Firstly, | hope | have not erred, but here is the derivation. Starting with Tessum et al., egn. 3 (simplifying
to one direction, letting f,, .=1), and dividing by At:

ACi FA(Upost - UnegCi) FA(UnegCe - UposCi)
L +
At Ax Ax

First, let the west cell be the i-1 cell and the east cell be the i+1 cell. Then put the Upes and Uneg terms
together:

ACi FAUpos(Ci—l - Ci) FAUneg(Ci+1 - Ci)
[ +
At Ax Ax

A Upos(Ci+1 -Cy)

Now add and subtract l (the two middle terms):

ACi FAUpos(Ci—l - Ci) FAUpos(CHl - Ci) FAUpos(Ci+1 - Ci) FAUneg(Ci+1 - Ci)
At Ax Ax Ax Ax

Rearranging gives:

AC _ FA(Upos) [Ci—l =20+ Ciyq
A

AC _ G — Ci+1)
At

e B = Uneg) (5

Multiply the numerator and denominator of the first term by Ax:

AC  F4(AxUpps) [Ci—1 — 2C; + Ciyq Ci —Ciyq
e P+ FaUpos = Vo) ()

The authors may wish to consider if the last term may have some numerical/physical issues in some
cases.

I do believe that if you have the first term using (UpostUneg)/2, you get:

AC FAAx(Upos + Uneg) Ci1 —2C; + Cyq Ciy1 — Cig
At 2 Ax? ] + Fa(Uneg = U"“)( 2Ax )

This leads to a central difference form for both advection and diffusion. Both the first order advection
and central difference advection adds increased numerical diffusion, on top of the diffusion from the
first term, and the advection term is not dependent upon the concentration in the i cell. The authors
might consider dividing their solution to four periods, and during each period use the different



combinations of Upos , Uneg , Vpos @and Vieg. This would remove the large diffusion term introduced in the
current method, though the advection approach used is still diffusive. They might consider using a
higher order advection scheme that is less diffusive. They should also consider making Fa equal to 1 to
maintain concordance with the original equation and have the correct asymptotic behaviour.
Whichever approach is chosen, it should be tested against cases with a known solutions.



