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Reviewer 2

Abstract – sentence added. Introduction – Model does not focus on zooplankton . . .
true I have changed emphasis slightly – a discussion section on the advantages of
Couplerlib, a little bit more info on the dictionary

PP5579-L8 MSFD relies on indicators and it is not always clear how they relate to
environmental health , modelling acts as a bridge . Comment added to text.

PP5579-L 19 Sentence added to show diversity of what is meant
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P5580 L3 This has been changed to make it clearer

P5580-L6 Reference to WP removed

PP5582 –L5-6 Clarified that it has been developed and its source referred to in ap-
pendix 1

Methodology More reference to dictionary and included in appendix

P5583- L21 I have used version without network

PP584-L18 There is an xml file that specifies the linkages – included in appendix, see
also next section.

5589 – Agreed that a user guide would be helpful but producing it will require resources
that we do not have at the moment. Some of this material has been put in to answer
specific questions by reviewers.

5590 68 in total

5591 15-16 Noted that benthic coupling is two way for detritus and no overwriting on
benthos occurs

P5592 Explained that this is really about examining transition when input is changed

Results Explained that most of time is in ERSEM with very little in EwE or couplerlib

P5595 L24-26 Explained that most important route is via zooplankton and that fish
larvae is a dead end group.

PP597 Agreed that this is not showing model at its strongest

Discussion Section on Ecosim stability removed

An approach for coupling higher and lower levels in marine ecosystem models and its
application to the North Sea Jonathan Beecham*!, Jorn Bruggeman+, John Aldridge*,
Steven Mackinson* *Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk,
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phone +44 1502 524541, Fax +44 1502 513865

Abstract End to end modelling is a rapidly developing strategy for modelling in ma-
rine systems science and management. However problems remain in the area of data
matching and sub-model compatibility. A mechanism and novel interfacing system
(Couplerlib) is presented whereby a physical/ biogeochemical model (GOTM-ERSEM)
that predicts dynamics of the lower trophic level (LTL) organisms in marine ecosys-
tems is coupled to a dynamic ecosystem model (Ecosim) that predicts food-web inter-
actions among higher trophic level (HTL) organisms. Coupling is achieved by means
of a bespoke interface which handles the system incompatibilities between the models
and a more generic Couplerlib library which uses metadata descriptions in extensible
mark-up language (XML) to marshal data between groups, paying attention to func-
tional group mappings and compatibility of units between models. In addition, within
Couplerlib, models can be coupled across networks by means of socket mechanisms.
As a demonstration of this approach, a food web model (Ecopath with Ecosim, EwE)
and a physical/biogeochemical model (GOTM-ERSEM) representing the North Sea
ecosystem were joined with Couplerlib. The output from GOTM-ERSEM varies be-
tween years dependent on oceanographic and meteorological conditions. Although
inter-annual variability was clearly present, there was always the tendency for an an-
nual cycle consisting of a peak of diatoms in spring, followed by (less nutritious) flag-
ellates and dinoflagellates through the summer resulting in an early summer peak
in the mesozooplankton biomass. Pelagic productivity, predicted by the LTL model,
was highly seasonal with little winter food for the higher trophic levels. The Ecosim
model was originally based on the assumption of constant annual inputs of energy
and, consequently, when coupled, pelagic species suffered population loss over the
winter months. By contrast, benthic populations were more stable (although the ben-
thic linkage modelled was purely at the detritus level). The coupled model was used
to examine long term effects of environmental change, and showed the system to be
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nutrient limited and relatively unaffected by forecast climate change, especially in the
benthos. The stability of an Ecosim formulation for large higher tropic level food webs
is discussed and it is concluded that this kind of coupled model formulation is better for
examining the effects of long term environmental change than short term perturbations.
Highlights A generic coupler was developed for linking higher and lower trophic level
models. A linked GOTM-ERSEM / EwE model was developed using calibration from
two North Sea Ecosystem studies. The EwE model was modified to take into account
the seasonal dynamics of the LTL model. The spring diatom bloom and hence silicate
availability was a critical driving factor in regulating HTL dynamics. Examination of the
long term consequences of the model under climate change forecasts revealed a rela-
tively small change using the EwE food web model. The couplerlib approach provides
a means of decoupling ecological and geochemical model construction and integra-
tion from the software development process, provides data consistency checking and
conversion of units and functional group assignment. Keywords

End to End Modelling, Food webs, Model Coupling, Metadata, Climate Change, North
Sea âĂČ

1. Introduction

End to end modelling is becoming a hot topic in marine systems (Rose
et al. 2010) primarily because of the need, implied by regulatory
frameworks such as the Marine Strategy Framework Directive (MSFD)
(http://ec.europa.eu/environment/marine/index_en.htm ) for monitoring and man-
agement of the marine systems to take into account distal effects of any deliberate or
accidental anthropogenic changes to parts of the marine ecosystem, and modelling
is used to predict how indicators, such as critical species biomasses might relate to
ecosystem change . However, the problem which remains is that the models that
are used in an end to end modelling system are themselves complicated with many
parameters. Joining such models end to end has been described as ‘Putting lipstick
on a pig’ (Rose 2012), and an appeal is sometimes made to start with simpler models
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(Fulton et al. 2003). Given the choice between constructing end to end model systems
do novo and joining existing models ( usually written by different teams, often in
different languages or even running on separate machines ) together ‘Frankenstein
Style’ or even combining multiple models at source level, the former has a number of
obvious advantages. The multiple models (or multiple components of an integrated
modelling system) can benefit from a unified design process, can use consistent
co-ordinate system and model entity representation and can benefit from unified data
input, output, visualisation, control and validation. Most importantly, the models can be
aligned in terms of whether they are strategic models for exploring general principles,
or tactical models designed to explore specific aspects of the system with a high
degree of detail and domain specific knowledge (Levins 1966). Joining models with
widely differing focus will typically result in a combined model with only broad results
for a narrow domain, and yet will still require a large amount of data to calibrate it. On
the other hand, we are often forced to work with combining existing model because of
the existence of code, with updates and a user community, the investment of time in
the lengthy processes of calibrating and validating these models. For most modelling
projects sociological aspects of the modelling process will have an influence on the
strategy of end to end modelling employed. In many cases the objective of the end to
end modelling approach includes a high degree of prediction for example it is one of
the aims of the EU Framework programme 7 project Meece (www.meece.eu). How-
ever although it is possible to model phytoplankton blooms and short term fish stocks
management fairly reliably, there are a number of less tractable problems, including
estimating the recruitment of young fish to the adult stock. It is a difficult function to
quantify in models because it is dependent not only on the size of the parent stock,
but also on interactions of the lower trophic level components of marine ecosystems,
notably zooplankton, that are poorly understood and which are highly dependent on
physical driving factors such as temperature, irradiation and wind (Cushing 1996).
Zooplankton modelling has always been the weakest link in the end to end chain and
how such processes govern fish recruitment and population variability is still poorly
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understood (Minto et al., 2008). Coupled physical-biogeochemical models such as
GOTM-ERSEM (Burchard et al. 1999; Burchard et al., 2006; Baretta et al., 1997; Vichi
et al. 2003) and POLCOMS-ERSEM (Lewis and Allen 2009; Blackford et al. 2004)
that predict changes in primary production and zooplankton abundance as outcomes
of hydrodynamic and biogeochemical processes, are similarly not without limitation,
an important one being their inability to capture top-down trophic impacts from higher
grazers such as fish, which are not explicitly included. Although lower trophic level
components can quite easily be represented (albeit simply) in multi-species fisheries
models such as Ecopath with Ecosim (EwE) (Christensen et al. 2005), representation
of how environmental drivers influence the dynamics of higher trophic species is
more challenging. In EwE, this is usually achieved using simple production and
consumption forcing patterns, which gloss over biogeochemical processes such as
how the dynamics of the different nutrient components determine the limitations of
phytoplankton growth. With the knowledge that environmental changes can have
drastic impacts on lower trophic level components such as phytoplankton (Richardson
and Schoeman, 2004) and that fishing has strong impacts on the abundance and
structure of fish stocks (e.g. Lotze et al., 2006), investigating how ecosystems respond
to combined pressures necessitates that processes at lower and higher levels are
linked. This is the basis of the present trend towards end-to-end modelling, whereby
the connection of physics to fish and fisheries is made (Travers et al. 2007; Libralato
and Solidoro 2009; Rose et al. 2010). The end-to end modelling of Kearney (2012)
impressively links the NEMURO lower trophic level model with a 23 component EwE
model, achieves ecosystem stability, intra and interannual variation in biomass of
higher and lower trophic level species, though it does not encapsulate all the processes
that lead to variation in fish populations, especially recruitment variation. However
it does achieve a class leading degree of correspondence with observations. Whilst
the realisation of effective end to end modelling systems for prediction will depend
on the development of precise sub-models for some of these critical components,
their development will also depend upon consistent systems for model integration and
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data exchange. Coupled LTL-HTL model systems should allow for iterative exchange
of data among models, thus capturing important feedback processes within an
ecosystem. Thus they should enable us to investigate ecological issues, such as how
changes in phytoplankton abundance in shelf seas might be attributed simultaneously
to abiotic drivers such as nutrient inputs and changes to summer stratification or a
reduction of predation on zooplankton by fish. Such complex interactions can only
be understood through an end-to-end approach that combines physics, lower trophic
levels and higher trophic levels. The principal challenges of coupling LTL models with
HTL models include reconciling differences in how the models handle and represent
important processes at different time and spatial scales (Rose et al. 2010). Whilst
it is vitally important to test and understand how model behaviour is influenced by
choices in the level of detail (one or many groups), the groups that are represented
(size, age, bulk biomass) and the choice of time and spatial scales of processes (e.g.
capturing seasonality), there is also a need to be pragmatic. This means making
choices that enable the models to be coupled and tested, either through comparison
with empirical data or by their ability to generate plausible, testable hypothesis that
are consistent with understanding. The paper describes a methodology for coupling
LTL and HTL models, which has been developed by the authors. This ‘Couplerlib’
approach is generic, allowing for exchange of information between separate LTL and
HTL models. In effect Couplerlib is a glue layer between different models, consisting
of a library of routines for checking data consistency (in terms of names of groups,
chemical elements and units) between models, carrying out data conversions and
providing network protocols. It is not a universal coupler, which would be very difficult
to achieve given the potentially enormous range of languages and calling conventions
that models may use. Instead, the user is required to provide a compatible interface
for use with Couplerlib this being the ‘front end’ used to input required information to
setup and perform a model run. In the specific example presented here, Couplerlib
connects two models representing the dynamics of the North Sea ecosystem; GOTM-
ERSEM (Burchard et al., 2006), a physical-biogeochemcial model of the LTLs, and the
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food-web EwE model (Mackinson and Daskalov 2007) of the HTLs. The two models
are downloadable at www.gotm.net and www.ecopath.org respectively. In this case
the EwE front end serves as the primary interface for Couplerlib, through which a
graphical front-end for GOTM-ERSEM is called for specification of the LTL model run
parameters. To facilitate a clear understanding and promote further development of
the methodological approaches, we describe the technical process of linking EwE to
GOTM-ERSEM. Specific problems and solutions to overcoming them are discussed.

2. Methodology This section describes the design principles and system methodol-
ogy, when applied to linking a biogeochemical model, ERSEM, to a food web model
Ecosim. The scope of Couplerlib is wider than this because it is a generic coupler
which uses metadata to describe the model linkages. Information about source code
and implementation is given in Appendix A. 2.1 Principles of Model Coupling Couplerlib
, in association with suitable calling routines, can be used as part of a model coupling
in a number of different ways:: a) Direct Coupling: Coupled models share a memory
space and are able to read and write directly into it. This requires the models to have
the same way of storing basic data information for integer and floating point variables,
which can present a number of problems. C / C++ and FORTRAN, for example have
different array storage (row major and column major) which may require a glue layer
to convert data order. Coupling between data that is stored alternately between mod-
els will require some form of indirection (i.e. pointers or arrays indexed via an index
variable). Direct coupling will not allow any form of data conversion such as between
units, grid resolutions or where functional groups are merged between models, so can
be used only when the data is in the same format in the different models (the case
for GOTM and ERSEM by not EwE and ERSEM). Despite these limitations it is an
attractive form of coupling because of its speed and simplicity, for example there is
direct linking between the GOTM and ERSEM models in this example. Couplerlib can
be used for checking data and providing diagnostic information during its initiation but
not used for passing data between models. b) Managed Coupling. Managed Coupling
uses a management layer between two models which is capable of data conversion,
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data validation, reorganisation, splitting and merging of data. It is possible to couple
models with very different internal representations by incorporating the necessary glue
layers within the management layer. The ERSEM to EwE coupling described here uses
managed coupling. Typically as well and data being transferred between models via
the management layer, there is some form of control data which can specify how the
data exchange is controlled. The Couplerlib system presented here is such a man-
agement layer, which stores control information via a system of XML files (Figure 1).
c) Networked Coupling. This is an extension of managed coupling which can operate
between processes and across the web. In order to achieve this, there need to be
two copies of couplerlib with communication processes between each. Typically one
of the processes is the master with capabilities for operator interaction and the rest
are slaves operating under a system of messages between them. The Atlantis system
(atlantis.cmar.csiro.au, Fulton 2010) also implements a networked coupling system be-
tween network components but is both data and control central, whereas Couplerlib
is control central and data distributed. Networked coupling would be needed to link
an ERSEM model running on a Linux cluster to eWe on a standalone PC. Networked
coupling can be used on the same machine where it is virtualised running Linux and
windows or across processes. d) Offline Coupling uses some form of file to store data
so that multiple models can run, store data and allow a second model to process this
model independently. Because of the slow nature of file reading Couplerlib implements
offline coupling using netCDF files as a one-way only coupling. Whilst limited in not be-
ing bidirectional, it is often Couplerlib can be used to link models one way, in which case
the values of quantities in the source model overwrite the respective quantities in the
destination model, or bidirectionally (not for offline coupling) in which case quantities
are passed back from the destination model and re-overwrite the values in the source
model. In this way calculation is shared between models and double accounting needs
to be avoided, by for example allowing consumption and not production in the desti-
nation model and consumption only in the source model. 2.2 Couplerlib Design and
Specifications A critical feature of Couplerlib is its ability to specify multiple models and
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interfaces between them and perform validation on these interfaces, only validated in-
terfaces may link and exchange data. The principle behind this is that multiple coupling
mechanisms may be provided, only some of which may be allowed in each situation.
An example would be the provision of data in multiple types of grid and non-grid spa-
tial format, which might require a conversion layer between the models, by specifying
multiple models we can allow code for multiple conversion libraries to be incorporated
within a model. Existing approaches that have linked lower and higher trophic levels
using single species and individual based approaches (for example Rose et al. 2007;
Travers et al. 2009), define the linkages before the simulation is run. However, in
connecting ERSEM to Ecosim we are confronted by the problem that the constituent
components of Ecosim models are explicitly specified at runtime and ERSEM output is
specified by means of a user invoked compiler. In this case it is necessary to develop
a coupling mechanism where metadata information that is generated at runtime can
still be cross-matched and validated. The mechanism as shown in figure 1 is for the
user to specify a linkage in terms of models, variables and quantities (metadata) in xml
which is parsed by the Couplelrib system to build the linkages between models.

For linking to EwE, which is Windows only, managed coupling is only possible within
a windows environment. The data store in Couplerlib is global and persistent, and is
referenced by an enumeration (i.e. a list of items which is converted to a numeric se-
quence) of model and interface. In principle a single Couplerlib can be used to link
multiple models with multiple connections for different types of data between them,
however this was restricted to two (intake and offtake) for this work. However, care
must be taken to ensure that a frame of data (data for single model and interface com-
bination) is only read after it is completely written; otherwise the data may be corrupted.
Because programming libraries for multithreaded systems have various ways to signal
events and suspend program execution on a thread, these mechanisms need to be
provided by the interface to Couplerlib. The strength of Couplerlib is that once this
interface code is written it can be used over and again for different Ecosim models.
This threaded mode of interfacing also allows the graphical interface of both models
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to run simultaneously. When Couplerlib operates in networked mode, each process or
machine is required to have its own Couplerlib. The networked Couplerlibs are initially
synchronised by reading metadata descriptions of all the models being linked from files
that will be available on all machines as a Uniform Resource Identifier (Berners-Lee et
al. 2005). At run time the networked Couplerlibs are synchronised on a need-to-know,
object request basis (the receiving Couplerlib specifies what data the transmitting Cou-
plerlib needs to send) even though validation has been carried out during the initial
model loading phase. Data from a model is written to the local copy of Couplerlib and
the remote copy synchronises its own copy when an instruction is received to fetch
data. In addition to transferring data, the networked Couplerlib exchanges diagnos-
tics and model output to be displayed remotely and controls the synchronisation of
data. To ensure that coupled models are synchronised, Couplerlib uses the Berkeley
Sockets Mechanism, specifically blocking sockets. Sockets form the basis of the inter-
net protocol and are used to ensure that networked services are connected from right
source to destination (i.e. two ends that have the same socket number) and can be
assigned a number by the user or by the operating system. By assigning each a sta-
tion number, multiple models can connect using networked Couplerlibs. 2.3 Metadata
information exchange and specification Couplerlib is a coupling system which uses a
metadata description of the model linkage, combined with emitted metadata from the
component models and a dictionary of functional group and unit definitions to form a
linkage between models. It allows linkages to be described in terms of a functional
level of abstraction, without the user needing to understand computer representation
(such as indexing of arrays) and in many cases without altering code. Both EwE and
GOTM-ERSEM are reconfigurable modelling frameworks which can emit metadata to
describe their composition. In the case of GOTM-ERSEM the output data to be emit-
ted is partly specified by a user specified list of variables which are then mapped into
the main data array (known internally as the CC array) at source level, with parame-
ter values being loaded from a FORTRAN namelist. The physics/LTL model GOTM
has an optional front end GUI interface containing a parameter editor and the model
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specification can be adjusted during the data editing phase before the core GOTM pro-
gram starts up. GOTM-ERSEM has an internal array of metadata which describes the
model’s internal arrays in terms of full name, abbreviated name and unit dimensions,
which is created for each instantiation of the source code at the same time as the CC
array and describes internal as well as output variables. The Ecopath, Ecosim and
Ecospace programs also have a main data array where metadata is stored, although
dimensional information is specified for all data items together. This data array can be
changed at runtime by means of the editor built into EwE v6, if organisms are added
or deleted, for example. Consequently the location in terms of numerical indexation
within the data arrays of the two models is not fixed at runtime. Indeed there is no
guarantee that the necessary data for a linked model run will even be available once
the simulation starts, since the user may remove a needed component from their model
instance. The first stage of model coupling is for each model to provide a specification
of the data available for linking, which it provides between model loading / editing and
the start of the run. Each model provides this information in XML format. The data is
supplied in a hierarchical manner, suitable for reading with the Document Object Model
library (Le Hégaret et al., 2009) with the following hierarchy: <Model> <Description>
Author, System, Languages <Interface> <Time Information> Periodicity, Start and Stop
Times <Grid Information> Dimensions, Start and end, Resolution <DataItems> of type
Phytoplankton, Zooplankton, Consumers, Resources <Name> <Symbol> <Chemical
Consituent> Carbon, Nitrogen, Silicate, Phosphorous <Flux Direction> Concentration,
Intake, Offtake, Mortality, Production <Units> </Dataitems> </Interface> </Model>

Information on the dimensions of values is included in the metadata specification. If
the dimension of a coupled variable differs between coupled models, such as density
of a nutrient per unit volume, versus density per unit area, Couplerlib checks in its
conversion dictionary to find an appropriate dimensional converter and then applies
the relevant conversion ratio to all values transferred between the models (in this case
multiplying or dividing by water column depth).
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The model specification is produced by combining a template file, which is an XML
file describing the basics of each model (such as language and system), with variable-
specific metadata provided dynamically by the model after loading /editing. The speci-
fications for the coupled models are combined by use of a coupler specification which
is also an XML file; this specifies the models to be linked as a number of interfaces.
The coupler crosschecks for each interface in turn to see whether the connection is
permissible. Permissible interfaces occur when the model and system information are
permissible, the spatial and temporal dimensions are in range for the data, and there
is a registered correspondence between all functional groups specified in the interface;
i.e. the groups have the same name, or there is a correspondence between groups in
the system dictionary (e.g. group Z4 in ERSEM corresponds to Herbivorous mesozoo-
plankton in our EwE model) or a correspondence between multiple groups (e.g. P1 to
P5 in ERSEM sum to phytoplankton in our EwE model) . So for each organism in the
interface there must be a way of obtaining all nutrient concentrations and the time and
area of the data must be consistent. The functional groups that are checked are only
those which are specified as actually needing to be linked in the interface specification.

Alongside the XML files used for specifying the rules of the interface, schema (XSD)
files can be used to validate the vocabulary and patterns of any human written XML file.
For example the XML file will specify the axes used in the grid, whilst an XSD file will
specify that a three dimensional grid will require three axis dimensions each of which
will need a start co-ordinate, a length and a resolution. The XSD file is loaded into a
XML editor such as EditiX (www.editix.com) prior to creating or loading an XML file. It
can also be located online via a URL so may reside in a cross-institutional repository.
Its use is optional but will reduce run time errors in Couplerlib.

Couplerlib can be extended to the case where the functional group values are struc-
tured in some way (e.g. age or size). Additional metadata will define the number and
specification of age / size classes. However further conversion code would need to be
supplied when one model outputs as size or age structured and only a single biomass
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values is needed.

However, it will often be the case that there is a disparity between the metadata pro-
duced by the two models to be coupled. The simplest is the use of different names by
the two models, other situations arise where there is an inexact match of the functional
group definitions between the two models: for example, the version of ERSEM used
here has 5 different phytoplankton groups whereas the EwE North sea model has a
single phytoplankton class. It is acceptable, within EwE to model the relative offtake of
all the phytoplankton groups as a single value if the predation pressure on bulk phyto-
plankton in EwE can be assumed to apply equally to all phytoplankton groups, but the
production and consumption of phytoplankton within GOTM –ERSEM vary between
phytoplankton groups. Consumption of phytoplankton directly by higher trophic level
groups (e.g. Fish Larvae) is a relatively unimportant energy flow in the EwE models
we have studied with only 3.2 g m-2 year-1 out of 60.8 g m-2 year-1 total predation not
being consumed by zooplankton so this inaccuracy has little effect on the zooplankton
mediated energy flows. The final case of disparity is where units of measurement vary
between models, which occurs in this case as ERSEM expresses plankton concen-
trations in molar concentration units of C, N, P and Si and the EwE North Sea model
in terms of tonnes per square kilometre of total biomass. These different conflicts are
dealt with by a final XML file called the dictionary file. This specifies mappings between
groups and units, unit conversions and synonyms. Furthermore items in the dictionary
can be specified in terms of their context (models, interface and organism name). This
is useful for exceptions to normal rules, such as greater wet-mass to dry mass ratios for
jellyfish compared to most organisms. The dictionary is searched when an exception
is found between organism names, or unit names, during the coupling process. The
strength of the dictionary approach is that the model names, units and conversion def-
initions are stored outside code in a repository which can be subject to human scrutiny
without need to write code and is by default platform and model independent (but a
specific model context can also be specified)
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2.4 Use of Graphical User Interfaces (GUIs) – model front ends

Both the EwE models and GOTM (and hence GOTM-ERSEM) have GUIs. In the case
of EwE the interface is written in the .net programming environment for windows, and
whilst programmed in Visual Basic, it uses an object structure which is fully accessi-
ble using Visual C++ and C#. The EwE system is runtime extendable using plugins
which use the .net interface system to extend the object model of the underlying EwE
system. Plugins are dynamically loaded as DLLs (executable code program exten-
sions, which must be called from another executable). This plug-in architecture is
used to couple EwE, via Couplerlib, to the GOTM-ERSEM front end. The GOTM in-
terface, however, is written in Python, which is an interpreted language: the interface
consists of a set of scripts and modules that require a Python interpreter to run. Ac-
cordingly an interpreter is embedded within the EwE plugin, together with python.net
(Pythonnet.sourceforge.net): a .net compatible API that provides access to the Python
interpreter.

The coupler plugin has a visual interface to select the directory where the coupler
description XML files described previously are contained. This launches the Python
interpreter to run the scripts which collectively make up the GOTM-ERSEM front end.
These scripts enable the GOTM and ERSEM configuration files to be manipulated at
run time and also for output data to be visualised. In turn, the Python-based front end
communicates with the FORTRAN core of GOTM and ERSEM via a C wrapper layer
– F2Py (Peterson 2007). To enable coupling with external models, this layer has been
expanded with interfaces for read-write access to relevant FORTRAN data objects, in
particular the arrays that describe the values of biogeochemical state variables. Cou-
plerlib is available to parse metadata and carry out the kind of managed data conver-
sion described in the previous section. The net result of these various conversion and
API layers is that meaningful data objects in GOTM-ERSEM are available from within
EwE and vice versa.

2.5 The LTL and HTL models
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The 1D GOTM-ERSEM (Burchard et al., 2006) lower trophic level model was set up
to represent a site in the Oyster Grounds (a muddy sand site immediately south of the
Dogger Bank at 54O24’ N, 4O3’ E) with appropriate water depth (40m), tidal velocities
(M2 amplitudes of 30cm s-1) and meteorological forcing. This parameterisation simu-
lates the annual dynamics of a summer stratified site that is broadly representative of
average behaviour over a large area of the central North Sea. Preliminary validation of
this model is reported in (Van Der Molen et al 2012, in press).

The North Sea EwE ecosystem model (Makinson & Daskalov, 2007) is a spatially av-
eraged representation of the biomass of food-web components over the whole North
Sea (ICES div IVa-c). It consists of 66 functional groups, which are both pelagic and
benthic. However, in order to be consistent with ERSEM, this 66 was extended by two
new detritus groups (separating particulate organic matter (POM) into pelagic and ben-
thic components and adding a new faecal POM group). Making 68 in total. The Lower
trophic level groups used by both EwE and GOTM-ERSEM for pelagic and benthic
components are listed in table 1.

2.6 The biology of the coupling The GOTM-ERSEM representation of the physics and
primary production and the EwE representation of the higher trophic levels are coupled
via biomass of pelagic plankton groups and nutrients returned to the water column via
detritus (Table 1). Omnivorous zooplankton (Z4 in ERSEM), microzooplankton, bacte-
ria and phytoplankton (Z5, Z6, B and P1-P5 in ERSEM) are chosen as the coupling
groups. The most significant of these links is with omnivorous zooplankton, because
in shelf seas it forms the principal pathway that connects the energy from the lower
trophic food web with the higher trophic level consumers. The link between omnivo-
rous and carnivorous mesozooplankton is handled in Ecosim rather than ERSEM (with
predation by carnivorous Zooplankton turned off in ERSEM). This modification (car-
ried out by the authors and Piet Rudaji author of ERSEM) was to increase the stability
of Carnivorous Zooplankton populations, otherwise there was a tendency for either
Carnivorous Zooplankton to go extinct over the winter months or for over consump-
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tion of Phytoplankton late in the year depending on the coefficients of predation of the
two mesozooplankton groups. Nutrients are returned to ERSEM from Ecosim within
the particulate, dissolved and faecal detritus components, which required adding the
faecal component in Ecosim. The 1-D version of GOTM-ERSEM captures the biogeo-
chemical processes occurring in the water column, describing the plankton ecosystem
from incoming solar radiation, via phytoplankton to zooplankton. The EwE model as-
sumes that the biomass of all functional groups is distributed evenly throughout the
model domain.

The coupling is by two unidirectional Couplerlib interfaces. ERSEM passes to EwE
the biomass of the pelagic functional groups, while the amount of offtake by predators
as a proportion of biomass is returned to ERSEM, as are the detritus fluxes which
are added to the ERSEM detritus pools. The version of EwE used has been specially
been adapted to run at a timestep of a single day, rather than a month. This is to
prevent the accumulation of consumption over time long time steps leading to apparent
overgrazing of omnivorous zooplankton. Internally GOTM and ERSEM run the North
Sea model at a timestep of 10 minutes. The feeding information of the HTL components
on the LTL components is returned to ERSEM as an offtake proportion by which the
relevant LTL quantities are reduced. The dynamics of the benthic components are run
separately in each model and thus shadow each other. Detritus is returned to ERSEM,
but benthic groups are not fed into EwE nor updated in ERSEM. The EwE component
is affected by the temporal variability of the detritus, but not by the immediate variation
of benthic conditions input experienced by the ERSEM model (because these are not
explicitly coupled). Consequently the variability of the species which consume benthic
components within EwE is less than those that feed heavily via the pelagic route.

ERSEM explicitly describes the concentrations of individual chemical elements (car-
bon, nitrogen, phosphorous and, for some functional groups, Silicon). However EwE
is a biomass only model (the ratios of carbon, nitrogen and phosphorous do not vary
significantly between higher trophic level species). Consequently Couplerlib must esti-
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mate the stoichometric ratios of EwE model groups, such as detritus, when transferring
biomass based values from EwE models back to GOTM-ERSEM. This can be done by
using predefined ratios or by assuming the composition of incoming EwE variables
matches the current elemental ratios of the target variables in ERSEM, as was done
here. Also, care must be taken to ensure dimensional correctness, for example when
EwE models are expressed in terms of wet biomass, whereas in ERSEM they are
expressed as g C/m2 When the dimensions of values are included in the metadata
specification, Couplerlib will check in its conversion dictionary to find an appropriate
dimensional converter and then apply the relevant conversion ratio to all values trans-
ferred between the models.

2.7 The coupling process in action The main sequence of inter-model calls and data
communication is illustrated in figure 2. It can be seen that there are six model com-
ponents. At the ends of the stack of components are the EwE and GOTM models
themselves (ERSEM is implemented as a library extension to GOTM but is interfaced
through GOTM). Furthermore there is a front end interface to GOTM, which is written in
Python and uses the Qt graphical interface components (Bruggeman & Bolding 2007).
Although the use of this component is optional, it provides useful on line data editing,
file management and visualisation facilities, so the decision was made to couple the
models via the front end to keep the existing functionality.

The six most important points of interface between the core and the GOTMlink plugin
are indicated in figure 2, but there are additional points for documentation, identification
and visual interaction with the plugin. Control passes from the EwE core to the plugin
at those specific points where additional functionality can be provided by the GOTMlink
interface. When the two models are coupled in the same process running on the same
machine the two sides of the model (EwE plus its plugin and GOTM plus its GUI and
Interface) operate on separate threads; that is to say, there are separate sequences
of operations for the EwE and GOTM models. The EwE and GOTM interfaces signal
directly when a step in one model is complete and the second model should take over,
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with execution of the first model suspended in a wait state. Using separate threads is
essential where the component models are themselves multithreaded and may need
to keep other threads such as the Graphical User Interface or network code running
– EwE is like this, GOTM is not, but can be embedded within a multithreaded server,
such as a network daemon. Data transfer is carried out by means of Couplerlib, which
provides marshalling of the data using external metadata specifications. However the
two interfaces can exchange basic information about model status, time to run for, and
the like through shared memory.

In networked mode the GOTM and EwE sides cannot communicate directly since they
do not share common memory. Instead everything goes via Couplerlib. The EwE and
GOTM sides have their own copies of Couplerlib. The two Couplerlibs will exchange
information using TCP/IP sockets so that the receiving end of a data transfer makes a
copy from information requested from the sender Couplerlib. Information used to syn-
chronise the models and give information on model state such as waiting, finished and
error conditions for various operation is sent via a separate pair of sockets and diag-
nostic information is sent to the Couplerlib which is attached to the graphical console (
the EwE GOTMlink plugin in this case).

The GOTMlink plugin includes an interface to the model coupling facilities. There are
four user initiated operations: GOTM model load, Edit, Run and Visualize. Only the run
call operates beyond the GOTM GUI into GOTM itself. Instantiation of the EwE model
is controlled through the EwE GUI. When the EwE and GOTM models are loaded they
export their specifications to separate XML files. These are made available, together
with the user provided interface specification and dictionary to Couplerlib. Data, such
as the timestep, and the start and stop times are transferred from GOTM to EwE sides
(so they can be available before EwE produces its XML metadata). The bulk of the
data is transferred via Couplerlib. The critical call to Couplerlib is the CheckIF call,
which loads all the metadata specifying the interface, and cross checks this against the
specifications of the component models. Providing this is consistent, the GOTM and
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EwE threads are synchronised to ensure that the Ecosim module has been started,
resulting in the EcoSimRunInitialized call being sent from the EwE core to the plugin.
Both component models can then use GetIFAddress to locate the position of the data
that will be transferred in the Couplerlib data store.

The main loop consists of repeated calls to the GOTM library, requesting simulation for
a particular length of time, equal to the EwE time step. After every call the GOTM array
holding the values of biogeochemical state variables is accessed and its values are
stored in Couplerlib. The EwE part of the model will wait for these data to be written,
and then fetch the values it requires, using Couplerlib to carry out any conversion
between units or between functional groups. After updating the values of coupled
variables in EwE in this fashion computation continues with the EwE calculations for a
single time step. When complete, updated EwE data are written to a different frame
of the Couplerlib repository and GOTM must synchronise and then read the data. The
changes in biogeochemical state variables during the EwE time step are output to
Couplerlib as (dimensionless) relative changes, which can be applied directly across all
vertical layers of the GOTM-ERSEM water column without violating mass conservation.
Finally if EwE has finished (the Simulation Ending Interface call is made) GOTM can be
made to terminate early and cleanup called to ensure data are written to output files.

2.8 EwE model re-parameterisation

The very first attempt to link the two models was not successful. Pelagic groups that
feed off mesozooplankton in EwE overexploited the mesozooplankton during the winter
period causing the death of the zooplankton populations and a consequent reduction
in pelagic productivity. This was a result of the Ecosim model having being calibrated
primarily on summer plankton levels to set the consumption to biomass level, albeit
annualised i.e. the seasonality in plankton food production was not captured in EwE
(winter zooplankton levels in ERSEM drop to around 1% of summer ones). In practice
consumption is very much lower in winter months when the plankton population is
lower but also the basal metabolic rate of the predatory fish is reduced by around a
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factor of 2.4 compared to summer (Clark & Johnson 1999). In addition to the reduced
metabolism which follows an exponential temperature to metabolism law, there may be
behavioural changes that reduce prey consumption still further. For example sandeels,
which were observed to be one of the major predators of mesozooplankton switch
to being benthic between November and April (Engelhard et al. 2008) and so have
zero consumption of plankton in winter months. To account for these phenomena,
it was necessary to add a function to reduce predation of pelagic sources in winter
months. Two forcing functions were used – one a purely metabolic model using a
Q10=2.0 rule of temperature, with maximum temperature having a multiplier based on
the original EwE model of 1.0, the other fitted the observations on sandeel populations
of Englehard et al. (2008). In addition metabolic costs were reduced to 0.3 for adults
and 0.0 for juveniles (this latter figure reflects the seasonal production of juveniles
starting in the spring, and their migration from spawning grounds, so there will not
be juveniles in the area modelled but the population still needs to be modelled and
EwE allows only a fixed value for metabolic costs). The background mortality of the
zooplankton in ERSEM was reduced to a nominal value to take account of the fact that
most mortality would be due to predation which is accounted for in the EwE model.
Interestingly, the level of zooplankton predicted by the ERSEM model peaked at around
the value used to calibrate EwE. All of these changes represent a degree of bringing
the data to the model and compensating for known limitations of a single model by
dampening the damaging effects of assumptions in the underlying model (specifically
the low winter zooplankton in ERSEM). In the discussion we will suggest how this
compensation may be addressed in the future.

3 Results 3.1 One dimensional two way coupling between LTL and HTL. Here the
results from the application of Couplerlib to coupling the LTL and HTL models of the
North Sea are described. Results are produced separately but concurrently by the
EwE and GOTM-ERSEM parts of the model.

Within ERSEM, the dynamics of Zooplankton are constrained by the dynamics of 5
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phytoplankton groups, the most important of which are, diatoms flagellates and di-
noflagellates (fig 3a, 3b, 3c resulting LTL data before aggregation in EwE). Two years
of the 40 year run are examined in detail: 1970 and 1971.There is an annual dynamic,
with silicon dependent diatoms peaking in March – April and then being limited by Sil-
icon availability. The dynamics into the summer are then determined by the growth
first of flagellates and dinoflagellates that lead to the gradual reduction in the zooplank-
ton peak. The transition between a phytoplankton community dominated by diatoms
and one dominated by Dinoflagellates was observed in the North Sea EwE model cal-
ibration exercise (Mackinson & Daskalov 2007). However there is also considerable
annual variation and seasonal variation in diatom and dinoflagellate numbers during
the summer period.

In fig 3d the omnivorous zooplankton dynamics are indicated. Between 1970 and 1971
there is a considerable difference in the timing of the peak as a result of differences in
the diatom bloom. These differences are likely to have profound, though not completely
understood effects on recruitment on pelagic fish in the following year.

An examination of the effect on a number of functional groups is shown in fig. 4. Each
graph shows the changes in fish population numbers away from the calibrated levels at
the start of the simulation (based on the 1990 calibration data) as a result of coupling
to the LTL model, the transient effects of the coupling swamp the interannual variation
to be described later . A significant rebalancing between functional groups occurs as a
result of the introduction of the seasonal lower trophic levels. That the coupled model
should give different answers is not surprising, given that i) there is a switch from a
non-seasonal model to a seasonally driven one ii) the ERSEM model is calibrated for
a single point, the EwE model is for the whole North Sea iii) It has been shown that
for large models small changes in the growth of a single population can have drastic
consequences for the population of the North Sea (Rossberg 2013). Iv) Communities
are subject to periodic shifts in species within a guild e.g. Sardine and Anchovy cycles
(Chavez et al. 2003). Given these differences between the models we cannot expect
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a congruency between coupled and uncoupled models, nor can we predict the likely
population of a single species based on meteorological data alone, because it is hard
to estimate recruitment in a mixed species environment. Nevertheless a stable long-
term equilibrium may be found, as the trophic network with Ecosim readjusts. There
is a considerable rebalancing between pelagic groups, for example Herring numbers
decline (probably a result of the difficulties of modelling this migratory fish in a static
model with no space, no larval dynamics and limited seasonality). We believe that
with extensive reworking of the ERSEM and EwE models and extensive recalibration
we can produce a useful operating model to examine how changes in the physical
and lower trophic level environment may further affect the ecosystem balance between
multiple species.

3.2 Long Term Effects of Changes in the physical environment on Fish Biomass The
coupled model was run using synthesised weather data based on the IPCC climate
change scenarios A1B (which is a rapid global industrial growth scenario with a mix-
ture of fossil and non-fossil fuels resulting in around 3.2 degrees of warming) and B1
(with limited industrial growth and an emphasis on CO2 reduction resulting in 2.4 de-
grees of warming) (Nakicenovic et al. 2000). The nutrient scenario was either high
(representing the level of nutrients found in the eutrophic Southern North Sea) or low
(with half the levels of N, and P) (Table 2). The use of these scenarios reflects the time
frame over which this model development occurred but the nutrient levels are levels
chosen for sensitivity analysis and not agreed scenario estimates. The populations of
marine species affected by changes in the environment are grouped in seven blocks:
Microbes (plankton and bacteria), higher level invertebrates (shrimps, crabs, bivalves
etc.), small and medium pelagic fish (herring, mackerel, sand eels etc.), Demersal fish
(cod, haddock etc. but not flatfish), Flatfish (sole, plaice etc. excluding skates & rays),
sharks (including skate and rays) and a block containing marine mammals and birds.
The populations of those species relative to the current temperature and nutrient sce-
nario (baseline) in the four scenarios for temperature and nutrients are shown in fig.
5. It may be seen that the system is very much nutrient limited, especially in pelagic
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species (where there is a proportional relationship between nutrients and biomass).
In large benthic species and mammals the relationship is less than linear (i.e a 30%
reduction in biomass for a 50% reduction in nutrients). The effect of warming is rel-
atively small and greatest for pelagic species and higher trophic level predators such
as sharks, and negligible for the microbes. The reason for diminution of nutrient effect
at higher trophic level effect is that nutrients limit the microbial populations whilst in-
creased temperature increases rates of turnover of microbes and hence nutrients, and
that there is strong negative feedback on predated populations which are predated at
a higher rate when predator populations increase.

4 Discussion/conclusions

Whilst end to end modelling, from physics to ecosystem has been characterised as an
important procedure in developing an understanding of marine ecosystems, it is one
beset by numerous challenges, technical, scientific and organisational. Couplerlib is
designed to address some of the former, which include incompatibilities of system, lan-
guage, metadata descriptions and terminology, units, spatial and temporal scale, and
some of the deepest system problems such as incompatible methods of data storage.
In an ideal world we would design end to end modelling systems in a top-down co-
ordinated manner and the Atlantis model comes closest to this. In other cases some
of the technical incompatibilities can be overcome by translating whole models and
directly interfacing them to existing models. However heavy duty model refactoring is
expensive and can break the link between development teams working on the core
modelling solutions. Couplerlib is proposed as a more workable solution, whose main
strength is its ability to operate over different coupling strengths from direct coupling to
loose coupling via netCDF files. Its main advantage is that the links are made explicit
via metadata rather than programming, that simple reconciliation of groups and data
can be carried out and that it can work across languages and systems including across
networks.

The main disadvantages of couplerlib (and of the model coupling approach in general)

C2683

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/C2660/2015/gmdd-8-C2660-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/5577/2015/gmdd-8-5577-2015-discussion.html
http://www.geosci-model-dev-discuss.net/8/5577/2015/gmdd-8-5577-2015.pdf
http://creativecommons.org/licenses/by/3.0/


GMDD
8, C2660–C2698, 2015

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

are a complex install and that it still requires interface code to integrate into the models
to be coupled. The most difficult parts of this project , where getting the threading
interaction between the two models GOTM/ERSEM and EwE, which was a specialist
programming task involving waits and signalling between processes, which occurs in
the glue layer between couplerlib and the model code. This is a task that only has to be
done once for each modelling tool, so that the majority of model users would not have
to alter code. In a large multi-team project it is likely that the team will include coders
and ecological modelling specialist who can work in their specific domain.

The technical innovation of the coupling processes and the solutions to the ecological
problems that emerged has exposed both technical and ecological issues of reconciling
the two models, the key points of which are discussed below. In principle Couplerlib
is designed to handle coupling of any groups among models, but in this example only
the plankton groups are coupled. The reason for this lies in the effort/benefit ratio,
the argument being that plankton groups form the main energy conduits through which
environmental changes get translated in to changes in secondary productivity, and
poor correspondence between the benthic components of the two North Sea models
means a lot of effort would be spent for little marginal gain. Having the dynamics of the
benthic components in each model run separately is taken as providing a useful point
of comparison.

The example coupling, links a 1D LTL model calibrated using parameters from the
North Sea ‘Oyster Grounds’ with the HTL food web model whose parameters are spa-
tially averaged over the whole North Sea. This discrepancy is related to the more
strategic nature of EwE – long term changes in ecosystem composition versus the
more tactical nature of ERSEM – response to environmental transients. While the pa-
rameters used to represent each model differ to in their degree of spatial specificity, we
do not see this giving rise to conceptual or technical issues that cannot be reconciled.
First, the Oyster Grounds is a site close to the tidal mixing front that divides summer
stratified with the mixed region to the south. Although it simply cannot capture fully the
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diversity between a mixed site in the southern North Sea and a deep strongly stratified
location in the northern North Sea, it is nevertheless representative of the dynamics of
a large area of the central North Sea. Second, both models utilise many rate and state
parameters from a much a wider area of the North Sea or are indeed specified even
more generally. The internal consistency of each of the separate models might thus
imply that each could be considered as rather general representations of the North
Sea ecosystem. From a technical point of view, the practical arguments for coupling
these non-spatially resolved models are compelling; the coupling allowing proof of con-
cept on the technical methods and early identification of key ecological issues before
extending to spatially resolved models. We believe that the main issues have been
resolved and plans are in place to tackle coupling spatially resolved models, knowing
full well the new issues will emerge, such as capturing the dynamics of annual migra-
tions for some species. On the other hand running ERSEM as a spatial model and
aggregating over space would help scale up the model.

Plankton growth in ERSEM is regulated by four elements: carbon (C), whose produc-
tion depends on light and temperature, nitrogen (N), phosphorous (P) and silicon (Si).
With the particular parameterisation chosen for the Oyster ground model, it has been
seen that N is not generally limiting and that light, as expected, is only limiting during
the winter months, and that Si and P are more limiting in spring. However, since we
have fixed the total amount of these elements and the model is closed, these results
are a consequence of our particular choice of initial conditions rather than being a true
model ‘prediction’. The dynamics of silicon dynamics is more interesting. In partic-
ular diatoms, which are more ‘digestible’ by mesozooplankton, bloom in early spring
and then are replaced by the flagellates and dinoflagellates as the Si concentration
drops, a result consistent with Broekhuizen et al. (1995). The possible biological con-
sequences of this are discussed by Officer & Ryther (1980). One consequence of the
Si dependency of diatom production is that Si is only gradually accumulated as a result
of inflow from rivers and thus does not change much from one year to the next, so that
the total diatom production level is constant from one year to the next although timing
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of spring bloom will vary from year to year in relation to temperature and light. There
is apparent inter-annual variation between the timings of the growth of the different
phytoplankton peaks, the importance of which will depend on the ability of zooplank-
ton to incorporate biomass form the different phytoplankton groups. This single point
or average model cannot represent the inter-annual variation in phytoplankton bloom
location resulting from inter-annual variation in weather combined with ocean currents.
For example where plankton bloom location varies in space from year to year the effect
on the higher trophic level species will depend on the ability of that species to move
with the plankton bloom location.

Another issue is that of spatial pattern of biomass production across the whole of the
North Sea, which can vary considerably across time. For example, data used in a
meta-analysis by Broekhuizen et al. (1995) showed considerable variation in summer
peak omnivorous zooplankton numbers with populations off the Norway coast (Box 3
in their paper) having a peak between days 100 and 180, whilst populations off Den-
mark (Box 10) were low until after day 150 and stayed high between day 180 to 270
a late summer bloom. Overall the original ERSEM parameterisation placed too much
emphasis on the spring diatom bloom as a source of production and so gave a pattern
of productivity which did not lead to a stable ecosystem. The current parameterisa-
tion which peaks around day 180 gives a better estimate of mean mesozooplankton
biomass, even though the nutrient model which gives rise to it requires some refine-
ment to fit to observed levels.

There are a number of known divergences from observations for the ERSEM model:
for carnivorous zooplankton there is under prediction in winter and too great a rise in
spring (avoided by moving this group to EwE); and for microzooplankton there is an
over estimate of densities (although this may be as a result of errors in the observa-
tions) (Broekhuizen et al 1995). Modified EwE parameterisations have been made to
correct for these: reducing winter metabolism and setting consumption for herring to
be very low in winter and adjusting the maintenance cost of herring downwards, in or-
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der to prevent this underestimation leading to broader erroneous trophic effects, as a
result of erroneous herring deaths. In the long term improvements to the zooplankton
component of ERSEM may remove the need for some of these corrections. In the
short term these results raise a number of issues about the dynamics of planktivorous
species such as herring. Given the paucity of zooplankton during the winter months,
how do they manage to survive over winter? The answers seem to be multifaceted;
herring switch prey over the winter months (Blaxter & Hunter, 1982), herring are mi-
gratory and may move to extend the season of availability of food (Corten 2000) and
herring do seem to exist in a negative energy balance over winter leading to loss of
condition. All these aspects are of potentially great interest for researchers and should
be incorporated into future versions of the underlying models.

The timeframe of the constituent models is critical to their interoperability. This has
often been characterized in terms of timestep, but reality is much more complex than
that. GOTM is a model that makes use of very high resolution temporal data, to rep-
resent the effects of short term weather conditions and tides, at a temporal resolution
that is sub-hourly. The biological component of ERSEM can respond to these changes
in a matter of days because some of the functional groups, e.g. bacteria and diatoms
can respond over this timeframe. In the same way the Ecosim model has these com-
ponents with P/B ratios of 30 per year or more suggesting that the daily timeframe is
more appropriate for simulation than the default monthly timeframe. However Ecosim is
a model that relies on empirical calibration which is usually annual, although some at-
tempts have been made to make seasonal Ecosim models with quarterly recalibration
(Althauser 2003). In the current context it would seem that there is a need for seasonal
adjustment of parameter values (especially of P/B ratios, basal metabolic rate and star-
vation mortality). Data for this calibration are not generally available at high frequency,
however.

Differences in biomass and productivity between, often quite closely related species
vary considerably between the original North Sea Ecosim model and the coupled
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model. However both of these results are an encapsulation of a complex spatiotem-
poral dynamic because there are seasonal fluctuations in the abundance of many of
these species. To make a detailed predictive coupled model would require calibration
in time and space, to ascertain, for example the changes in diet composition which
occur in time and space. When seasonal variation in productivity is included (e.g. by
coupling models or adding in seasonal forcing), temporal calibration in Ecopath with
Ecosim requires consideration of seasonal effects on long-term equilibrium, and given
that Ecosim may have multiple equilibria, coupling may cause instability in equilibria in
some circumstances.

Does the short term behaviour matter when considering long-term environmental
change? In terms of the pelagic system the answer would seem very much to be
yes. Over-winter survival of everything from small pelagic fish to seabirds seems to
depend upon reserves built up in the previous season, and variation in survival and
recruitment is generally considered to be influenced by bottom-up constraints on feed-
ing. In the modelling exercise reported here it was found that overwinter survival often
depended on sufficiently rapid growth of plankton populations in spring when a fish’s
metabolism was increasing. It was necessary to ensure that the forcing functions used
to limit winter feeding were matched the timing of the spring bloom. Further software
development could enable this matching to be automatic. This development could be
used to model situations, such as the case of Moroccan sardine populations, where
timing between zooplankton peaks and conditions favourable for spawning influences
recruitment (Machuo et al 2009). We can use experimental plankton studies to make a
sensitive calibration of planktonic response to short term meteorological variation, but
our ability to explore the effect of climate change on the whole ecosystem, particularly
its higher trophic level components, and to predict typical weather in future years is
very limited.

The addition of a process oriented model such as GOTM-ERSEM to EwE may allow
us to express the relationships between the drivers of change and the consequences.
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However, the relative insensitivity of EwE to short term perturbations begs a number
of questions as to its suitability in studies on the likely consequences of climate pertur-
bations to the ecosystem. Firstly the fixed seasonality of Ecosim may not adequately
represent the results of shifts in the timing of variable onset events such as plankton
blooms, but could be incorporated by adding a run time updated forcing function to the
feeding via a plugin within Ecosim. Secondly Ecosim is limited in its ability to represent
the effect of environmental variation on transient stages of the life cycle of marine or-
ganism such as the pelagic larvae of fish and benthic invertebrates. This is because of
the lack of a model of short term drivers, and components for body condition, and the
calibration of the multi-stanza model based on a Von Bertalanfy growth curve which is
based on the growth curve of sharks and does not represent larval stages well (Urban
2002). The North Sea model calibration, consequently, pays little attention to these
stages. Recognising such limitations, we are however faced with a practical dilemma;
the need for data and modelling tools that help address the pressing research question
about how ecosystem respond to change, and the implications for management. The
pragmatic route must be to use the modelling capability we have and use it to help
learn how to do better in the future.

Alongside the issue of time is that of space. For some parameter values there were
times of the year when either prey or predators became severely depleted because
of availability of prey, but in reality the patchiness of and interconnectedness of areas
with different prey levels would lead to rapid recolonisation of the area by new preda-
tors and prey. An example of spatiotemporal local severe depletion was that of the Bay
of Biscay anchovy in 2005 (Borja et al. 2008). To address this, an Ecospace model
(the spatial equivalent of Ecosim) can be linked to the ERSEM model within GETM,
the spatialized version of GOTM; this will allow us to model the temporal shift of marine
organisms in response to the spatiotemporal dynamics of both marine plankton and
fishing pressure. However, spatial biogeochemical models require considerable com-
putational resources to run in most practical situations (typically of the order of a week
or more time on a cluster for a 100 year run). The single column GOTM-ERSEM model
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requires about 90 seconds per year to run on an Intel i5 processor, and combined with
the integrated front end, makes it much more suitable for exploratory parameterisation,
teaching and prototyping than the larger models. The Ecosim model takes under 1
second per year to run, it has a timestep of 1 day rather than 10 minutes and has only
a single depth layer so that it is calculating less than 1/1000 of the number of time and
space elements and Couplerlib is a small proportion of the ecosim total (less than 10%)
so is a trivial addition. However it is less suited to the situation where biological compo-
nent models such as BFM are being called every short timestep across the managed
interface. In this case a more direct coupling method such as FABM (Bruggeman &
Bolding 2014) is more suitable, though this will not work across languages and sys-
tems in the same way Couplerlib does. Couplerlib can still be used for initial metadata
validation, however.

In the realm of biogeochemical modelling there are a number of different models (e.g.
Nemo-PISCES (Aumont et al. 2003, Madec et al. 1991, ECOSMO (Schrum et al.
2006), Ecoham (Pätsch and Kühn 2008)) which model the dynamics of plankton in
response to changes in the physical environment mediated by physical oceanography.
The differences between the model stem from the number of plankton groups and the
treatment of the benthos. However the treatment of the environment as a three di-
mensional grid lends itself to a common interface with Ecosim and Ecospace (its 2
dimensional equivalent) though a specification of Couplerlib with 2 dimensional data
elements and appropriate metadata specification. Ultimately, however the choice of
modelling system will depend on the kind of data available and the parameters col-
lected, because model parameterisation is a time consuming and costly part of any
modelling process. The choice of ERSEM for both 1 dimensional and 3 dimensional
modelling is as a result of the use of this model for the North Sea area being examined.

There is considerable debate about whether the components of end to end models
should be simple or complicated. Very often we are faced with models and sub mod-
els that are both over complicated, in the sense that they contain too many param-
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eters and components (Fulton et al. 2003) and over simplistic in that they contain
what can certainly be described as simplifying formulations and may even be seen as
dysfunctional formulations (Anderson & Mitra 2009). This sterility of this debate has
been acknowledged in a number of forums (e.g. the WGIPEM ICES working group
http://www.ices.dk/community/groups/Pages/WGIPEM.aspx ) along with the general
conclusion dating back to William of Occam that things should be as complicated as
necessary but no more so. What are needed therefore, are not so much simple models
as simple conclusions that are likely to be robust to uncertain small scale and detailed
assumptions and limitations in model formulation. We are a long way off capturing all
the physical, biological and human conditions that will enable us to predict the cod in
the North Sea in 50 years’ time, but we at least are starting to have the tools that enable
us to integrate important scientific findings within a whole ecosystem context.

In conclusion, linking two very different models has produced a system which is richly
expressive of the kinds of interactions of the different functional groups that form
pelagic ecosystems and the causes of dynamics, including temperature, nutrient ratios
and biological components of the system. It is not at this stage very precise (Levins,
1966) because it models a spatial area as a single point in space and because of a
number of known limitations not just of the underlying ERSEM and EwE models, but
also of spatiotemporal variability of marine data. Nevertheless the linked model rep-
resents a considerable advance on verbal arguments because it can demonstrate the
likely relative magnitude of these effects in a wider context of nutrient dynamics and
marine fisheries management.
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Appendix A Source files and availability Source files within this project have been in-
cluded as follows: The source files for the standard C++ interface to Couplerlib. The
source files for the Managed interface to Couplerlib which act as a wrapper when called
from managed code other than C/ C++ (especially Visual Basic from EwE). The Source
files for the interface between Couplerlib and EwE. The xml dictionary, and xml spec-
ification files for the GOTM/ ERSEM andEwE models Parameter namelists for GOTM
and ERSEM.

In addition to this the model will require a complete implementation of the GOTM,
ERSEM and EwE models, and third party libraries for netCDF reading, a complete
Python interpreter (2.5 to 2.7) with Numpy, Matplotlib and PyQt4 together with driving
data for GOTM (meteorological data etc.) and the Access database of the relevant
EwE model. This material can be supplied on request but the kind of support needed
to commission any non-trivial implementation of an end to end model is likely to require
considerable time and resources which can best be provided by third party support.
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