
Geosci. Model Dev. Discuss., 8, C2821–C2825, 2015
www.geosci-model-dev-discuss.net/8/C2821/2015/
© Author(s) 2015. This work is distributed under
the Creative Commons Attribute 3.0 License.

O
pen A

ccess

Geoscientific
Model Development

Discussions

Interactive comment on “Distributed visualization
of gridded geophysical data: a web API for carbon
flux” by K. A. Endsley and M. G. Billmire

K. A. Endsley and M. G. Billmire

endsley@umich.edu

Received and published: 7 November 2015

Thanks for your feedback! We’ll address your comments one at a time below.

“Authors claim CDE is offering distributed visualization, however, this is not
substantiated in detail; from what I can infer data are always loaded from
(server) local files. Visualization is addressing 3D x/y/t cubes plus multi-
variables, but it remains essentially 2D plus “movie”, no 3D portrayal is
mentioned.”

The data cube metaphor is not meant to imply 3D visualization; rather, three to four
variables–planar coordinates, measurement value, and time–are represented. Altitude

C2821

is clearly an important dimension in climate datasets but the CDE does not support a
joint visualization of measurement value and altitude.

“[W]hat is the exact storage scheme for the datacube in MongoDB?”

Data cube(s) are stored as one or more “scenarios” which may each correspond to
a single model run (with particular parameters) or multiple model runs under some
unified conditions. Scenarios might also separately encapsulate measurement values
and uncertainty, allowing them to be viewed side-by-side in the Coordinated View sub-
system. Page 5748, Lines 2-4 state: “Each scenario has one timeline associated with
it and gridded data belonging to that scenario are uniquely keyed by their date and
time.” Slices in time (“X-Y” slices) of the data are stored. Page 5747, Lines 18-19 state:
“Specifically, the data are stored and transmitted as JavaScript Object Notation (JSON)
documents.” We will revise the quoted lines to make this more clear.

“[W]hat part of the analysis is pushed into MongoDB, and what is solved in
the middleware?”

Page 5751, Lines 13 through 18 read: “The temporal aggregation is handled by the
MongoDB aggregation pipeline, which facilitates very fast aggregation of multiple X–Y
slices (maps spanning time). Spatial aggregation of one or more pixels (an aggregate
value spanning a spatially filtered subset) is achieved using a combination of the JSTS
Topology Suite JavaScript library and MongoDB’s geospatial query operators.” We will
revise and extend this to elaborate that temporal aggregation and differencing are han-
dled by the MongoDB aggregation pipeline; that calculation and display of anomalies is
done client-side in JavaScript; that population summary statistics are calculated in the
Python API and stored in MongoDB; that all other visualization tweaks and statistical
stretching is done “on-the-fly” in JavaScript.

C2822



“In how far do the authors consider this architecture scalable? To this end,
at least a few performance figures would have been helpful, even better so
a comprehensive evaluation: what are response times in general? where
in the architecture is time spent, eg: how much of the query response time
goes into MongoDB, and how much into the JavaScript middleware? How
does this compare to, eg, C/C++ implementations?”

We will provide performance metrics in the revised manuscript.

“[W]hile the paper mentions some tools and one standard (WMS) in the
field it lacks a solid comparison against immediately “competitors”. Hadoop,
Array Databases, as well as virtual globes like NASA WorldWind come to
my mind.”

We will provide more context for the CDE in relation to Hadoop, Array Databases, and
NASA WorldWind within the revised manuscript.

“[D]ata ingestion, ie: massaging heterogeneous incoming data to a suitable
service structure, typically is an involved task. Section 2.2 does not detail
on this, which would be interesting to know: what challenges had to be
met? Any innovative approach taken?”

Some challenges may be merely mundane details for some readers... We discovered
that Matlab has changed the format of its saved binary output files over the years
from an HDF4-like structure to one requiring an HDF5-compatible reader. We selected
Python and its essential SciPy library as together they provide support for both HDF4
and HDF5 formats. Thus, our experience is a reminder of the importance of backwards
compatibility, which is likely well-recognized in the scientific programming community.

C2823

We will add a brief remark on this and other considerations, such as the need for
calculating population summary statistics offline, at the end of Section 2.3.

“[M]assive binary data encoded in text form seems like a big impediment
for transfer and processing. MongoDB querying certainly does not offer
competitive performance on datacubes, and only limited functionality. Un-
fortunately, the paper remains superficial here and does not explain the
detailed storage schema.”

Our experience with the CDE is that, for regional and global gridded climate datasets,
there are no significant impediments to display and analysis on the web. Comparisons
of the performance of NoSQL databases lacked consensus at the time we began de-
velopment (in 2012) but have since begun to show that, indeed, Cassandra and HBase
provide better performance in most applications than MongoDB (e.g., Dede et al. 2013
in Proceedings of the 4th ACM Workshop on Scientific Cloud Computing). However,
for single nodes, MongoDB can be still provide equal or better performance than al-
ternatives such as Hadoop (as cited by Nyati et al. 2013, at International Conference
on Advances in Computing, Communications and Informatics, ICACCI). As for its “lim-
ited functionality,” in working with our domain experts, the key analytical capabilities
they needed were all implemented in the CDE using either MongoDB or more prac-
tical front-end capabilities. In presenting early versions of the software to groups like
DataONE and the OCO-2 Science Team, we did not identify any analytical workflows
for these types of data (Level III gridded products) that we could not support.

“Example in 2.4: the result to me, following the query logic, should be a
3D cube extending allong the full spatial footprint and temporally reduced
to the start and end point indicated in the query. However, authors call the
result a ‘timeseries’ which earlier has been introduced as being 1-D. This
might be clarified.”

C2824



Only 1D time series or 2D slices of the data cube are made available through the web
API. The “t.json” endpoint is not constrained in its design to deliver 1D time series,
however, as 2D time series were not required for any of the features identified by the
user community and would be expensive to generate, the “t.json” endpoint requires
“aggregate” and “interval” keywords so that it can deliver a time series. We will expound
on this in the revised manuscript.

“[A]uthors characterize retrieval from MongoDB as ‘very fast’ but without
indicating measurements, and no comparison to tools offering the same
functionality.”

Performance metrics for the CDE will be included in the revised manuscript.

Interactive comment on Geosci. Model Dev. Discuss., 8, 5741, 2015.

C2825


