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Abstract.

In this paper a new integral mathematical model for volcanic plumes, named PlumeMoM, is pre-

sented. The model describes the steady-state dynamics of the plume in a 3D coordinate system,

accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected

at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging5

from a few microns up to several centimeters and more. Proper description of such a multiparticle

nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore,

for better characterization of source conditions of ash dispersal models. The new model is based

on the method of moments, which allows description of the pyroclastic mixture dynamics not only

in the spatial domain but also in the space of parameters of the continuous size-distribution of the10

particles. This is achieved by formulation of fundamental transport equations for the multiparticle

mixture with respect to the different moments of the grain-size distribution. Different formulations,

in terms of the distribution of the particle number, as well as of the mass distribution expressed in

terms of the Krumbein log scale, are also derived. Comparison between the new moments-based for-

mulation and the classical approach, based on the discretization of the mixture in N discrete phases,15

shows that the new model allows the same results to be obtained with a significantly lower computa-

tional cost (particularly when a large number of discrete phases is adopted). Application of the new

model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation

of the response of four key output variables (mean and standard deviation of the grain-size distribu-

tion at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to20

changes in the main input parameters (mean and standard deviation) characterizing the pyroclastic

mixture at the base of the plume. Results show that, for the range of parameters investigated and

without considering interparticle processes such as aggregation or comminution, the, the grain-size
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distribution at the top of the plume is remarkably similar to that at the base and that the plume

height is only weakly affected by the parameters of the grain distribution. The adopted approach can25

be potentially extended to the consideration of key particle-particle effects occurring in the plume

including particle aggregation and fragmentation.

1 Introduction

In the past decades, numerical simulation of volcanic eruptions has greatly advanced and models

are now often able to deal with the multiphase nature of volcanic flows. This is the case, for ex-30

ample, of models describing the dynamics of pyroclastic particles in a volcanic plume, or that of

bubbles and crystals dispersed in the magma rising in a volcanic conduit. Despite this, in numeri-

cal models, the polydispersity associated with the multiphase nature of volcanic flows is often ig-

nored or largely simplified (Valentine and Wohletz, 1989; Neri at al., 2003; Dartevelle, 2003; Dufek

and Bergantz, 2007; Esposti Ongaro et al., 2007; de’ Michieli Vitturi et al., 2010). For instance, in35

most of the existing conduit models, crystals and bubbles are treated as simple flow components and

described by volume fractions only, while in plume dynamics and ash dispersal models the grain size

distribution of pyroclasts is discretized in a finite number of classes (i.e. phases). Both approaches

make proper treatment of the continuous variability of the dimension of pyroclastic particles and

gas bubbles difficult. Literature results (Llewellin et al., 2002; Pal, 2003; Costa et al., 2010) clearly40

show that this variability can largely affect relevant physical/chemical processes that occur during

the transport of the dispersed phase such as, for example, the nucleation and growth of bubbles and

the coalescence/breakage of bubbles and crystals in the conduit or the aggregation of pyroclastic

particles in a volcanic plume.

A theoretical framework and the corresponding computational models, namely the method of45

moments for disperse multiphase flows, have been developed in the past decades, mostly in the

chemical engineering community (Hulburt and Katz, 1964; Marchisio et al., 2003), to track the

evolution of these systems not only in the physical space, but also in the space of properties of

the dispersed phase (called internal coordinates). According to this method, a population balance

equation is formulated as a continuity statement written in terms of a density function. From the50

density function some integral quantities of interest (namely the moments, i.e. specific quantitative

measures of the shape of the density function) are then derived and their transport equations are

formulated.

In this work we present an extension of the Eulerian steady-state volcanic plume model presented

in Barsotti et al. (2008) (derived from Bursik (2001)) obtained by adopting the method of moments.55

In contrast to the original works where pyroclastic particles are partitioned into a finite number

of classes with different size and properties, the new model is able to consider a continuous size

distribution function of pyroclasts, f(D), representing the number or the mass fraction of particles
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(per unit volume) with diameter between D and D+ dD. Accordingly, conservation equations of

the plume are expressed in terms of the transport equations for the moments of the ash particles size60

distribution. In particular in the following we present the new multiphase model formulation based

on the implementation of the quadrature method of moments McGraw (2006) and we investigate the

sensitivity of the model to uncertain or variable input parameters such as those describing the grain-

size distribution of the mixture. To quantify and incorporate this epistemic uncertainty affecting the

input parameters (characterizing lack-of-knowledge) into our application of the model we tested two65

different approaches, a modification of the Monte Carlo method based on Latin hypercube sampling

and a stochastic approach, namely the generalized Polynomial Chaos Expansion method.

This paper is organized as follows: in Section 2 we present the method of moments applied to

two different descriptions of particles distribution. In Section 3 the equations of the model for the

two formulations are described. Section 4 is devoted to the numerical discretization of the model70

and the numerical implementation of the method of moments. Section 5 presents the application of

the model to three test cases with a comparison of the model results for different formulations of

the plume model, and finally an uncertainty quantification and a sensitivity analysis are applied to

model results.

2 Method of Moments75

2.1 Moments of the size distribution

In contrast to previous works, where the solid particles are partitioned in a finite number of classes

with different size (Barsotti et al., 2008), we introduce here a continuous size distribution function

representing the number (or mass) concentration of particles (per unit volume) as a function of the

particles diameter. In general, this particle size distribution (PSD) is a function of time t, of the80

spatial coordinate and of the diameter of the particles.

First, we present the method of moments for a particle size distribution f(D), representing the

number concentration of particles (particles per unit volume) with diameter betweenD andD+dD,

where D is expressed in meters. When more than one family of particles are present, for example

lithics and pumice, we will use the subscript j to distinguish among them. Consequently, the function85

fj(D) will denote the number concentration of particles of the j-th family.

Given a particle size distribution fj(D), we observe that its “shape” can be quantified through the

moments M (i)
j (Hazewinkel, 2001), defined by

M
(i)
j =

+∞∫
0

Difj(D)dD. (1)

The particular definition of fj(D) we adopt, expressing the number concentration of particles of90

size D, allows the following physical interpretation of the first four moments:
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– M
(0)
j is total number of particles of the j-th family(per unit volume);

– M
(1)
j is sum of the particles diameter of the j-th family(per unit volume);

– M
(2)
j is total surface area of particles of the j-th family(per unit volume);

– π
6M

(3)
j : total volume of particles of the j-th family (per unit volume) or the local volume95

fraction of the j-th dispersed phase, also denoted with αs,j . The multiplying factor π
6 is ob-

tained assuming spherical particles. For particles with different shape, if volume scales with

the third power of length, we can still relate the particle volume V with the particle length D

through a volumetric shape factor kv such as V = kvL
3.

We also note that the central moments (i.e., those taken about the mean) can be expressed as func-100

tion of the raw moments (i.e., those taken about zero as in Eq. (1)), and in this way it is possible to

relate the moments of the distribution with the mean, variance, skewness, kurtosis. Furthermore, a

mean particle size can be defined as the ratio of the moments M (i+1)
j /M

(i)
j for any value of i. For

example, the Sauter mean diameter (defined as the ratio between the mean volume and the mean sur-

face area) is obtained by setting i= 2, giving Lj,32 =M
(3)
j /M

(2)
j . Similarly, it is possible to define105

the mean particle length averaged with respect to particle number density Lj,10 =M
(1)
j /M

(0)
j , i.e.

the sum of the lengths of particles (per unit volume) divided by the number of particles (per unit

volume), and the mean particle length averaged with respect to particle volume-fraction Lj,43 =

M
(4)
j /M

(3)
j .

The motivation for the introduction of the moments is to minimize computational costs by avoid-110

ing the discretization of the size distribution in several classes, and nevertheless to capture the poly-

dispersity of the flow through the correct description of the evolution of the moments (Carneiro,

2011). The moments approach also allows to treat interparticles processess such as particle aggrega-

tion and fragmentation that strongly depend on and affect the GSD of the mxture (Marchisio et al.,

2003). The moments and the corresponding transport velocities appear naturally in the mathematical115

formulation as a direct consequence of the integration of the Eulerian particle equations over the

diameter spectrum, as will be shown in the next section.

2.2 Moments of other quantities

In the plume model, several quantities characteristic of the particles, such as settling velocity, density

and specific heat capacity, are also defined as functions of the particle diameter, and thus we can120

define their moments as done for the particle size distribution fj(D). In general, for a quantity ψj

that is a function of the diameter D, we define its moments as

ψ
(i)
j =

1

M
(i)
j

+∞∫
0

ψj(D)Difj(D)dD. (2)
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As a first example, we consider here the moments of particles density ρs. In particular, follow-

ing Bonadonna and Phillips (2003), density of lithics is assumed to be constant, whereas density125

of pumices ρs,pum(D) with diameter D <D2 (here equal to 2 mm) is assumed to decrease and to

reach the lithic density value when the fragment diameter decreases below D1 (here equal to 8 µm).

Substituting the expression for the particles density of the j-th particle family in Eq. (2), we obtain

the moments of the density as:

ρ
(i)
s,j =

1

M
(i)
j

+∞∫
0

ρs,j(D)Difj(D)dD. (3)130

We remark that moments of different order are generally different, they will only be equal (ρ(l)s,j =

ρ
(m)
s,j , l 6=m) in two limiting cases: for a monodisperse distribution with diameterD∗ and density ρ∗s ,

i.e. fj(D) = δ(D−D∗) (where δ is the Dirac-delta function) and ρs,j(D∗) = ρ∗s; or if all particles

have the same density, i.e. ρs,j(D) = ρ∗s,j , ∀D. In both cases, ρ(i)s,j = ρ∗s,j , ∀i. Otherwise, there is no

reason, e.g., for ρ(1)s,j and ρ(3)s,j to be the same, as they represent length and volume weighted den-135

sity averages, respectively. For our application, we are interested mostly in the volumetric averaged

density ρ(3)s,j , i.e. the average mass per unit volume of particles from now on denoted with ρ̃s,j .

The moments defined by Eq. (3) can also be used to define other properties of the gas-particles

mixture. For example, it follows from the definition of the moments that if we have a mixture of a gas

with density ρg and a family of polydisperse distributions of particles with density ρs,j = ρs,j(D),140

the mixture density is given by:

ρmix =
∑
j

αs,j ρ̃s,j + (1−
∑
j

αs,j)ρg =∑
j

π
6M

(3)
j ρ

(3)
s,j + (1−

∑
j

π
6M

(3)
j )ρg

(4)

and consequently the mass fraction of the j-th solid phase with respect to the gas-particles mixture

is given by:

xs,j =
αs,j ρ̃s,j
ρmix

=
π
6M

(3)
j ρ

(3)
s,j∑

j

π
6M

(3)
j ρ

(3)
s,j + (1−

∑
j

π
6M

(3)
j )ρg

. (5)145

We also remark that here the gas phase is a mixture of atmospheric air, entrained in the plume during

the rise in the atmosphere, and a volcanic gas component, generally water vapour. In the following,

we will use the subscript atm to denote the atmospheric air and wv for the volcanic water vapour.

Differently from the approach used in Barsotti et al. (2008), where a constant settling velocity

for each class is provided by the user, here several models have implemented in the code (Pfeiffer150

et al., 2005; Textor et al., 2006a, b). For the application presented in this work, the settling velocity
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is defined as a function of the particle diameter and density as in Textor et al. (2006a):

ws,j(D) =


k1
(
D
2

)2
ρs,j(D)

√
ρ0
atm

ρatm
D ≤ 10µm

k2
(
D
2

)
ρs,j(D)

√
ρ0
atm

ρatm
10<D ≤ 103µm

k3

√
D
2

√
ρs,j(D)
CD

√
ρ0
atm

ρatm
D > 103µm

(6)

where k1 = 1.19× 105 m2kg−1s−1, k2 = 8 m3kg−1s−1 and k3 = 4.833 m2kg−1/2s−1. The drag

coefficient CD is a parameter accounting for the particles surface roughness, and for this work we155

used a value of 0.75 as in Carey and Sparks (1986).

Proceeding as done for the particle density, it is possible to evaluate the moments w(i)
s,j of the

settling velocity ws,j(D), defined as

w
(i)
s,j =

1

M
(i)
j

+∞∫
0

ws,j(D)Difj(D)dD (7)

and representing weighted integrals of the settling velocity over the size spectrum. Again, moments160

of different order are generally different. There is no reason, e.g., for w(2)
s,j and w(3)

s,j to be the same,

as they represent surface and volume weighted averages, respectively.

Finally, it is possible to define the moments C(i)
s,j of the particles’ specific heat capacity Cs,j :

C
(i)
s,j =

1

M
(i)
j

+∞∫
0

Cs,j(D)Difj(D)dD. (8)

We observe that for the specific heat capacity generally we are not interested in a volumetric average165

but in the mass average, denoted here with the notation C̄s,j and given by the following expression:

C̄s,j =

+∞∫
0

Cs,j(D)
ρs,j(D)D3

ρ̃s,jM
(3)
j

fj(D)dD =
1

ρ̃s,j
[Cs,jρs,j ]

(3)
. (9)

2.3 Mass fraction distribution

While in chemical engineering, where the method of moments is commonly used, the particle num-

ber distribution fj(D) is generally preferred to describe the polidispersity of the particles, in vol-

canology it is more common to use a mass fraction distribution γj(φ), defined as a function of the

Krumbein phi (φ) scale:

φ=− log2

1000D

D0
,

where D is the diameter of the particle expressed in meters, and D0 is a reference diameter, equal to

1 mm (to make the equation dimensionally consistent).170

In this case, the distribution γj(φ) represents the mass fraction of particles (mass per unit mass of

the gas-particles mixture) of the j-th family with diameter between φ and φ+ dφ. Again, the shape

of the distribution γj(φ) can be characterized by its moments Πi
j , defined by

Π
(i)
j =

+∞∫
−∞

φiγj(φ)dφ. (10)
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Also in this case the particular definition of γj(φ) allows a physical interpretation of the moments:175

for example, the moment Π
(0)
j is the mass fraction of the j−th solid phase xs,j with respect to

the gas-particles mixture. As done with the particle number distribution, it is possible to define a

mean particle size in terms of the moments of the mass fraction distribution as Π
(i+1)
j /Π

(i)
j ; this

ratio, for i= 0, gives the mass averaged diameter, corresponding to the volume averaged diameter

Lj,43 =M
(4)
j /M

(3)
j when the density ρs,j(φ) is constant.180

Again, it is possible to define the moments of other quantities ψj(φ) in terms of the continuous

distribution of mass fraction γj(φ) as

ψ
(i)
j =

1

Π
(i)
j

+∞∫
−∞

ψj(φ)φiγj(φ)dφ. (11)

For example, when the mass fraction distribution γj(φ) is used, the mass averaged heat capacity

C̄s,j is given by the following expression:185

C̄s,j =
1

xs,j

+∞∫
−∞

Cs,j(φ)γs,j(φ)dφ= C
(0)
s,j (12)

and the volumetric averaged density, i.e. the mass of particles per unit volume, can be evaluated from

1

ρ̃s,j
=

1

xs,j

+∞∫
−∞

γs,j(φ)

ρs,j(φ)
dφ=

[
1

ρs,j

](0)
. (13)

3 Plume Model190

In this section we describe the assumption and the equations of the model. As in Bursik (2001), the

model assumes an homogeneous mixture of particles and gases with thermal and mechanical equi-

librium between all phases. Aggregation and breakage effects are not considered and consequently

density does not change with time. Finally, the model does not consider effects of humidity and

water phase changes.195

The equation set for the plume rise model is solved in a 3-D coordinate system (s,η,θ) by consid-

ering the bulk properties of the eruptive mixture (see Figure 1). The plume is assumed with a circular

section in the plane normal to the centerline trajectory with curvilinear coordinate s, a top-hat pro-

file of the velocity along the certerline, an inclination on the ground defined by an angle η between

the axial direction and the horizon, and an angle θ in the horizontal plane (x,y) with respect to the200

x−axis. These angles are needed to describe the evolution of weak explosive eruptions which are

strongly affected by atmospheric conditions.

Following Bursik et al. (1992) and Ernst et al. (1996), the conservation of flux of particles with

size D of the j−th family is given by:

d

ds

(
fj(D)πr2Usc

)
=−2πrpws,j(D)fj(D) (14)205
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Figure 1. Schematic representation of the Eulerian plume model. The dashed black line represent the axis of

the curvilinear coordinate s.

where r is characteristic plume radius, Usc represents the velocity of the plume cross section along

its centerline (a top-hat profile is assumed) and p is the probability that an individual particle will

fall out of the plume, defined as a function of an entrainment coefficient α as

p=

(
1 + 6

5α
)2− 1(

1 + 6
5α
)2

+ 1
. (15)

Equation (14) states that the number of particles of the j−th family with size D lost from the plume210

is proportional to the number of particles at the plume margin, given by fj(D) · 2πr, to the settling

velocity ws,j(D) and to the probability factor p.

Now, multiplying both the sides of equation (14) forDi and then integrating over the size spectrum

[0,+∞], we obtain the following conservation equations for the moments M (i)
j :

d

ds

(
M

(i)
j Uscr

2
)

=−2rpw
(i)
s,jM

(i)
j . (16)215

If we compare our formulation with that presented in Barsotti et al. (2008), where the effects of

a polydisperse solid phase are taken into account partitioning the size spectrum in a finite number

N of solid classes, the set of equations (16) replaces the N mass conservation equations for the N

particulate classes.
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From equation (14), if we multiply both the terms by the mass of the particles of size D, given by220
π
6D

3ρs,j(D), we obtain the additional equation:

d

ds

(
fj(D)

π

6
D3ρs,j(D)πr2Usc

)
=

−2πrpws,j(D)fj(D)
π

6
D3ρs,j(D)

(17)

and, integrating over the size spectrum:

d

ds

(
Uscr

2π

6
M

(3)
j ρ

(3)
s,j

)
=−2rp

π

6
M (3) [ws,jρs,j ]

(3)
, (18)

where on the left hand-side the term π
6M

(3)
j ρ

(3)
s,j represents the volume average bulk density of the225

particles of the j-th family (i.e. the mass of particles of the j-th family per unit volume of gas-parti-

cles mixture, denoted with the superscriptB, ρBs,j), while on the right-hand side the term [ws,jρs,j ]
(3)

represents the mass averaged settling velocity of the particles of the j-th family multiplied by the

volume averaged particles density. Equation (18) is the mass conservation equation for the j-th

family of particles, relating the variation of the mass flux of particles within the plume with the loss230

at the plume margin.

Now, following the same procedure, we reformulate the other conservation equations describing

the steady-state ascent of the plume in terms of the moments of the continuous distributions of sizes,

densities and settling velocities instead of the averages over a finite number of classes of particles

with different size.235

First of all, we derive the conservation equation for the mixture mass. As in the plume theory,

we assume that the entrainment, due to both turbulence in the rising buoyant jet and to the cross-

wind field, is parameterized through the use of two entrainment coefficients, αε and γε. The theory

assumes that the efficiency of mixing with ambient air is proportional to the product of a reference

velocity (the vertical plume velocity in one case and the wind field component along the plume cen-240

terline in the other), by αε and γε (Morton, 1959; Briggs, 1975; Wright, 1984; Weil, 1988). Thus,

following Hewett et al. (1971) and Bursik (2001), we define the entrainment velocityUε as a function

of windspeed, Uatm, as well as axial plume speed, Usc:

Uε = αε|Usc−Uatm cosφ|+ γε|Uatm sinφ| (19)

where αε|Usc−Uatm cosφ| is entrainment by radial inflow minus the amount swept tangentially245

along the plume margin by the wind, and γε|Uatm sinφ| is entrainment from wind. With this notation,

the total mass conservation equation solved by the model becomes

d

ds

(
ρmixUscr

2
)

= 2rρatmUε− 2rp
∑
j

π

6
M

(3)
j [ws,jρs,j ]

(3)
, (20)

stating that the variation of mass flux (left-hand side term) is due to air entrainment (first right-hand

side term) and loss of solid particles (second right-hand side term), as obtained from Eq. (18).250
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From Newton’s second law and the variation of mass flux, we can derive also the horizontal and

vertical components of the momentum balance solved by the model as:

d

ds

(
ρmixUscr

2(u−Uatm)
)

=

−r2ρmixw
dUatm
dz

− 2upr
∑
j

π

6
M

(3)
j [ws,jρs,j ]

(3)
,

(21)

and

d

ds

(
ρmixUscr

2w)
)

=

gr2(ρatm− ρmix)− 2wpr
∑
j

π

6
M

(3)
j [ws,jρs,j ]

(3)
,

(22)255

where the two components of plume velocity along the horizontal and vertical axes are u and w,

respectively, and they are linked by the relation Usc =
√
u2 +w2. In the right-hand side of equation

(21) the terms related to the exchange of momentum due to the wind (Barsotti et al., 2008) and

to momentum loss from the fall of solid particles appear. Similar contributions are evident in the

right-hand side term of equation (22) where the vertical momentum is changed by the gravitational260

acceleration term and the fall-out of particles.

Now, following the notation adopted above and denoting with T the mixture temperature, the

equation for conservation of thermal energy solved by the model writes as

d

ds

(
ρmixUscr

2CmixT
)

= 2rρatmUεCatmTatm

−r2wρatmg− 2Tpr
∑
j

π

6
M

(3)
j [Cs,jws,jρs,j ]

(3)
.

(23)

The first term on right-hand side describes the cooling of the plume due to ambient air entrainment,265

the second one takes into account atmospheric thermal stratification, and the third term allows for

heat loss due to loss of solid particles. Again, this last term is obtained writing the heat loss for the

particles of sizeD, and then integrating over the size spectrum. A thermal equilibrium between solid

and gaseous phases is assumed. In Eq. (23) Catm and Cmix are the heat capacity of the entrained

atmospheric air and of the mixture, respectively, the latter being defined as:270

Cmix = (1−
∑
j

xs,j)Cp,g +
∑
j

xs,jC̄s,j (24)

or, in terms of the bulk densities ρBatm = xatmρmix, ρBwv = xwvρmix and ρBs,j = π
6M

(3)
j ρ̃s,j , as

Cmix =

ρBatmCatm + ρBwvCwv +
∑
j

ρBs,jC̄s,j

ρBatm + ρBwv +
∑
j

ρBs,j
. (25)
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From this expression, if we multiply all the terms at the numerator and the denominator of the right-

hand side by Uscr2 and we differentiate with respect to s, we obtain after some cancellation and275

algebra manipulations the following equation for the variation of the mixture specific heat with s:

dCmix
ds

=

1

ρmixUscr2

[
(Catm−Cmix)

d

ds

(
ρBatmUscr

2
)

+
∑
j

(
C̄s,j −Cmix

) d
ds

(
ρBs,jUscr

2
)

+
∑
j

ρBs,j
ρmix

[
d
ds

(
C̄s,jρ

B
s,jUscr

2
)

ρBs,jUscr
2

−
C̄s,j

d
ds

(
ρBs,jUscr

2
)

ρBs,jUscr
2

]
.

(26)

Now, substituting the expressions for the derivatives appearing in each term on the right-hand side,

we obtain the equation for the variation rate of mixture specific heat in terms of the moments:

dCmix
ds

=
1

ρmixUscr2

[
Catm2rρatmUε−Cmix

(
2rρatmUε

−2pr
∑
j

π

6
M

(3)
j [ws,jρs,j ]

(3)
)

−2pr
∑
j

π

6
M

(3)
j [ws,jρs,jCs,j ]

(3)
]

(27)280

Similarly, a gas constant Rg can be defined as a weighted average of the gas constant for the

entrained atmospheric air Ratm and the gas constant of the volcanic water vapour Rwv

Rg =
ρBatmRatm + ρBwvRwv

ρBatm + ρBwv
(28)

and a conservation equation can be derived, knowing that the variation of gaseous mass fraction with

height is solely due to entrained air:285

dRg
ds

=
Ratm−Rg

ρmix(1−xs)Uscr2
· 2rρatmUε. (29)

This formulation reduces, for particular cases, to the expressions of Woods (1988) and Glaze and

Baloga (1996). Equations (27) and (29) are needed in order to close the system of equations and

recover the new values of the temperature and the mixture density once the system of ordinary

differential equations is integrated. Otherwise, without the solutions of Equations (27) and (29), we290

should use the old values of ρmix and Cmix at s to obtain the values of the temperature at s+ ds

from the lumped term (ρmixUscr
2CmixT ) obtained integrating Eq. (23).
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Finally, as in Bursik (2001), the equations expressing the coordinate transformation between

(x,y,z) and (s,η,θ) are given by:

dz

ds
= sinη,

dx

ds
= cosη cosθ,

dy

ds
= cosη sinθ. (30)295

3.1 Mass fraction distribution

Similarly as done for the distribution of particle number fj(D) and the moments M (i)
j , it is pos-

sible to derive a set of conservation equations in terms of the moments Π
(i)
j of the mass fraction

distribution γj(φ) expressed as a function of the Krumbein scale.

In this case, the conservation of mass flux of particles with size φ of the j−th family write as:300

d

ds

(
ρmixγj(φ)πr2Usc

)
=−2πrpws,j(φ)ρmixγj(φ). (31)

Multiplying both sides of the equation by φi and integrating over the size spectrum [−∞,+∞], we

obtain the following conservation equations for the moments of the continuous distributions γj(φ):

d

ds

(
Π

(i)
j ρmixUscr

2
)

=−2rpρmixw
(i)
s,jΠ

(i)
j . (32)

For i= 0, the equations of conservation of the moments give:305

d

ds

(
xs,jρmixUscr

2
)

=−2rpρmixw
(0)
s,jxs,j (33)

expressing the loss of mass flux of the particles of the j−th family and thus we can write the total

mass conservation equation as

d

ds

(
ρmixUscr

2
)

= 2rρatmUε− 2rpρmix
∑
j

w
(0)
s,jΠ

(0)
j . (34)

From the variation of mass flux, as done for the distribution of particle number fj(D) and the310

moments M (i)
j , we derive the horizontal and vertical components of the momentum balance:

d

ds

(
ρmixUscr

2(u−Uatm)
)

=

−r2ρmixw
dUatm
dz

− 2uprρmix
∑
j

w
(0)
s,jΠ

(0)
j ,

(35)

d

ds

(
ρmixUscr

2w)
)

=

gr2(ρatm− ρmix)− 2wprρmix
∑
j

w
(0)
s,jΠ

(0)
j .

(36)

The equation for conservation of thermal energy is315

d

ds

(
ρmixUscr

2CmixT
)

= 2rρatmUεCatmTatm

−r2wρatmg− 2Tprρmix
∑
j

[Cs,jws,j ]
(0)

Π
(0)
j

(37)
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and the equation for the variation rate of mixture specific heat in terms of the moments of the mass

fraction distribution write as:

∂Cmix
∂s

=
1

ρmixUscr2

[
Catm2rρatmUε−Cmix (2rρatmUε

−2rpρmix
∑
j

w
(0)
s,jΠ

(0)
j ) − 2prρmix

∑
j

[Cs,jws,j ]
(0)

Π
(0)
j ].

(38)

The formulation of the equations for the gas constantRg and the coordinates of the (x,y,z) remain320

unchanged.

4 Numerical scheme

The plume rise equations are solved with a predictor-corrector Heun’s scheme (Petzold and Ascher,

1998) that guarantees a second–order accuracy, keeping the execution time in the order of seconds.

If we rewrite the system of ordinary differential equations with the following compact notation:325

dy

ds
= f(s,y), y(s0) = y0, (39)

where y is the vector of the quantities in the left-hand sides of the conservation equations presented

in the previous section, then the procedure for calculating the numerical solution by way of Heun’s

method (Süli and Mayers, 2003) is to first calculate the intermediate values ỹi+1 and then the solution

yi+1 at the next integration point330

ỹi+1 = yi + dsf(si,yi), predictor step

yi+1 = yi +
ds

2
(f(si,yi) + f(si+1, ỹi+1)) corrector step.

(40)

4.1 Quadrature method of moments

We observe that to calculate the right-hand side for both the predictor and corrector step we need

not only the moments M (i), but also the additional moments [ws]
i, [wsρs]

(i) and [wsρsCs]
(i). As in

Marchisio and Fox (2013), the integral in the definition of these moments is replaced by a quadrature335

formula and the moments, for a generic variable ψ = ψ(D), are approximated as:

ψ(i) =
1

M (i)

+∞∫
0

ψ(D)f(D)DidD ≈
N∑
l=1

ψ(Dl)D
i
lωl (41)

Here ωl and Dl are known as “weights” and “nodes” (or “abscissae”) of the quadrature, respec-

tively, and the accuracy of a quadrature formula is quantified by its degree. The degree of accuracy

is equal to d if the interpolation formula is exact when the integrand is a polynomial of order less340
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than or equal to d and there exists at least one polynomial of order d+1 that makes the interpolation

formula inexact. In particular, anN−point Gaussian quadrature rule, is a quadrature rule constructed

to yield an exact result for polynomials of degree 2N − 1 or less by a suitable choice of the nodes

Dl and weights ωl for l = 1, . . . ,N (Golub and Welsch, 1969).

The Wheeler algorithm, as presented in Marchisio and Fox (2013), provides an efficient O(N2)345

algorithm for finding a full set of weights and abscissas for a realizable moment set. The resulting

nodes Dl are always within the support (and therefore represent realizable values of the particle

size), and the weights ωl are always positive, ensuring that, when the quadrature is used, accurate

results are obtained Marchisio and Fox (2013). Nevertheless, these properties are respected only if

the moment set is realizable, meaning that there exists a particle size distribution resulting in that350

specific set of moments.

A strategy that might overcome the problem of moment corruption (i.e. the transformation during

the integration of the moment-transport equations of a realizable set of moments into an unrealizable

one) is replacing unrealizable moment sets as soon as they appear. An algorithm of this kind was

developed by McGraw (McGraw, 2006). The algorithm first verifies whether the moment set is355

realizable (by looking at the second-order difference vector or by looking at the Hankel-Hadamard

determinants (Gautschi, 2004)). If the moment set is unrealizable it proceeds with the correction.

In the numerical model here presented, the implementation of the correction algorithm of Wright is

derived from the version presented in Marchisio and Fox (2013).

Thus, in both the predictor and corrector step, the following algorithm is used:360

– the nodes Dj,l and weights ωj,l are calculated with the Wheeler algorithm for l = 1, . . . ,N ;

– the quadrature formula (41) is used to evaluate the moments [ws]
(i)
j , [wsρs]

(i)
j and [wsρsCs]

(i)
j ;

– the right-hand side of the ODE’s system (39) is evaluated explicitly;

– the solution is advanced with the predictor (or the corrector) step of the Heun’s scheme;

– for each particle family j, the moments M (i)
j (i= 0, . . . ,2N − 1), if required, are corrected365

with the McGraw (or Wright) algorithm.

We observe that if the j−th family of particles is monodisperse with diameter d̄j , the Wheeler

algorithm fed with the first two moments only gives as result a single quadrature node Dj,1 = d̄j

with weight ωj,1 = 1. This allows us also to use the model for the simplified case where the solid

particle distribution is partitioned in a finite number of classes with constant size, assigning to each370

class a monodisperse distribution.

4.2 Initial condition

Initial conditions at the vent include the initial plume radius (r0), mixture velocity (Usc,0) and tem-

perature (T0), gas mass fraction (n0) and the particles size distribution through the initial moments

14



M
(i)
0 . In the next section we derive analytically the moments of a specific initial distribution (a nor-375

mal distribution in the Krumbein scale) for both the formulations based on the number of particles

as a function of the particles diameter expressed in meters and the formulation based on the mass

concentration expressed as a function of the phi scale.

4.2.1 Lognormal distribution

For the application presented in this work, the initial distribution f(D) at the base of the plume is380

defined as a function of the particles diameter expressed in meters (m), in order to give a correspond-

ing normal distribution with parameters µ and σ for the mass concentration expressed as a function

of the Krumbein phi (φ) scale (when all the particles have the same density):

γ(φ) =
K0

σ
√

2π
e−

(φ−µ)2

2σ2 , (42)

where K0 is a parameter that has to be chosen in order to satisfy the initial condition on the solid385

mass fraction.

Given the parameters µ and σ, the initial distribution f(D) is then written as:

f(D) =
6C0

(−σ ln2)D4
√

2π3
e
− [− ln(1000D)−µ ln2]2

2(σ ln2)2 . (43)

where C0, analogously to K0, is a parameter that has to be fixed in order to satisfy the initial condi-

tion prescribed for the mass (or volume) fraction of particles.390

We observe that if we introduce the following re-scaled variables for the diameter, the mean and

the variance:

D̄ = 1000D, µ̄=−µ ln2, σ̄ =−σ ln2, (44)

then it is possible to rewrite the particle distribution f(D) in terms of a lognormal distribution in the

variable D̄ with parameters µ̄ and σ̄:395

f̄(D̄) =
6 · 1012C0

πD̄3

1

σ̄D̄
√

2π
e−

[ln(D̄)−µ̄]2

2σ̄2

=
6 · 1012C0

πD̄3
lognorm(D̄, µ̄, σ̄).

(45)

Consequently, we can evaluate the moments M (i) of f(D) analytically from the moments of the

lognormal distribution as:

M (i) =
6C0

π
103(3−i)exp

[
(i− 3)µ̄+

1

2
(i− 3)2σ̄2

]
, (46)

and we obtain, for the third moment:400

M (3) =
6C0

π
⇒ C0 = α0

s (47)

where α0
s is the initial volume fraction of the particles in the solid-gas mixture.
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From the expressions of the moments it follows also that, if the mass concentration expressed as

a function of the Krumbein scale has a normal distribution, the Sauter mean diameter DA expressed

in meters can be evaluated as405

DA = L32 =
M (3)

M (2)
= 10−3 exp

(
µ̄− 1

2
σ̄2

)
, (48)

or, if expressed in φ, as

Dφ
A = Lφ32 = µ+

1

2
σ2 ln(2). (49)

Processes involving the mutual interaction between particles and the interaction between the par-

ticles and the carrier fluid (friction and cohesion between the particles; viscous drag; chemical reac-410

tions between fluid and solid components) operate at the surface of the particles. For this reason the

Sauter mean diameter, based on the specific area of the particles, is a convenient descriptor and it is

important to remark that it differs from the mean µ of the lognormal distribution by a factor propor-

tional to the variance σ2. For numerical models describing the multiphase (particulate) nature of the

matter and which approximate the particle size distribution with an average size, it is hence more ap-415

propriate to use, as particle size representative of a lognormal distribution, the Sauter mean diameter

than the mean diameter µ. The difference between the two approximations is smaller the narrower

the particle size distribution. We must also remark that, while for particles in the inertial-dominated

regime (e.g. Rep > 2000) Loth et al. (2004) showed that the Sauter mean diameter is the effective

diameter, regardless of particle shape, particle size distribution, particle density distribution or net420

volume fraction, for particles in the creeping flow regime (Rep << 1) the effective mean diameter

is the volume-width diameter.

When the Sauter mean diameter is used, also the variance and the standard deviation SD should

be based on the specific surface area (Rietema, 1991). Hence:

σ2
A =

+∞∫
0

(
1

D
− 1

DA

)2
π

6
D3f(D)dD, (50)425

or, expressed as a function of the moments:

σ2
A =

M (1)M (3)− (M (2))2

(M (3))2
. (51)

Finally, we note that if the particle density is constant and the mass concentration expressed as

a function of the Krumbein scale has a lognormal distribution and both the Sauter mean diameter

L32 =M (3)/M (2) and the mean particle length averaged with respect to particle number density430

L10 =M (1)/M (0) (or if the first 4 moments) are known then we can solve for the re-scaled mean

and variance µ̄ and σ̄ the following system:
L10 = 10−3 exp

(
µ̄− 5

2
σ̄2

)

L32 = 10−3 exp

(
µ̄− 1

2
σ̄2

) . (52)
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Once the re-scaled mean and variance are known, we can obtain µ and σ in the Krumbein φ scale.

When the initial distribution is expressed for the mass fractions instead of the particle number,435

and the mass fraction written as a function of the Krumbein scale has a normal distribution with

mean µ and variance σ2, then the continuous distribution is given by Eq. (42). We observe that this

expression of the distribution is not based on the assumption of constant density for the particles of

different size.

In this case, the moments Π(i) are given by the following expression440

Π(i) =K0

di/2e∑
j=0

(
i

2j

)
(2j− 1)!!σ2jµi−2j . (53)

where the symbols de and !! denote the integer part and the double factorial (n!! =
∏m
k=0(n− 2k),

where m= dn/2e− 1), respectively.

Now, as the 0−th moment is equal to the mass fraction of particles, we obtain K0 = xs. Fur-

thermore, we observe that the mass fraction averaged diameter in the φ scale is given by the ratio445

Π(1)/Π(0), while the variance of the mass fraction distribution can be evaluated as
[
Π(2)Π(0)− (Π(1))2

]
/(Π(0))2.

These two quantities correspond to the parameters (µ,σ2) generally used to describe the mass frac-

tion when a normal distribution in the φ scale is assumed. For this reason, when we want to track

the changes of the mass fraction averaged diameter and its standard deviation (or variance) in the φ

scale during the plume rise, it is preferred to use a formulation based on the moments Π(i) than the450

moments M (i).

5 Application

5.1 Simulation inputs

We applied the model to three different test cases with different vent and atmospheric conditions:

– Test Case 1 - low-flux plume without wind;455

– Test Case 2 - low-flux plume with wind (weak bent plume);

– Test Case 3 - high-flux plume (strong plume).

The parameters used for the different test cases are listed in Table 1, while the atmospheric condi-

tions are plotted in Fig. 3. For the low-flux plumes a mass flow rate of 1.5×106 kg/s has been fixed,

while for the strong plume the value is 1.5×109 kg/s. The temperature pressure and density profiles460

used for the test case without wind (Test Case 1) are those defined by the International Organization

for Standardization for the International Standard Atmosphere (Champion et al., 1985), while the

profiles for the other two test cases come from reanalysis data.
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Figure 2. Visualization of a normal initial distribution in the Krumbein φ scale for the solid particles. On the top

the particle number distribution expressed as a function of the diameter expressed in meters is plotted. On the

second and third plots from the top the corresponding distributions of volume and mass are plotted, these two

being different because the density is a function of the diameter. On the fourth plot the continuous distribution

(lognormal) of mass fraction as a function of the φ scale is plotted, while in the last plot the distribution has been

discretized with 13 bins in the range (-4;8). On each panel different average radii are also plotted, together with

the mean of the initial distribution. The first, fourth and fifth panel are highlighted with different color, also used

in Fig. 4 for the solutions obtained with the three different representation of the initial grain size distribution.

For all the runs presented here, a single family of particles has been used, with a normal distribu-

tion (with parameters µ and σ) for the mass concentration as a function of the diameter expressed in465

the φ scale and with density varying with the particle diameter.

We first present a comparison of the plume profiles obtained with the 3 different descriptions

presented in the previous sections and highlighted in the three colored boxes of Fig. 2 for the Test

Case 2: method of moments for the particle number being function of the size expressed in meters;

method of moments for the particle mass fraction being function of the size expressed in the φ scale;470

discretization in uniform bins in the φ scale. For this comparison, the mass flow rate at the vent is

1.5× 106 kg/s and a rotating wind is present, as shown in Fig. 3, while the mean and the standard

deviation of the initial total grain size distribution are respectively 2 and 1.5, expressed in the φ scale.

The results of the numerical simulations obtained with the three different formulations are presented

in Fig. 4 and they perfectly match, showing that the method of moments (dotted lines), both applied475

to the continuous distribution of the particle number (red) or to the mass distribution (green), gives
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Parameters Units Test Case 1 Test Case 2 Test Case 3

Vent Radius m 27 27 708

Vent Velocity m/s 135 135 275

Vent Temperature K 1273 1273 1053

Vent Gass Mass Fraction 0.03 0.03 0.05

Vent Height m 1500 1500 1500

ρ1 kg/m3 2000 2000 2000

ρ2 kg/m3 2600 2600 2600

D1 m 8× 10−6 8× 10−6 8× 10−6

D2 m 2× 10−3 2× 10−3 2× 10−3

µ φ -1.0–3.0 -1.0–3.0 -1.0–3.0

σ φ 0.5–2.5 0.5–2.5 0.5–2.5
Table 1. Input parameters used for the numerical simulations. Vent height is the elevation of the base of the

column above sea level. The values ρ1,2 and D1,2 are used to compute the density of the particles as a function

of the diameter, according to the formulation of Bonadonna and Phillips (2003). The values reported for µ and

σ define the range used for the uncertainty quantification and sensitivity analysis.
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Figure 3. Atmospheric profiles for the three test cases. The height is expressed in meters above sea level and

for all the test cases the vent is located at 1500m above sea level. For the wind profiles only the profiles for the

two test cases with wind are plotted.

the same results of the classical formulation based on the discretization of the mass distribution

in bins (solid line). For these simulations, we used only the first 6 moments of the distributions,

while 13 bins have been employed with the discretized formulation. This results in a smaller number

of equations to solve for the method of moments and, despite the additional cost of the method of480

moments due to the evaluation of the quadrature points and formulas through the Wheeler algorithm,

in a smaller computational time, with a gain of about 30%.
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Figure 4. Height vs Radius (left) and Velocity (right) for a low-flux plume, simulated with three different

models. In blue the profiles obtained using 13 bins, in red the profiles obtained using a continuous distribution

of the particle number density and in green using a continuous distribution of the mass fraction.

5.2 Simulation results

In this section we want to study the variation during the ascent of solid mass flux (due to particles

settling) and of the mean and the variance of the mass distribution along the column. As shown in the485

previous section, there are no significant differences in the results obtained with the three different

descriptions of the grain size distribution. For this reason, in the following we restrict the analysis

only to the formulation based on the moments of the mass fraction distribution as a function of the

diameter expressed in the φ scale. With this approach, the mean, the variance and the skewness of

the mass distribution along the column are easily obtained from the first 4 moments Π(i) of the mass490

fraction distribution.

In Fig. 5 we present the results relative to the Test Case 2 for an initial particle size distribution

with mean diameter 2 and standard deviation 1.5, expressed in the φ scale. In the left and middle

panels the mean, the variance and the skew of the mass fraction distribution are shown respectively,

while in the right panel the cumulative loss of solid mass flux is plotted as a percentage of the initial495

value. We observe a decrease in the mean size of the particles, due to the different settling velocities

of particles of different sizes. A decrease in the variance of the size distribution with height is also

observed from the second plot. We remark that the particles have a normal distribution only at the

base of the column (resulting in a null skewness), and the negative skew at the top of the column

indicates that the tail on the left side of the grain size distribution is longer than the tail on the500

right side, i.e. the mass is more concentrated on the right of the spectrum of particle sizes (finer

particles). For this reason we do not have to look at the mean and the variance plotted in Fig. 5

as the parameters of a normal (and symmetric) distribution. Nonetheless changes in the mean, the

variance and the skewness are observed, we remark that these changes are quite small and for this

reason the parameters of the total grain size distribution at the top of the eruptive column are a good505

approximation of the parameters at the base of the column, and vice versa. However, this is true
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Figure 5. Particles distribution parameters (mean, variance and skewness) and cumulative loss of solid mass

flux for the test case 2 (low-flux without wind), simulated with the formulation based on the moments of the

mass fraction distribution.

for the specific input condition of this test case and not in general. For this reason, it is important

to quantify the uncertainty of this assumption for different initial total grain size distributions and

different atmospheric conditions.

5.3 Uncertainty and sensitivity analysis510

When dealing with volcanic processes and volcanic hazards, our understanding of the physical sys-

tem is limited, and vent parameters (volatile contents, temperature, grain size distribution, etc.) are

often not well-constrained or are constrained with significant uncertainty. These factors mean that

it is difficult to predict the characteristic of the ash cloud released from the volcanic column with

certainty. An alternative is to quantify the probability of the outcomes (for example the grain size515

distribution at the top of the column) by coupling deterministic numerical codes with stochastic

approaches. It is our goal in this work also to assess the ability to systematically quantify the uncer-

tainty and the sensitivity of the plume model outcomes to uncertain or variable input parameters, in

particular to those characterizing the grain size distribution at the base of the eruptive column.

Uncertainty quantification (UQ) or nondeterministic analysis is the process of characterizing input520

uncertainties, propagating forward these uncertainties through a computational model, and perform-

ing statistical or interval assessments on the resulting responses. This process determines the effect

of uncertainties on model outputs or results. In particular, in this work we wanted to investigate for

different test cases the uncertainty in four response functions (plume height, solid mass flux lost
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Figure 6. Two-parameters Latin Hypercube Sampling with 10 points (left) and tensor product grid using 9× 9

Clenshaw-Curtis points (right).

and mean and variance of the mass fraction distribution at the top of the eruptive column) when the525

mean and the standard deviation of the distribution at the base are random variables with a uniform

probability distribution in the space (µ,σ) ∈ [−1;3]× [0.5;2.5].

In volcanology Monte Carlo simulations are frequently used to perform uncertainty quantification

analysis. These methods rely on repeated random sampling of input parameters to obtain numerical

results; typically one runs simulations many times over in order to obtain the distribution of an530

unknown output variable. The cost of the Monte Carlo method can be extremely high in terms of

number of simulations to run, and thus several alternative approach have been developed. Latin

hypercube sampling is another sampling technique for which the range of each uncertain variable is

divided into Ns segments of equal probability, where Ns is the number of samples requested. The

relative lengths of the segments are determined by the nature of the specified probability distribution535

(e.g., uniform has segments of equal width, normal has small segments near the mean and larger

segments in the tails). For each of the uncertain variables, a sample is selected randomly from each

of these equal probability segments. These Ns values for each of the individual parameters are then

combined in a shuffling operation to create a set ofNs parameter vectors with a specified correlation

structure. Compared to Monte Carlo sampling, the Latin hypercube sampling has the advantage that540

in the resulting sample set every row and column in the hypercube of partitions has exactly one

sample, and thus a smaller number of samples is required to cover all the parameter space. In the left

panel of Fig. 6 an example of Latin hypercube sampling with Ns = 10 and a uniform distribution

probability for both µ and σ is plotted.

An alternative approach to uncertainty quantification is the so-called generalized Polynomial545

Chaos Expansion method (gPCE), a technique that mirrors deterministic finite element analysis
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utilizing the notions of projection, orthogonality, and weak convergence (Ghanem and Red-Horse,

1999). PCE was developed by Norbert Wiener in 1938 and it soon become widely used because of its

efficiency when compared to Monte Carlo simulations. The term "Chaos" here simply refers to the

uncertainties in input, while the word "Polynomial" is used because the propagation of uncertainties550

is described by polynomials. If ζ is the vector of uncertain input variables, the aim of the gPCE is to

express the response function Y in the form of a polynomial ξ as follows:

ξ(ζ) = ξ0 + ξ1P1(ζ) + ξ2P2(ζ) + · · ·+ ξmPm(ζ) (54)

where P1, . . . ,Pm are polynomials which form an orthogonal basis. The choice of the polynomi-

als basis depends on the probability distribution of the input variables. In particular, for a uniform555

distribution, the basis of the expansion is given by the Lagrange polynomials. For the application

presented in this work the coefficients of the expansion have been evaluated using a spectral pro-

jection where the computation of the required multi-dimensional integrals is based on the tensor

product of one-dimensional Gaussian quadrature rules. In order to compute the quadrature points,

the grid used in our work is the Clenshaw-Curtis grid (Fig. 6, right), representing a good solution560

for a multi-dimensional Gaussian quadrature with a small number of variables (Eldred and Burkardt,

2009).

We present here the results of several tests performed coupling the plume model with the Dakota

toolkit (Adams et al., 2013) to investigate systematically the capability of the LHS and the gPCE

techniques to assess the uncertainty in four response functions (plume height, solid mass flux lost565

and mean and variance of the mass fraction distribution at the top of the eruptive column) when the

mean and the variance at the base are unknown. For all the test cases three sets of 500, 1000 and

2000 simulations have been performed for the LHS, and the results have been compared with those

obtained with three tests for the gPCE and respectively 9, 36 and 81 simulations performed for the

multi-dimensional quadrature. The first set of runs for the LHS, consisting of 500 simulations only,570

was not sufficient to provide accurate results and for this reason in the following we presents only

the results obtained with 1000 and 200 simulations. In order to compare the two techniques, the

cumulative distributions of the four response functions obtained with the LHS and the gPCE, have

been plotted in Fig. 7 for Test Case 1 (no wind). On the x−axes we can see the range of the values

obtained for the response functions: -1–3.5 for the mean of the TGSD at top of the column expressed575

in the φ scale; 0.4–2.2 for the standard deviation; 10.41–10.47 km for the column height and 10%–

60% for the percentage of solid mass flux lost. All the uncertainty quantification tests produced very

similar results, with a small difference in the cumulative distribution observed only in the distribution

of the solid mass flux lost obtained with the gPCE technique and 9 and 36 quadrature points. Similar

results have been obtained for the other Test Cases (not shown here). Thus, the results highlights580

that for the model and the applications presented in this work gPCE represents a valid alternative to

Monte Carlo simulations, with a number of runs required to produce the same accuracy reduced by
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a factor 10 (81 simulations vs 1000 simulations). If more parameters were varied, the computational

cost would increase for both gPCE and LHS, although the advantage of gPCE would be reduced.

As mentioned previously, the aim of the gPCE is to express the output of the models as polyno-585

mials and these polynomials can be used to obtain response surfaces for the output parameters as

functions of the unknown input parameters through the polynomials befined by Eq. (54). In the four

bottom panels of Fig. 7 the contours of the four response surfaces for the output investigated in this

work have been plotted, showing the dependence on the uncertain input parameters. The mean and

the standard deviation of the TGDS at the top of the eruptive column clearly reflects the correspond-590

ing values at the bottom, with a small effect of the bottom standard deviation on the mean size at the

top, resulting in an increase in the average grain size with increasing values of the initial standard

deviation (see the curves in the first panel bending on the left for higher values of σ). Conversely,

the plume height for this test case shows a non-linear dependency but at the same time a small sensi-

tivity to the initial grain size distribution, with changes, for the specific conditions here considered,595

smaller than 1% of the average height. This can be explained by the fact that a large amount of air

is entrained in the column during the ascent and the contribution of the solid fraction to the overall

dynamics becomes small compared to that exerted by the gas. Finally, we observe that the loss of

particles is mostly controlled by mean size of the TGSD.

In Figure 8 the same contour plots are shown for the polynomial expansion computed for Test600

Case 2 (top) and Test Case 3 (bottom) with 81 quadrature points. The results show again that the

total grain size distribution at the base of the vent represents a reasonable approximation of that at the

top of the column. For these test cases, both the column height and the solid mass lost appear to be

mostly controlled by the mean size of the TGSD at the base of the column, with a small sensitivity

of the height to the initial grain size distribution. We also observe that the maximum percentage605

of loss in the solid mass flux is about 15% for the strong plume simulations, and it is attained for

larger mean sizes and smaller variance of the initial TGSD. This value is noticeably smaller than

that obtained for the weak bent test case (≈ 40%) and for the weak test case without wind (≈ 60%).

Despite the loss of particles, in both the cases the range of variation of the column height is quite

small and, as previously mentioned, this is due to the large amount of air entrained in the volcanic610

column that reduces the contribution of the solid fraction to the overall dynamics. As an example

to understand the relevance of the entrained air, for a simulation performed for the low-flux plume

without wind and with µ= 2 and σ = 1.5 in the φ scale, the mass flow rate at the top of the column

is 1.2× 108 kg/s, compared to the value at the base of 1.5× 106 kg/s.

5.4 Sensitivity analysis615

With the polymomial chaos expansion it is also possible to easily obtain the variance-based sen-

sitivity indices (Saltelli et al., 2008) with no additional computational cost. In contrast with some

instances, where the term sensitivity is used in a local sense to denote the computation of response
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Figure 7. Cumulative distributions and response surfaces for test case 1 (low-flux plume without wind). In the

top panels the cumulative probability for several variables describing the outcomes of the simulations (mean and

variance of the grain size distribution at the top of the column, column height and cumulative fraction of solid

mass lost) are plotted for the uncertainty quantification analysis carried out with the two different techniques and

for different numbers of simulations. The contour plots of the response functions of the four output variables,

resulting by the polynomials given by Eq. (54) and obtained with the PCE with 81 quadrature points, are plotted

in the bottom panels. The variables contoured in the lower panels are the same as those on the horizontal axes

in the upper panels.

derivatives at a point, here the term is used in a global sense to denote the investigation of variabil-

ity in the response functions. In this context, variance-based decomposition is a global sensitivity620

method that summarizes how the variability in model output can be apportioned to the variability in

individual input variables (Adams et al., 2013). This sensitivity analysis uses two primary measures,

the main effect sensitivity index Si and the total effect index Ti. These indices are also called the

Sobol indices. The main effect sensitivity index corresponds to the fraction of the uncertainty in the

output, Y , that can be attributed to input xi alone. The total effects index corresponds to the fraction625

of the uncertainty in the output, Y , that can be attributed to input xi and its interactions with other

variables. The main effect sensitivity index compares the variance of the conditional expectation
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Figure 8. Response surfaces for Test Case 2 (low-flux plume with wind, 4 top panels) and Test Case 3 (strong

plume with wind, 4 bottom panels) obtained with the PCE with 81 quadrature points. Please note that the color

scale is not consistent between plots.

V arxi [E(Y |xi)] against the total variance V ar(Y ). Formulas for the indices are:

Si =
V arxi [(Y |xi)]

V ar(Y )
(55)

and630

Ti =
E(V ar(Y |X−i))

V ar(Y )
(56)

where Y = f(x) and x−i = (x1, . . . ,xi−1,xi+1, . . . ,xm). Similarly, it is also possible to define the

sensitivity indices for higher order interactions such as the two-way interaction Si,j . The calculation

of Si and Ti requires the evaluation of m-dimensional integrals which are typically approximated by

Monte-Carlo sampling. However, in stochastic expansion methods, it is possible to approximate the635

sensitivity indices as analytic functions of the coefficients in the stochastic expansion.

The results of the sensitivity analysis for the four outputs and the three test cases investigated

are presented in the bar plot of Figure 9. For each of the four groups (one for each of the different

output functions) the three bars represent the main sensitivity indices for the three test cases (test

1 on the left, test 2 in the middle and test 3 on the right) while the different colors are for the640

sensitivity indices with respect to different variables (blue is for the mean of the initial TGSD, green

for the standard variation of the initial TGSD and brown for the 2nd order coupled interaction).

Again, the sensitivity analysis confirms that the mean and the standard deviation of the grain size

distributions at the top of the eruptive column are controlled primarily by the respective parameters
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Figure 9. Sobol main sensitivity indices. For each of the four output parameters the three bars are for the

different test cases: Test Case 1 on the left, Test Case 2 in the middle and Test Case 3 on the right. For each test

case the different colors of the bars are for the different sensitivity indices: blue for first order sensitivity index

with respect to the bottom TGSD mean, green for the first order sensitivity index with respect to the bottom

TGSD standard deviation and brown for the second order combined sensitivity index.

of at base of the column. The mean of the TGSD also controls the percentage of solid mass flux645

lost during the rise of the column and the plume height for the two test cases with wind, while

for the weak test case without wind the dispersion of the distribution and second-order interaction

also play a major role in controlling plume height variability. However, as already observed with

the uncertainty quantification analysis, we remark that the variability in the plume height, when the

mean and the standard deviation of the TGSD vary in the investigated ranges, is extremely small for650

all the test cases (less than 1% with respect to the average values) and thus the investigation of how

the variability in model output can be apportioned to the variability in individual input variables is

less relevant for the plume height than for the other output parameters.

6 Conclusions

In this work we have presented an extension, based on the method of moments, of the Eulerian655

steady-state volcanic plume model presented in Barsotti et al. (2008) (derived from Morton (1959);

Ernst et al. (1996); Bursik (2001)). Two different formulations, one based on a continuous distri-

bution of the number of particles as a function of the size and a second based on the continuous

distribution of the mass fraction, have been presented. The tracking of the moments of mass distri-

bution, defined as a function of the Krumbein phi scale, has the advantage that with the first three660

moments only we are able to recover the mean and the standard deviation of the total grain size

distribution. The results of a comparison between the two formulations based on the method of mo-

ments and the classical formulation based on the discretization of the mass distribution in bins show
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that the different approaches produce the same results, with an advantage of the method of mo-

ments in terms of computational costs. Furthermore, a formulation based on continuous description665

of particle size, is better suited to properly describe complex inter-particle processes such as particle

aggregation and fragmentation that are likely to play an important role in the plume evolution. In

particular, the method of moments has already been successfully applied to model aggregation and

breakage precesses in particulate systems (Marchisio et al., 2003).

An uncertainty quantification analysis has also been applied to the formulation based on the mo-670

ments of the mass distribution. The results show, for the range of conditions here investigated and

neglecting likely relevant interparticle processes such as particle aggregation and communition, a

small change of the mean and variance of the particle mass distribution along the column, indicating

that the total grain size distribution at the base of the vent represents a reasonable approximation of

that at the top of the column. Furthermore, based on the plume model assumptions and outcomes, we675

observe a small sensitivity of the plume height to the initial grain size distribution, with variations of

the order of tens of meters for a plume rising to several kilometers.

For the application presented in this work, involving only two parameters, the comparison between

the latin hypercube sampling technique and the generalized polynomial chaos expansion method

shows that the latter only requires 81 simulations to produce the same results, in terms of cumulative680

probability distributions of several output, obtained with 1000 simulations and the LHS. In fact,

the full uncertainty quantification analysis performed on a High Performance Computing 48 multi

core Shared Memory system (HPC-SM) at Istituto Nazionale di Geofisica e Vulcanologia (INGV),

section of Pisa, Italy, required less than 2 seconds for the gPCE method with 81 quadrature points.

These results make the new numerical code presented here, coupled with the uncertainty technique685

investigated, well-suited for real time hazard assessment.

7 Code availability

The source code with the input files for some simulation presented in this work are available for

download on the Volcano Modelling and Simulation gateway (http://vmsg.pi.ingv.it/) and on the site

for collaborative volcano research and risk mitigation Vhub (https://vhub.org/).690
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