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Abstract

It is the purpose of this paper to document the NCAR global model topography generation
software for unstructured grids (NCAR_Topo (v1.0)). Given a model grid, the software com-
putes the fraction of the grid box covered by land, the gridbox mean elevation (deviation
from a geoid that defines nominal sea level surface), and associated sub-grid scale vari-
ances commonly used for gravity wave and turbulent mountain stress parameterizations.
The software supports regular latitude-longitude grids as well as unstructured grids; e.g.
icosahedral, Voronoi, cubed-sphere and variable resolution grids.

1 Introduction

Accurate representation of the impact of topography on atmospheric flow is crucial for Earth
system modeling. For example, the hydrological cycle is closely linked to topography and,
on the planetary scale, waves associated with the mid-latitude jets are very susceptible to
the effective drag caused by mountains (e.g., Lott, 1999). Despite the fact that surface
elevation is known globally with a high level of precision, the representation of its impact on
atmospheric flow in numerical models remains a challenge.

When performing a spectral analysis of high resolution elevation data (e.g., black line
in Fig. 1), it is clear that Earth’s topography decreases quite slowly with increasing wave
number (see also Balmino, 1993; Uhrner, 2001; Gagnon et al., 2006). Consequently, at
any practical model resolution there will always be a non-negligible spectral component of
topography present near the grid scale and there will always be a non-negligible spectral
component of topography below the grid-scale (sub-grid-scale component). The resolved
scale component is the mean elevation in each grid box h (deviation from a geoid that de-
fines nominal sea level surface), or, equivalently (if gravity is assumed constant), the surface
geopotential Φs. For models using terrain-following coordinates it is common practice not
to force the highest wave numbers directly in the model to alleviate obvious spurious noise
(e.g. Navarra et al., 1994; Lander and Hoskins, 1997). Hence, for that class of models,
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Φs is usually smoothed. Figure 1 shows the power spectrum for surface elevation for differ-
ent levels of smoothing of topography in the NCAR-DOE CESM (Community Earth System
Model) CAM (Community Atmosphere Model; Neale et al., 2010) SE (Spectral Element;
Thomas and Loft, 2005; Dennis et al., 2005) and CAM-FV (Finite-Volume; Lin, 2004). Fig-
ure 2 shows the associated elevations for a cross section through the Andes mountains.
The amount of smoothing necessary is intrinsically linked to the numerical methods and
discretization choices in the dynamical core. Further discussion on Φs smoothing is given
in Sect. 2.2.3.

The component of topography that can not be represented by Φs is referred to as sub-
grid-scale topography. Sub-grid-scale processes may be sub-grid flow blocking, flow split-
ting, sheltering effects, generation of turbulence by roughness and gravity wave breaking
(e.g., Bougeault et al., 1990). These processes can have an important impact on the re-
solved scale flow. Global models usually have a parameterization for gravity wave drag
(GWD) (e.g., Eckermann and Chun, 2003) and turbulent effects referred to as turbulent
mountain stress (TMS). An increasing number of models also have a low-level blocking
parameterization (e.g., Lott and Miller, 1997; Webster et al., 2003; Zadra et al., 2003; Kim
and Doyle, 2005; Scinocca and McFarlane, 2000) and incorporate the effects of sub-grid-
scale topographic anisotropy (i.e. the existence of ridges with dominant orientations used
to determine the direction and magnitude of the drag exerted by sub-grid topography). The
importance of anisotropy in quantifying topographic effects has been recognized for some
time (e.g., Baines and Palmer, 1990; Bacmeister, 1993).

According to linear theory gravity waves can propagate in the vertical only when their in-
trinsic frequency is lower than the the Brunt–Väisälä frequency N (e.g., Durran, 2003). For
orographically-forced gravity waves the intrinsic frequency is set by the obstacle horizontal
scale and the wind speed. When obstacle scales are too small to generate propagating
waves we expect drag to be produced by unstratified turbulent flow, a process which is typ-
ically parameterized in models’ TMS schemes. For larger obstacles we expect both drag
and vertically-propagating waves to result, processes which are dealt by GWD schemes.
Unfortunately the scale separating TMS and GWD processes is flow dependent. For typical
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midlatitude values of low-level wind (10 m s−1) and N (10−2s−1) waves with wavelengths
less than around 6000 m will not propagate in the vertical. A separation scale of 5000 m has
been used by ECMWF (1997); Beljaars et al. (2004). Here we will generate two sub-grid-
scale variables derived from the topography data: The variance of topography below the
6000 m scale (referred to as Var(TMS)) and the variance of topography with a scale longer
than 6000 m and less than the grid scale (referred to as Var(GWD)).

It is the purpose of this paper to document a software package (NCAR_Topo (v1.0)) that,
given a “raw” high resolution global elevation dataset, maps elevations data to any unstruc-
tured global grid and separates the scales needed for TMS and GWD parameterizations.
This separation of scales is done through an intermediate mapping of the raw elevation
data to a 3000 m cubed-sphere grid (Λ→A) before mapping fields to the target model grid
(A→ Ω) as schematically shown on Fig. 3. This two-step process is described in Sect. 2.2
after a mathematical definition of the scale-separation (Sect. 2.1). In Sect. 2.2.3 we briefly
discuss Φs smoothing (if applicable). Output from the topography software is shown and
discussed in Sect. 3.

2 Method

2.1 Continuous: separation of scales

The separation of scales is, in continuous space, conveniently introduced using spherical
harmonics. Assume that elevation (above sea level) is a smooth continuous function in
which case it can be represented by a convergent expansion of spherical harmonic func-
tions of the form

h(λ,θ) =
∞∑

m=−∞

∞∑
n=|m|

ψm,nYm,n(λ,θ), (1)
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(e.g., Durran, 2010) where λ and θ are longitude and latitude, respectively, ψm,n are the
spherical harmonic coefficients. Each spherical harmonic function is given in terms of the
associated Legendre polynomial Pm,n(θ):

Ym,n = Pm,n(θ)eimλ (2)

where m is the zonal wave number and m− |n| is the number of zeros between the poles
and can therefore be interpreted as meridional wave number.

For the separation of scales the spherical harmonic expansion is truncated at wave num-
ber M

h(M)(λ,θ) =
M∑

m=−M

M∑
n=|m|

ψ(M)
m,nYm,n(λ,θ), (3)

where a triangular truncation, which provides a uniform spatial resolution over the entire
sphere, is used.

Let h(tgt)(λ,θ) be a continuous representation of the elevation containing the spatial
scales of the target grid. We do not write h(tgt)(λ,θ) explicitly in terms of spherical har-
monics as the target grid may be variable resolution and therefore contains different spatial
scales in different parts of the domain.

For each target grid cell Ωk, k = 1, ..,Nt, where Nt is the number of target grid cells,
define the variances

Var(tms)
Ωk

=

∫∫
Ωk

[
h(M)(λ,θ)−h(λ,θ)

]2
cos(θ)dλdθ, (4)

Var(gwd)
Ωk

=

∫∫
Ωk

[
h(tgt)(λ,θ)−h(M)(λ,θ)

]2
cos(θ)dλdθ. (5)

So Var(tms)
Ωk

is the variance of elevation on scales below wave number M and Var(gwd)
Ωk

is
the variance of elevation on scales larger than wave number M and below the target grid
scale.
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2.2 Discrete: separation of scales

The separation of scales is done through the use of a quasi-isotropic gnonomic cubed-
sphere grid in a two-step regridding procedure: binning from source grid Λ to intermediate
grid A (separation of scales) and then rigorously remap variables to the target grid Ω.

Any quasi-uniform spherical grid could, in theory, be used for the separation of scales
or, given the discontinuous/fractal nature of topography, a more rigorous scale separation
method such as wavelets or other techniques could have been used. It is noted that the
separation of scales through an intermediate grid does not correspond exactly to a spectral
transform truncation (used in the previous section). The intent is to approximately eliminate
scales below what can be resolved on the intermediate grid. For reasons that will become
clear we have chosen to use a gnomonic cubed-sphere grid (see Fig. 3) resulting from an
equi-angular gnomonic (central) projection

x= r tanα and y = r tanβ; α,β ∈
[
−π

4
,
π

4

]
, (6)

(Ronchi et al., 1996) where α and β are central angles in each coordinate direction,
r =R/

√
3 and R is the radius of the Earth. A point on the sphere is identified with the

three-element vector (x,y,ν), where ν is the panel index. Hence the physical domain S
(sphere) is represented by the gnomonic (central) projection of the cubed-sphere faces,
Ω(ν) = [−1,1]2, ν = 1,2, . . . ,6, and the non-overlapping panel domains Ω(ν) span the entire
sphere: S =

⋃6
ν=1 Ω(ν). The cube edges, however, are discontinuous. Note that any straight

line on the gnomonic projection (x,y,ν) corresponds to a great-circle arc on the sphere. In
the discretized scheme we let the number of cells along a coordinate axis be Nc so that
the total number of cells in the global domain is 6×N2

c . The grid lines are separated by the
same angle ∆α = ∆β = π

2Nc
in each coordinate direction.

For notational simplicity the cubed-sphere cells are identified with one index i and the
relationship between i and (icube,jcube,ν) is given by

i= icube + (jcube− 1)Nc + (ν− 1)N2
c , (7)
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where (icube,jcube)∈ [1, ..,Nc]2 and ν ∈ [1,2, ..,6]. In terms of central angles (α,β) the
cubed-sphere grid cell i is defined as

Ai = [(icube− 1)∆α− π
4
, icube∆α− π

4
]

× [(jcube− 1)∆β− π
4
, jcube∆β− π

4
], (8)

and ∆Ai denotes the associated spherical area. A formula for the spherical area ∆Ai of
a grid cell on the gnomonic cubed-sphere grid can be found in Appendix C of Lauritzen
and Nair (2008) (note that Eq. C3 is missing arccos on the right-hand side). A quasi-uniform
approximately 3000 m resolution is obtained by using Nc = 3000 which results in a scale
separation of roughly 6000 m (based on a simple ‘2∆x assumption’). For more details on
the construction of the gnomonic grid see, e.g., Lauritzen et al. (2010).

2.2.1 Step 1: raw elevation data to intermediate cubed-sphere grid (Λ → A)

The raw elevation data is provided on a geoid such as the World Geodetic System 1984
(WGS84) ellipsoid whose center is located at the Earth’s center. Latitude and longitude
locations use the WGS84 geodetic datum. Similarly elevation above sea-level is defined as
the deviation from the WGS84 geoid or WGM96 (Earth Geopotential Model 1996) geoid for
newer datasets. Global weather/climate models typically assume that Earth is a sphere so
the elevations at a certain latitude-longitude pair on the geoid are taken to be the same on
the sphere. The consequences of this approximation in the context of limited area models
is discussed in Monaghan et al. (2013) and in the context of shallow-water experiments
in Bénard (2015). Derivation of the equations of motion in more accurate coordinates is
starting to emerge in the literature (e.g., White et al., 2008; Gates, 2004; Staniforth and
White, 2015).

The “raw” elevation data is usually from a digital elevation model (DEM) such as the
GTOPO30; a 30 arc second global dataset from the United States Geological Survey
(USGS; Gesch and Larson, 1998) defined on an approximately 1 km regular latitude-
longitude grid. Several newer, more accurate, and locally higher resolution elevation
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datasets are available such as GMTED2010 (Global Multi-Resolution Terrain Elevation Data
2010, Danielson and Gesch, 2011), GLOBE (GLOBE Task Team and others, 1999) and the
NASA Shuttle Radar Topographic Mission (SRTM) DEM data (Farr et al., 2007). The SRTM
data, however, is only near-global (up to 60◦ North and South). Here we use GTOPO30 and
GMTED2010. The GTOPO30 data comes in 33 tiles (separate files) in 16-bit binary format.
Fortran code is provided to convert the data into one NetCDF file. Even though the elevation
is stored as integers the size of the NetCDF file is 7 GB. The GTOPO file contains height h
and landfraction LANDFRAC (for the mathematical operations below we use f to refer to
land fraction). The GMTED2010 data does not contain LANDFRAC so the landfraction is
obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) 1km Land/Water
Mask data downloaded from ftp://landsc1.nascom.nasa.gov/pub/outgoing/c6_dem/.

The center of the regular latitude-longitude grid cells for the “raw” topographic data are
denoted (λilon,θjlat), ilon = 1, ...,nlon, jlat = 1, ...,nlat. For the datasets used here nlon =
43200 and nlat = 21600. As for the cubed-sphere we use one index j to reference the grid
cells

j = ilon + (jlat− 1)×nlon, j ∈ [1, ...,Nr], (9)

where Nr = nlon×nlat. The spherical area of grid cell Λj is denoted ∆Λj and the average
elevation in cell j is given by h(raw)

Λj
.

This data is binned to the cubed-sphere intermediate grid by identifying in which
gnomonic cubed-sphere grid cell (λilon,θjlat) is located. Due to the “Cartesian”-like struc-
ture of the cubed-sphere grid the search algorithm is straight forward (following Nair et al.,
2005):

– transform (λilon,θilat) coordinate to Cartesian coordinates (x,y,z):

x = cos(λilon) cos(θjlat),

y = sin(λilon) cos(θjlat),

z = sin(θilat).

8
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– locate which cubed-sphere panel (λilon,θilat) is located on through a “coordinate max-
imality” algorithm, i.e. let

pm = max(|x|, |y|, |z|) , (10)

then if

– pm = |x| and x > 0 then (λilon,θilat) is on ν = 1.
– pm = |y| and y > 0 then (λilon,θilat) is on ν = 2.
– pm = |x| and x < 0 then (λilon,θilat) is on ν = 3.
– pm = |y| and y < 0 then (λilon,θilat) is on ν = 4.
– pm = |z| and z ≤ 0 then (λilon,θilat) is located on the bottom panel, ν = 5.
– pm = |z| and z > 0 then (λilon,θilat) is located on the top panel, ν = 6.

– Given the panel number the associated central angles (α,β) are given by:

– ν = 1: (α,β) =
[
arctan

(
x
z

)
,arctan

(y
z

)]
.

– ν = 2: (α,β) =
[
arctan

(
−x
y

)
,arctan

(
z
y

)]
.

– ν = 3: (α,β) =
[
arctan

(
−y
−x

)
,arctan

(
y
−x

)]
.

– ν = 4: (α,β) =
[
arctan

(
x
−y

)
,arctan

(
z
−y

)]
.

– ν = 5: (α,β) =
[
arctan

(
y
−z

)
,arctan

(
x
−z

)]
.

– ν = 6: (α,β) =
[
arctan

(y
z

)
,arctan

(−x
z

)]
.

– the indices of the cubed-sphere cell in which the center of the latitude-longitude grid
cell is located is given by

icube = CEILING

(
α+ π

4

∆α

)
, (11)

jcube = CEILING

(
β+ π

4

∆β

)
, (12)
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where the CEILING(·) function returns the smallest integer not less than the argu-
ment.

The set of indices for which center points of regular latitude-longitude grid cells are located
in gnomonic cubed-sphere cellAi is denoted Si. Note that since the raw datasets are higher
resolution that the cubed-sphere Si is guaranteed to be non-empty. Through this binning
process the approximate average elevation in cubed-sphere cell i becomes

h
(cube)
Ai

=
1

∆Ai

∑
j∈Si

h
(raw)
Γj

∆Λj . (13)

When h
(cube)
Ai

is known we can compute the sub-grid variance on the intermediate cubed-
sphere grid A:

Var
(tms)
Ai

=
1

∆Ai

∑
j∈Si

(
h

(cube)
Ai

−h(raw)
Γj

)2
∆Λj . (14)

The land fraction is also binned to the intermediate cubed-sphere grid

f
(cube)
Ai

=
1

∆Ai

∑
j∈Si

f
(raw)
Γj

∆Λj . (15)

To remain consistent with previous GTOPO30-based topography generation software for
CAM, all landfractions South of 79◦ S are set to one for topography data based on
GTOPO30 which effectively extends the land for the Ross Ice shelf. There are 8 types of
masks in the MODIS data: shallow ocean, land, shoreline, shallow inland water, ephemeral
water, deep inland water, moderate ocean, and deep ocean. Here we set all masks to 0
except land, shoreline and ephemeral water which are set to 1. For topography data based
on MODIS no further alternations are made to the landfraction.

The binning process is straight forward since the cubed-sphere grid is essentially an
equidistant Cartesian grid on each panel in terms of the central angle coordinates. This step

10
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could be replaced by rigorous remapping in terms of overlap areas between the regular
latitude-longitude grid and the cubed-sphere grid using the geometrically exact algorithm
of (Ullrich et al., 2009) optimized for the regular latitude-longitude and gnomonic cubed-
sphere grid pair or the more general remapping algorithms such as SCRIP (Jones, 1999)
and Kritsikis et al. (2015).

2.2.2 Step 2: cubed-sphere grid to target grid (A → Ω)

The cell averaged values of elevation and sub-grid-scale variances (Var(tms)
Ω and Var(gwd)

Ω )
on the target grid are computed by rigorously remapping the variables from the cubed-
sphere grid to the target grid. As for Step 1 of the algorithm, several methods could be used
such as SCRIP and Kritsikis et al. (2015). The latter has the advantage of more accurately
representing both small and great circle arc sides of the control volumes whereas SCRIP
approximates cells sides in latitude-longitude space. Here the remapping is performed using
CSLAM (Conservative Semi-LAgrangian Multi-tracer transport scheme) technology (Lau-
ritzen et al., 2010) that approximates the cell sides with great-circle arcs. That said, the
algorithm can still operate on grids where the control volumes do not consist of great-circle
arcs, such as regular latitude-longitude grids where the control volume sides parallel with
latitudes are small circle arcs, but there will be an additional truncation error in the geo-
metric approximation to the control volumes. It is possible to use large parts of the CSLAM
technology since the source grid is a gnomonic cubed-sphere grid hence instead of remap-
ping between the gnomonic cubed-sphere grid and a deformed Lagrangian grid, as done in
CSLAM transport, the remapping is from the gnomonic cubed-sphere grid to any target grid
constructed from great-circle arcs (the target grid “plays the role” of the Lagrangian grid).
However, a couple of modifications were made to the CSLAM search algorithm. First of all,
the target grid cells can have an arbitrary number of vertices whereas the CSLAM transport
search algorithm assumes that the target grid consists of quadrilaterals and the number of
overlap areas are determined by the deformation of the transporting velocity field. In the
case of the remapping needed in this application the target grid consists of polygons with
any number of vertices and the search is not constrained by the physical relation between

11
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regular and deformed upstream quadrilaterals. Secondly, the CSLAM search algorithm for
transport assumes that the target grid cells are convex which is not necessarily the case for
target grids. The CSLAM search algorithm has been modified to support non-convex cells
that are, for example, encountered in variable resolution CAM-SE (see Fig. 4); essentially
that means that any target grid cell may cross a gnonomic isoline (source grid line) more
than twice.

Let the target grid consist of Nt grid cells Ωk, k = 1, ...,Nt with associated spherical
area ∆Ωk. The search algorithm for CSLAM is used to identify overlap areas between the
target grid cell Ωk and the cubed-sphere grid cells A`, `= 1, ..,Nc. Denote the overlap area
between Ωk and A`

Ωk` = Ωk ∩A`, (16)

(see Fig. 5) and let Lk denote the set of indices for which Ωk∩A`, `= 1, ..,Nc, is non-empty.
Note that the computation of overlap areas Ωk` is facilitated by the ‘Cartesian’ layout of

the equi-angular cubed-sphere grid in computational space. The target grid vertex loca-
tions within the cubed-sphere source grid are computed by first locating which panel the
vertices are on (using the “coordinate maximality” algorithm Eq. 10) and their locations
thereafter trivially result when the vertex coordinates are converted into the particular pan-
els equi-angular coordinates (Eqs. 11 and 12). The overlap areas are computed by finding
intersection between the (x,y) gnomonic isolines (‘Cartesian’ layout) and the target grid cell
sides. Since topographic variables are computed just once for each horizontal grid resolu-
tion computational performance is less critical. On a standard laptop even high resolution
(e.g., 25km) grid overlaps are computed on the order of minutes irrespective of the target
grid topology (Voronoi, cubed-sphere, etc.).

The average elevation and variance used for TMS in target grid cell k are given by

h
(tgt,raw)
Ωk

=
1

∆Ωk

∑
`∈Lk

h
(cube)
A`

∆Ωk`, (17)

Var
(tms)
Ωk

=
1

∆Ωk

∑
`∈Lk

Var
(tms)
Ω`

∆Ωk`, (18)

12
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respectively. The variance of the cubed-sphere data h
(cube)

with respect to the target grid
cell average values h

(tgt,raw)
is given by

V ar
(gwd,raw)
Ωk

=
1

∆Ωk

∑
`∈Lk

(
h

(tgt,raw)
Ωk

−h(cube)
A`

)2
∆Ωk`, (19)

The appended superscript raw in h
(tgt,raw)

and Var
(gwd,raw)

refers to the fact that the eleva-
tion and GWD variance is based on unsmoothed elevation. As mentioned in the introduction
the elevation (for models based on terrain-following coordinates) is usually smoothed i.e. the
highest wave numbers are removed. This smoothed elevation is denoted

h
(tgt,smooth)

. (20)

After smoothing the target grid elevation, the sub-grid scale variance for GWD could be
recomputed as the smoothing operation will add energy to the smallest wave lengths:

Var
(gwd,smooth)
Ωk

=
1

∆Ωk

∑
`∈Lk

(
h

(tgt,smooth)
Ωk

−h(cube)
A`

)2
∆Ωk`. (21)

See discussion on the difference between using Var
(gwd,raw)

or h
(tgt,smooth)

in Sect. 3.The
smoothing of elevation is discussed in some detail in the next section.

2.2.3 Smoothing of elevation h
(tgt)
Ω (if applicable)

As discussed in the introduction the raw topographic data mapped to the target grid with-
out further filtering to remove the highest wave numbers usually leads to excessive spuri-
ous noise in the simulations when using terrain following coordinates. Non-terrain-following
coordinates such as the eta-coordinates Mesinger (1984); Mesinger et al. (1988) and z-
coordinates using shaved-cells or cut-cells (Adcroft et al., 1997; Walko and Avissar, 2008)
do not require filtering of topography. For models that do require topography smoothing,
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there seem to be no standardized procedure, for example a test case suite, to objectively
select the level of smoothing and filtering method. The amount of smoothing necessary to
remove spurious noise in, e.g. vertical velocity, depends on the amount of inherent or explicit
numerical diffusion in the dynamical core (e.g., Lauritzen et al., 2011). It may be consid-
ered important that the topographic smoothing is done with discrete operators consistent
with the dynamical core.

While it is necessary to smooth topography to remove spurious grid-scale noise, it poten-
tially introduces two problems. Filtering will typically raise ocean points near step topogra-
phy to non-zero elevation. Perhaps the most striking example is the Andes mountain range
that extends one or two grid cells into the Pacific after the filtering operation (Fig. 2). Ocean
and land points are treated separately in weather/climate models so raised sea-points may
potentially be problematic. Secondly, the filtering will generally reduce the height of local
topographic maxima and given the importance of barrier heights in atmospheric dynamics,
this could be a problem for the global angular momentum budget and could fundamentally
change the flow (unless a parameterization for blocking is used). To capture more of the
barrier effect (blocking) , two approaches have been put forward in the literature to deepen
valleys and increase peak heights while filtering out small scales: envelope topography
adjusts the surface height with sub-grid scale topographic variance (Wallace et al., 1983;
Mesinger and Strickler, 1982). Loosely speaking, the otherwise smoothed peak heights are
raised. This process may perturb the average surface height. Alternatively, one may use
Silhouette averaging (Smart et al., 2005; Walko and Tremback, 2004; Bossert, 1990). A
similar approach, but implemented as variational filtering, is taken in Rutt et al. (2006); this
method also imposes additional constraints such as enforcing zero elevation over ocean
masks.

As there is no standard procedure for smoothing topography, we leave it up to the
user to smooth the raw topography h

(tgt,raw)
. The smoothed topography is referred to as

h
(tgt,smooth)

.

14



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2.3 Naming conventions

The naming conventions for the topographic variables in the software and NetCDF files is:

PHIS = gh
(tgt)
Ω , (22)

SGH =

√
Var

(gwd)
Ω , (23)

SGH30 =

√
Var

(tms)
Ω , (24)

LANDFRAC = f
(tgt)
Ω , (25)

where g is the gravitational constant.

3 Results

Below the topography software has been applied to different dynamical core grids in CAM.
For example, CAM-SE which uses the spectral element dynamical core from HOMME
(High-Order Method Modeling Environment; Thomas and Loft, 2005; Dennis et al., 2005)
as well as CAM-FV. CAM-SE is defined on a cubed-sphere grid and we show results for a
configuration of approximately 1◦ resolution which is the NE30NP4 setup with 30× 30 ele-
ments on each cubed-sphere panel and 4× 4 Gauss-Lobatto-Legendre (GLL) quadrature
points in each element. CAM-FV topography data is shown for the 0.9◦×1.25◦ resolution.
The topography software has also been used to generate topography data for variable res-
olution MPAS (Model for Prediction Across Scales; Skamarock et al., 2012) as well as
variable resolution CAM-SE (not shown).

3.1 Example: Smoothing methods used in CAM-FV and CAM-SE

As mentioned in section 2.2.3 dynamical cores may need smoothing of elevation data. In
the CAM-FV the highest wave-numbers are removed by mapping Φs (surface geopotential)
to a regular latitude-longitude grid that is half the resolution of the desired model resolution,
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and then map back to the model grid by one-dimensional remaps along latitudes and lon-
gitudes, respectively, using the PPM (Piecewise Parabolic Method) with monotone filtering.
In CAM-SE the surface geopotential is smoothed by multiple applications of the CAM-SE
Laplace operator combined with a bounds preserving limiter. Figure 2 shows different lev-
els of smoothing of surface height for CAM-SE and for comparison CAM-FV. It can clearly
be seen that there are large differences between the height of the mountains with different
smoothing operators and smoothing strength. Figure 6 shows the topography variables for
CAM-SE based on GTOPO30 raw data and smoothing with 16 applications of the Laplace
operator.

3.2 Topography smoothing and SGH

The implications of topography smoothing on SGH is problematic as illustrated on Figure
7. A strict decomposition of the topography into its grid box average and deviations from
that average is conceptually simple. In this ideal situation, the model dynamical core rep-
resents circulations forced by grid-box mean topography (thick black line, Fig. 7a) and a
parameterization scheme represents the drag and other effects induced by waves forced
by "unresolved" topographic deviations (thin black line, Fig. 7b). The grid-mean of these
deviations is zero.

However, when additional smoothing is applied to the grid-box mean topography (thick
blue line, Fig 7a) the situation becomes less well defined. It is difficult to argue that the
"unresolved" topographic forcing is fully captured by the deviations from the grid-box mean.
On the other hand, the deviations from the smooothed topography (thin blue line, Fig. 7b)
have properties that make it unclear how to incorporate them in a traditional gravity wave
parameterization framework. The grid box mean of these deviations is not zero. Non-zero
deviations can exist far from actual topographic forcing. In the case of real-world topogra-
phy, Figure 8 shows the difference between

√
Var(gwd,smooth) and

√
Var(gwd,raw). There are

significant differences between SGH based on smoothed or unsmoothed topography. We
do not advocate any particular strategy for parameterization of subgrid orographic effects,
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our software is simply intended to make the generation of the forcing data sets for global
models traceable and transparent.

3.3 GTOPO30 and GMTED2010 raw data

Many global models use GTOPO30 as the raw topography data, however, more accu-
rate datasets are available such as GMTED2010. NCAR_Topo (v1.0) is setup to use both
GTOPO30 and GMTED2010 (with MODIS for landfraction) source data. The differences be-
tween the raw 1km datasets are discussed in detail in Danielson and Gesch (2011). Here
we focus on the differences between the datasets on the approximately 3km cubed-sphere
grid and standard climate model resolutions (approximately 100km). Figure 9 shows the el-
evation differences as well as SGH30 differences on the intermediate (approximately 3km)
cubed-sphere grid. There are significant differences in elevation especially over Greenland,
Antarctica and South America as well as associated changes to SGH30. Even at the 100km
scale and with topography smoothing the differences are rather large (see Figure 10). The
difference in landfraction are mainly due to MODIS providing a more detailed land-water
mask. There are 8 types of masks in the MODIS data: shallow ocean, land, shoreline, shal-
low inland water, ephemeral water, deep inland water, moderate ocean, and deep ocean.
Here we set all masks to 0 except land, shoreline and ephemeral water which are set to 1.

4 Conclusions

The NCAR global model topography generation software for unstructured grids
(NCAR_Topo (v1.0)) has been documented and example applications to CAM have been
presented. The topography software computes sub-grid scale variances using a quasi-
isotropic separation of scales through the intermediate mapping of high resolution elevation
data to an equi-angular cubed-sphere grid. The software supports structured or unstruc-
tured (e.g., variable resolution) global grids.
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Code availability

The source codes for the NCAR Global Model Topography Generation Software for Un-
structured Grid are available at through Github. The repository URL is https://github.com/
UCAR/Topo/tags/. The repository also contains NCL scripts to plot the topography variables
(Fig. 6) that the software generates.
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Figure 1. Log/log plot of spectral energy versus wave number K for the “raw” 1 km USGS data
(GTOPO30), different levels of smoothing for 100 km CAM-SE topography, and CAM-FV. Labels
04x, 08x, 16x and 32x CAM-SE, refer to different levels of smoothing, more precisely, four, eight,
sixteen and thirty two applications of a “Laplacian” smoothing operator in CAM-SE, respectively.
Label CAM-FV refers to the topography used in CAM-FV at 0.9◦×1.25◦ resolution. 0x CAM-SE
is the unsmoothed topography on an approximately 1◦ grid CAM-SE grid. Note that the blue (4x,
CAM-SE) and brown (CAM-FV) lines are overlaying. Solid straight line shows the K−2 slope. The
associated surface elevations are shown on Fig. 2.
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Figure 2. Surface elevation in kilometers for a cross section along latitude 30◦ S (through Andes
mountain range) for different representations of surface elevation. The labeling is the same as in
Fig. 1.
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Figure 3. A schematic showing the regridding procedure. Red fonts refer to the naming conventions
for the grids: Λ is the “raw” data grid (1 km regular lat-lon grid), A is the intermediate cubed-sphere
grid and Ω is the target grid which may be any unstructured or structured grid. The variable naming
convections in the boxes are explained in Sect. 2.3. Data for the variable resolution MPAS (Model for
Prediction Across Scales; Skamarock et al., 2012) grid plot is courtesy of W. C. Skamarock (NCAR).
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Figure 4. An example of a non-convex control volume in variable resolution CAM-SE. Vertices are
filled circles and they are connected with straight lines.
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Figure 5. Schematic of the notation used to define the overlap between target grid cell Ωk (red
polygon) and high resolution cubed-sphere grid cell A` (Cartesian-like grid on figure). The overlap
area, Ωk` = Ωk ∩A`, is shaded with cross-hatch pattern on figure.
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Figure 6. Surface geopotential Φs (upper left), SGH (upper right), SGH30 (lower left) and
LANDFRAC (lower right) for CAM-SE NE30NP4 resolution (‘16x’ smoothing)). The data is plotted
on the native grid. NCL scripts to create this figure are released with the software source code.
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Figure 7. (a) Idealized topography 1000.+1000∗cos(2π∗x/300.)+100∗sin(2π/20.) for−150km <
x < 150km (thin black line), topography averaged in 50km grid-boxes (thick black line), and topogra-
phy smoothed with Boxcar smoother using 500km window (thick blue line). (b) Deviation of topogra-
phy from 50km grid-box mean (thin black line), deviations from 500km Boxcar smoothed topography
(thin blue line).
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Figure 8. Difference between
√

Var
(gwd,smooth)

and
√

Var
(gwd,raw)

for CAM-SE NE30NP4 where the
smoothed PHIS is the ‘16x’ configuration.
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Figure 9. The difference between GMTED2010 and GTOPO30 (left) elevation (in meters) and (right)
SGH30 (in meters), respectively, on the intermediate 3km cubed-sphere grid.
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Figure 10. The difference between GMTED2010 and GTOPO30 topographic variables for CAM-FV
at approximately 1 degree resolution.
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