
Reply to referee’s comments 

 

Reviewers’ comments are in plain and the author's reply is in italic text. 

 

General response: 

 

We would like to thank the two Reviewers for their in depth perspicacious comments 

that contributed to improving the presentation of our paper.  

 
In summary, to address the comments of the reviewers, the following work has been 

carried out: 
 

1. The first two cases have been redone to show more convincing  convergence as the 

mesh is refined. For the 1st and 2nd cases, the time step is reduced by a factor to 

ensure a small Courant number with the smaller elements sizes. We have thus re-

plotted the results in Figs 2~9. 

2. The 3rd case has been redone with a negative concentration background of -0.2 in 

the subdomain [0.24,0.76]×[0.12,0.88] as suggested by reviewer. The maximum 

number of nodes for adaptive schemes is set to be 15000. Table 1 and Figs 10~15 

have been updated to reflect these new results. A new Fig 16 has been added to 

show the distribution of CFL number over the domain. 

 

3. A new case, case 4 based on a real – large scale atmospheric geometry – and flow, 

has been added to demonstrate the capability of this new adaptive multiscale 

model. Figs 17~20 show the results obtained from this new case. 

 

4. Case 4 is the simulation of the dispersion of power plant plumes. Diffusion and 

source terms have therefore been introduced into the equations in section 2. 

 

5. Section 3 has been revised and more details of the adaptive mesh techniques have 

been added. 

 

6. Section 2.2 has been rewritten and details of numerical schemes have been 

provided. 

 

 

 

Anonymous Referee #2 

 

1. It is not clear to me what is novel in this paper, or even whether the goal of the 

paper is aligned with the aims of this journal. The advection algorithms and also 

the adaptive refinement algorithms are all implemented in Fluidity, but from the 

paper it is not at all clear whether the authors of the paper were involved in some 

new implementation in this version of the code, or are simply testing the code on 

some particular test problems. The title of the paper, explicitly mentioning 



Fluidity 4.1.9, makes it sound like the code is specifically designed for the 

problem discussed in the paper and the paper serves to describe the full code. 

However, in Section 4 it is stated that Fluidity solves 2D and 3D Navier-Stokes 

equations and multiphase flow problems over topography, while this paper only 

concerns scalar advection in two dimensions. So the paper does not seem to 

describe or test very much of Fluidity. Moreover there is no real discussion of a 

"new air quality model" anywhere in the paper. Standard 2D advection test 

problems are used. Advection equations may be used in air quality models but 

there does not seem to be anything specific to this application, and advection 

equations arise in many other situations, so it seems misleading to include this 

term in the title. 

 

RESPONSE: 

While the individual methods – the advection methods, the mesh adaptivity 

methods – are not novel, this is the first time that the integrated approaches of full 

3D adaptive meshes and advanced numerical discretization techniques have been 

applied to demanding advection-diffusion problems suitable for testing the 

advection capability of an atmospheric model. This has been clarified in the 

abstract. 
 

In this work, we used Fluidity version 4.1.9, but not limited to. Thus we deleted 

Fluidity 4.1.9 from the title. Section 4 is shorten. Fluidity is briefly introduced. 

However, the N-S equations still remain in section 4 since they are important in 

our future work.  

 

In this paper, we only focus on integrating this advanced mesh adaptivity methods 

into air quality modelling. It is well known that the dynamic and chemical 

processes of air pollution involve a wide range of scales. The initial 

transformation of emissions from urban and industrial centers and dispersion of 

plumes occur on relatively small scales, which are responsible for regional or 

global air quality problems. But it is a gargantuan computational challenge to 

modeling large regions with uniform resolution at the finest relevant scale. 

Therefore, mesh adaptation may be a very effective way to encompass different 

scales (e.g., local, urban, regional, global) in a unified modeling system. An 

unstructured adaptive mesh model would be the next generation model for air 

pollution problems. This has been added to the first paragraph in introduction. 

  

The advanced numerical discretization techniques used in the transport air quality 

model are described in section 2 and adaptive meshes techniques in section 3. 

Both sections 2 and 3 are updated (see the general response). 

 

In the revised version, to further demonstrate the advantage of adaptive meshes, 

we added a 3D advection-diffusion case and used realistic wind data and 

topography, where the mesh was adapted in 3D and time. This is a first step 

towards applications in realistic cases. 
 

2. Are these specific advection algorithms and/or the adaptive mesh refinement 

algorithms significantly different in 4.1.9 than they were in 4.1.8? Or are the 

authors just noting the particular version that they happened to use for these tests 

of algorithms that have long been a part of Fluidity? If the latter, what is the novel 



algorithm or software development? A large number of papers have already been 

written on advection algorithms of the sort used here, which are often tested on 

similar problems. The anisotropic refinement algorithm is not described in any 

detail so it is also not clear if there is anything new here. This all needs to be 

better clarified. 

 

RESPONSE: 

As stated above, the novelty is the integration of methods. An integrated method 

of advanced anisotropic hr-adaptive mesh and discretization numerical 

techniques has been, for first time, applied to multi-scale transport-diffusion 

problems, which is based on a discontinuous Galerkin/control volume 

discretization on unstructured meshes. This has been clarified in the abstract.  

 

Again, we used Fluidity version 4.1.9, but not limited to. 

 

Section 3 has been re-written. The anisotropic method has been described in 

detail.  

 

3. The application of the algorithms to the test problems is not well described, e.g. 

the description on page 4345 of the error metric tensor is inadequate. In (13) it is 

stated that H is the Hessian matrix, but of what? The full discretization in terms of 

all degrees of freedom? How are the elements of this tensor used to determine 

where to refine? 

 

RESPONSE: 

Please see the updated version of section 3. The formulae of Hessian, 

interpolation error, minimum and maximum mesh sizes have been provided, and 

the anisotropic method has been described. 
 

4. It would be very useful if the authors would make the code available to 

accompany this paper, so that readers could potentially better understand the 

details of the tests performed. This would also be very useful to any reader who is 

interested in implementing something similar in Fluidity. 

 

RESPONSE: 

All the test problems in the paper have been operated in Fluidity model. The 

source code of Fluidity is available under 

https://github.com/FluidityProject/fluidity. The user manual and examples are 

also available. We can offer all setup scripts of the test problems so that the 

readers can run these test problems directly after installing Fluidity. 

 

 

5. It is not well explained why it is necessary to use an implicit method for the 

hyperbolic advection equation, for which explicit methods are more easily 

implemented and generally preferred for efficiency reasons. It is stated that very 

large CFL numbers (e.g. 80) are used, and presumably this is because of the 

highly anisotropic cells with very large aspect ratios. I assume these are stretched 

in the advection direction, as suggested by Figure 14. Presumably these very high 

CFL numbers result from comparing e.g. the velocity in the x-direction in this 

figure to the width of the cells in the y-direction. If the CFL number were truly 



this large in terms of the number of grid cells the flow advects through in one time 

step (e.g. if the flow were in the y-direction in Figure 14) then I believe the 

implicit method would be extremely dissipative and fairly useless, even if it did 

remain stable. However, this is not discussed in enough detail to figure out what is 

going on. 

 

RESPONSE: 

In our work, for discontinuous Galerkin discretization, the explicit Euler scheme is 

used in conjunction with an advection subcycling method based upon a CFL 

criterion or a fixed number of subcycles. For the CV discretization, the explicit 

scheme is easier to implement but strictly limited by the CFL number. Here a new 

timestepping 𝜃 scheme is used to eliminate the time-step restrictions and maintain 

high accuracy as far as possible, where 𝜃 (1/2 ≤ 𝜃 ≤ 1) is chosen to 0.5 for most of 

elements while big enough (close to 1) for a small fraction of individual elements 

with a large CFL number (see Fig.16). In this way, the use of a large time step is 

acceptable when applying adaptive mesh techniques into comprehensive air 

quality models, which can make the computation much more efficient. 

 

This has been clarified in the revised version of section 2.2 and the corresponding 

numerical schemes have been described in detail.  

 

A new figure (Fig. 16) has been added in case 3, to show the distribution of CFL 

number over the domain and used to explain the new timestepping 𝜃 method.  
 

6. On page 4347, line 25, "advection subcycling" is mentioned but is not explained. 

Does this mean smaller time steps are used in smaller cells? If so, how are these 

time steps chosen? Since there is a continuous distribution of cell sizes this is not 

clear, nor is it clear what is done when adjacent cells are using different size time 

steps and hence updated a different number of times. 

 

RESPONSE: 

For discontinuous Galerkin discretization, an advection subcycling method based 

upon a CFL criterion or a fixed number of subcycles is adopted in modelling 

advection flows, that is, the timestep ∆t is split to N subtimestep to satisfy the 

specified Courant number. Further explanation has been added in the revised 

section 2.2.  
 

7. The anisotropic refinement illustrated in Figure 14 may work well for this flow 

field in which the streamlines are constant in time and hence the flow is always in 

a fixed direction at each point in the domain, but it is not at all obvious that the 

approach used here would work for advection in a real fluid flow (such as the sort 

Fluidity presumably computes when solving the Navier-Stokes equations, or the 

sort alluded to in the title of the manuscript). In most flows the direction of flow at 

each point will be changing dynamically. Even if the adaptive grid is constantly 

deformed in every time step, the flow would generally not be exactly aligned with 

the highly anisotropic cells and I suspect this would severely impact the accuracy. 

All three of the test problems presented in this paper have the feature that the flow 

directions are time-invariant (even problem 2, where the flow speed varies, has 

constant direction at each point). I believe the algorithm should be tested on more 

challenging problems. 



 

RESPONSE: 

To demonstrate the capability of the adaptive model and estimation of accuracy of 

solutions, we added a new case (case 4) to simulate the dispersion of power plant 

plumes, where, the meteorological fields are provided by the mesoscale 

meteorological model WRF(v3.5) and stored at hourly intervals during 5-day 

period. For 2D case, a comparison of results using the fixed and adaptive meshes 

results is plotted in Figs. 18-19. The results using adaptive meshes are in 

agreement with those using fixed meshes with a high mesh resolution of 2.5 km 

while the number of nodes decreases by a factor of 16 with use of adaptive meshes. 

 

We also extended 2D to 3D case, the results are shown in Fig. 20, where the mesh 

is adapted in 3D and time. It can be seen high resolution meshes are located within 

the boundary layer and around the power plant stacks.(for details, see section 5.4). 

 

 

8. The test problems also have large regions of the domain where the solution is 

constant and hence very few grid cells are needed. This is perhaps reasonable 

since the point of adaptive refinement is to handle problems where the features 

needing refinement are relatively isolated. But comparisons of accuracy versus 

number of cells is then somewhat arbitrary for these problems, since making the 

domain larger relative to the region where the solution is non-constant would 

greatly increase the number of grid cells needed for a given resolution on a 

uniform grid but have no impact on the number of cells needed for the adaptive 

algorithm. Hence one can make this ratio arbitrarily large by making the domain 

large, and test problem 3 in particular has a domain that is far larger than 

reasonable for the given problem.  

 

RESPONSE: 

We agree with the reviewer and there is always issue in comparing different 

methods especially when they are substantially different. None the less this is not a 

reason not to try to make a comparison. It should be mentioned that these four test 

problems are benchmark numerical experiments used for testing different 

numerical advection schemes. We did not make the domain or the ratio larger 

arbitrarily. But for test problem 3, the initial tracer is spread over only six vortices. 

Therefore, the 3
rd

 test has been reproduced using the reduced domain 

[0.24,0.76]×[0.12,0.88] that cover six swirling vortex containing tracer mass. The 

results have been presented in Figs 10-15. 

 

 

9. There is no discussion in the paper of what order of accuracy the advection 

algorithm is expected to have for smooth solutions, nor even a mention of what 

order polynomials are used in the continuous or discontinuous Galerkin methods. 

This is strange, since the presumed advantage of using such methods over simpler 

and perhaps more efficient finite difference or finite volume methods is that they 

can achieve higher order. A potential user of Fluidity would surely want to know 

what orders are supported, along with some evidence that it delivers.  

 

RESPONSE: 

The equation for calculation of the order of accuracy has been added (see Eq. 26) 



and corresponding discussion has been provided in cases 1-2.  
 

For the discontinuous Galerkin methods, polynomials of different degrees 𝑘 can be 

used as discontinuous test and trial functions to avoid taking derivatives of 

discontinuous functions. Within an element, the functions are continuous, and 

everything is well defined. In this paper, piecewise quartic shape functions 

(polynomial degree 𝑘 = 4) are used to achieve high-order accurate.  

As an alternative finite volume method, the control volume (CV) methods may be 

thought of as the lowest order discontinuous Galerkin method, using a dual mesh 

constructed around the nodes of the parent finite element mesh. In two dimensions 

this is constructed by connecting the element centroids to the edge midpoints. Once 

the dual control volume mesh has been defined, it is possible to discretize the 

advection equation using piecewise constant shape functions within each volume. 

Although higher-order accuracy is difficult to achieve within the framework of CV 

method, it is relatively easy to understand and implement using much less 

computational cost compared with the DG methods. 
 

The CV and DG methods are usually used in conjunction with unstructured meshes, 

which are very flexible to capture highly complex solutions and are well suited for 

hr-adaptivity and parallelization. Even though a number of issues remain, in 

particular those related to the computational cost of models produced using 

unstructured mesh methods compared with their structured mesh counterparts. 

Mesh adaptivity represents an important means to improve the competitiveness of 

unstructured mesh models, where high resolution is only used when and where 

necessary. This is the major advantage of using such methods.  

 

In the next question, we will discuss the order of accuracy for smooth solutions. 
 

 

10. None of the test problems have smooth initial data for which this accuracy could 

be tested. I think some test should be performed of the order of accuracy on 

smooth data in addition to showing the performance on the sort of data used in 

the test problems shown. 

 

RESPONSE: 

In the first two test problems, we consider a slotted cylinder, a sharp cone, and a 

smooth hump as the initial solid bodies. The hump as smooth initial data has been 

considered. In order to discuss what order of accuracy the advection algorithm is 

expected to have for smooth solutions, we redo the 1
st
 test problem only 

considering the smooth hump as the initial data. Here, in order to guarantee 

convergence, it is necessary to use small enough time steps to keep ∆ 𝑡 ∆⁄ 𝑥 fixed as 

the grid is refined. The effective order of accuracy 𝑝 = 𝑙𝑜𝑔2(𝐸1 (ℎ) 𝐸1⁄ (ℎ 2⁄ )) on 

smooth hump data estimated using ℎ = 1 200⁄  equals {1.98, 1.52, 1.54, 1.13} for 

{CV_Fix, CV_Adapt, DG_Fix, DG_Adapt} schemes respectively.  
 

Due to limitation of pages, we did not add the above smooth case in the paper. 

However, we mentioned it in section 5.1 by saying: 

 “If we only consider the hump-smooth profile as the initial data, the order of 

accuracy can increase to be {1.98, 1.52, 1.54, 1.13}.” 

 

11. The error plots in Figures 2 and 5 are logarithmic in x and linear in y, which is 



not a useful way to display the error. A log-log plot would make it easier to 

determine the order of accuracy. 

 

RESPONSE: 

Figs. 2 and 5 have been replotted in log-log form. The order of accuracy has been 

discussed in section 5. 

 

12. Moreover, Figures 2 and 5 also seem to show that the error asymptotes to non-

zero values as the grid is refined for most of the methods displayed, which means 

the methods are not even converging, let alone exhibiting any reasonable order of 

accuracy. This seems to be a serious problem. 

 

RESPONSE:  

The convergence issue was caused by the large time step size. Cases 1 ans 2 have 

been re-run with a small time step. The figures in sections 5.1 and 5.2 have been 

re-plotted with the new results. 
 

13. What are the units of CPU time in Figures 2 and 5? Seconds? If so, then 

apparently the uniform grid DG method in Figure 5 requires 11 hours of CPU 

time for one revolution of two-dimensional advection on a 400 by 400 grid! Even 

the adaptive DG code seems to take around 2 hours with h = 1/800, which seems 

quite excessive for this problem. Of course it would also be useful to state what 

computer these timings were done on, and how many cores were used since it is 

stated in the paper that Fluidity uses MPI for parallelization to thousands of cores, 

although it is not stated whether this is used in these examples. 

 

RESPONSE: 

The units of CPU time in Figures 2 and 5 are seconds. We did not use MPI for 

parallelization. All computations were performed on a workstation using the 

Gfortran Compiler for Linux. The simulation workstation has 8 processors and a 

4GB random-access memory (RAM). The processor used in workstation is Intel(R) 

Core(TM) i7-2600 CPU @ 3.40GHz. A single processor with frequency of 

3.40GHz was used since the test cases were simulated in serial. 
 

This has been clarified in section 5.  

 

14. If I am interpreting the timings right, I suspect the slowness of the code is due to 

the use of an implicit method for the advection problem. This leads me again to 

question the wisdom of such methods for this problem, since there are good 

explicit block-structured AMR algorithms implemented in software such as 

AMROC, Boxlib, Chombo, Clawpack, SAMRAI, etc. that I believe works quite 

efficiently on the sort of test problems presented here. More justification is 

needed for the value of the methods implemented in Fluidity than is presented in 

this paper. 

 

RESPONSE: 

For implicit issue, please see the response to question 5. The slowness of codes is 

due to the use of unstructured meshes – this is a common issue in unstructured 

mesh models. In unstructured mesh finite element modelling, it involves the 

integration of equations over the domain. It thus spends most of time on 



assembling the matrices at each time step, especially for nonlinear problems. We 

used a number of numerical techniques to reduce the CPU time, for example, the 

timestepping θ scheme to eliminate the time-step restrictions (please see section 

2.2 and response to question 5). The use of adaptive meshes will also reduce the 

number of nodes, thus increasing the computational efficient (please see discussion 

in cases 1 and 2 in section 5) although it may take time on adapting the mesh at 

certain time level. 

 

As stated in introduction (or see response to question 9), the unstructured adaptive 

mesh technique is important in next generation models since it may be the only 

way to model multi-scale flow dynamical problems in large regions. Due to 

advanced computational technologies, the issue of CPU times can be sorted out 

using MPI. Fluidity is parallelized using MPI and is capable of scaling to many 

thousands of processors. 

 

15. In (15), epsilon is a relative error tolerance that is presumably some positive 

value chosen by the user, so why is epsilon_min needed to ensure the 

denominator is nonzero? 

 

RESPONSE: 

For example, if 𝜖 = 0.01, then the tolerance on the denominator of the metric 

formulation will be 1% of the value of the field c , and so it will scale the target 

interpolation error with the magnitude of the field. Since the value of the field c 

may be zero in some region of the domain (e.g., the background of tracer field has 

been set to be zero in the 1
st
 and 2

nd
 test), it is necessary to set the minimum 

tolerance 𝜖𝑚𝑖𝑛 to ensure that the denominator never becomes zero. 

 

16. On page 4345 line 15, I am not sure what is meant by imposing different limits 

on the cell sizes in different directions. 

 

RESPONSE: 

For robustness of the mesh adaptivity procedure, and to limit 

refinement/coarsening of the mesh it is possible to set maximum and minimum 

allowed edge length sizes. The inputs to these quantities are tensors allowing one 

to impose different limits in different directions. Assuming that these directions are 

aligned with the coordinate axes allows one to define diagonal tensors. These 

constraints are achieved through manipulations to the metric, which in turn 

controls an optimization procedure. They are therefore not hard constraints and 

one may observe the constraints being broken (slightly) in places. 

 

 

17. Page 4347, line 20 and I am not sure what is meant by the "Sweby limiter". 

Sweby’s paper discussed many limiter such as minmod, superbee, etc., but I am 

not sure what Sweby limiter is referred to here. 

 

RESPONSE: 

Although Sweby(1984) discussed many limiter functions, the “Sweby limiter” here 

is not referred to any one of them, but only use the Sweby’s TVD region on the 

normalized variable diagram(NVD) as a criterion to limit the face value calculated 

by the finite element interpolation approach. Any combination of normalized face 



and donor values falling within this region is left unchanged. Values falling outside 

this region are ‘limited’ along lines of constant normalized donor value back onto 

the top or bottom of the stable region. The high order flux is obtained from the 

finite element interpolation of the CV values(for details, see AMCG, 2014). So, we 

use the name “CV-TVD limiter” instead of “Sweby limiter” in the revised version. 

 


