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R.M. Iverson review comments on “DebrisInterMixing-2.3: a finite volume solver for three 
dimensional debris flow simulations based on a single calibration parameter – part 1:  
model description”  by A. von Boetticher , J.M. Turowski, B.W. McArdell, D. Rickenmann, 
and J.W. Kirchner 

 

SUMMARY REMARKS 

 As a preface to my comments I will disclose that I reviewed this paper because I was 
asked to review its companion paper (part 2: model validation).  I felt that it was necessary to 
have a firm understanding of the first paper (part 1: model description) in order to understand the 
second.  Consequently, I decided to review paper 1 as well as paper 2.  However, after reading 
paper 1, I still lack a firm understanding of the authors’ model. The paper provides an 
unsatisfying “model description” because it presents neither derivations of the model equations 
nor much in the way of data to support them.  Instead, it presents a brief summary of the 
equations and a qualitative description of the computational strategy used to solve the equations. 
It would be more satisfying to see a precise derivation of the model equations as well as 
illustrations of how they’re constrained by data.  As it stands, the paper leaves much room for 
doubt about how the model actually works.  My comments below elaborate this view.  

 

COMMENTS ON MODEL EQUATIONS’ INCONSISTENCIES  

I’m perplexed by several mathematical attributes of the model.  Parts of it appear to be internally 
inconsistent.  

The text characterizes the model as “multiphase,” and the forms of equations (13) through (16) 
do indeed imply that the concentrations of different mixture constituents can evolve during 
transport.  (Evolution of constituents’ concentrations is a central feature of the continuum theory 
of multiphase mixtures.)   Yet elsewhere in the text and equations, the velocities of all 
constituents are treated as identical, and dispersion of constituents by diffusion or other means is 
explicitly neglected.  Thus, I can find no evidence of any physical process that would allow the 
concentrations of different constituents to evolve.  As a result, it appears that the model is not 
really a multiphase mixture model but is instead a one-phase model that calculates the behavior 
of a fluid with an evolving free upper surface but with a fixed composition and complex 
rheology described by equations (1) through (9).   The authors should either clarify or refute this 
key point.  (I will also mention that a 50-year history exists of using complex, nonlinear 
rheological models to simulate the behavior of single-phase debris flows.  Much of the research 
community has abandoned such models in favor of mixture models that simulate interactions of 
solid and fluid phases with evolving concentrations.) 
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If the authors’ model somehow does allow for differential advection of constituents with 
different densities, then this advection prohibits the use of a single momentum-conservation 
equation for the mixture as a whole (i.e., the authors’ equation (10)).   (One cannot calculate the 
evolving momentum of a multiphase mixture by simply summing the momenta of the phases, 
because the nonlinear advective acceleration terms in the momentum-conservation equations for 
each phase do not sum to yield the advective acceleration of a mixture whose density is the 
concentration-weighted sum of the densities of the constituents.  See, for example, Iverson, “The 
physics of debris flows,” Reviews of Geophysics, 1997).  Additionally, equation (10) includes no 
gravitational body force.  Isn’t such a force necessary to drive debris-flow motion?  

 

COMMENTS ON THE RHEOLOCIAL MODEL 

  Assuming that the authors’ model is, indeed., a one-phase model that calculates the 
behavior of a homogeneous, constant-density fluid with a complex rheology described by 
equations (1) through (9), then issues exist concerning how the rheological model is presented.  
First and foremost, the complete rheological model should be written in an explicit form that 
shows how all components of the amalgamated mixture stress tensor are related to those of the 
mixture rate-of-deformation tensor.  At present the rheological model is presented piecemeal, 
and several of the pieces have issues.  

 For example, why is equation (1) presented as a scalar equation?  Isn’t a frame-invariant 
vector-tensor form of the equation required in order to apply it in 3-D computations?  The 
information provided by the authors is insufficient for me to try to guess how they’ve 
implemented equation (1) in 3-D.  Thirty years ago I addressed a similar 3-D rheology problem 
involving nonlinear, pressure-dependent viscoplasticity (Iverson, “A constitutive equation for 
mass-movement behavior”, J. Geology, 1985).  I subsequently abandoned that approach as 
suitable for describing the behavior of debris flows and landslides, but the approach highlighted 
some issues concerning material frame invariance, which the authors do not address.  

 Some equations that are presented in vector-tensor form by the authors also have issues. 
For example, consider equation (6), 

T I 2 Ds sp ν= − +  , 

in which Ts is defined as the Cauchy stress tensor, p as the normalized pressure, I as the identity 
tensor, sν  as the kinematic viscosity, and D as the rate-of -deformation tensor.  (To discover the 
definition of the “normalized” pressure, which is not provided by the authors, I had to consult the 
paper by Domnik and Pudasaini, 2012.  That paper defines normalized pressure as pressure 
divided by density.)  With these definitions in hand, equation (6) is dimensionally 
inhomogeneous and consequently invalid.   (The inhomogeneity follows immediately from the 
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fact that Ts has dimensions of M/LT2, p has dimensions of L2/T2, sν has dimensions of L2/T, and 
D has dimensions of 1/T.)  It appears that what the authors intended was for Ts also to be 
“normalized” by dividing it by the density, but their paper mentions neither this definition nor 
the formal definition of p.  Instead, as a reader, I’ve had to decipher the authors’ intent through 
my own detective work.   

 Another issue with equation (6) is that Ts must be a stress deviator tensor, and not the full 
“normalized” Cauchy stress tensor.  This distinction is evident from the fact that the isotropic 
stress component pI has been isolated from Ts.  With this interpretation, equation (6) is precisely 
the standard constitutive equation for an incompressible Newtonian fluid with a rate- and state-
dependent kinematic viscosity, which is defined in equation (9).  It would be helpful for the 
authors to explain, in physical terms, why they believe that stresses within a deforming granular 
material can be accurately modeled using this approach.  A comparison with data would be 
especially helpful.  (Merely citing precedents of usage in other papers places the burden of 
seeking an explanation on the shoulders of readers, which is unfair.  In scientific literature, the 
burden of explanation should be borne by authors, not by readers.)   

 Another mathematical issue appears in equations (7) and (9).  Those equations employ 
the function exp( D )ym− , where ym  is a pure number that the authors set equal to 2, and 

2 1/2D [2 tr(D )]=  is a norm of the deformation-rate tensor.  The authors fail to clarify why this 

particular norm provides an appropriate gauge of the magnitude of the tensor (as other scalar 
norms and tensor invariants of D also exist), but in any case the physical dimensions of D are 

the same as those of D, and are equal to 1/T.  This constraint indicates that exp( D )ym− is an 

invalid mathematical operation, because mathematical functions can operate only on pure 
numbers, and not on quantities with physical dimensions.   (As an aside, a rate-of-deformation 
tensor is not the same as a “strain rate” tensor, yet the authors use the terms interchangeably 
when referring to D.  See the classic continuum mechanics text by L.E. Malvern for a detailed 
clarification of this point.)  

 

OTHER COMMENTS KEYED TO PAGE NUMBERS  

On p. 6352 the authors note that they employ linear averaging of concentration-weighted phase 
viscosities in order to obtain an effective viscosity for the mixture.  It would be helpful to see a 
formal mathematical demonstration of this averaging procedure that includes all components of 
the 3-D stress tensor. 

On p. 6359 the authors advocate use of 3-D rather than depth-averaged models on the basis of 
improved fits to data from dam-break experiments.   However, few if any natural debris flows 
begin with dam breaks that impose large instantaneous force imbalances.  Instead, debris flows 
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generally arise from small perturbations to statically balanced initial states.  This observation 
motivates a key question:  how does the authors’ model compute the initial stages of motion of a 
debris flow triggered by a small stress-state perturbation such as a pore-water pressure 
perturbation?  Because their model takes no account of solid-fluid drag, it may be incapable of 
representing this effect.  Yet this type of scenario is far more prevalent in nature than is a sudden 
dam break.  

On pages 6365-6367 the Discussion section begins with a literature review rather than a 
discussion of the authors’ results.   It then transitions to a brief description of findings from some 
test computations.  Neither of these topics is addressed thoroughly, and neither really constitutes 
“discussion” material, in my view.  Generally a discussion section follows a presentation of 
results, but the authors’ paper lacks a “results” section.   

On p. 6368 the Conclusions section states that, “… we have developed a debris flow model 
whose parameters can be estimated directly from the site geometry and material composition, 
rather than from extensive calibration.”  This is a strong statement that is not supported by the 
evidence presented in the paper.   


