
Manuscript prepared for Geosci. Model Dev.
with version 5.0 of the LATEX class copernicus.cls.
Date: 10 June 2015

NCIO 1.0: a simple Fortran NetCDF interface
Alexander Robinson1,2,3 and Mahé Perrette3

1Universidad Complutense de Madrid, 28040 Madrid, Spain
2Instituto de Geociencias, UCM-CSIC, 28040 Madrid, Spain
3Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

Correspondence to: A. Robinson
(robinson@fis.ucm.es)

Abstract. The NetCDF library has become an indispensible tool for data and model output man-

agement in geoscience. However for simple tasks, particularly in Fortran, the complexity of native

NetCDF functionality can be combersome. The NCIO (NetCDF Input/Output) module has been

designed as an interface to the NetCDF library with simplicity and ease of use in mind. While this

implies that some NetCDF functionality is masked from the user, the subroutines provided here are5

adequate for basic serial reading and writing tasks of up to 6D data arrays along with corresponding

data attributes. The code is available online via a Github repository (http://www.github.com/alex-

robinson/ncio), which includes an example program to illustrate the approach.

1 Introduction

The NetCDF library developed by Unidata (Unidata, 2014) has revolutionized the storage of large10

geoscientific datasets, reproducibility of experiments and archiving of model output. It eliminates

the dependencies of binary output on a given computing system and ensures that data is fully self-

described within a file. The fact that its use has been adopted so widely in the geoscientific commu-

nity has ensured that many tools are available for data processing and analysis based on this storage

format.15

To provide a library that is useful over a wide range of applications, the low-level functionality of

NetCDF gives users full control over how a program interacts with the data files. For this reason,

the native NetCDF interface relies on a series of intermediate function calls and helper variables

to be able to read or write data. This flexibility can be critical for some applications, for example

for storing large, complex datasets with many attributes, or for parallel I/O in GCMs (Huang et al.,20

2014).

1



However, for more common tasks, these intermediate steps tend to make programming data I/O

with NetCDF more complex and even cumbersome, in some cases. Several versions of NetCDF

wrappers already exist to make NetCDF writing more straightforward, such as GTOOL5 (Ishiwatari

et al., 2012) meant for use in GCMs, or the Climate Model Output Rewriter (CMOR, 2015), which25

aides in writing Climate and Forecast (CF, 2015) compliant files. These libraries share common

characteristics, in that they mask some of the intermediate steps of loading and writing NetCDF data

from the user. However, at least for Fortran, a NetCDF wrapper that was both generic and simple

has not been available until now.

The NCIO (NetCDF Input/Output) module is intended to fill that gap. The goal of the module is30

to provide access to NetCDF functionality in Fortran in the simplest way possible. This implies that

it is not appropriate for every application, but it should be generic enough to be widely useful. Here

NCIO is described and provided, in the hope that it will be helpful for others developing geoscientific

models.

2 Reading from NetCDF35

NCIO contains one subroutine for reading data from NetCDF files: nc read. This subroutine can

handle the reading of scalars, vectors and arrays of up to 6 dimensions. The data to be read can be of

type integer, float, double precision or logical. The subroutine has an internal module interface for

each data type and data size, so it automatically handles any of the above inputs from the user.

In its most basic form, the user supplies the filename to be read from, the name of the variable to40

read and the scalar or array that will hold the data. In this case, the size of the variable in the file and

the dimensions of the array should be consistent. The user can also optionally supply start and

count vectors, which indicate which slices of the array should be read from the file (analogous to

low-level NetCDF functions). If neither is given, the subroutine will start from the beginning of the

data record in each dimension and count up to the size of the array in each dimension.45

nc read can handle missing data, as long as the variable attribute missing value is defined

in the NetCDF file. The user can specify a new value to represent missing data via the nc read

subroutine call. NCIO reads the data from the file and replaces missing data points with the desired

value.

In order to facilitate the reading of data of unknown dimension sizes, an additional helper function50

nc size is available. This function returns the size of a dimension variable in the NetCDF file.

This can be used, for example, to determine the dimensions of the array to allocate in Fortran before

reading data from the NetCDF file.

Additionally, it is possible to read string attributes from the file using nc read attr. The user

provides the filename, the name of the attribute of interest and optionally the pertinent variable name55

(if it is not a global attribute), and the subroutine will return the string associated with that attribute

2



in the file.

3 Writing to NetCDF

Writing NetCDF files is achieved through one subroutine for writing variables (nc write), two

necessary subroutines for file initialization (nc create and nc write dim), and two optional60

ones for adding attributes (nc write attr and nc write map). The data to be written to a file,

as with nc read, can be a scalar, vector, or an array of up to 6 dimensions and of type integer, float,

double precision or logical. The subroutine has an internal module interface for each data type and

data size, so it automatically handles any of the above inputs from the user.

The subroutine nc create is used to initialize the new NetCDF file. It does nothing more65

than open a new file, optionally write a few typical global attributes and close the file. This leaves

an empty NetCDF file available to be filled with dimensions and data. By default this function

will overwrite any previous file with the same name, and it will write in the classic NetCDF for-

mat. After creating the file, the user can optionally write additional global attributes to the file with

nc write attr. This subroutine is useful for specifying references and dataset information, for70

example.

It is also possible to specify a grid mapping variable in the file via nc write map, which can

be used to define a projection or other type of map to associate with a grid variable. Such a map

definition is helpful to (and sometimes necessary for) programs that plot NetCDF data, such as

Panoply (Schmunk, 2014), when the spatial coordinates of the data are not Longitude and Latitude.75

Currently only stereographic and polar stereographic projections are handled by this subroutine, but

it is planned to be made more generic in the future.

Once the NetCDF file is prepared with global information, the next step is to define dimension

variables, which is done with the subroutine nc write dim. To write a dimension variable, the

user must supply the filename and name of the variable to be written. The vector of dimension80

values can be provided directly, or a vector of values can be generated from a starting value, the

total number of points and the distance between them. When the argument unlimited=.TRUE.

is specified, then the dimension can be extended via calls to nc write (see below). Additionally,

some CF variable attributes can be supplied via this subroutine, such as long name and units,

while the subroutine nc write attr can be used directly to write any additional variable specific85

attributes. It should be noted that all dimension variables must be written to the file before any data

can be written.

The NetCDF file should now be ready for storing data. The initialization of a new variable in the

file, as well as writing of the data, is achieved via the subroutine nc write. To write a variable to

the file, the user must supply the filename and name of the variable to be written, along with the data90

array and the names of the dimensions to be associated with the variable. The dimension variables

3



should already exist in the file or an exception will be thrown. Additional variable attributes can be

written if desired. Similar to nc read, the user can optionally specify start and count vectors

to write the data to a specific slice of the variable in the file. nc write will check if the variable

exists in the file, and if not, the variable will be created with the specified characteristics. In future95

calls to the subroutine, only the data will be written to the file.

4 Discussion

The NCIO module is intended to provide a clean and direct interface to the reading and writing of

NetCDF files in Fortran. All NCIO functionality is contained in one portable module file (ncio.f90).

No additional configuration is needed for its use, other than a use ncio statement in the Fortran100

program (replacing any use netcdf statements). Error handling follows the native NetCDF error

protocol to maintain transparency. The simplicity of this approach facilitates the use of the NetCDF

data format even for rather small programs or during prototyping. In other words, the goal is to

make reading and writing NetCDF files as easy as reading and writing binary or ASCII data. The

subroutine design in NCIO mimicks what is available in other languages, such as the ncdf library105

in R (Pierce, 2014), and should be useful for a wide range of applications. The basic functionality

provided here has been tested thoroughly and works robustly in several real geoscientific programs.

The subroutines have been designed to mask any intermediate and temporary variables from the

user. For example, low-level NetCDF functions make use of ID values of the file and other vari-

ables to know what is being loaded or written. Here only the filename and name of the variable are110

needed to find the right field in the NetCDF file, because the low-level functions are wrapped by the

NCIO subroutines. In this way, the only variable that needs to be defined in the user’s program is

the data itself. Variable initialization and attribute definition, as well as data writing, are all easily

handled with one subroutine call. Thus, for quick diagnostic output to a NetCDF file, for example,

a user can easily write the variable to a file without additional variable definitions or subroutine115

calls. For example, Unidata provides a NetCDF tutorial program to write 4D temperature and pres-

sure fields (pres temp 4D wr.f90 found at http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial). The native NetCDF approach require 25 lines of code and 25 intermediate variable defini-

tions, while NCIO achieves the same result with only 7 lines of code.

Such ease of use does incur minor computational costs. One such cost comes from the over-120

head of opening and closing the NetCDF file within each subroutine call, rather than leaving the

NetCDF file open for writing throughout the entire program. The reason for this approach was

to maintain the simplest interface possible – otherwise additional functions and external variables

would be needed for opening and closing the file. In testing the NCIO module, it was found that

in most cases, any additional overhead incurred is small in absolute terms and does not appear to125

affect the speed of a program significantly. Comparing the native and NCIO-based tutorial program

4



pres temp 4D wr.f90, we find that one iteration of writing these variables takes about 4 times longer

using NCIO. For 1000 iterations, using NCIO takes about 80 times longer than the native NetCDF

calls. However, in absolute terms, the total time for 1000 iterations using NCIO is about 1 second.

Nonetheless, for programs that write data with a very high frequency, this approach could result130

in noticably slower execution than using the low-level NetCDF functions directly. For this reason,

all reading/writing subroutines include an optional “ncid” argument and two additional subroutines

are provided in the library: nc open and nc close. These subroutines allow the user to keep

a given NetCDF file through multiple NCIO subroutine calls and identify the open file using the

“ncid” intermediate variable. Using this approach reduces the cost of 1 and 1000 iterations as above135

to about 2 and 20 times longer than the native calls, respectively. It should be noted that the timing

is dependent on the size of the arrays being written as well. The default test is for rather small arrays

(12x6x2 grid points). When writing larger arrays (e.g., 100x100x2 grid points), NCIO consistently

needs about 10 times longer than the native calls using either approach.

140

5 How to obtain NCIO

The NCIO module is open source and available under the MIT License, making it suitable for

community-driven development, or for each user to adapt the module to more particular needs. The

code is hosted in a public git repository located here: http://www.github.com/alex-robinson/ncio.

Suggestions and improvements are welcome. Any Github users who wish to make a contribution145

should email the authors to add them as contributors. The above mentioned tutorial comparison is

included in the repository, as well as a simple test program with its output to ensure the code is

working properly and to provide examples of subroutine calls.

6 Conclusions

NCIO is intended to provide an easy-to-use interface to the NetCDF library in Fortran. At the cost of150

more complex native NetCDF functionality, a minimal set of subroutines was developed to handle

the most common reading and writing tasks of up to 6D arrays. The functions available to the user

have been described here, such that simply downloading and compiling the module will allow the

user to immediately begin using it.

Acknowledgements. We would like to thank Mario Krapp and Reinhard Calov for valuable input and testing of155

the NCIO module. A. Robinson is supported by the Marie Curie 7th framework programme (Project 2012-IEF-

331835, EURICE).

5



References

CF: Climate and Forecast Conventions and Metadata, http://www.giss.nasa.gov/tools/panoply/, 2015.

CMOR: Climate Model Output Rewriter, http://pcmdi.github.io/cmor-site/index.html, 2015.160

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B., and Zhang, C.: A fast input/output

library for high-resolution climate models, Geoscientific Model Development, 7, 93–103, http://www.

geosci-model-dev.net/7/93/2014/, 2014.

Ishiwatari, M., Toyoda, E., Morikawa, Y., Takehiro, S., Sasaki, Y., Nishizawa, S., Odaka, M., Otobe, N.,

Takahashi, Y. O., Nakajima, K., Horinouchi, T., Shiotani, M., and Hayashi, Y.-Y.: ”Gtool5”: a Fortran90165

library of input/output interfaces for self-descriptive multi-dimensional numerical data, Geoscientific Model

Development, 5, 449–455, 2012.

Pierce, D.: ncdf: Interface to Unidata netCDF data files, http://CRAN.R-project.org/package=ncdf, r package

version 1.6.8, 2014.

Schmunk, R. B.: Panoply, http://www.giss.nasa.gov/tools/panoply/, 2014.170

Unidata: NetCDF, http://www.unidata.ucar.edu/software/netcdf/, 2014.

6



Table 1. Subroutine call and argument descriptions for nc read.

subroutine nc read(filename,name,dat,[start],[count],[missing value],[ncid])

filename name of the NetCDF data file to read from

name name of the variable in NetCDF file to be read

dat OUTPUT: Fortran data type into which data will be loaded

start vector of values specifying starting indices for reading data from each dimension (optional)

count vector of values specifying how many values to read in each dimension (optional)

missing value Value to assign to missing data read from the file (optional)

ncid File ID for a file that remains open for various NCIO calls (optional)

Table 2. Function call and argument descriptions for nc size.

function nc size(filename,name,[ncid]) result(size)

filename name of the NetCDF data file to read from

name name of the dimension variable in NetCDF file of which to determine size

size OUTPUT: integer size (length) of the dimension variable returned from the function

ncid File ID for a file that remains open for various NCIO calls (optional)

Table 3. Subroutine call and argument descriptions for nc read attr.

subroutine nc read attr(filename,[varname],name,value,[ncid])

filename name of the NetCDF file from which to read attribute

varname name of the variable from which to read the attribute (optional)

name name of the attribute to be read

value OUTPUT: value of the attribute to be read

ncid File ID for a file that remains open for various NCIO calls (optional)

Table 4. Subroutine call and argument descriptions for nc create.

subroutine nc create(filename,[overwrite],[netcdf4],[author],[creation date],

[institution],[description])

filename name of the NetCDF file to be created

overwrite Switch to determine whether file on disk should be overwritten (optional, default TRUE)

netcdf4 Switch to determine whether file format should be NetCDF4 (optional, default FALSE)

author name of the author of the file (optional)

creation date date of the file creation, string format (optional)

institution name of the author’s institution (optional)

7



Table 5. Subroutine call and argument descriptions for nc write attr.

subroutine nc write attr(filename,[varname],name,value,[ncid])

filename name of the NetCDF file in which to write attribute

varname name of the variable to which the attribute should be associated (optional)

name name of the attribute to be written

value value of the attribute to be written

ncid File ID for a file that remains open for various NCIO calls (optional)

Table 6. Subroutine call and argument descriptions for nc write map.

subroutine nc write map(filename,name,[lambda],[phi],[x e],[y n],[ncid])

filename name of the NetCDF file in which to write the grid map definition

name name of the grid mapping to be defined

lambda longitude of projection origin (optional)

phi latitude of projection origin (optional)

x e false easting (optional)

y n false northing (optional)

ncid File ID for a file that remains open for various NCIO calls (optional)

Table 7. Subroutine call and argument descriptions for nc write dim.

subroutine nc write dim(filename,name,[x],[dx],[nx],[long name],

[standard name],[units],[axis],[calendar],[unlimited],[ncid])

filename name of the NetCDF file in which to define dimension

name name of the dimension to be defined in NetCDF file

x Fortran data type (scalar or vector) specifying values of dimension. If nx is present and

size(x)==1, x specifies the starting point of the dimension variable

dx distance between each dimension value (optional)

nx length of dimension variable (optional)

long name NetCDF attribute, a long descriptive name of the variable (optional)

standard name NetCDF attribute specifying the CF convention standard name of the variable (optional)

units NetCDF attribute of the units of the variable (optional)

axis NetCDF attribute of the standard axis of the variable (optional)

calendar NetCDF attribute of the calendar type to be used for time dimensions (optional)

unlimited NetCDF attribute to determine whether the dimension can be extended after its initial definition

or not

ncid File ID for a file that remains open for various NCIO calls (optional)

8



Table 8. Subroutine call and argument descriptions for nc write.

subroutine nc write(filename,name,dat,[dims],[dim1,...,dim6],[start],[count],

[long name],[standard name],[grid mapping],[units],[missing value],[ncid])

filename name of the NetCDF file in which to write data

name name of the variable in NetCDF file to be written

dat data to be written

dims vector of dimension names of the variable in NetCDF file (optional)

dim1,...,dim6 individual dimension names of the variable in NetCDF file (optional)

start vector of values specifying starting indices for reading data from each dimension (optional)

count vector of values specifying how many values to read in each dimension (optional)

long name NetCDF attribute, a long descriptive name of variable (optional)

standard name NetCDF attribute specifying the CF convention standard name of the variable (optional)

grid mapping name of the grid this variable is mapped on (optional)

units NetCDF attribute of the units of the variable (optional)

missing value Value of missing data to be written to file (optional)

ncid File ID for a file that remains open for various NCIO calls (optional)

Table 9. Subroutine call and argument descriptions for nc open.

subroutine nc open(filename,ncid,[writable])

filename name of the NetCDF file from which to read attribute

ncid OUTPUT: integer variable to identify a NetCDF file through multiple NCIO calls

writable Switch to determine whether file should be opened for writing (optional, default TRUE)

Table 10. Subroutine call and argument descriptions for nc close.

subroutine nc close(ncid)

ncid integer variable to identify a NetCDF file to be closed

9


