAM solver encounters such

difficulties. However, we achieved a good solution in our modified code by first solving equation

8 for the slurry phase, then limiting the updated slurry concentrations to values greater than or

equal to zero, then solving equation 8 for the gravel concentrations and limiting the updated gravel

concentrations to a range between 0 and (1.0 - slurry concentration).450

Because the influence of the air phase on the debris flow simulation is of small importance, a

simple solution is obtained when deriving the final air phase concentration as

α1 = 1−α2−α3.

In this way, for each phase of the debris flow material , negative phase concentrations or values larger

than one can be avoided, while still ensuring that the sum of all three phase concentrations adds up to455

one. The error is concentrated mainly in the air phase and the gravel phase and the chosen bounding

results in a stable solver with sufficient conservation of mass for the debris flow material
:::::::
influence

:::
on

::
the

::::
final

:::::
front

:::::::
velocity

:::::
should

:::
be

::::::::
negligible.

:::::
Other

::::::
debris

::::
flow

::::::
models,

::::::
which

::
do

:::
not

::::::::
iteratively

::::::
adjust

:::::::
viscosity,

::::::
cannot

:::::::::
accurately

:::::::
simulate

:::::::
impacts.

:::::
Here,

:::
our

:::::
model

:::::::::
constitutes

:
a
:::::::::
significant

::::::::::::
improvement,

::::
since

::
in

:::
the

:::::::::::::::
three-dimensional

:::::
solver

:::
we

:::::::::
presented,

:::
the

:::::::
viscosity

::::
bias

::::
was

:::::::
reduced

::
by

::::::::::::
implementing460

:
a
::::::::
corrector

::::
step:

::::::
taking

:::
the

::::::
average

::::::::
between

:::
the

:::::::
viscosity

::
at
:::
the

:::::::::
beginning

::
of

:::
the

::::
time

::::
step

::::
and

:::
the

:::::::
viscosity

::::
that

::::::::::
corresponds

::
to

:::
the

::::::::
velocity

::::
field

::
at

:::
the

::::
end

::
of

:::
the

::::
time

:::::
step,

:::
the

::::
time

::::
step

::
is

::::::
solved

:::::
again,

::::::
leading

:::
to

:
a
:::::
better

::::::::::
calculation

::
of

:::
the

::::::::
velocity.

::::
This

::::
step

:::
can

:::
be

::::::::
repeated,

::::::::
according

:::
to

::::
user

:::::::::::
specifications,

:::
to

::::::
correct

:::
the

::::::::
viscosity

::::::
several

::::::
times.

::::::::
Although

:::
this

:::::::::
procedure

::::::::
increases

:::::::::
numerical

:::::::::
calculation

::::
time,

::
it
::::::
clearly

:::::::
reduces

:::
the

::::::::
time-step

::::::::::
dependency

:::
of

:::
the

:::::::::
simulation.

::::::
Some

::::::::::
dependency465
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::
on

:::
the

::::
time

::::
step

::
is

::::
still

::::::
present

:::::
when

::::::::
modeling

:::
the

:::::::
collapse

:::
of

:::::::
material

::::::::
columns,

:::
but

:::
the

:::::
origin

:::
of

:::
this

:::::::
problem

::
is

:::::::
different

:::::::
because

::
it

:::::
occurs

::::
also

:::
for

:::::::::
Newtonian

:::::
fluids.

After solving the transport equations, the complete mass flux φρ from the updated volumetric

phase concentrations is constructed:

3.2
:::::
Effect

::
of

::::
grid

:::::::::
resolution

::
on

::::::::
rheology470

φρ = φ1 · ρ1 +φ2 · ρ2 +φ3 · ρ3

where ρ1..3 denotes the densities of the corresponding phases and φ1..3 the corresponding fluxes.

3.3 Effect of grid resolution and time step on rheology

Since the shear rate influences both viscosity models, a strong influence of grid resolution on vis-

cosity results, because the shear rate is averaged over the cell size. For flows over rough topography475

this may be less critical, but for laboratory flume experiments with thin shear bands the results may

depend on grid resolution. When simulating laboratory flume experiments where debris-flow mate-

rial accelerated in a relatively narrow and short channel (Scheidl et al., 2013), a cell height of 1.5

mm, which is of the order of the laboratory rheometer gap, was still not fine enough to reach the

limit of grid sensitivity. The free model parameter τ00 influences the shear-rate-dependent term of480

the viscous rheology model ,
::::::::::
visco-plastic

:::::::
rheology

::::::
model

:
and can be used to adjust the simulation

to the grid resolution. As long as the gravel phase and grid resolution do not change, it should be

possible to model different water and clay contents based on one calibration test. However, as the

composition changes, both τy and τ00 must change commensurately, since the
:
a
:
change in yield

stress affects the shear rate. Our procedure for adjusting to different mixtures based on one cali-485

brated test is to perform one iteration step for the yield stress of the new mixture:
:
; by calculating τy

based on the original τ00 value from the calibration test but with the new material composition, an

updated yield stress of the new mixture is determined. Raising or lowering τ00 by the same ratio as

the change from the original yield stress of the calibration test to the updated yield stress generates

the final τy as it is applied to the simulation of the new mixture.490

The viscosity of the granular phase is averaged over the cell faces to avoid discontinuous viscosity

jumps between cells, which may cause instability due to the sensitivity of incompressible solvers to

pressure-dependent viscosity. However, thin cells that allow a precise calculation of the shear gra-

dient lead to a preferred direction of the smoothing of the granular phase’s viscosity which may in-

troduce physically unrealistic behavior. Cell length (in the flow direction), cell width and cell height495

should at least be of the same order. Especially when front fingering is of interest, a grid resolution

test should be carried out, ensuring that no front instability is
:::
not caused by a large aspect ratio of

the cell dimensions.
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Another major problem in many models that simulate the release or impact of material with500

velocity-dependent rheology is that the viscosity is kept constant over each time step although it

actually changes with the changing flow. In our model , during release of immobile material that

accelerates, the viscosity is overestimated over each time step. As a consequence, the velocity at

the end of the time step is underestimated, which again amplifies the overestimation of viscosity

in the next time step. Conversely, at an impact, the sudden deceleration causes an underestimation505

of viscosity over the time step length, leading to an overestimated velocity that again amplifies the

underestimation of the viscosity in the next time step. In both situations, the error sums up from

time step to time step. As a result, flow velocities change with changing time step size. Avalanche

codes such as RAMMS deal with this problem by calibrating the model to data from previous

events at the same location and similar conditions. But changes in release volume or position can510

lead to different accelerations and corresponding changes in the automatic time step control can

change the development of rheology over time. As long as a flow stage is reached where the flow

stops accelerating, the influence on the final front velocity should be negligible. Other debris flow

models, which do not iteratively adjust viscosity, cannot accurately simulate impacts. Here, our

model constitutes a significant improvement, since in the three-dimensional solver presented here,515

the viscosity bias was reduced by implementing a corrector step: taking the average between the

viscosity at the beginning of the time step and the viscosity that corresponds to the velocity field

at the end of the time step, the time step is solved again, leading to a better calculation of the

velocity. This step can be repeated, according to user specifications, to correct the viscosity several

times. Although this procedure increases numerical calculation time, it clearly reduces the time-step520

dependency of the simulation. Some dependency on the time step is still present when modeling the

collapse of material columns, but the origin of this problem is different because it occurs also for

Newtonian fluids.

4 Discussion

Field observations and experiments indicate that the debris flow rheology varies from nearly rigid525

to highly fluid due to local and temporal variations of pore fluid pressure, shear rate and particle

dynamics. In the past, debris flow models have often treated the flowing mixture as a single homogeneous

phase with either viscous or granular flowcharacteristics. The traditional approach to the fluid dynamics

of debris flows accounted for the vertical momentum exchange in the flow process in a simple

manner by assuming a velocity profile over the flow height (concept of depth-averaged shallow-water530

equations). A good presentation of depth-averaged single phase models, sorted by complexity, is

given in . Granular debris flow models addressed the energy dissipation through dispersive shear

stress, kinetic stress and collision stress . Dispersive shear stress is caused by the friction between

particles in contact as they move past one another during the macroscopic shearing motion. Kinetic
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stress arises when particles at one level in the velocity profile move up or down to another level, and535

collision stress should account for the sum of energy dissipation due to particle collision . The model

of is an example of such a granular perspective linking the energy dissipation in a depth-averaged

approach to the basal friction. However, the obvious dependency of the bed friction angle on local

topography and velocity led to models with friction angles varying during simulation. One approach

was to change the basal friction angle as a function of the Savage number leading to a shear rate540

and grain size dependent energy dissipation providing a first attempt to link the rheology of the flow

to known material properties. In contrast to the approaches outlined above, which addressed debris

flows from the granular avalanche perspective, viscoplastic (Coulomb-viscous) theories postulated

debris flows as a homogeneous viscoplastic continuum . In viscoplastic approaches, the mechanical

behavior of debris flow material is seen as dominated by the influence of a muddy matrix that fills545

the space between coarser grains. Initially related to Bingham fluids, this matrix behaves like a solid

if shear stresses do not exceed a yield stress, and like Newtonian fluids with constant viscosity, if

the yield stress is exceeded. If the yield stress is modeled as dependent on the normal stress acting

on planes of shearing, one obtains the Coulomb-viscous
:::::::
Because

:::
the

:::::::
purpose

::
of
::::

this
:::::
paper

::
is
:::

to

:::::::
illustrate

:::
the

:::::
solver

::::::::
structure

:::
and

::::::
model

:::::
basis,

:::
we

::::
defer

::
a

:::::::
detailed

::::::::
discussion

:::
of model . This model550

can reproduce the ability of debris flows to move steadily over different slopes. The concept of a yield

stress could also explain the observed concentration of deformation in thin bands of sheared layers

close to the flow boundaries in channelized debris flows. To account for shear thinning, the Bingham

rheology was replaced by a Herschel-Bulkley rheology that can reduce the viscosity at higher shear

rates (shear thinning) or increase it (shear thickening), depending on parameter settings. While555

sand and clay mixtures with water show a shear thinning effect, more granular mixtures exhibit

shear thickening
::::::::::
performance

::
to

:::
the

:::::::::::::
accompanying

:::::
paper,

::
in

::::::
which

:::
the

:::::
model

::
is
::::::::

validated
:::::::

against

::::::::
laboratory

:::::
tests,

:::::
large

::::
scale

:::::::::::
experiments

:::
and

::::::
natural

:::::::::
hill-slope

:::::
debris

::::
flow

::::::
events. generalized the

granular flow model of to account for the presence of pore fluid. With a mixing theory framework,

this model was further developed into the Coulomb mixture model, which could simulate a wide560

spectrum of grain-fluid flows from initiation to deposition, with no redefinition of parameters. It

opened the transition from single-phase models to flows composed of solid-fluid mixtures. pointed

out that models that treat the debris flow material as a single phase with one rheology are not

capable of representing the real behavior, and that a two-phase approach is necessary where one

phase accounts for the viscid forces while the second phase models the granular forces between565

the grains. developed a general two-phase flow model, unifying the single-phase models of , the

debris-mixture model of and the two-fluid debris flow model of . Our model can be considered as

based on the concept of the Coulomb mixture model but with a state-of-the-art Herschel-Bulkley

representation of the fluid and a pressure-dependent Coulomb-viscoplastic representation of the

gravel in a three-dimensional approach without depth-averaging
::::
Here,

:::
we

::::::
discuss

::::
only

:::
the

:::::::::
efficiency570

::
of

:::
the

:::::
solver

:::::
itself,

::::::::
together

::::
with

:
a
:::::::
general

:::
test

:::::
about

:::
the

::::::
model

::::::::
accuracy

::
in

:
a
::::::::::::
gravity-driven

:::::
open
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::::::
channel

::::
flow.

:::
The

::::
lack

::
of

:::::::
standard

:::::::::
benchmark

::::
test

::::
cases

:::
for

:::::::::
debris-flow

::::::
solvers

::::
was

:::
the

:::::::::
motivation

::
to

:::::
select

:
a
:::::::::
numerical

:::
test

::::
case

::
to

:::::::
compare

::::::
model

:::::::
speedup

:::::::
between

::::
our

::::::::
approach

:::
and

:
a
:::::::
closely

::::::
related

::::::::::::::
drag-force-based

:::::::
Eulerian

:::::::::
multiphase

:::::::
model,

:::
and

::
to
::::::

select
:
a
:::::::::::
well-defined

::::::::::::
gravity-driven

::::::::
turbulent

::::
open

:::::::
channel

::::
flow

:::::::::
experiment

::::
with

:::::
clear

::::
water

:::
to

::::::
inspect

:::
the

:::::
solver

:::::::
validity.575

In comparison to drag-force-based Eulerian multiphase models, the Volume of Fluid approach

applied here provides significant reduction in calculation time. For an estimate we compared our

model with the OpenFOAM standard solver multiphaseEulerFoam. We selected the official tutorial

case damBreak4phaseFine
:
, but turned the water phase into mercury to gain a three-phase test case,

and applied the standard solver settings from the case to our model. On a CentOS 6.3 Linux machine580

with 31 GiB memory and sixteen Intel Xeon CPU E5-2665 @ 2.40 GHz processors, our model

resulted in a 5.5 times faster calculation with a comparable collapse of water
::
the

:::::::
modeled

::::::::
mercury

:::
and

::
oil

:
columns (Fig. 5). For the sake of completeness our calculation included one iterative viscosity

correction step, thus the model efficiency can be estimated to be about ten times higher than a drag-

force-based phase coupling approach.585

The model was also applied to an open clear water channel experiment with about 50.6 l/s dis-

charge in a 40 m long and 1.1 m wide rectangular smooth channel with 0.026% inclination (Fischer,

1966). The slurry phase was initialized as water together with a zero gravel phase concentration.

A Hybrid URANS-LES model was applied to account for the turbulent flow. Instead of an inlet

discharge the model applied periodic inlet and outlet boundary conditions and the flow was driven590

by gravity. The debrisInterMixingFoam solver predicted the discharge of the turbulent channel flow

with an underestimation of 15% and underestimated the corresponding surface elevation by 2.5%.

However, the deviations in predicted and measured average flow velocities are probably related to

shortcomings of the URANS turbulence model at the bottom boundary, as a comparison between a

measured and simulated vertical velocity profile suggests (Fig. 6).
::::
Due

::
to

::
the

::::
lack

::
of

::
a

:::::
clearly

:::::::
defined595

:::::::::
benchmark

:::
test

::::
case

:::
for

:::::
debris

::::
flow

:::::::
models,

:::
we

::::
have

::::::
chosen

:::
this

:::::
setup

::
as

:
a
:::::::::::
well-defined

::::::::::
larger-scale

::::::::
laboratory

:::
test

::::
case

::::::
where

:::
the

:::::
solver

:::::
faces

::::::
varying

::::::::
modeled

::::
fluid

:::::::
viscosity

::::
due

::
to

:::::::::
turbulence.

5 Conclusions

The new debris-flow solver has two main strengths. First, it can model three-dimensional flows

and their impact against complexly shaped objects, representing the processes at a high level of600

detail. Second, its design allows simulating different debris flow material compositions without

recalibrating the one free parameter, as long as the simulation grid does not change. Due to the

solver’s pressure- and shear-dependent rheology, realistic deposit geometries and release dynam-

ics can be achieved, as presented and discussed on the basis of test cases in the accompanying

paper. By systematically excluding unknown parameters from the model architecture and by ac-605

counting for known flow phenomena
:
in

::
a
::::::::
simplified

::::
way, we have developed a debris flow model
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whose parameters can be estimated directly from site geometry and material compositionrather than

from extensive calibration
::::::
roughly

::::::::
estimated

:::::
based

:::
on

:::::::
material

:::::::::::
composition,

:::::::
leaving

::::
only

:
a
::::::
single

:::::::::
calibration

::::::::
parameter. The concept is promising, but due to high

::::::
however

:::::::::
important

::::
parts

:::
of

:::::
phase

:::::::::
interactions

:::
are

:::::::::
neglected

::
in

:::::
favor

::
of

:::::
lower

:
numerical costs and long calculation timesthe

::::::
shorter610

:::::::::
calculation

:::::
times.

::::
The model is still limited to small simulations of several hundred square meters in

surface area
:::::
unless

:
a
::::::::
powerful

::::::::
computer

::::::
cluster

:::
can

:::
be

::::
used.

Appendix A: A

:::
The

::::::::
following

::::::
section

::::::::
describes

:::
the

:::::::
detailed

::::::::::::
implemetation

::
of

::
the

:::::
PISO

:::::::
iteration

:::::::::
procedure

::
as

::::::::
described

::
in Deshpande et al. (2012).

:::
By

:::::::
applying

:::
the

:::::::::
continuum

::::::
surface

:::::
force

:::::
model

::
of

:
Brackbill et al. (1992)

:
,615

::
the

:::::::
volume

::::::
integral

:::
of

:::
eq.

::
14

::
is

:::::
given

::
as

∫
Ωi

∂ρU

∂t
dV +

∫
∂Ωi

(ρ

::::::::::::::::

UU)·
:
ndS =

::::

−
∫
Ωi

∇pddV −
∫
Ωi

::::::::::::::

g·x∇ρdV +

∫
Ωi

σκ∇α1dV +

∫
∂Ωi

(µ∇

:::::::::::::::::::::::::::

U)·
:
ndS+

∫
Ωi

∇

::::::::

U ·∇µdV.
::::::

(A1)

:::
The

::::::::::::
computational

:::::::
domain

::
is

:::::::::
discretized

::::
into

:::::::::::
finite-volume

:::::
cells.

:::::
Each

:::
cell

::
is

:::::::::
considered

:::
as

:::
the620

:::::
owner

::
of

::::::
exactly

::::
one

::::
face

:::
that

::
it

:::::
shares

:::::
with

::
an

:::::::
adjacent

::::::::
neighbor

::::
cell,

::::
thus

::::
each

::::
face

:::
has

:
a
:::::::
defined

:::::
owner

::::
cell.

::
A
:::::::

surface
::::::
normal

::::::
vector

:::
Sf::::

with
::::::::::

magnitude
:::::
equal

::
to

:::
the

:::::::
surface

::::
area

::
of

:::
the

:::::
face

::
is

::::::
defined

::
on

:::
the

::::
face

:::::::
pointing

:::::::
outward

::::
from

:::
the

::::::
owner

:::
cell

::::
(Fig.

:::
7).

:::
The

:::::
value

::
at

::::
face

:
f
:::
of

:::
any

:::::::
variable

:
χ
:::::::::
calculated

::
in

:::
the

:::
cell

::::::
centers

::
as

:::
χP:::

and
::::
χN ::::

(Fig.
::
7)

:::
can

:::
be

::::::
derived

::
by

:::::::::::
interpolation

:::::
using

:
a
:::::::
mixture

::
of

::::::
central

:::
and

::::::
upwind

::::::::
schemes:625

χf = γ(χP −χN ) +χN ,
::::::::::::::::::::

(A2)

::::
with

:
a
:::::::::
weighting

:::::
factor

::
γ

:::
that

:::
can

:::::::
account

:::
for

:::
the

::::
flow

::::::::
direction

:::::
based

:::
on

:::
the

::::::
chosen

:::::::::::
interpolation

::::::
scheme

:::
and

::::
flux

::::::
limiter.

::
In

::::
case

::
of

:
a
:::::
linear

:::::::::::
interpolation

::::::
scheme

::::
and

:
a
:::
flux

::::::
limiter

::
ψ,

::
γ

:::
can

::
be

:::::::
defined

::
as

γ = ψ
fN

d
+ (1−ψ)

φf
|φf |

,

:::::::::::::::::::::

(A3)630

:::::
where

:
d
::
is

:::
the

:::::::
distance

:::::::
between

:::
the

:::
cell

::::::
centers

::
P
::::
and

::
N

:::
and

::::
fN

::
is

::
the

:::::::
distance

:::::
from

:::
the

:::
face

::::::
center

::
to

::
the

::::
cell

:::::
center

:::
N .

::::
The

:::
face

::::
flux

:::::::
denoted

::
as

:::
φf :::::

serves
::
as

::
a
::::::
switch

::
to

::::::
account

:::
for

:::
the

::::
flow

::::::::
direction

::::
since

::
it

::::
turns

::::::::
negative

:::::
when

:::
the

::::
flow

::
is

::::
from

::
N
:::

to
:
P
:
(Berberović et al., 2009).

:::::::
Several

:::::::
limiters

:::
are
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::::::::::
implemented

:
(OpenFOAM-Foundation, 2016b);

:::
we

:::::
chose

:::
the

:::::::
vanLeer

::::::
scheme

::::
and

:::::::
assumed

:::::::
uniform

:::
grid

:::::::
spacing

::
to

:::::::
simplify

:::
the

::::::::
following

:::::::::::
explanations

::::
with

:::::::::::
fN/d= 0.5.635

:::::::
Variables

::::
that

::::
are

::::::::
evaluated

::
at

:::
the

::::
cell

:::::
faces

:::
are

::::::::::
subscripted

:::
by

:::
f .

::::
Due

::
to

:::::::
stability

:::::::::
problems

:::
that

::::
arise

:::::
from

:::
the

::::::::::::::
pressure-velocity

::::::::
coupling

::
in

:::::::::
collocated

::::::
meshes

:
(Ferziger and Peric, 2002)

:
,
:::
the

:::::::
pressure

:
is
::::::
solved

:::
for

:::
the

:::
cell

::::::
centers

:::::::
whereas

:::
the

:::::::
velocity

::
is
::::::::::
interpolated

::
to

:::
the

::::
cell

::::
faces

::::::
within

:::
the

::::
PISO

:::::
loop.

::::
With

:::
the

::::::
switch

:::::::
function640

ζ(φf ) =
φf
|φf |

:::::::::::

(A4)

::
the

:::::::
velocity

::::
Uf ::

at
:::
face

::
f
:::
can

:::
be

::::::
written

:::::
based

:::
on

::
eq.

:::
A2

::::
and

:::
A3

::
as

Uf =
UP

2
(1 + ζ(φf )(1−ψ)) +

UN

2
(1− ζ(φf )(1−ψ)),

:::::::::::::::::::::::::::::::::::::::::::::

(A5)

:::
and

:::
the

::::::::::::
corresponding

:::::::::::::::
face-perpendicular

:::::::
velocity

:::::::
gradient

::
is

:::::
given

::
by

:
Deshpande et al. (2012)

:
as

∇⊥
:::f

:
U=

UN −UP

|d|
.

:::::::::::

(A6)645

::
At

:::
the

::::::
present

::::
time

::::
step

:::
tn

:::
the

:::::
phase

:::::::
averaged

:::::::
density

::
of

:::
the

::::
next

::::
time

::::
step

::::
ρn+1

::
is
::::::
known

:::::
from

::::::
solving

:::
the

:::::::
transport

:::::::::
equations.

::
In

::
a
:::
first

:::::::::::::
approximation,

:::
the

::::::::::::
corresponding

:::::::
viscosity

:::::
field

::::
µn+1

::::
can

::
be

::::::
derived

:::::::::::
accordingly.

::
A

:::::::::
simplified

::::::::::
formulation

::
of

:::
the

::::::::::
momentum

:::::::
equation

:::
A1

:::::::
without

::::::::
pressure,

::::::
surface

::::::
tension

:::
and

:::::::
gravity

::::
terms

::::::::::
discretized

::
for

::::
cell

::
P

:::::
could

::::
then

::
be

:::::::::
formulated

:::
as

(ρn+1Ũ)− (ρnUn)

∆t
|ΩP |+

∑
f∈∂Ωi

:::::::::::::::::::::::::::

ρn
::
f
:
φn
::

f
:
Ũf =

∑
f∈∂Ωi

::::::::

µn+1

::::
f
:
∇⊥
:::f

:
Ũ |Sf |+∇

:::::
Un · ∇µn+1|ΩP |.

::::::::::::

(A7)650

:::
The

::::
tilde

::::::
stands

:::
for

:::
the

:::::::
velocity

::
at

::::
cell

::
P

::::::::
predicted

::
in

:::
the

:::::::
current

:::::::
iterative

::::
step,

:::
for

::::::
which

:::
eq.

:::
A7

:::::
yields

::
an

:::::::
explicit

::::::::::
expression.

:::
For

::::
that

:::::::
purpose,

:::
eq.

:::
A5

::::
and

::::
A6

:::
are

:::::::
inserted

:::
into

:::
eq.

::::
A7

:::::
using

:::
the

::::::
velocity

:::
of

:::
the

::::
prior

:::::::
iteration

:::::
step,

::::
Um,

::
in

:::
all

:::::::
neighbor

:::::
cells (Deshpande et al., 2012).

::::
The

:::::::
explicit

:::::::::
expression

::
for

:::
the

::::::::
estimated

:::::::
velocity

::
is

AP
::

Ũ=H(
::::

Um),
:

(A8)655

:::
and

::
by

::::::::
including

:::::::
surface

::::::
tension

:::
and

::::::
gravity

::::
this

::::
leads

:::
to

Ũ=
H(Um)

AP
+
σκ∇αn+1

1

AP
− g ·x∇ρ

AP
.

::::::::::::::::::::::::::::::

(A9)
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:::
The

:::::::
detailed

:::::::::::
composition

::
of

::::::::
H(Um)

:::
and

::::
AP :::::::::

formulated
::::
with

:::::::
respect

::
to

:::
the

:::::::
splitting

::::::::
between

:::::::
neighbor

::::
and

:::::
owner

:::::
cells

:::
can

:::
be

:::::
found

::
in

:
Deshpande et al. (2012)

:
;
::::
here

::
it

::
is

::::::::
sufficient

::
to

::::
keep

:::
in

::::
mind

::::
that

:::::::
H(Um)

:::::::
contains

:::
all

::::::::::
off-diagonal

:::::::::::
contributions

::
of

:::
the

:::::
linear

:::::::
system.660

:::
The

::::
next

::::
step

::
is

::
to

:::::::
assemble

:::
the

::::::::::::
approximated

::::
face

:::
flux

φ̃f =
(H(Um)

AP

)
f
·Sf +

( (σκ)n+1(∇⊥fα1)n+1

AP

)
f
|Sf |−

( (g ·x)n+1(∇⊥fρ)n+1

AP

)
f
|Sf | (A10)

:::::
where

:::
the

::::::::
subscript

:
f
::::::::
indicates

::::
that

::
the

:::::::
variable

::::::
values

::
at

:::
the

:::::
faces

:::
are

::::
used.

::::
The

::::
final

::::
flux

:
is
::::::

found

::
by

::::::
adding

:::
the

:::::::
pressure

::::::::::
contribution

φm+1
f = φ̃f −

(∇⊥fpm+1
d

AP

)
f
|Sf |. (A11)665

:::
The

::::
sum

::
of

:::
the

:::
flux

::::
over

:::
the

:::
cell

:::::
faces

:::::
needs

:
to
:::
be

::::
zero

:::
due

::
to

::::
mass

:::::::::::
conservation

::
for

:::
the

:::::::::::::
incompressible

::::
flow∑
f∈∂Ωi
::::

φm+1

::::
f = 0,
:::::

(A12)

::::
Thus

:::
the

:::::::
pressure

::
is

::::::
defined

:::
by

:::
the

:::::
linear

:::::::
equation

::::::
system

:::
for

:::
the

:::::::
updated

:::::::
pressure

::::::
pd
m+1

:∑
f∈∂Ωi

(∇⊥fpm+1
d

AP

)
f
|Sf |=

∑
f∈∂Ωi

φ̃f ,

:::::::::::::::::::::::::::::::

(A13)670

:::
and

:::
can

:::
be

::::::
solved

::::
with

:::
the

::::::::::::
preconditioned

:::::::::
conjugate

:::::::
gradient

::::::
(PCG)

:::::::::
algorithm,

::
to

:::::::
mention

::::
one

::
of

::::::
several

::::::
options

:::::::::::
implemented

:::
in

:::::::::::
OpenFOAM.

::::
With

:::
the

:::::::
updated

::::::::
pressure

::::::
pd
m+1,

:::
the

::::
face

::::::
fluxes

::::::
φm+1

f :::
are

::::::
derived

:::::
from

::
eq.

::::
A11

::::
and

:::
the

:::::::
updated

:::::::
velocity

::::
filed

::::::
Um+1

:
is
::::::::
obtained

::::
from

:::
the

:::::::
explicit

::::::
velocity

:::::::::
correction

:

Um+1 = Ũ +
( 1

AP

)( ∑
f∈∂Ωi

(Sf ⊗Sf )

|Sf |

)−1

•
( ∑
f∈∂Ωi

(
φm+1

f − Ũf ·Sf
( 1
AP

)f

)
Sf
|Sf |

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A14)675

:::::
which

::
is

:::
the

:::
end

:::
of

:::
the

::::
PISO

:::::
loop.

:::::
After

:::::::
updating

:::
the

:::::
index

:::
m

::
to

::::::
m+ 1,

:::
the

:::::::
iteration

:::::::
restarts

::::
with

::::::::::
recalculating

:::
H

:::
with

:::
the

:::::::
updated

:::::::
velocity

::::
from

:::::::
equation

::::
A8,

:::::::
repeating

:::
the

::::
loop

::::
until

::
a

::::::::::::
divergence-free

::::::
velocity

::::
field

::
is
::::::
found.

A1 Code availability

The source-code can be downloaded from the supplement application.zip, please .
::::::
Please

:
follow the680

instructions given in the README15
:::::::::
README.pdf file for installation.
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Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V., and Tropea, C.: Drop impact onto690

a liquid layer of finite thickness: Dynamics of the cavity evolution, Phys. Rev. E, 79, 036 306,

doi:10.1103/PhysRevE.79.036306, 2009.

Bohorquez, P.: Study and Numerical Simulation of Sediment Transport in Free-Surface Flow, Ph.D. thesis,

Universit"at Malaga, Spain, 2008.

Bohorquez, P.: Finite Volume Method of Falling Liquid Films Carrying Monodispersed Spheres in Newtonian695

Regime, AIChE J, 58, 2601–2616, 2012.

Bouchut, F., Fernandez-Nieto, E. D., Mangeney, A., and Narbona-Reina, G.: A two-phase shallow debris flow

model with energy balance, ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-

MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 49, 101–140, 2015.

Bozhinskiy, A. N. and Nazarov, A. N.: Two-phase model of debris flow, in: 2nd International Conference on700

Debris-Flow Hazards Mitigation, pp. 16–18, Teipei, Taiwan, 2000.

Brackbill, J. U., Kothe, D. B., and Zemach, C.: A continuum method for modeling surface tension, J. Comput.

Phys., 100, 335–354, 1992.

Brodani-Minussi, R. and deFreitas Maciel, G.: Numerical Experimental Comparison of Dam Break Flows with

non-Newtonian Fluids, J. of the Braz. Soc. of Mech. Sci. and Eng., 34-2, 167–178, 2012.705

Christen, M., Bartelt, P., and Gruber, U.: RAMMS - a Modelling System for Snow Avalanches, Debris Flows

and Rockfalls based on IDL, Photogramm. Fernerkund. Geoinf., 4, 289–292, 2007.

Coussot, P., Laigle, D., Aratano, M., Deganuttil, A., and Marchi, L.: Direct determination of rheological char-

acteristics of debris flow, J Hydraul Eng, pp. 865–868, 1998.

Damián, S. M.: An extended mixture model for the simultaneous treatment of schort and long scale interfaces,710

Ph.D. thesis, Universidad Nacional de Litoral, Argentina, 2013.

Deganutti, A., Tecca, P., and Genevois, R.: Characterization of friction angles for stability and deposition

of granular material, in: Italian Journal of Engineering and Environment: 5th International Conference on

Debris-Flow Hazards: Mitigation, Mechanics, Prediction and Assessment, pp. 313–318, Padua, Italy, 2011.

Deshpande, S. S., Anumolu, L., and Trujillo, M. F.: Evaluating the perfomance of the two-phase flow solver715

interFoam, Computational Science and Discovery, 5, 1–33, 2012.

Domnik, B. and Pudasaini, S.: Full two-dimensional rapid chute flows of simple viscoplastic granular materials

with a pressure-dependent dynamic slip-velocity and their numerical simulations, J. Non-Newton. Fluid

Mech, 173–174, 72–86, 2012.

Domnik, B., Pudasaini, S., Katzenbach, R., and Miller, S.: Coupling of full two-dimensional and depth-averaged720

models for granular flows, J. Non-Newton. Fluid Mech, 201, 56–68, 2013.

Ferziger, J. H. and Peric, M.: Computational Methods for Fluid Dynamics, Springer 3rd ed., Berlin, 2002.

25

http://dx.doi.org/10.1103/PhysRevE.79.036306


Fischer, H. B.: Longitudinal Dispersion in Laboratory and Natural Streams, Ph.D. thesis, California Institute of

Technology, 1966.

Forterre, Y. and Pouliquen, O.: Flows of dense granular media, Annu. Rev. Fluid Mech., 40, 1–24, 2008.725

Gao, Y. and Li, K.: New models for calculating the viscosity of mixed oil, Fuel, 95, 431–437, 2012.

Guthrie, R., Mitchell, J., Lanquaye-Opoku, N., and Evans, S.: Extreme weather and landslide initiation in

coastal British Columbia, Journal of engineering geology and hydrogeology, 43, 417–428, 2010.

Hänsch, S., Lucas, D., Höhne, T., Krepper, E., and Montoya, G.: Comparative simulations of free surface flows

using VOF-methods and a new approach for multi-scale interfacial structures, in: Proceedings of the ASME730

2013 Fluids Engineering Summer Meeting, Incline Village, Nevada, USA, 2013.

Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972-2007, Nat. Hazards

Earth Syst. Sci., 9, 913–925, 2009.

Hill, D.: The Computer Simulation of Dispersed Two-Phase Flows, Ph.D. thesis, Imperial College, University

of London, 1998.735

Hirt, B. and Nichols, B.: Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of

Computational Physics, 39, 201–225, 1981.

Hoang, D., van Steijn, V., Kreutzer, M., and Kleijn, C.: Modeling of Low-Capillary Number Segmented Flows

in Microchannels Using OpenFOAM, in: Numerical Analysis and Applied Mathematics ICNAAM 2012,

AIP Conf. Proc., vol. 1479, pp. 86–89, Kos Island, Greece, 2012.740

Hürlimann, M., McArdell, W., and Rickli, C.: Field and laboratory analysis of the runout characteristics of

hillslope debris flows in Switzerland, Geomorphology, 232, 20–32, doi:10.1016/j.geomorph.2014.11.030,

2015.

Imran, J., Parker, G., Locat, J., and Lee, H.: 1D numerical model of muddy subaqueous and subaerial debris

flows, J Hydraul. Eng., pp. 959–968, 2001.745

Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.

Issa, R.: Solution of the implicitly discretized fluid-flow equations by operator-splitting, J Comp. Phys., 62,

40–65, 1986.

Iverson, R. and Denlinger, P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1.

Coulomb mixture theory, J. Geophys. Res., 106, 537–552, 2001.750

Jop, P., Forterre, Y., and Pouliquen, O.: A constitutive law for dense granular flows, Nature, 441, 727–730,

2006.

OpenFOAM-Foundation: OpenFOAM Standard Solvers, Website User Guide of OpenFOAM,

http://www.openfoam.org/docs/user/standard-solvers.php, visited 12.01.2016., 2016a.

OpenFOAM-Foundation: OpenFOAM Standard Schemes, Website User Guide of OpenFOAM,755

http://cfd.direct/openfoam/user-guide/fvSchemes/, visited 12.01.2016., 2016b.

Petley, D. N., Hearn, G. J., Hart, A., Rosser, N. J., Dunning, S. A., Oven, K., and Mitchell, W. A.: Trends in

landslide occurence in Nepal, Nat Hazards, 43, 23–44, 2007.

Pitman, E. and Le, L.: A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. A, 363, 1573–

1602, 2005.760

Pudasaini, S.: A general two-phase debris flow model, J. Geophys. Res., 117, F03 010, 2012.

26

http://dx.doi.org/10.1016/j.geomorph.2014.11.030


Remaitre, A., Malet, J., Maquaire, O., Ancey, C., and Locat, J.: Flow behaviour and runout modelling of a

complex derbis flow in a clay-shale basin, Earth Surf Proc Landforms, 30, 479–488, 2005.

Renardy, M.: Some remarks on the Navier-Stokes Equations with a pressure-dependent viscosity, Comm. in

Partial Differential Equations, 11, 779–793, 1986.765

Schatzmann, M., Fischer, P., and Bezzola, G. R.: Rheological Behavior of Fine and Large Particle Suspensions,

J. Hydraul Eng.-ASCE, 796, 391–430, 803.

Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., and Proske, D.: Analysing

Debris-Flow Impact Models, Based on a Small Scale Modelling Approach, Surv. Geophys, 34, 121–140,

2013.770

v. Boetticher, A., Turowski, J. M., McArdell, W. B., Rickenmann, D., Hürlimann, M., Scheidl, C., and Kirchner,

J. W.: (submitted) DebrisInterMixing-2.3: A Finite Volume solver for three dimensional debris flow simula-

tions based on a single calibration parameter. Part two: Model validation, Geoscientific Model Development,

2015.

Yu, B., Ma, Y., and Qi, X.: Experimental Study on the Influence of Clay Minerals on the Yield Stress of Debris775

Flows, J. Hydraul. Eng., 139, 364–373, 2013.

27



Figure 1. Viscosity distribution (indicated by color scale) along a 28 cm long section through the modeled

0.01 m3 release block 0.2 s after release, corresponding to the experimental setup of Hürlimann et al. (2015).

The starting motion (black velocity arrows) with corresponding viscosity distribution of the mixture (left) is a

consequence of blending pure shear-rate dependent mud phase
:::::::::
slurry-phase rheology (center) with the pressure-

and shear-rate-dependent gravel phase rheology
:::
that

::::::
accounts

:::
for

:::::::
Coulomb

::::::
friction

:
(right). Because the gravel

concentration in this example is low, its effect on the overall viscosity is small.

Figure 2.
:::::::::
Longitudinal

::::::
section

::::::
through

:
a
:::::

debris
::::

flow
::::
front

:::::::::
discretized

::::
with

::::
finite

::::::::::
volume-cells,

:::::::
showing

:::
the

::::::::
constitutive

::::::::
equations

::
for

:::
one

:::
cell

::::
with

::::::
density

:
ρ
:::
and

:::::::
viscosity

::
µ

::::
given

:::
the

::::::
densities

:::::
ρ1..3,

::::::::
viscosities

::::
µ1..3 :::

and

::::::::
proportions

::::
α1..3::

of
:::::
phases

::::::
present.

::
1
::::::
denotes

::
air

:::::
(white

::::::
colored

:::
cell

::::::
content),

::
2
::
the

::::
mud

:::
and

:
3
:::
the

:::::
gravel

:::::
phase,

:::::::::
respectively.
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Figure 4. Dependency of the
:::::::
kinematic

:
gravel phase viscosity (for friction angle δ = 25◦ and 50◦) on the norm

of the strain rate tensor ||D|| at different levels of pressure normalized by density, for m= 0.2
:::::::
my = 0.2

:
s
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Longitudinal section through a debris flow front discretized with finite volume cells, showing the

constitutive equations for one cell with density ρ and viscosity µ given the densities ρ1..3,

viscosities µ1..3 and proportions α1..3 of phases present. 1 denotes air (white colored cell content),

2 the mud and 3 the gravel phase,

respectively.H

Figure 5. Phase positions in a dam break standard test-case simulation using a drag-based three phase multi-

phaseEulerFoam simulation (air is transparent, blue indicates mercury and orange represents oil) as background

shapes with the corresponding phase positions of our model as wire frame in front (with white mercury as slurry

phase and black oil as gravel phase). The visualized time steps correspond to 0, 0.1, 0.2, 0.3, 0.4 and 0.5 seconds.
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Figure 6. Comparison of simulated and measured average vertical velocity profiles 27 cm away from the chan-

nel sidewall of a 1.1 m wide and 40 m long rectangular channel with smooth surface (z is the corresponding

height above the bed). In the experiment (Fischer, 1966), a 50.6 l/s inlet discharge was combined with a 0.026%

channel inclination resulting in 12.8 cm average flow depth. The simulation applied periodic inlet and outlet

boundary conditions and a symmetry plane at the channel center line.
::::::::
Additional

::::::::
calibration

::
of

:::
the

::::::::
turbulence

:::::
model

::::
may

::::::
improve

:::
the

:::::
result.
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Figure 3. Dependency of the
:::::::
kinematic

:
gravel phase viscosity

::
νs (for friction angle δ = 36◦

::::::::
normalized

:::
by

:::::
density) on the norm of the strain rate tensor ||D|| at different levels of pressure normalized by density, for

m= 1
::::::
my = 1 s and m= 0.2

:::::::
my = 0.2

:
s

::
and

::
a

:::::
friction

:::::
angle

::::::
δ = 36◦.

Figure 7.
:::::
Sketch

::
of

:::
two

:::::::
adjacent

::::
cells

::
P

:::
and

::
N

:::
and

:::
the

:::::
shared

:::
face

::
f

:::::
owned

::
by

:::
cell

:::
P .

::
Sf::

is
:::
the

:::
face

::::::
surface

:::::
normal

:::::
vector

::::
while

::
d
::::::
denotes

::
the

:::::::
distance

:::::
vector

::::
from

:::
cell

:::::
center

:
P
::
to

:::
cell

:::::
center

::
N.
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