
Reply to referee’s comments

Reviewers’ comments are in plain and the author's reply is in italic text.

General response:

We would like to thank the two Reviewers for their in depth perspicacious comments

that contributed to improving the presentation of our paper.

In summary, to address the comments of the reviewers, the following work has been

carried out:

1. The first two cases have been redone to show more convincing convergence as the

mesh is refined. For the 1st and 2nd cases, the time step is reduced by a factor to

ensure a small Courant number with the smaller elements sizes. We have thus re-

plotted the results in Figs 2~9.

2. The 3rd case has been redone with a negative concentration background of -0.2 in

the subdomain [0.24,0.76]×[0.12,0.88] as suggested by reviewer. The maximum

number of nodes for adaptive schemes is set to be 15000. Table 1 and Figs 10~15

have been updated to reflect these new results. A new Fig 16 has been added to

show the distribution of CFL number over the domain.

3. A new case, case 4 based on a real – large scale atmospheric geometry – and flow,

has been added to demonstrate the capability of this new adaptive multiscale

model. Figs 17~20 show the results obtained from this new case.

4. Case 4 is the simulation of the dispersion of power plant plumes. Diffusion and

source terms have therefore been introduced into the equations in section 2.

5. Section 3 has been revised and more details of the adaptive mesh techniques have

been added.

6. Section 2.2 has been rewritten and details of numerical schemes have been

provided.

Anonymous Referee #2

1. It is not clear to me what is novel in this paper, or even whether the goal of the

paper is aligned with the aims of this journal. The advection algorithms and also

the adaptive refinement algorithms are all implemented in Fluidity, but from the

paper it is not at all clear whether the authors of the paper were involved in some

new implementation in this version of the code, or are simply testing the code on

some particular test problems. The title of the paper, explicitly mentioning

Fluidity 4.1.9, makes it sound like the code is specifically designed for the

problem discussed in the paper and the paper serves to describe the full code.

However, in Section 4 it is stated that Fluidity solves 2D and 3D Navier-Stokes

equations and multiphase flow problems over topography, while this paper only

concerns scalar advection in two dimensions. So the paper does not seem to

describe or test very much of Fluidity. Moreover there is no real discussion of a

"new air quality model" anywhere in the paper. Standard 2D advection test

problems are used. Advection equations may be used in air quality models but

there does not seem to be anything specific to this application, and advection

equations arise in many other situations, so it seems misleading to include this

term in the title.

RESPONSE:

While the individual methods – the advection methods, the mesh adaptivity

methods – are not novel, this is the first time that the integrated approaches of full

3D adaptive meshes and advanced numerical discretization techniques have been

applied to demanding advection-diffusion problems suitable for testing the

advection capability of an atmospheric model. This has been clarified in the

abstract.

In this work, we used Fluidity version 4.1.9, but not limited to. Thus we deleted

Fluidity 4.1.9 from the title. Section 4 is shorten. Fluidity is briefly introduced.

However, the N-S equations still remain in section 4 since they are important in

our future work.

In this paper, we only focus on integrating this advanced mesh adaptivity methods

into air quality modelling. It is well known that the dynamic and chemical

processes of air pollution involve a wide range of scales. The initial

transformation of emissions from urban and industrial centers and dispersion of

plumes occur on relatively small scales, which are responsible for regional or

global air quality problems. But it is a gargantuan computational challenge to

modeling large regions with uniform resolution at the finest relevant scale.

Therefore, mesh adaptation may be a very effective way to encompass different

scales (e.g., local, urban, regional, global) in a unified modeling system. An

unstructured adaptive mesh model would be the next generation model for air

pollution problems. This has been added to the first paragraph in introduction.

The advanced numerical discretization techniques used in the transport air quality

model are described in section 2 and adaptive meshes techniques in section 3.

Both sections 2 and 3 are updated (see the general response).

In the revised version, to further demonstrate the advantage of adaptive meshes,

we added a 3D advection-diffusion case and used realistic wind data and

topography, where the mesh was adapted in 3D and time. This is a first step

towards applications in realistic cases.

2. Are these specific advection algorithms and/or the adaptive mesh refinement

algorithms significantly different in 4.1.9 than they were in 4.1.8? Or are the

authors just noting the particular version that they happened to use for these tests

of algorithms that have long been a part of Fluidity? If the latter, what is the novel

algorithm or software development? A large number of papers have already been

written on advection algorithms of the sort used here, which are often tested on

similar problems. The anisotropic refinement algorithm is not described in any

detail so it is also not clear if there is anything new here. This all needs to be

better clarified.

RESPONSE:

As stated above, the novelty is the integration of methods. An integrated method

of advanced anisotropic hr-adaptive mesh and discretization numerical

techniques has been, for first time, applied to multi-scale transport-diffusion

problems, which is based on a discontinuous Galerkin/control volume

discretization on unstructured meshes. This has been clarified in the abstract.

Again, we used Fluidity version 4.1.9, but not limited to.

Section 3 has been re-written. The anisotropic method has been described in

detail.

3. The application of the algorithms to the test problems is not well described, e.g.

the description on page 4345 of the error metric tensor is inadequate. In (13) it is

stated that H is the Hessian matrix, but of what? The full discretization in terms of

all degrees of freedom? How are the elements of this tensor used to determine

where to refine?

RESPONSE:

Please see the updated version of section 3. The formulae of Hessian,

interpolation error, minimum and maximum mesh sizes have been provided, and

the anisotropic method has been described.

4. It would be very useful if the authors would make the code available to

accompany this paper, so that readers could potentially better understand the

details of the tests performed. This would also be very useful to any reader who is

interested in implementing something similar in Fluidity.

RESPONSE:

All the test problems in the paper have been operated in Fluidity model. The

source code of Fluidity is available under

https://github.com/FluidityProject/fluidity. The user manual and examples are

also available. We can offer all setup scripts of the test problems so that the

readers can run these test problems directly after installing Fluidity.

5. It is not well explained why it is necessary to use an implicit method for the

hyperbolic advection equation, for which explicit methods are more easily

implemented and generally preferred for efficiency reasons. It is stated that very

large CFL numbers (e.g. 80) are used, and presumably this is because of the

highly anisotropic cells with very large aspect ratios. I assume these are stretched

in the advection direction, as suggested by Figure 14. Presumably these very high

CFL numbers result from comparing e.g. the velocity in the x-direction in this

figure to the width of the cells in the y-direction. If the CFL number were truly

this large in terms of the number of grid cells the flow advects through in one time

step (e.g. if the flow were in the y-direction in Figure 14) then I believe the

implicit method would be extremely dissipative and fairly useless, even if it did

remain stable. However, this is not discussed in enough detail to figure out what is

going on.

RESPONSE:

In our work, for discontinuous Galerkin discretization, the explicit Euler scheme is

used in conjunction with an advection subcycling method based upon a CFL

criterion or a fixed number of subcycles. For the CV discretization, the explicit

scheme is easier to implement but strictly limited by the CFL number. Here a new

timestepping 𝜃 scheme is used to eliminate the time-step restrictions and maintain

high accuracy as far as possible, where 𝜃 (1/2 ≤ 𝜃 ≤ 1) is chosen to 0.5 for most of

elements while big enough (close to 1) for a small fraction of individual elements

with a large CFL number (see Fig.16). In this way, the use of a large time step is

acceptable when applying adaptive mesh techniques into comprehensive air

quality models, which can make the computation much more efficient.

This has been clarified in the revised version of section 2.2 and the corresponding

numerical schemes have been described in detail.

A new figure (Fig. 16) has been added in case 3, to show the distribution of CFL

number over the domain and used to explain the new timestepping 𝜃 method.

6. On page 4347, line 25, "advection subcycling" is mentioned but is not explained.

Does this mean smaller time steps are used in smaller cells? If so, how are these

time steps chosen? Since there is a continuous distribution of cell sizes this is not

clear, nor is it clear what is done when adjacent cells are using different size time

steps and hence updated a different number of times.

RESPONSE:

For discontinuous Galerkin discretization, an advection subcycling method based

upon a CFL criterion or a fixed number of subcycles is adopted in modelling

advection flows, that is, the timestep ∆t is split to N subtimestep to satisfy the

specified Courant number. Further explanation has been added in the revised

section 2.2.

7. The anisotropic refinement illustrated in Figure 14 may work well for this flow

field in which the streamlines are constant in time and hence the flow is always in

a fixed direction at each point in the domain, but it is not at all obvious that the

approach used here would work for advection in a real fluid flow (such as the sort

Fluidity presumably computes when solving the Navier-Stokes equations, or the

sort alluded to in the title of the manuscript). In most flows the direction of flow at

each point will be changing dynamically. Even if the adaptive grid is constantly

deformed in every time step, the flow would generally not be exactly aligned with

the highly anisotropic cells and I suspect this would severely impact the accuracy.

All three of the test problems presented in this paper have the feature that the flow

directions are time-invariant (even problem 2, where the flow speed varies, has

constant direction at each point). I believe the algorithm should be tested on more

challenging problems.

RESPONSE:

To demonstrate the capability of the adaptive model and estimation of accuracy of

solutions, we added a new case (case 4) to simulate the dispersion of power plant

plumes, where, the meteorological fields are provided by the mesoscale

meteorological model WRF(v3.5) and stored at hourly intervals during 5-day

period. For 2D case, a comparison of results using the fixed and adaptive meshes

results is plotted in Figs. 18-19. The results using adaptive meshes are in

agreement with those using fixed meshes with a high mesh resolution of 2.5 km

while the number of nodes decreases by a factor of 16 with use of adaptive meshes.

We also extended 2D to 3D case, the results are shown in Fig. 20, where the mesh

is adapted in 3D and time. It can be seen high resolution meshes are located within

the boundary layer and around the power plant stacks.(for details, see section 5.4).

8. The test problems also have large regions of the domain where the solution is

constant and hence very few grid cells are needed. This is perhaps reasonable

since the point of adaptive refinement is to handle problems where the features

needing refinement are relatively isolated. But comparisons of accuracy versus

number of cells is then somewhat arbitrary for these problems, since making the

domain larger relative to the region where the solution is non-constant would

greatly increase the number of grid cells needed for a given resolution on a

uniform grid but have no impact on the number of cells needed for the adaptive

algorithm. Hence one can make this ratio arbitrarily large by making the domain

large, and test problem 3 in particular has a domain that is far larger than

reasonable for the given problem.

RESPONSE:

We agree with the reviewer and there is always issue in comparing different

methods especially when they are substantially different. None the less this is not a

reason not to try to make a comparison. It should be mentioned that these four test

problems are benchmark numerical experiments used for testing different

numerical advection schemes. We did not make the domain or the ratio larger

arbitrarily. But for test problem 3, the initial tracer is spread over only six vortices.

Therefore, the 3
rd

 test has been reproduced using the reduced domain

[0.24,0.76]×[0.12,0.88] that cover six swirling vortex containing tracer mass. The

results have been presented in Figs 10-15.

9. There is no discussion in the paper of what order of accuracy the advection

algorithm is expected to have for smooth solutions, nor even a mention of what

order polynomials are used in the continuous or discontinuous Galerkin methods.

This is strange, since the presumed advantage of using such methods over simpler

and perhaps more efficient finite difference or finite volume methods is that they

can achieve higher order. A potential user of Fluidity would surely want to know

what orders are supported, along with some evidence that it delivers.

RESPONSE:

The equation for calculation of the order of accuracy has been added (see Eq. 26)

and corresponding discussion has been provided in cases 1-2.

For the discontinuous Galerkin methods, polynomials of different degrees 𝑘 can be

used as discontinuous test and trial functions to avoid taking derivatives of

discontinuous functions. Within an element, the functions are continuous, and

everything is well defined. In this paper, piecewise quartic shape functions

(polynomial degree 𝑘 = 4) are used to achieve high-order accurate.

As an alternative finite volume method, the control volume (CV) methods may be

thought of as the lowest order discontinuous Galerkin method, using a dual mesh

constructed around the nodes of the parent finite element mesh. In two dimensions

this is constructed by connecting the element centroids to the edge midpoints. Once

the dual control volume mesh has been defined, it is possible to discretize the

advection equation using piecewise constant shape functions within each volume.

Although higher-order accuracy is difficult to achieve within the framework of CV

method, it is relatively easy to understand and implement using much less

computational cost compared with the DG methods.

The CV and DG methods are usually used in conjunction with unstructured meshes,

which are very flexible to capture highly complex solutions and are well suited for

hr-adaptivity and parallelization. Even though a number of issues remain, in

particular those related to the computational cost of models produced using

unstructured mesh methods compared with their structured mesh counterparts.

Mesh adaptivity represents an important means to improve the competitiveness of

unstructured mesh models, where high resolution is only used when and where

necessary. This is the major advantage of using such methods.

In the next question, we will discuss the order of accuracy for smooth solutions.

10. None of the test problems have smooth initial data for which this accuracy could

be tested. I think some test should be performed of the order of accuracy on

smooth data in addition to showing the performance on the sort of data used in

the test problems shown.

RESPONSE:

In the first two test problems, we consider a slotted cylinder, a sharp cone, and a

smooth hump as the initial solid bodies. The hump as smooth initial data has been

considered. In order to discuss what order of accuracy the advection algorithm is

expected to have for smooth solutions, we redo the 1
st
 test problem only

considering the smooth hump as the initial data. Here, in order to guarantee

convergence, it is necessary to use small enough time steps to keep ∆ 𝑡 ∆⁄ 𝑥 fixed as

the grid is refined. The effective order of accuracy 𝑝 = 𝑙𝑜𝑔2(𝐸1 (ℎ) 𝐸1⁄ (ℎ 2⁄)) on

smooth hump data estimated using ℎ = 1 200⁄ equals {1.98, 1.52, 1.54, 1.13} for

{CV_Fix, CV_Adapt, DG_Fix, DG_Adapt} schemes respectively.

Due to limitation of pages, we did not add the above smooth case in the paper.

However, we mentioned it in section 5.1 by saying:

 “If we only consider the hump-smooth profile as the initial data, the order of

accuracy can increase to be {1.98, 1.52, 1.54, 1.13}.”

11. The error plots in Figures 2 and 5 are logarithmic in x and linear in y, which is

not a useful way to display the error. A log-log plot would make it easier to

determine the order of accuracy.

RESPONSE:

Figs. 2 and 5 have been replotted in log-log form. The order of accuracy has been

discussed in section 5.

12. Moreover, Figures 2 and 5 also seem to show that the error asymptotes to non-

zero values as the grid is refined for most of the methods displayed, which means

the methods are not even converging, let alone exhibiting any reasonable order of

accuracy. This seems to be a serious problem.

RESPONSE:

The convergence issue was caused by the large time step size. Cases 1 ans 2 have

been re-run with a small time step. The figures in sections 5.1 and 5.2 have been

re-plotted with the new results.

13. What are the units of CPU time in Figures 2 and 5? Seconds? If so, then

apparently the uniform grid DG method in Figure 5 requires 11 hours of CPU

time for one revolution of two-dimensional advection on a 400 by 400 grid! Even

the adaptive DG code seems to take around 2 hours with h = 1/800, which seems

quite excessive for this problem. Of course it would also be useful to state what

computer these timings were done on, and how many cores were used since it is

stated in the paper that Fluidity uses MPI for parallelization to thousands of cores,

although it is not stated whether this is used in these examples.

RESPONSE:

The units of CPU time in Figures 2 and 5 are seconds. We did not use MPI for

parallelization. All computations were performed on a workstation using the

Gfortran Compiler for Linux. The simulation workstation has 8 processors and a

4GB random-access memory (RAM). The processor used in workstation is Intel(R)

Core(TM) i7-2600 CPU @ 3.40GHz. A single processor with frequency of

3.40GHz was used since the test cases were simulated in serial.

This has been clarified in section 5.

14. If I am interpreting the timings right, I suspect the slowness of the code is due to

the use of an implicit method for the advection problem. This leads me again to

question the wisdom of such methods for this problem, since there are good

explicit block-structured AMR algorithms implemented in software such as

AMROC, Boxlib, Chombo, Clawpack, SAMRAI, etc. that I believe works quite

efficiently on the sort of test problems presented here. More justification is

needed for the value of the methods implemented in Fluidity than is presented in

this paper.

RESPONSE:

For implicit issue, please see the response to question 5. The slowness of codes is

due to the use of unstructured meshes – this is a common issue in unstructured

mesh models. In unstructured mesh finite element modelling, it involves the

integration of equations over the domain. It thus spends most of time on

assembling the matrices at each time step, especially for nonlinear problems. We

used a number of numerical techniques to reduce the CPU time, for example, the

timestepping θ scheme to eliminate the time-step restrictions (please see section

2.2 and response to question 5). The use of adaptive meshes will also reduce the

number of nodes, thus increasing the computational efficient (please see discussion

in cases 1 and 2 in section 5) although it may take time on adapting the mesh at

certain time level.

As stated in introduction (or see response to question 9), the unstructured adaptive

mesh technique is important in next generation models since it may be the only

way to model multi-scale flow dynamical problems in large regions. Due to

advanced computational technologies, the issue of CPU times can be sorted out

using MPI. Fluidity is parallelized using MPI and is capable of scaling to many

thousands of processors.

15. In (15), epsilon is a relative error tolerance that is presumably some positive

value chosen by the user, so why is epsilon_min needed to ensure the

denominator is nonzero?

RESPONSE:

For example, if 𝜖 = 0.01, then the tolerance on the denominator of the metric

formulation will be 1% of the value of the field c , and so it will scale the target

interpolation error with the magnitude of the field. Since the value of the field c

may be zero in some region of the domain (e.g., the background of tracer field has

been set to be zero in the 1
st
 and 2

nd
 test), it is necessary to set the minimum

tolerance 𝜖𝑚𝑖𝑛 to ensure that the denominator never becomes zero.

16. On page 4345 line 15, I am not sure what is meant by imposing different limits

on the cell sizes in different directions.

RESPONSE:

For robustness of the mesh adaptivity procedure, and to limit

refinement/coarsening of the mesh it is possible to set maximum and minimum

allowed edge length sizes. The inputs to these quantities are tensors allowing one

to impose different limits in different directions. Assuming that these directions are

aligned with the coordinate axes allows one to define diagonal tensors. These

constraints are achieved through manipulations to the metric, which in turn

controls an optimization procedure. They are therefore not hard constraints and

one may observe the constraints being broken (slightly) in places.

17. Page 4347, line 20 and I am not sure what is meant by the "Sweby limiter".

Sweby’s paper discussed many limiter such as minmod, superbee, etc., but I am

not sure what Sweby limiter is referred to here.

RESPONSE:

Although Sweby(1984) discussed many limiter functions, the “Sweby limiter” here

is not referred to any one of them, but only use the Sweby’s TVD region on the

normalized variable diagram(NVD) as a criterion to limit the face value calculated

by the finite element interpolation approach. Any combination of normalized face

and donor values falling within this region is left unchanged. Values falling outside

this region are ‘limited’ along lines of constant normalized donor value back onto

the top or bottom of the stable region. The high order flux is obtained from the

finite element interpolation of the CV values(for details, see AMCG, 2014). So, we

use the name “CV-TVD limiter” instead of “Sweby limiter” in the revised version.

