

1 Author response letter for “Large ensemble modeling of last deglacial retreat of the West
2 Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques”, by D. Pollard,
3 W.Chang, M.Haran, P. Applegate and R. DeConto.

4

5 We thank the reviewers for their careful and helpful comments on the original version of the
6 manuscript. Our responses and changes are described below point by point, with reviewer text
7 in italics. This is followed by a “tracked-changes” manuscript file showing all changes from the
8 original version.

9

10 In summary, the main changes are:

11 • All “future” simulation segments in text and figures are removed (Reviewer 1).

12 • References to upcoming work and papers are reduced, and we make clear that this paper
13 stands on its own (Reviewer 1).

14 • Alternate “close-to-Gaussian” approach to misfits and scoring are added, discussed, and
15 results compared, in sections 2.3 and 2.4, Appendices B and new C (Reviewer 2).

16 • Spans of model results over all runs are shown to encompass the various types of
17 observations, in new Appendix D (Reviewer 2).

18 • Description and discussion of the advanced statistical techniques are expanded, and their
19 role made clearer, in sections 2.5 and 5 (Reviewer 2).

20

21 **Reviewer 1:**

22

23 *Overview:*

24

25 *The submitted paper presents results from a large ensemble of ice-sheet model simulations
26 of the West Antarctic Ice Sheet through the last glacial termination and into
27 the future. The ensemble aims to explore a broad envelope of parameter space, and
28 two different techniques are employed to assess the results. As far as I can tell, the
29 primary justification for the paper lies in the intercomparison of so-called ‘simple’ and
30 ‘advanced’ statistical techniques, rather than the presentation of realistic simulations of
31 the deglacial and future states of the ice sheet.*

32

33 This is correct: the primary purpose of the paper is to compare ‘simple’ and ‘advanced’
34 techniques (see next response below).

35

1 Overall the paper is well-written and clearly laid out, with thorough explanation of the
2 salient aspects of the study and sufficient reference to the preceding studies on which
3 it builds. The figures are clear and effective. As a methodological paper it is clearly
4 well-suited to GMD.

5

6 General issues:

7

8 I have detailed a few points lower down that I think need further explanation or clarification,
9 but I have two more general issues with the manuscript as it stands.

10

11 Firstly, there are numerous (at least 8) instances in the text (p6 lines 22/23; p7 lines
12 18/19; p13 lines 19/20; p14 lines 8/9; p16 lines 1/2; p16 lines 17-21; p18 lines 6-8; p18
13 lines 23-25) where the authors refer to 'future work' that will either develop or change
14 some aspects of the study as presented here. Whilst it is of course quite usual that
15 submitted work forms part of a project that is ongoing, I found the repetition of these
16 statements quite off-putting in the sense that they give the reader the impression that
17 the current study is in some way 'incomplete', or worse still, inferior with respect to
18 something similar that is being prepared for another journal (for example, the reference
19 to Pollard et al., 2015b, which is a paper that is only 'in preparation'). I think the paper
20 should be able to stand alone, and if important aspects of the study are either yet to
21 be developed, or modified, then what is the rush to publish seemingly incomplete work
22 here? Will the forthcoming papers build on this one, or undermine it?

23

24 As mentioned above, the primary purpose of this paper is to compare the simple and advanced
25 techniques, using the same large ensemble (stated in section 1). We agree that the numerous
26 instances referring to other work detracted from this purpose. The current paper definitely
27 stands on its own and is complete, and the results do not depend on or will be changed by any
28 of these instances. Accordingly, (i) we emphasize more the purpose of this paper in the
29 introduction, (ii) we have removed many of these instances where they do not contribute to the
30 M/S, (iii) where the follow-on paper (Pollard et al., 2016) is first mentioned, we explain that it
31 deals solely with specific glaciological aspects, not statistical, and does not undermine or alter
32 the results here at all.

33 In the concluding Section 5, we still mention several avenues and plans for further work, which
34 all concern glaciological aspects, not statistical. As the reviewer mentions, this type of
35 discussion is quite usual in the concluding sections of papers.

36

1 *The second issue I have with the manuscript as it stands is the inclusion of the 'future'*
2 *scenario modelling. The title and majority of the paper deal with the deglacial, and*
3 *since the primary purpose of the paper is to compare results from different statistical*
4 *methods (for which any results would do) I see no reason to include the additional*
5 *5000 year experiments. They are barely discussed in the paper and have no relation*
6 *to the deglacial experiments. Furthermore, as detailed below the basis for the 6C/2C*
7 *air/ocean warmings is not clear. If they are arbitrary, then what is the justification for*
8 *adding them to the end of a supposedly 'realistic' deglacial run? And if they are meant*
9 *to represent a future emissions scenario such as RCP 8.5, then some explanation is*
10 *needed to clarify why this is used rather than, for example, RCP 6 or any of the others.*
11 *To my mind it looks like these data have been added to the paper somewhat opportunistically,*
12 *rather than for any particular purpose. And by the authors own admission*
13 *these simulations use a climate warming that is 'very simple' (p14, line 7), and the*
14 *future simulations themselves will be presented in more detail in, once again, the forthcoming*
15 *Pollard et al 2015b paper currently 'in preparation'. On this basis I think these*
16 *arbitrary extensions to 5000 CE should be removed and saved for the other pending*
17 *publications.*

18
19 We have removed all mention of the simple "future" extensions in the M/S. These extensions
20 were part of earlier work exploring the response to future warming, but have been superceded
21 by further work with more realistic future climate RCP scenarios (with references cited here).
22 This is a natural extension of the past simulations here, but we agree that they do not add to the
23 purpose of this M/S (and again, do not change the statistical results at all), and belong
24 appropriately in subsequent papers.

25
26 *Specific points:*
27
28 *p6 - I think the justification for not using the 'drastic ice-retreat mechanisms' of Pollard*
29 *et al 2015a should be more fully discussed. Either these mechanisms are necessary*
30 *for realistic simulations (as argued in the EPSL paper), or not. Or do the processes*
31 *only happen during warm periods and not cold periods? It seems that any complex*
32 *statistical analysis of results is only useful if it helps reduce uncertainties, but if the*
33 *largest uncertainty is ignored (ie uncertainty over the inclusion or exclusion of 'drastic'*
34 *mechanisms) then the results are inherently biased. It would be useful to see how the*

1 results change when the 'drastic' mechanisms are included.

2

3 These mechanisms are only triggered in warmer climates than present, as the reviewer suggests.
4 They do not play any roles in the glacial-to-deglacial sequence of the last ~40 kyr, as
5 confirmed by tests (not shown here). We note this in the model description section 2.1.

6

7 *p7 - Liu et al 2009 present a transient run that ends at 14 ka BP, so what is used to
8 drive the model from 14 ka to present?*

9

10 Although the Liu et al. (2009) paper only describes results to 14 ka BP, their simulation has
11 been extended to the present, which they call the "TraCE-21k" experiment; see
12 www.cgd.ucar.edu/CCR/TraCE. We note this in the references and acknowledgements.

13

14 *p7 - what is the basis of the 6 and 2 C air / ocean temp increases? RCP 8.5 after
15 150 yrs equals c. 6 C air temp above present, but CMIP models suggest 6 C air
16 would equate to 1.5 C in the ocean, not 2 C, which presumably could affect the results
17 presented here? Similarly, the extended RCP scenarios define warming trajectories
18 that increase steadily to 2300, and remain constant thereafter, rather than flat-lining at
19 2150 as implied here.*

20

21 This is no longer pertinent since all text and figures concerning the future extensions are
22 removed (see above).

23

24 *p7 - since these "future" simulations are regarded as unrealistic, why include them?
25 Particularly if the 'drastic ice-retreat mechanisms' aren't included.*

26

27 As above, no longer pertinent.

28

29 *p15 - 'Macintosh' should be 'Mackintosh'*

30

31 This is corrected.

32

33 *Fig. 5 - y-axis label is 'sea level rise (m)', which implies that it is showing time-varying
34 rates of change in sea level, but I think it is actually showing the change relative to*

1 present? Otherwise the value of c. -6 m from -20 ka to -15 ka could be read as
2 indicating that the sea level was falling constantly by 6 m through that period.

3

4 The label is changed to “equivalent sea level (m)”.

5

6

7

8 **Reviewer 2:**

9

10 *The submission can be an informative (and relatively succinct) comparison of two different
11 approaches to making inferences about past ice sheet evolution given modelling
12 and paleo observations. Some specific issues (including some mis-citations) are detailed
13 below. There are four key deficiencies that have to be remedied (to change the
14 above "can be" to "is"):*

15

16 *1) Currently there are no plots nor discussion of model fits to constraint data and as
17 such it is not clear whether this ensemble actually covers the constraint data.*

18

19 We have added a new Appendix D with extensive figures and some discussion, showing the
20 span of results of all 625 runs of the large ensemble (LE) compared to observations, for the
21 various past data types. This consists of individual plots for specific sites for Relative Sea Level
22 and cosmogenic elevation-age data, and a single plot for modern uplift rate sites. Also, maps of
23 grounded-ice probability computed from the LE are compared with maps of reconstructed
24 grounding line positions at specific past times, and similarly for grounding-line distances vs.
25 time along paleo-troughs of the major embayments. These plots show that the span of model
26 results does by and large encompass the observations with no serious outliers, as required for
27 meaningful interpretation of the statistical LE results.

28

29 *2) The handling of data uncertainties for all the misfit metrics needs to be spelled out
30 (some treatments are spelled out, but not all). Eg, TROUGH will have dating and
31 downscaling/resolution uncertainties. If these uncertainties are ignored, the inferences
32 based on these metrics are biased and incorrect.*

33

34 Considerably more detailed description and formulae of all misfit calculations are given in an
35 expanded Appendix B. This aims to give a complete description of all calculations.

1
2 *3) how are data weighted within each class? If no weighting is done, then the statistical*
3 *modelling is assuming all data/model residuals are not correlated, which is incorrect*
4 *(though commonly implemented...).*

5

6 Within each class, intra-data-type-weighting is done, very much the same as in Briggs at
7 Tarasov (2013), for past data with individual sites: Relative Sea Level, elevation-age, and uplift
8 rates. Full details are now given in Appendix B.

9

10 *4) There has to be justification for giving all data classes the same weight. There are*
11 *only 8 RSL data sites, all located on the periphery of the ice sheet. There is no basis*
12 *to give this geographically restricted data the same weight as, for instance, the RMS*
13 *error between the dynamically modelled and observed present day ice sheet.*

14

15 We agree that this is a significant issue, but take a different strategy than in the Briggs et al.
16 papers. Here, we assume that each data type is of equal importance to the overall score, and that
17 if any one individual score is very bad ($S_i \approx 0$), the overall score S should also be ≈ 0 . This
18 corresponds to the notion that if any single data type is completely mismatched, the run should
19 be rejected as unrealistic, regardless of the fit to the other data types. The fits to past data, even
20 if more uncertain and sparser than modern, seem equally important to the goal of obtaining the
21 best calibration for future applications with very large departures from modern conditions. This
22 differs from the “inter-data-type” weighting based on “volumes of influence” in Briggs et al.,
23 which is interesting and logical, but we suggest is heuristic and not the only reasonable way.
24 Our strategy is explained in the revised section 2.4. Also see the response to “Gaussian forms”
25 point (4th below).

26

27 *If the "advanced statistical method" does use a complete error model that addresses*
28 *points 2-4 above, then this should be made clear in detail. Ie, are you saying that we*
29 *can ignore all these issues, do simple latin hypercube sampling (albeit with a large*
30 *enough sample, but still orders of magnitude smaller than required for proper MCMC),*
31 *and get roughly the same result as a complete Bayesian calibration determination of*
32 *the posterior (ie with a complete error/uncertainty model that accounts for uncertainties*
33 *in the constraint data, structural uncertainties, and correlation between residuals and*
34 *that covers the constraint data set)? If so, then this claim need to be much more clearly*
35 *spelled out.*

36

1 We acknowledge that some sentences in the M/S were somewhat unclear regarding this point,
2 which are clarified. In this paper, the advanced techniques do not use a Latin HyperCube large
3 ensemble (LE), but are applied to the same LE as the simple averaging method, which is a 625-
4 member LE with full factorial sampling. The purpose of this paper is just to compare statistical
5 results of the two methods, with the advanced techniques acting as a benchmark. In previous
6 studies (Applegate et al., 2012; Chang et al., 2014), the advanced techniques yielded successful
7 results when applied to some relatively small-sized LE's with coarse Latin HyperCube
8 sampling, for which the simple methods failed. This is because the interpolation capability of
9 the advanced techniques (emulation, MCMC) is much better than the simple method
10 (essentially none). However, this distinction depends on the size of the LE and the coarseness
11 of the sampling; somewhat larger LE's with Latin HyperCube sampling and fewer parameters
12 can be amenable to the simple method. This is now briefly noted in the conclusions, where we
13 emphasize that it is not otherwise the subject of this paper.

14

15 *Once these (and the comments below) are addressed, I would agree with Nick*
16 *Golledge as this being a methodological paper that is well-suited to GMD.*

17

18 *# Specific comments:*

19

20 *# How is relative sealevel computed? What visco-elastic earth model is used and is*
21 *geoidal deformation computed?*

22

23 The bedrock response component in the ice sheet model is a basic ELRA (Elastic Lithosphere
24 Relaxing Asthenosphere) model. Sea level vs. time in the ice model itself is prescribed from
25 ICE-5G. These are noted in the model description section 2.1.

26 The calculation of relative sea level at specific grid points for comparison with RSL geologic
27 data is as in Briggs and Tarasov (2013), and is now described fully in Appendix B.

28

29 *"Tarasov et al. (2012) used Artificial Neural Nets in North American ice-sheet modeling*
30 *to fill in parameter space between LE simulations, and have mentioned their potential*
31 *application to Antarctica (Briggs and Tarasov, 5 2013)."*

32

33 *# actually this was as much if not more of a "calibration" as the authors' "advanced*
34 *statistical technique" and should be clearly stated as such. That 2012 paper also used*
35 *MCMC to compute a posterior distribution of ensemble parameters given fits to paleo*
36 *constraint data. The reason that "calibration" wasn't used in the title of that paper was*
37 *1) ensemble didn't cover data constraints (attaining coverage is a big challenge given*

1 *the large size of the constraint data set), and 2) it had an incomplete error model especially*
2 *with respect to quantifying structural uncertainties. Unfortunately, "Calibration"*
3 *has become a poorly understood buzzword whose meaning is being watered down in*
4 *some recent ice sheet relevant publications. To me, if "calibration" is not confidently*
5 *estimating the probability distribution and thereby the uncertainties of predictions (with*
6 *the unavoidable clear specification of uncertainties not accounted for), then it should*
7 *not be called calibration. But this may be a loosing battle...*

8

9 We have rephrased the relevant sentence to address this concern, as follows:

10 Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North
11 American ice sheets, and have mentioned their potential application to Antarctica
12 (Briggs and Tarasov, 2013).

13

14 *"Then the geometric (logarithmic) average of the 8 individual S_i 's is taken to yield the*
15 *aggregate score S for each run"*

16

17 *# This choice makes no sense to me and needs to be justified. RMSE is effectively*
18 *$\log(\text{Gaussian})$. So your weighted score is $(\log(\text{Gauss1}) * \log(\text{Gauss2}) * \dots)^{1/8}$. How does*
19 *one interpret this? If you are using a non-Gaussian error model, then what is it?*

20

21 We propose that the formulae chosen for misfits and scoring are somewhat heuristic and there
22 is more than one reasonable approach, and that strict adherence to Gaussian error model forms
23 is not the only possibility. In section 2.3 we have added the following text to explain and justify
24 this viewpoint:

25

26 One approach to calculating misfits and scores is to borrow from Gaussian error
27 distribution concepts, i.e., individual misfits M of the form $[(\text{mod-obs}) / \sigma]^2$ and
28 overall scores of the form $e^{-\frac{M}{\sigma^2}}$, where mod is a model quantity, obs is a
29 corresponding observation, σ is an observational or scaling uncertainty, M is an
30 average of individual misfits over data sites and types of measurements, and s is
31 another scaling value (Briggs and Tarasov, 2013; Briggs et al., 2014). However, the
32 choice of these forms is somewhat heuristic, and different choices are also
33 appropriate for complex model-data comparisons with widespread data points, very
34 different types of data, and with many model-data error types not being strictly
35 Gaussian. In order to determine the influence of these choices on the results, we
36 compare two approaches: (a) with formulae adhering closely to Gaussian forms
37 throughout, and (b) with some non-Gaussian aspects attempting to provide more
38 straightforward and interpretable scalings between different data types. Both

1 approaches are described fully below (next section, and Appendix B). They yield
2 very similar results, with no significant differences between the two, as shown in
3 Appendix C. The second more heuristic approach (b) is used for results in the main
4 paper.

5
6 Accordingly, we have made a significant addition to the paper, adding a new set of formulae for
7 misfits and scores, that do adhere closely to Gaussian error forms. We call this “approach (a)”,
8 vs. “approach (b)” for the existing set of formulae. Both sets of formulae are described in an
9 expanded Appendix B and in Section 2.4. Comparisons of all results are presented for both
10 approaches in a new Appendix C, which show no significant differences, indicating that they
11 are robust and independent of the choice of approaches to misfits and scoring.

12
13 *“It differs from from the weighting in Briggs and Tarasov (2013) (their “inter-data-type”),*
14 *which is algebraic and depends heavily (80%) on the fit to modern ice distribution.”*

15
16 *# This is incorrect. The weightings are for the RSME score components, but the final*
17 *weighting is e to the power of the sum of these normalized components (ie assumes a*
18 *pseudo-Gaussian error model). This is therefore not algebraic. Furthermore, Briggs,*
19 *Pollard, and Tarasov (2014) should be cited instead. They give a corrected inter-datatype*
20 *relative weighting of < 50% for present-day data (Coauthors should know the*
21 *papers their names are on, rap knuckles., :)).*

22
23 The relevant sentence in Section 2.4 is rephrased, avoiding specific values:

24 Of the two approaches, this most closely follows Briggs and Tarasov (2013) and Briggs et
25 al. (2014), except for their inter-data-type weighting, which assigns very different weights
26 to the individual types based on spatial and temporal volumes of influence (Briggs and
27 Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2).

28
29 *“3. Consistent with trends in recent Antarctic modeling studies (Ritz et al., 2001; Huy20*
30 *brechts, 2002; Philippon et al., 2006; Briggs et al., 2013, 2014; Whitehouse et al.,*
31 *2012a, b; Golledge et al., 2012, 2013, 2014), the greater total Antarctic ice amount*
32 *at the Last Glacial Maximum is less than in earlier papers, equivalent to 5 to 10m of*
33 *global equivalent sea level below modern”*

34
35 *# Incorrect citation of Briggs et al, 2014: Their confidence interval for LGM Antarctic*
36 *ice volume excess has an upper bound of 14.3 m eustatic equivalent, with lower*

1 *confidence is > 10 m, and one of their single best fit runs has an excess of 13.2 m.*
2 *Furthermore, they raise the point that their (well our) model had insufficient grounding line*
3 *response compared to proxy paleo data, suggesting that LGM grounded ice volume*
4 *could be under-estimated. So there is no basis to lump this in with other studies*
5 *claiming </= 10 m of eustatic sealevel equivalent.*

6

7 This is a valid point, stemming from the sentence not being clear; we meant “5 to 10m” to refer
8 just to our results. We have clarified the sentence as follows:

9 **3.** The total Antarctic ice amount at the Last Glacial Maximum is equivalent to ~5 to
10 meters of global equivalent sea level below modern (Fig. 5). This is consistent
11 with the trend in recent modeling studies (Ritz et al., 2001; Huybrechts, 2002;
12 Philippon et al., 2006; Briggs et al., 2014; Whitehouse et al., 2012a,b; Golledge et al.,
13 2012,2013,2014, whose LGM amounts are generally less than in older papers.

14

15 *“For ELEV: the minimum squared mismatch of ice elevation and time, within the constraints*
16 *of descending elevation trend, each relative to the observational uncertainties*
17 *of elevation and time”*

18

19 *#Bit unclear. Is this the same error model as Briggs and Tarasov 2013?*

20

21 It is very close to the same. Full details are be given in the new Appendix B.

22

23 **A. Kergweg:**

24

25 *Dear authors,*

26 *In my role as executive editor I ask you to move the Code Availability Section to its*
27 *usually place after the conclusion but in front of the Appendix when revising your article.*

28 *Thanks, Astrid Kerkweg*

29

30 This section is moved as requested.

31

32

1 **Large ensemble modeling of last deglacial retreat of the**
2 **West Antarctic Ice Sheet: Comparison of simple and**
3 **advanced statistical techniques**

4

5 **D. Pollard¹, W. Chang², M. Haran³, P. Applegate^{1,4} and R. DeConto⁵**

6

7 [1] ~~†~~Earth and Environmental Systems Institute, Pennsylvania State University, University
8 Park~~†~~

9 [2] ~~†~~Department of Statistics, University of Chicago, Illinois~~†~~

10 [3] ~~†~~Department of Statistics, Pennsylvania State University, University Park~~†~~

11 [4] ~~†~~Earth Sciences Program, Pennsylvania State University, DuBois~~†~~

12 [5] ~~†~~Department of Geosciences, University of Massachusetts, Amherst~~†~~

13 Correspondence to: D. Pollard (pollard@essc.psu.edu)

14

15 **Abstract**

16 A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice
17 Sheet over the last ~20,000 years. A large ensemble of 625 model runs is used to calibrate the
18 model to modern and geologic data, including reconstructed grounding lines, relative sea-level
19 records, elevation-age data and uplift rates, with an aggregate score computed for each run that
20 measures overall model-data misfit. Two types of statistical methods are used to analyze the
21 large-ensemble results: simple averaging weighted by the aggregate score, and more advanced
22 Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov
23 chain Monte Carlo. The analyses provide sea-level-rise envelopes with well defined parametric
uncertainty bounds, but the simple averaging method only provides robust results with full-
factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and
24 envelopes of equivalent sea-level rise with the simple averaging method agree ~~quite~~ well with
25 the more advanced techniques, ~~but only for a large ensemble with full factorial parameter~~
26 ~~sampling.~~ Best-fit parameter ranges confirm earlier values expected from prior model tuning,

1 including large basal sliding coefficients on modern ocean beds. ~~Each run is extended 5000~~
2 ~~years into the “future” with idealized ramped climate warming. In the majority of runs with~~
3 ~~reasonable scores, this produces grounding line retreat deep into the West Antarctic interior,~~
4 ~~and the analysis provides sea-level rise envelopes with well defined parametric uncertainty~~
5 ~~bounds.~~

6

7 **1. Introduction**

8 Modeling studies of future variability of the Antarctic Ice Sheet have focused to date on the
9 Amundsen Sea Embayment (ASE) sector of West Antarctica, including the Pine Island and
10 Thwaites Glacier basins. These basins are currently undergoing rapid thinning and acceleration,
11 producing the largest Antarctic contribution to sea level rise (Shepherd et al., 2012; Rignot et
12 al., 2014). The main cause is thought to be increasing oceanic melt below their floating ice
13 shelves, which reduces back pressure on the grounded inland ice (buttressing; Pritchard et al.,
14 2012; Dutrieux et al., 2014). There is a danger of much more drastic grounding-line retreat and
15 sea-level rise in the future, because bed elevations in the Pine Island and Thwaites Glacier basin
16 interiors deepen to depths of a kilometer or more below sea level, potentially allowing Marine
17 Ice Sheet Instability (MISI) due to the strong dependence of ice flux on grounding-line depth
18 (Weertman, 1974; Mercer, 1978; Schoof, 2007; Vaughan, 2008; Rignot et al., 2014; Joughin et
19 al., 2014).

20

21 Recent studies have mostly used high-resolution models and/or relatively detailed treatments of
22 ice dynamics (higher order or full Stokes dynamical equations; Morlighem et al., 2010;
23 Gladstone et al., 2012; Cornford et al., 2013; Parizek et al., 2013; Docquier et al., 2014; Favier
24 et al., 2014; Joughin et al., 2014). Because of this dynamical and topographic detail, models
25 with two horizontal dimensions have been confined spatially to limited regions of the ASE and
26 temporally to durations on the order of centuries to one millennium. On the one hand, these
27 types of models are desirable because highly resolved bed topography and accurate ice
28 dynamics near the modern grounding line could well be important on timescales of the next few
29 decades to century (references above, and Durand et al., 2011; Favier et al., 2012). On the other
30 hand, the computational run-time demands of these models limit their applicability to small

1 domains and short time scales, and they can only be calibrated against the modern observed
2 state and decadal trends at most.

3

4 Here we take an alternate approach, using a relatively coarse-grid ice sheet model with hybrid
5 dynamics. This allows run durations of ~~many~~several 10,000 years, so that model parameters can
6 be calibrated against geologic data of major retreat across the continental shelf since the Last
7 Glacial Maximum (LGM) over the last ~20,000 years. The approach is a trade-off between (i)
8 less model resolution and dynamical fidelity, which degrades future predictions on the scale of
9 ~10's km and the next few decades (sill-to-sill retreat immediately upstream from modern
10 grounding lines), and (ii) more confidence on larger scales of 100's km and 1000's years (deeper
11 into the interior basins, further into the future) provided by calibration versus LGM extents and
12 deglacial retreat of the past 20,000 years. Also the approach allows more thorough exploration
13 of uncertain parameter ranges and their interactions, such as sliding coefficients on modern
14 ocean beds, oceanic melting strengths, and different Earth treatments of bedrock deformation.

15

16 A substantial body of geologic data is available for the last deglacial retreat in the ASE and
17 other Antarctic sectors. Notably this includes recent reconstructions of grounding-line locations
18 over the last 25 kyr by the RAISED Consortium (RAISED, 2014). Other types of data at
19 specific sites include relative sea-level records, cosmogenic elevation-age data, and modern
20 uplift rates (compiled in RAISED, 2014; Briggs and Tarasov, 2013, Briggs et al., 2013, 2014;
21 Whitehouse et al., 2012a,b). Following several recent Antarctic modeling studies (Briggs et al.
22 and Whitehouse et al. as above; Golledge et al., 2014; Maris et al., 2015), we utilize these
23 datasets in conjunction with large ensembles (LE), i.e., sets of hundreds of simulations over the
24 last deglacial period with systematic variations of selected model parameters. LE studies have
25 also been performed for past variations of the Greenland Ice Sheet, for instance by Applegate et
26 al. (2012) and Stone et al. (2013).

27

1 This paper follows on from Chang et al. (2015a,b, 2015, 2016), who apply relatively advanced
2 Bayesian statistical techniques to LE's generated by our ice-sheet model. The statistical steps
3 are described in detail in Chang et al. (2015a, 2015, 2016), and include:

- 4 • Statistical emulators, used to interpolate results in parameter space, constructed using a new
5 emulation technique based on principal components.
- 6 • Probability models, replacing raw ~~root-mean-square-error~~-(RMSE) model-data misfits with
7 formal likelihood functions, using a new approach for binary spatial data such as grounding-
8 line maps.
- 9 • Markov Chain Monte Carlo (MCMC) methods, used to produce posterior distributions
10 which are continuous probability density functions of parameter estimates and projected
11 results based on formally combining the information from the above two steps in a Bayesian
12 inferential framework.

13
14 Some of these techniques were applied to LE modeling for Greenland in Chang et al. (2014).
15 McNeall et al. (2013) used a Gaussian process emulator, and scoring similar to our simple
16 method, in their study of observational constraints for a Greenland ice sheet model ensemble.

17 Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North
18 American ice-sheet modeling to fill in parameter space between LE simulations sheets, and
19 have mentioned their potential application to Antarctica (Briggs and Tarasov, 2013). Apart
20 from these examples, to our knowledge the statistical techniques in Chang et al. (2015a,b, 2015,
21 2016) are considerably more advanced than the simpler averaging method used in most
22 previous LE ice-sheet studies; these previous studies have involved

- 23 (i) Computing a single objective score for each LE member that measures the misfit between
24 the model simulation and geologic and modern data, and
- 25 (ii) Calculating parameter ranges and envelopes of model results by straightforward averaging
26 over all LE members, weighted by the scores.

27 The more advanced statistical techniques offer substantial advantages over the simple averaging
28 method, such as providing robust and smooth probability density functions in parameter space.

29 As shown in For instance, Applegate et al. (2012) and Chang et al. (2014), show that the simple

1 averaging method fails to provide reasonable results for LE's with coarsely spaced Latin
2 HyperCube sampling, whereas ~~emulation and for the other same LE, the~~ advanced
3 ~~stepstechiques~~ successfully interpolate in parameter space, and provide smooth and
4 meaningful probability densities.

5

6 However, the advanced techniques in Chang et al. (2015a,b, 2015, 2016) require statistical
7 expertise not readily available to most ice-sheet modeling groups. It may be that the simple
8 averaging method still gives reasonable results, especially for LE's with full factorial sampling,
9 i.e., with every possible combination of selected parameter values (also referred to as grid or
10 Cartesian product; Urban and Fricker, 2010). The purpose of this paper is to apply both the
11 advanced statistical and simple averaging methods to the same Antarctic LE, compare the
12 results, and thus assess whether the simple (and commonly used) method is a viable alternative
13 to the more advanced techniques, at least for full factorial LEs. The results include probabilistic
14 ranges of model parameter values, and envelopes of model results such as equivalent sea-level
15 rise. Further types of results related to specific glaciological problems (LGM ice volume,
16 MeltWater Pulse 1A, future retreat) will be presented in Pollard et al. (2016) using the simple-
17 averaging method, and do not modify or extend the comparisons of the two methods in this
18 paper.

19

20 Sections ~~2a-b describes~~ 2.1 and 2.2 describe the model, the setup for the last deglacial
21 simulations, and the model parameters chosen for the full factorial LE. Sections ~~2e-e~~ 2.3 to 2.4
22 describe the objective scoring vs. past and modern data used in the simple averaging method,
23 and ~~data used in Sect. 2.5 provides an overview of~~ the advanced statistical techniques. Results
24 are shown for best-fit model parameter ranges and equivalent sea-level envelopes in
25 ~~sections~~ Sects. 3 and 4, comparing simple and advanced techniques. Conclusions and steps for
26 further work are described in ~~section~~ Sect. 5.

27

28 **2. Methods**

29

1 **2.1. Ice sheet model and simulations**

2 The 3-D ice-sheet model has previously been applied to past Antarctic variations in Pollard and
3 DeConto (2009), DeConto et al. (2012) and Pollard et al. (2015a, 2015). The model predicts ice
4 thickness and temperature distributions, evolving due to slow deformation under its own
5 weight, and to mass addition and removal (precipitation, basal melt and runoff, oceanic melt,
6 and calving of floating ice). Floating ice shelves and grounding-line migration are included. It
7 uses hybrid ice dynamics and an internal condition on ice velocity at the grounding line
8 (Schoof, 2007). The simplified dynamics (compared to full Stokes or higher-order) captures
9 grounding-line migration reasonably well (Pattyn et al., 2013), while still allowing $O(10,000)$'s)
10 year runs to be feasible. As in many long-term ice sheet models, bedrock deformation is
11 modeled as an elastic lithospheric plate above local isostatic relaxation. Details of the model
12 formulation are described in Pollard and DeConto (2012a, b). The drastic ice-retreat
13 mechanisms of hydrofracturing and ice-cliff failure proposed in Pollard et al. (2015a) are not
14 included here, but will be combined with LE's in Pollard et al. (2015b). (2015) are only
15 triggered in warmer-than-present climates and so do not play any role in the glacial-deglacial
16 simulations here; in fact they are switched off in all runs. Tests show that they play no
17 perceptible role in simulations over the last 40 kyears.

18
19 The model is applied to a limited area nested domain spanning all of West Antarctica, with a
20 20-km grid resolution. Lateral boundary conditions on ice thicknesses and velocities are
21 provided by a previous continental-scale run. The model is run over the last 30,000 years,
22 initialized appropriately at 30 ka (30,000 years before present, relative to 1950 AD) from a
23 previous longer-term run. Atmospheric forcing is computed using a modern climatological
24 Antarctic dataset (ALBMAP: Le Brocq, 2010), with uniform cooling perturbations proportional
25 to a deep-sea core $\delta^{18}\text{O}$ record (as in Pollard and DeConto, 2009, 2012a). Oceanic forcing uses
26 using archived ocean temperatures from a global climate model simulation of the last 22 kyr
27 (Liu et al., 2009). Sea level variations versus time, which are controlled predominantly by
28 Northern Hemispheric ice sheet variations, are prescribed from the ICE-5G dataset (Peltier,
29 2004). Modern bedrock elevations are obtained from the Bedmap2 dataset (Fretwell et al.,
30 2013).

1
2 ~~Each simulation is run from 30 ka to the present, and is extended 5,000 years into the “future”~~
3 ~~with a very simple prescribed warming. Atmospheric and oceanic temperatures are uniformly~~
4 ~~increased by 6 and 2 °C, respectively, ramped linearly from the present to 150 years AP (after~~
5 ~~present) and held constant thereafter. Ocean temperature increases are confined to a~~
6 ~~longitudinal sector (90 to 120° W) enclosing the Amundsen Sea Embayment of West~~
7 ~~Antarctica, corresponding to the main region of observed sub-ice shelf melt increases in recent~~
8 ~~decades. This simple prescription of future temperatures produces MISI and drastic ice retreat~~
9 ~~into the West Antarctic interior in many of the runs (as in Pollard and DeConto, 2009). More~~
10 ~~realistic future warming scenarios are planned for future work.~~

11
12 **2.2. Large ensemble and model parameters**

13 The large ensemble analyzed in this study uses full factorial sampling, i.e., a run for every
14 possible combination of parameter values, with 4 parameters varied and with each parameter
15 taking 5 values, requiring 625 ($=5^4$) runs. As discussed above, results are analyzed in two ways:
16 (1) using the relatively advanced statistical techniques (emulators, likelihood functions,
17 MCMC) in Chang et al. (2015a,b, 2015, 2016), and (2) using the much simpler averaging
18 method of calculating an aggregate score for each run that measures model-data misfit, and
19 computing results as averages over all runs weighted by their score. Because the second method
20 has no means of interpolating results between sparsely separated points in multi-dimensional
21 parameter space, it is effectively limited to full factorial sampling with only a few parameters
22 and a small number of values each. The small number of values is nevertheless sufficient to
23 span the full reasonable “prior” range for each parameter, and although the results are very
24 coarse with the second method, they show the basic patterns adequately. Furthermore,
25 envelopes of results of all model runs are compared in Appendix D with corresponding data,
26 and demonstrate that the ensemble results do adequately “span” the data, i.e., there are no
27 serious outliers of data far from the range of model results.

28
Formatted
pt, Line spa

Formatted

1 The 4 parameters and their 5 values are:
2

3 **OCFAC:** Sub-ice oceanic melt coefficient.

4 Values are 0.1, 0.3, 1, 3, 10 (non-dimensional).

5 Corresponds to K in Eq. 17 of Pollard and Deconto (2012a).

6 **CALV:** Factor in calving of icebergs at oceanic edge of floating ice shelves.

7 Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).

8 Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. (2015).

9

Table 1. The 4 parameters varied in the large ensemble, and their 5 values.

OCFAC: Sub-ice oceanic melt coefficient.

— Values are 0.1, 0.3, 1, 3, 10 (non-dimensional).

— Corresponds to K in Eq. 17 of Pollard and Deconto (2012a).

CALV: Factor in calving of icebergs at oceanic edge of floating ice shelves.

— Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).

— Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. (2015a).

CSHELF: Basal sliding coefficient for ice grounded on modern ocean beds.

— Values are $10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}$ (m yr⁻¹ Pa⁻²).

— Corresponds to C in Eq. 11 of Pollard and Deconto (2012a).

TAUAST: e-folding time of bedrock relaxation towards isostatic equilibrium.

— Values are 1, 2, 3, 5, 7 kyr.

— Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a).

10 **CSHELF:** Basal sliding coefficient for ice grounded on modern-ocean beds.

11 Values are $10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}$ (m yr⁻¹ Pa⁻²).

12 Corresponds to C in Eq. 11 of Pollard and Deconto (2012a).

13 **TAUAST:** e-folding time of bedrock relaxation towards isostatic equilibrium.

14 Values are 1, 2, 3, 5, 7 kyr.

15 Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a).

16 The 4 parameters were chosen based on prior experience with the model; each has a strong
17 effect on the results, yet their values are particularly uncertain. The first 3 involve oceanic
18 processes or properties of modern ocean-bed areas. Parameters whose effects are limited to
19 modern grounded-ice areas are reasonably well constrained by earlier work, such as basal
20 sliding coefficients under modern grounded ice which are obtained by inverse methods (e.g.,
21

1 Pollard and DeConto, 2012b, for this model). More discussion of the physics and uncertainties
2 associated with these parameters is given in Appendix A.

3

4 **2.3. Individual data types and scoring**

5 Following Whitehouse (2012a,b), Briggs and Tarasov (2013) and Briggs et al. (2013, 2014), we
6 test the model against 3 types of data for the modern observed state, and 5 types of geologic
7 data relevant to ice-sheet variations of the last ~20,000 years, using straightforward mean
8 squared or root-mean-square-~~(RMSE)~~ misfits in most cases. Each misfit (M_i , $i = 1$ to 8) is
9 normalized into an individual score (S_i), which are then combined into one aggregate score (S)
10 for each member of the LE. Only data within the domain of the model (West Antarctica) is used
11 in the calculation of the misfits.

12

1 We first describe One approach to calculating misfits and scores is to borrow from Gaussian
2 error distribution concepts, i.e., individual misfits M of the full calculation used form $[(mod -$
3 $obs) / \sigma]^2$ and overall scores of the form $e^{-M/s}$, where mod is a model quantity, obs is a
4 corresponding observation, σ is an observational or scaling uncertainty, M is an average of
5 individual misfits over data sites and types of measurements, and s is another scaling value

Table 2. Data types used in evaluating model simulations.

1. TOTE: Modern grounding line locations.

- Misfit M_1 : based on total area of model data mismatch for grounded ice.
- Data: Bedmap2 (Fretwell et al., 2013).

2. TOTI: Modern floating ice shelf locations.

- Misfit M_2 : based on total area of model data mismatch for floating ice.
- Data: Bedmap2 (Fretwell et al., 2013).

3. TOTDH: Modern grounded ice thicknesses.

- Misfit M_3 : based on RMS model data difference of grounded ice thicknesses.
- Data: Bedmap2 (Fretwell et al., 2013).

4. TROUGH: Past grounding line distance vs. time along the centerline trough of Pine Island Glacier. Centerline data for the Ross and Weddell basins can also be used, but not in this study.

- Misfit M_4 : based on RMS model data difference over the period 20 to 0 ka.
- Data: RAISED (2014).

5. GL2D: Past grounding line locations (see Fig. 1). Only the Amundsen Sea region is used in this study.

- Misfit M_5 : based on model data mismatches for 20, 15, 10, 5 ka.
- Data: RAISED (2014).

6. RSL: Past Relative Sea Level (RSL) records.

- Misfit M_6 : based on χ^2 squared measure of model data differences at individual sites.
- Data: compilation in Briggs and Tarasov (2013).

7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF).

- Misfits M_{7a}, M_{7b} : based on model data differences at individual sites, combined as in Appendix B.
- Data: compilations in Briggs and Tarasov (2013) for ELEV, in RAISED (2014) for DSURF.

8. UPL: Modern uplift rates on rock outcrops.

- Misfit M_8 : based on RMS model data difference at individual sites.
- Data: compilation in Whitehouse et al. (2012b).

6 (Briggs and Tarasov, 2013; Briggs et al., 2014). However, the choice of these forms is

somewhat heuristic, and different choices are also appropriate for complex model-data comparisons with widespread data points, very different types of data, and with many model-data error types not being strictly Gaussian. In order to determine the influence of these choices on the results, we compare two approaches: (a) with formulae adhering closely to Gaussian forms throughout, and (b) with some non-Gaussian aspects attempting to provide more straightforward and interpretable scalings between different data types. Both approaches are described fully below (next section, and Appendix B). They yield very similar results, with no significant differences between the two, as shown in the simple averaging method Appendix C.

The second more heuristic approach (b) is used for results in the main paper.

The 8 individual data types and model-data misfits are described briefly in Table 2, with more listed below, with basic information that applies to both of the above approaches. More details are given in Appendix B, followed by the method including formulae for the two approaches, and “intra-data-type weighting” that is important for closely spaced sites (Briggs and Tarasov, 2013). The two approaches of combining them the individual scores into one aggregate score S for the simple averaging method are described in the following Sect. 2.4. The more advanced statistical techniques (Chang et al., 2015a,b, 2015, 2016) use elements of these calculations, but differ fundamentally in some aspects, as discussed further below outlined in Sect. 2.5.

The 8 individual data types are:

1. TOTE: Modern grounding-line locations.

Misfit M_1 : based on total area of model-data mismatch for grounded ice.

Data: Bedmap2 (Fretwell et al., 2013).

2. TOTI: Modern floating ice-shelf locations.

Misfit M_2 : based on total area of model-data mismatch for floating ice.

Data: Bedmap2 (Fretwell et al., 2013).

3. TOTDH: Modern grounded ice thicknesses.

Misfit M_3 : based on model-data differences of grounded ice thicknesses.

Data: Bedmap2 (Fretwell et al., 2013).

4. TROUGH: Past grounding-line distance vs. time along the centerline trough of Pine Island Glacier.

Centerline data for the Ross and Weddell basins can also be used, but not in this study.

Misfit M_4 : based on model-data differences over the period 20 to 0 ka.

Data: RAISED (2014) (Anderson et al., 2014, for the Ross; Hillenbrand et al., 2014, for the Weddell;

1 Larter et al., 2014, for the Amundsen Sea).

2
3 **5. GL2D:** Past grounding-line locations (see Fig. 1). Only the Amundsen Sea region is used in this
4 study.

5 Misfit M_5 : based on model-data mismatches for 20, 15, 10, 5 ka.

6 Data: RAISED (2014) (Anderson et al., 2014; Hillenbrand et al., 2014; Larter et al., 2014;
7 Mackintosh et al., 2014; O Cofaigh et al., 2014).

8
9 **6. RSL:** Past Relative Sea Level (RSL) records.

10 Misfit M_6 : based on χ^2 -squared measure of model-data differences at individual sites.

11 Data: compilation in Briggs and Tarasov (2013).

12 **7. ELEV/DSURF:** Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF).

13 Misfits M_{7a} , M_{7b} : based on model-data differences at individual sites, combined as in Appendix B.

14 Data: compilations in Briggs and Tarasov (2013) for ELEV; in RAISED (2014) with individual
15 citations as above for DSURF.

16 **8. UPL:** Modern uplift rates on rock outcrops.

17 Misfit M_8 : based on model-data difference at individual sites.

18 Data: compilation in Whitehouse et al. (2012b).

22 2.4. Combination into one aggregate score for simple averaging method

23 Each of the RMSE or χ^2 squared misfits above are first transformed into a normalized individual
24 score for each data type $i = 1$ to 8. The transformations differ for the two approaches
25 mentioned above.

26 **(a) For approach (a), closely following Gaussian error forms, using misfits M_i as described in**
27 Appendix B:

28

- For a given data type i , the misfits M_i for all runs (1 to 625) are sorted, and normalized
29 using the median value M_i^{50} , i.e., $M_i' = M_i / M_i^{50}$. This is somewhat analogous to the
30 heuristic scaling for overall scores in Briggs et al., (2014, their sec. 2.3), but applied
31 here to individual types.

32

- The individual score S_i for data type i and each run is set to $e^{-M_i'}$

33

- The aggregate score for each run is $S = S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8$, i.e., $e^{-\sum M_i'}$

34 Of the two approaches, this most closely follows A Briggs and Tarasov (2013) and Briggs
35 et al. (2014), except for their inter-data-type weighting, which assigns very different

36 Formatted

weights to the individual types based on spatial and temporal volumes of influence (Briggs and Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2). Here, we assume that each data type is of equal importance to the overall score, and that if any one individual score is very bad ($S_i \approx 0$), the overall score S should also be ≈ 0 . This corresponds to the notion that if any single data type is completely mismatched, the run should be rejected as unrealistic, regardless of the fit to the other data types. The fits to past data, even if more uncertain and sparser than modern, seem equally important to the goal of obtaining the best calibration for future applications with very large departures from modern conditions.

(b) For the more heuristic approach (b), using misfits M_i as described in Appendix B:

- For a given data type i , a “cutoff” value C_i is set by taking the geometric mean (i.e., logarithmic mean, square root of the product) of (i) the minimum (best) RMSE value misfits M_i over all the LE runs 1 to 625, and (ii) the algebraic average of the 10 largest (worst) values. The 10 worst values are used to avoid a single outlier that could be unbounded; the single best value is used because it is bounded by zero, and is not an outlier but represents close-to-the-best possible simulation with the current model. The geometric mean and not the algebraic mean of these two numbers is more appropriate if the values range over many orders of magnitude.

- The individual score $S_i = \max [0, \min [1, 1 - \text{normalized misfit } M_i/C_i]]$, for each ensemble run and for each data type $i=1$ and each run is set to 8. Each M_i and C_i is a recognizable physical quantity or ratio, and if $M_i/C_i > 1$. We implicitly assume that $M_i > C_i$, the simulation is definitely very poor, not even resembling the appropriate data. S_i values close to 10 ($M_i \ll C_i$) represent very good simulations of this data type, close to the best possible within the LE. $S_i M_i$ values of $0 \geq 1$ ($M_i \geq C_i$) represent very bad poor simulations, diverging from this data type so much that the run should be rejected no matter what the other scores are.

Formatted
0.25" + In

Formatted
0.25" + In

Formatted
Formatted

1 • Then the geometric (logarithmic) average of the ~~8~~The individual S_i 's score S_i for data
 2 type i and each run is taken set to yield the max $[0, 1 - M_i']$

3 The aggregate score for each run is S for each run:

4

5 • $S = \left((S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8) \right)^{1/8}$

6

7 This formula (as opposed to the algebraic mean of the S_i for instance) means that if any
 8 individual score is 0, then S is zero. It corresponds to the notion that if any single data type
 9 is completely mismatched, the run should be rejected as unrealistic, regardless of the fit to
 10 the other data types. It differs from the weighting in Briggs and Tarasov (2013) (their
 11 “inter data type”), which is algebraic and depends heavily (80%) on the fit to modern ice
 12 distribution. Here we more heavily emphasize the fit to past data, even if more uncertain
 13 and sparser than modern, which seems pertinent to future simulations with very large
 14 departures from modern conditions. Our overall approach has In both approaches, the
 15 formulae apply equal weights to the individual data types, and do not use “inter-data-type”
 16 weighting (Briggs and Tarasov 2013; Briggs et al. 2014). As in (a), if any individual score
 17 S_i is ≈ 0 , then the overall score S is ≈ 0 , and the discussion above also applies to approach
 18 (b). Both approaches have loose links to the calibration technique in Gladstone et al. (2012)
 19 and the more formal treatment in McNeall et al. (2013).

21 2.5. Advanced statistical techniques

22 The more advanced statistical techniques (Chang et al., 2015a,b) do not use the aggregate score
 23 S at all, but perform statistical 2015, 2016) consist of an emulation of modern and past
 24 grounding line locations. Chang et al. (2015b) used exactly a calibration stage, involving the
 25 same 4 model parameters and the 625-member LE as above. The aggregate scores S described
 26 in Sect. 2.4 are not used at all. The techniques are outlined here, applying; full accounts are
 27 given in Chang et al. (2015, 2016).

1 Emulation phase:

2 Emulation is the statistical approach by which a computer model is approximated by a
3 statistical emulators, probability models and likelihood functions model. This statistical
4 approximation is obtained by running the model at many parameter settings and then “fitting” a
5 Gaussian process model to the input-output combinations, analogous to fitting a regression
6 model that relates independent variables (parameters) to dependent variables (model output) in
7 order to make predictions of the dependent variable at new values of the independent variables.
8 Of course, unlike basic regression, the model output may itself be multivariate. An emulator is
9 useful because: (i) modern grounding line geographicait provides a computationally
10 inexpensive method for approximating the output of a computer model at any parameter setting
11 without having to actually run the model each time, and (ii) it provides a statistical model
12 relating parameter values to computer model output – this means the approximations
13 automatically include uncertainties, with larger uncertainties at parameter settings that are far
14 from parameter values where the computer model has already been run. Specifically, the model
15 output consisting of (i) modern grounding line maps, and (ii) past locations of grounding lines
16 versus time along the centerline trough of Pine Island Glacier (replacing the data types TOTE,
17 TROUGH and GL2D above), are first reduced in dimensionality by computing Principal
18 Components (PCs) over all LE runs. (Principal components are often referred to in the
19 atmospheric science literature as empirical orthogonal functions or EOFs.) The first 10 PCs are
20 used for modern maps, and the first 20 for past trough locations. Hence, we develop a Gaussian
21 process emulator for each of the above PCs. Gaussian process emulators work especially well
22 for model outputs that are scalars. The emulators are “fitted” to the PCs using a maximum
23 likelihood estimation-based approach developed in Chang et al. (2015) that addresses the
24 complications that arise due to the fact that the data are non-Gaussian. Details are available in
25 (Chang et al., 2015, 2016). The emulators provide a statistical model that essentially replaces
26 the data types TOTE, TROUGH and GL2D described in Sect. 2.3.

27
28 For this paper, the advanced techniques In an extension to Chang et al. (2016), Gaussian process
29 emulators are extended to additionally use the also used here to estimate distributions of
30 individual score values for the 5 data types TOTI, TOTDH, RSL, ELEV/DSURF and UPL₇ (S₂,

1 S_3, S_6, S_7, S_8). The raw data, approach (b), Sect. 2.3 and Appendix B), one emulator per score.
2 Again, emulators are developed for these quantities are less amenable to each of the scores by
3 using the Gaussian process machinery and maximum likelihood estimation.

4

5 *Calibration phase:*

6 The calibration stage solves the following problem in a statistically rigorous fashion: given
7 observations and model runs at various parameter settings, which parameters of the model are
8 most likely? In a Bayesian inferential framework, this translates to learning about the posterior
9 probability distribution of the parameter values given all the available computer model runs and
10 observations. The approach may be sketched out as follows. The emulation, especially those
11 phase provides a statistical model connecting the parameters to the model output. Suppose it is
12 assumed that the model at a particular (ideal) set of parameter values produces output that
13 resembles the observations of the process. We also allow for measurement error and systematic
14 discrepancies between the computer model and the real physical system. We do this via a
15 “discrepancy function” that simultaneously accounts for both; this is reasonable because both
16 sources of error are important while also being difficult to tease apart. Hence, one can think of
17 our approach as assuming that the observations are modeled as the model output at an ideal
18 parameter setting, added to a discrepancy function. Once we are able to specify a model in this
19 fashion, Bayesian inference provides a a very standard approach to obtain the resulting
20 posterior distribution of the parameters: we start with site-specific records (a prior distribution
21 for the parameters, where we assume that all the values are equally likely before any
22 observations are obtained, and then use Bayes theorem to find the posterior distribution given
23 the data. The posterior distribution cannot be found in analytical form. Hence, in this second
24 “calibration” stage, posterior densities of the model parameters are inferred via Markov Chain
25 Monte Carlo (MCMC). The observation and model quantities used in emulation and calibration
26 consist of the modern and past grounding-line locations, and 5 individual scores. The
27 discrepancy function is accounted for in assessing model vs. observed grounding-line fits in our
28 Bayesian approach, and is based in part on locations and times in which grounded ice occurs in
29 the model and not in the observations, or vice versa, in 50% or more of the LE runs (Chang et
30 al., 2015, 2016). For the individual scores, we use exponential marginal densities, whose rate

1 parameters receive gamma priors scaled in such a way that the 90th percentile of the prior
2 density coincides with each score's cutoff value C_i in Sect. 2.4.b.

3
4 In the above procedures, observational error enters for the individual scores RSL,
5 ELEV/DSURF, and UPL). The use of, via the individual scores iscalculations described in
6 Appendix EB. It is implicitly taken into account by the discrepancy function for grounding-line
7 locations. Observational error is considered to be negligible for modern TOTI and TOTDH
8 scores.

9
10 **3. Results: Aggregate scores with simple averaging method**

11 Fig. 2 shows the aggregate scores S for all 625 members of the LE, over the 4-dimensional
12 space of the parameters CSHELF, TAUAST, OCFAC and CALV. Each individual subpanel
13 shows TAUAST versus CSHELF, and the subpanels are arranged left-to-right for varying
14 CALV, and bottom-to-top for varying OCFAC.

15
16 **3.1. “Outer” variations, CALV and OCFAC**

17 All scores with the largest CALV value of 1.7 (right-hand column of subpanels) are 0. In these
18 runs, excessive calving results in very little floating ice shelves and far too much grounding
19 line-retreat. Conversely, with the smallest CALV value of 0.3 (left-hand column of subpanels),
20 most runs have too much floating ice and too advanced grounding lines during the runs, so most
21 of this column also has zero scores. However, small CALV can be partially compensated by
22 large OCFAC (strong ocean melting), so there are some non-zero scores in the upper-left
23 subpanels.

24
25 **3.2. “Inner” variations, CSHELF and TAUAST**

26 For mid-range CALV and OCFAC (subpanels near the center of the figure), the best scores
27 require high CSHELF (inner x axis) values, i.e., slippery ocean-bed coefficients of 10^{-6} to 10^{-5}
28 $\text{m a}^{-1} \text{ Pa}^{-2}$. This is the most prominent signal in Fig. 2, and is consistent with the widespread

1 extent of deformable sediments on continental shelves noted above. Ideally the LE should have
2 included CSHELF values greater than 10^{-5} ~~but the model frequently proved to be numerically~~
3 ~~unstable in that range. In a subsequent paper this instability is avoided and a larger CSHELF~~
4 ~~range is explored (Pollard et al., 2015b).~~ However, we note that values of 10^{-5} to 10^{-6} have
5 been found to well represent active Siple Coast ice-stream beds in model inversions (Pollard
6 and DeConto, 2012b). Subsequent work with wider CSHELF ranges confirms that values
7 around 10^{-5} are in fact optimal, with unrealistic behavior for larger values (Pollard et al., 2016).

8
9 Somewhat lower but still reasonable scores exist for lower CSHELF values of 10^{-7} , but only for
10 higher OCFAC (3 to 10) and smaller TAUAST (1 to 2 kyr). This is of interest because smaller
11 CSHELF values support thicker ice thicknesses at LGM where grounded ice has expanded over
12 continental shelves, producing greater equivalent sea-level lowering and alleviating the LGM
13 “missing-ice” problem (Clark and Tarasov, 2014). In order for the extra ice to be melted by
14 present day, ocean melting needs to be more aggressive (higher OCFAC), and to recover in
15 time from the greater bedrock depression at LGM, TAUAST has to be smaller (more rapid
16 bedrock rebound). This ~~region of parameter space~~glaciological aspect is explored ~~further~~ in
17 Pollard et al. (2015b2016).

18
19 Scores are quite insensitive to the asthenospheric rebound time scale TAUAST (inner y axis),
20 although there is a tendency to cluster around 2 to 3 kyr and to disfavor higher values (5 to 7
21 kyr) especially for high OCFAC.

22
23 **4. Results: Comparisons of simple averaging vs. advanced statistical techniques**

24
25 **4.1. Single parameter ranges**

26 The main results seen in Fig. 2 are borne out in Fig. 3. The left-hand panels show results using
27 the simple averaging method, i.e., the average score for all runs in the LE with a particular
28 parameter value. Triangles in these panels show the mean parameter value $V_m = \sum (S^{(n)} V^{(n)}) / \sum$
29 $S^{(n)}$, where $S^{(n)}$ is the aggregate score and $V^{(n)}$ is the value of this parameter for run n (1 to 625),

1 and whiskers show the standard deviation. The prominent signal of high CSHELF values
2 (sticky ocean beds) is evident, along with the absence (near absence) of positive scores for the
3 extreme CALV values of 1.7 (0.3), and the more subtle trends for OCFAC and TAUAST.

4

5 The right-hand panels of Fig. 3 show the same single-parameter “marginal” probably density
6 functions for this LE, using the advanced statistical techniques described in Chang et al.
7 ([2015a,b](#)[2015, 2016](#)) and summarized above. For OCFAC, CSHELF and TAUAST, there is
8 substantial agreement with the simple-averaging results in both the peak “best-fit” values and
9 the width of the ranges. For CALV, the peak values agree quite well, but the simple-averaging
10 distribution has a significant tail for lower CALV values that ~~disagrees with zero probabilities is~~
11 ~~not present~~ in the advanced results. ~~We will investigate; this disagreement might be due to the~~
12 ~~discrepancy function in further work the advanced method (Sect. 2.5), which has no counterpart~~
13 ~~in the simple averaging method.~~

Formatted

14

15 **4.2. Paired parameter ranges**

16 Probability densities for pairs of parameter values are useful in evaluating the quality of LE
17 analysis, and can display offsetting physical processes that together maintain realistic results,
18 e.g., greater OCFAC and lesser CALV (Chang et al., 2014; [2015a,b](#)[2015, 2016](#)). In Fig. 4, the
19 left-hand panels show mean scores for pairs of the 4 parameters, using the simple averaging
20 method and averaged over all LE runs with a particular pair of values. The right-hand panels
21 show corresponding densities for the same parameter pairs using the advanced statistical
22 techniques. Overall the same encouraging agreement is seen as for the single-parameter
23 densities in Fig 3, with the locations of the main maxima being roughly the same for each
24 parameter pair. There are some differences in the extents of the maxima, notable for CALV
25 where the zone of high scores with the simple averaging method extends to lower CALV values
26 than with the advanced techniques, as seen for the individual parameters in Fig. 3. In general,
27 though, there is good agreement between the two methods regarding parameter ranges in Figs.
28 3 and 4, suggesting that the simple averaging method is viable, at least for LE’s with full
29 factorial sampling of parameter space.

Formatted

1

2 **4.3. ~~Past and future equivalent~~Equivalent-sea-level ~~change~~contribution**

3 Fig. 5 illustrates the use of the LE to produce past ~~and future~~ envelopes of model
4 ~~prediction~~simulations. Fig. 5a,b show equivalent sea-level (ESL) scatter plots for all 625 runs.
5 Early in the runs around LGM (20 to 15 ka), the curves cluster into noticeable groups with the
6 same CSHELF values, due to the relatively weak effects of the other parameters (OCFAC,
7 CALV and TAUAST) for cold climates and ice sheets in near equilibrium. Fig. 5c,d show the
8 mean and one-sided standard deviations for the simple method. Most of the retreat and sea-level
9 rise occurs between ~14 to 10 ka, ~~and is somewhat more sudden and earlier than in other~~
10 ~~versions of the model due to a new feedback in the calving parameterization. This may be too~~
11 ~~strong and is re-evaluated in a subsequent paper (Pollard et al., 2015b. Glaciological aspects of~~
12 ~~the retreat will be discussed in more detail in Pollard et al. (2016).~~

13

14 Fig. 5e,f shows the equivalent mean and standard deviations derived from the advanced
15 statistical techniques. There is substantial agreement with the simple-method curves in Fig.
16 5c,d, for most of the duration of the runs. The largest difference is around the Last Glacial
17 Maximum ~20 to 15 ka, when mean sea levels are ~~up to~~nearly ~2.5 m lower (larger LGM ice
18 volumes) in the simpler method compared to the advanced. This may be due to the simpler
19 method's ~~scoring with scores using~~ past 2-D grounding-line reconstructions (~~GL2D~~-data type
20 GL2D), which are not used in the advanced ~~technique; this difference will be examined further~~
21 ~~in ongoing work~~techniques.

22

23 ~~The majority of runs with reasonably good aggregate scores produce substantial “future” WAIS~~
24 ~~collapse, with Marine Ice Sheet Instability causing grounding line retreat of the Pine Island and~~
25 ~~Thwaites glaciers into the West Antarctic interior. As seen in Fig. 5, this produces up to 2.6~~
26 ~~meters of equivalent sea-level (ESL) rise on several century to thousand year time scales (1.7 m~~
27 ~~after 1000 years, 2.6 after 5000 years), consistent with earlier model behavior in Pollard and~~
28 ~~DeConto (2009). Note that the prescribed “future” warming here is very simple, with linear~~

1 ~~ramps of all atmospheric and oceanic temperatures as described above. More detailed future~~
2 ~~climate warming scenarios are explored using LE methods in Pollard et al. (2015b).~~

3
4 Fig. 6 shows probability densities of equivalent sea level rise at particular times in the runs;
5 ~~including +500, +1000 and +5000 years after modern~~. Fig. 6a-d show results with the simple
6 averaging method, computed using score-weighted densities and 0.2-m wide ESL bins (see
7 caption). The uneven noise in this figure is due to the small number of parameter values in our
8 LE. The separate peaks for LGM (-15000 yr) in Fig. 6a and b are due to the widely separated
9 CSHELF values, and the relatively weak effects of the other parameters (OCFAC, CALV and
10 TAUAST) for cold climates and ice sheets in near equilibrium. Fig. 6e shows the equivalent but
11 much smoother probability densities using the advanced statistical techniques, ~~for the “future”~~
12 ~~times. There is fair agreement. All major aspects agree reasonably well~~ with the simple
13 averaging results, ~~including the skewed tendency at +5000 years and the separate peaks for -~~
14 ~~15000 yr are smoothed into a single broad range.~~

15
16 **5. Conclusions and further work**

17 ~~1. The simple averaging method, with quantities weighted by RMSE based aggregate scores,~~
18 ~~produces results that are reasonably compatible with relatively sophisticated statistical~~
19 ~~techniques involving emulation, probability model/likelihood functions, and MCMC (Chang et~~
20 ~~al., 2015a,b; 2015, 2016; Sect. 2e; Appendix C). However, we have shown this only for an 2.5).~~
21 ~~They are applied to the same LE with full factorial sampling in parameter space, for which~~
22 ~~both techniques yield smooth and robust results, and the advanced technique acts as a~~
23 ~~benchmark against which the simple method can be compared.~~

Formatted

24
25 Unlike the advanced techniques, the simple averaging method cannot interpolate in parameter
26 space, and so is limited practically to relatively few parameters (4 here) and a small number of
27 values for each (5 here). ~~As shown in Chang et al. (2014), the simple averaging method fails to~~
28 ~~yield meaningful results for LEs with sparse LatinHyperCube sampling. In contrast, the~~
29 ~~advanced techniques permit Latin HyperCube sampling with at least ~10 parameters (Chang et~~

1 al., 2015a), and produce robust and smooth probability densities for parameter values and
2 modeled quantities as shown here. Previous work using LE's with Latin HyperCube sampling
3 (Applegate et al., 2012; Chang et al., 2014, 2015) has shown that the simple averaging method
4 can fail if the sampling is too coarse, whereas the advanced technique provides smooth and
5 meaningful results. This is primarily due to emulation and MCMC in the advanced techniques,
6 which still interpolate successfully in the coarsely sampled parameter space. Of course, this
7 distinction depends on the size of the LE and the coarseness of the sampling; somewhat larger
8 LE's with Latin HyperCube sampling and fewer parameters can be amenable to the simple
9 method. Note that this is not addressed in this paper; where just one full-factorial LE is used.

10 ▲-----
11 2. The best-fit parameter ranges deduced from the LE analysis generally fit prior expectations.
12 In particular, the results strongly confirm that large basal sliding coefficients (i.e., slippery
13 beds) are appropriate for modern continental-shelf oceanic areas. In further work we will assess
14 heterogeneous bed properties such as the inner region of hard outcropping basement observed
15 in the ASE (Gohl et al., 2013). The best-fit range for the asthenospheric relaxation time scale
16 TAUAST values is quite broad, including the prior nominal values reference value ~3 kyr, but
17 extending to shorter times ~1 kyr. This may be connected with low upper-mantle viscosities
18 and thin crustal thicknesses suggested in recent work (Whitehouse et al., 2012b; Chaput et al.,
19 2014), which will be examined in further work with full Earth models (Gomez et al., 2013,
20 2015; Konrad et al., 2015).

21
22 3. Consistent The total Antarctic ice amount at the Last Glacial Maximum is equivalent to ~5 to
23 10 meters of global equivalent sea level below modern (Fig. 5). This is consistent with
24 trends the trend in recent Antarctic modeling studies (Ritz et al., 2001; Huybrechts, 2002;
25 Philippon et al., 2006; Briggs et al., 2013, 2014; Whitehouse et al., 2012a,b; Golledge et al.,
26 2012, 2013, 2014), the greater total Antarctic ice amount at the Last Glacial Maximum is, whose
27 LGM amounts are generally less than in earlier older papers, equivalent to ~5 to 10 meters of
28 global equivalent sea level below modern. (This contribution is. (Note that Fig. 5 shows
29 contributions only from our limited West Antarctic domain, but as shown in
30 Macintosh Mackintosh et al., 2011, the contribution from East Antarctica at LGM is much

Formatted

Formatted

Formatted

1 smaller, ~1 mesl). This suggests that Antarctic expansion is insufficient to explain the “missing
2 ice” problem, i.e., the total volume of reconstructed ice sheets worldwide is less than the
3 equivalent fall in sea-level records at that time by 15 to 20 meters (Clark and Tarasov, 2014). A
4 subsequent paper (Pollard et al., 2015b) ~~uses a similar LE to evaluate the potential for greater~~
5 ~~LGM ice volumes~~²⁰¹⁶ ~~examines this glaciological aspect in more detail but does not alter the~~
6 ~~conclusions here.~~

7

8 Formatted
9 ~~4. There are only minor episodes of accelerated WAIS retreat and equivalent sea-level rise in~~
10 ~~the simulations (Fig. 5), and none with magnitudes comparable to Melt Water Pulse 1A for~~
11 ~~instance, with ~15 mesl rise in ~350 years around ~14.5 ka (Deschamps et al., 2012), in~~
12 ~~apparent conflict with significant Antarctic contribution implied by sea-level fingerprinting~~
13 ~~studies (Bassett et al., 2005; Deschamps et al., 2012) and IRD-core analysis (Weber et al.,~~
14 ~~2014). Model retreat rates are examined in more detail in Pollard et al. (2015b), where the~~
15 ~~potential for greater pulses is assessed by imposing episodes of ocean warming around 15 to 14~~
16 ~~ka, similarly to Golledge et al. (2014)(2016), again without altering the findings here.~~

17

18 ~~5. One robust conclusion~~^{A natural extension of this work} ~~is that most parameter combinations~~
19 ~~with reasonable scores produce retreat deep into the West to extend the~~ ~~Antarctic interior in~~
20 ~~response to simple idealized “model simulations and LE methods into the future”, using~~
21 ~~climates and ocean warming, causing up to ~2 to 3 m equivalent sea-level rise on several~~
22 ~~century to few millennia timescales. It is driven by following Representative Concentration~~
23 ~~Pathway scenarios (Meinshausen et al., 2011). In these warmer climates we expect~~ Marine Ice
24 ~~Sheet Instability to occur~~ in WAIS basins, consistent with past retreats simulated in Pollard and
25 ~~DeConto and Pollard (2015) use more detailed future climate warming~~
26 ~~(Representative Concentration Pathways, Meinshausen et al., 2011), and also include~~
27 ~~Also~~ ~~drastic retreat mechanisms of hydrofracture and ice-cliff failure and another type of LE~~
28 ~~analysis. These aspects are combined with the LE methods described here in Pollard et al.~~
29 ~~(2015b, not triggered in the colder-than-present simulations of this paper, may play a role, as~~
~~found for the Pliocene in Pollard et al. (2015). Future applications with simple-average LE’s are~~

1 described in Pollard et al. (2016), and detailed future scenarios with another type of LE are
2 described in DeConto and Pollard (2016).

3

4 **Acknowledgements**

Formatted

5 We thank Zhengyu Liu and his group at U. Wisconsin for providing output of their coupled
6 GCM simulation (TraCE-21ka; Liu et al., 2009; He et al., 2013; www.cgd.ucar.edu/ccb/TraCE)
7 used for ocean forcing over the last 20,000 years. This work was supported in part by the
8 following grants from the National Science Foundation: NSF-DMS-1418090 and the Network
9 for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement
10 GEO1240507 (DP, MH); PLIOMAX OCE-1202632, OPP-1341394 (DP); NSF Statistical
11 Methods in the Atmospheric Sciences Network 1106862, 1106974, and 1107046 (WC).

12

13 **Code availability**

14 The code for the ice-sheet model (PSUICE-3D) is available on request from the corresponding
15 author. The post-processing codes for the large-ensemble statistical analyses are highly tailored
16 to specific sets of model output and are not made available; however, modules that compute
17 scores for the individual data types are also available on request.

1 **Appendix A: Model parameters varied in the large ensemble**

2 The four model parameters (OCFAC, CALV, CSHELF and TAUAST) and their ranges in the
3 large ensemble are summarized in [Table 1 above](#). [Sect. 2.2](#). Their physical effects in the model
4 and associated uncertainties are discussed in more detail here.

5

6 **OCFAC** is the main coefficient in the parameterization of sub-ice-shelf oceanic melt, which is
7 proportional to the square of the difference between nearby water temperature at 400 m, and the
8 pressure-melting point of ice. Oceanic melting (or freezing) erodes (or grows on) the base of
9 floating ice shelves, as warm waters at intermediate depths flow into the cavities below the
10 shelves. The resulting ice-shelf thinning reduces pinning points and lateral friction, and thus
11 back stress on grounded interior ice. As mentioned above, recent increases in ocean melt rates
12 are considered to be the main cause of ongoing downdraw and acceleration of interior ice in the
13 ASE sector of WAIS (Pritchard et al., 2012; Dutrieux et al., 2014). High-resolution dynamical
14 ocean models (Hellmer et al., 2012) are not yet practical on these time scales, and simple
15 parameterizations of sub-ice-shelf melting such as the one used here are quite uncertain (eg.,
16 Holland et al., 2008). For small (large) OCFAC values, oceanic melting is reduced (increased),
17 ice shelves thicken (thin), discharge of interior ice across the grounding line decreases
18 (increases), and grounding lines tend to advance (retreat).

19

20 **CALV** is the main factor in the parameterization of iceberg calving at the oceanic edges of
21 floating shelves. Calving has important effects on ice-shelf extent with strong feedback effects
22 via buttressing of interior ice. However, the processes controlling calving are not well
23 understood, probably depending on a combination of pre-existing fracture regime, large-scale
24 stresses, and hydrofracturing by surface meltwater. There is little consensus on calving
25 parameterizations. We use a common approach based on parameterized crevasse depths and
26 their ratio to ice thickness (Benn et al. 2007; Nick et al., 2010). For small (large) CALV,
27 calving is decreased (increased), producing more (less) extensive floating shelves, and greater
28 (lesser) buttressing of interior ice.

29

1 **CSHELF** is the basal sliding coefficient for ice grounded on areas that are ocean bed today
2 (and is not frozen to the bed). Coefficients under modern grounded ice are deduced by inverse
3 methods (Pollard and DeConto, 2012b; Morlighem et al., 2013), but they are relatively
4 unconstrained for modern oceanic beds, across which grounded ice advanced at the Last Glacial
5 Maximum ~20 to 15 ka. Most oceanic beds around Antarctica are covered in deformable
6 sediment today, due to Holocene marine sedimentation, and to earlier transport and deposition
7 of till by previous ice advances. For these regions, coefficients are expected to be relatively
8 high (i.e., slippery bed), but there is still a plausible range that has significant effects on model
9 results, because it strongly controls the steepness of the ice-sheet surface profile and ice
10 thicknesses, and thus the sensitivity to climate change. In this paper, we vary the sliding
11 coefficient CSHELF uniformly for all modern-oceanic areas. (In further work, we will allow for
12 heterogeneity such as the hard crystalline bedrock zone observed in the inner Amundsen Sea
13 Embayment; Gohl et al., 2013).

14

15 **TAUAST** is the e-folding time of asthenosepic relaxation in the bedrock model component.
16 Ice sheet evolution on long timescales is affected quite strongly by the bedrock response to
17 varying ice loads, especially for marine ice sheets in contact with the ocean where bathymetry
18 determines grounding-line depths. During deglacial retreat, the bedrock rebounds upwards due
19 to reduced ice load, which slows down ice retreat due to shallower grounding-line depths and
20 less discharge of interior ice. However, the $O(10^3)$ -year lag in this process is important in
21 reducing this negative feedback, and accelerates the positive feedback of Marine Ice Sheet
22 Instability if the bed deepens into the ice-sheet interior. As in many large-scale ice-sheet
23 models, our bedrock response is represented by a simple Earth model consisting of an elastic
24 plate over a local e-folding relaxation towards isostatic equilibrium (Elastic Lithosphere
25 Relaxing Asthenosphere). Based on more sophisticated global Earth models, the asthenospheric
26 e-folding time scale is commonly set to 3 kyr (e.g., Gomez et al., 2013), but note that recent
27 geophysical studies suggest considerably shorter time scales for some West Antarctic regions
28 (Whitehouse et al., 2012b; Chaput et al., 2014). In further work we plan to perform large
29 ensembles with the ice sheet model coupled to a full Earth model, extending Gomez et al (2013,
30 2015).

31

Formatted
Line spacing

1 **Appendix B: Data types and individual misfits**

2 The 8 types of modern and past data used in evaluating the model simulations are summarized
3 in TableSect. 2~~above~~3. More details on ~~the data and~~ the algorithms used to compute the
4 individual mismatches M_1 to M_8 with model quantities are given below. The term “domain”
5 refers to the nested model grid that spans all of West Antarctica, and we only compare with
6 observational sites and data within this domain. Modern observed data is from the Bedmap2
7 dataset (Fretwell et al., 2013).

8

9 As discussed in Sects. 2.3 and 2.4, we use 2 approaches in scoring: (a) more closely following
10 Gaussian error forms, and (b) with more heuristic forms. Some of the algorithms for individual
11 misfits differ between the two, as indicated by bullets (a) and (b) below. For most data types,
12 approach (a) uses mean-square errors, and (b) uses root-mean-square errors. For some data
13 types, the errors are normalized not by observational uncertainty, but by an “acceptable model
14 error magnitude” representing typical model departures from observations in reasonably
15 realistic runs, if this is larger than observational error. Note that if this scaling uncertainty is the
16 same for all data of a given type, it cancels out in the normalization of individual misfits (M_i to
17 M'_i in Sect. 2.4), so has no effect on the further results.

18

19 **1. TOTE:** Modern grounding-line locations. ~~The misfit M_1 is the~~

20 A' = total area of mismatch where model is grounded and observed is floating ice or ocean, or
21 vice versa, relative to. A_{tot} = total area of the domain.

22 Approach (a): Misfit $M_1 = (A' / B)^2$, where $B = (A_{tot})^{1/2} \sigma_w$. Here B is the product of the linear
23 domain size, and $\sigma_w = 30$ km representing the typical size of modern grounding-line location
24 errors in “reasonable” model runs.

25 Approach (b): Misfit $M_1 = A' / A_{tot}$

26

27 **2. TOTI:** Modern floating ice-shelf locations. ~~The misfit M_2 is the~~

1 A' = total area of mismatch where model has floating ice and observed does not, or vice versa),
2 relative to the A_{tot} . A_{tot} = total area of the domain.

3 Approach (a): Misfit $M_1 = (A' / B)^2$, where $B = (A_{tot})^{1/2} \sigma_w$. Here B is the product of the linear
4 domain size, and $\sigma_w = 30$ km representing the typical size of modern floating-ice extent errors
5 in “reasonable” model runs.

6 Approach (b): Misfit $M_1 = A' / A_{tot}$

7 **3. TOTDH:** Modern grounded ice thicknesses. The misfit

8 Approach (a): Misfit M_3 is the RMS difference between model and mean of $((h - h_{obs}) / \sigma_h)^2$,
9 where h is model ice thickness, h_{obs} is observed ice thickness, and $\sigma_h = 10$ m
10 represents the typical size of modern ice thickness errors in “reasonable” model runs. The mean
11 is taken over areas with observed modern grounded ice.

12 Approach (b): Misfit M_3 is the root mean square of $(h - h_{obs})$, over areas with observed modern
13 grounded ice.

Formatted

14 **4. TROUGH:** Past grounding-line distance vs. time along centerline troughs of Pine Island
15 Glacier, and optionally the Ross and Weddell basins. Observed distances at ages 20, 15, 10 and
16 5 ka are obtained from grounding-line reconstructions of the RAISED Consortium (2014),
17 Anderson et al. (2014) for the Ross; Larter et al. (2014) for the Amundsen Sea, and Hillenbrand
18 et al. (2014) for the Weddell, using their Scenario A (of most retreated Weddell ice) for the
19 Weddell, and. Distances are then linearly interpolated in time between these dates. The
20 centerline trough for Pine Island Glacier is extended across the continental shelf following the
21 paleo-ice-stream trough shown in Jakkobsen et al. (2011). The resulting Pine_Island Glacier
22 transect vs. time is similar to that in Smith et al. (2014). The misfit

23 Approach (a): Misfit M_4 is the RMS difference in mean of $((x - x_{obs}) / \sigma_x)^2$, where x is model vs.
24 observed grounding-line distance position on the transect at a given time, x_{obs} is the
25 reconstructed position, and $\sigma_x = 30$ km represents a typical difference in “reasonable” model

1 runs, and is also midway between ‘measured’ and ‘inferred’ uncertainties in the reconstructed
2 data (RAISED, 2014). The mean is taken over the period 20 to 0 ka.

3 Approach (b): Misfit M_4 is the root-mean-square of $(x - x_{obs})$, over the period 20 to 0 ka.

4 In this study just the Pine Island Glacier trough is used, but if the Ross and Weddell are used
5 also, the RMS difference is calculated means are taken over all data points troughs.

6

7 **5. GL2D:** Past grounding-line locations. This uses reconstructed grounding-line maps for 20,
8 15, 10, 5 ka ~~by the RAISED, 2014, Consortium (RAISED, 2014; Anderson et al., 2014;~~
9 ~~Hillenbrand et al., 2014; Larter et al., 2014; Mackintosh et al., 2014; O Cofaigh et al., 2014),~~
10 with vertices provided by S. Jamieson, pers. comm.~~),~~ and choosing their Scenario A for the
11 Weddell embayment (Hillenbrand et al., 2014). The modern grounding line (0 ka~~,~~) is derived
12 from the Bedmap2~~-~~ dataset (Fretwell et al., 2013). The past maps (RAISED, 2014) are only
13 available around West Antarctica, so the calculations below do not include the East Antarctic
14 margin for ensembles spanning the entire ice sheet. Furthermore, for this study only the
15 Amundsen Sea region ~~was used~~~~is considered~~ was used is considered. We allow for uncertainty in the past
16 reconstructions by setting a probability of reconstructed floating ice or open ocean at each point
17 P_{obs} as follows:

18 (i) Computing the distance D_1 from the reconstructed grounding line.

19 (ii) Dividing this distance by the sum D_2 of the (Kriged) reported uncertainty of nearby vertices
20 (interpreting their “measured”= 10 km, “inferred”=50 km, “speculative”=100 km) and a
21 distance that ramps up to 100 km depending on distance to the nearest vertex dv (i.e., 100
22 $\max [0, \min [1, (dv-100)/200]]$), to obtain a scaled distance $D_s = D_1/D_2$.

23 (iii) Setting the probability P_{obs} to a value decaying upwards or downwards from 0.5, i.e., to 0.5
24 e^{-D_s} if on the grounded side of the grounding line, or to $1 - 0.5 e^{-D_s}$ if on the non-grounded
25 side.

26

27 Then the “mismatch probability” P_{mis} at each model grid point is set to $2 (0.5 - P_{obs})$ if $P_{obs} <$
28 0.5 and the model is not grounded, or $2 (P_{obs} - 0.5)$ if $P_{obs} > 0.5$ and the model is grounded. The
29 mismatch P_{mis} is zero if the model is not grounded anywhere on the non-grounded side of the

Formatted

1 observed grounding line, or if it is grounded anywhere on the grounded side. Thus, if the model
2 and observed grounding lines coincide exactly everywhere, then ~~the mismatch~~ P_{mis} is zero at all
3 points, regardless of the observational uncertainty reflected in P_{obs} (which seems a desirable
4 feature). ~~The total misfit (M_5) is the areally weighted sum of the mismatches for all points in the
5 domain, relative to total domain area.~~

6 *Approach (a): Misfit M_5 is the mean of the squared mismatch probabilities (P_{mis})², with means*
7 *computed over 3 separate subdomains: Ross Sea, Amundsen Sea, and Weddell Sea embayments*
8 *(defined crudely by intervals of longitude: 150E to 120W, 120W to 90W, and 90W to 0,*
9 *respectively). In this study we only use the mean for the Amundsen Sea sector. Similarly to*
10 *TOTE and TOTI, the areal mean is increased by a factor $(A_{tot})^{1/2} / \sigma_w$, where A_{tot} is the total*
11 *subdomain area and $\sigma_w = 100$ km is a representative width scale of reasonable past grounding-*
12 *zone mismatches. Finally, the mean values for each of the reconstructed past times (20, 15, 10*
13 *and 5 ka) are averaged together equally.*

14 *Approach (b): Misfit M_5 is the mean of P_{mis} over the Amundsen Sea sector subdomain, with no*
15 *adjustment factor to A_{tot} , and otherwise as for (a) above.*

16

17 **6. RSL:** Past Relative Sea Level (RSL) records. This uses the compilation by Briggs and
18 Tarasov (2013) of published RSL data vs. time at sites ~~around~~~~close to~~ the modern coastline.
19 Following those authors, ~~a χ^2 squared measure vs. model output is computed, i.e., the sum of~~
20 ~~squared model minus observed δRSL for each site and time datum, divided by the~~
21 ~~observational RSL uncertainty, i.e., $(\delta RSL)^2 / \sigma_{eo}^2$. The~~ model RSL = $[SL(t) - h_b(t)] - [SL(0) -$
22 $h_b(0)]$, where $SL(t)$ is global sea level (with $t=0$ at modern) and h_b is bed elevation, at the closest
23 model grid point to the observed site. The minimum model-minus-observed difference δRSL
24 for each observed datum is used, i.e., the minimum elevation difference value over all model
25 times within the range of the observational time uncertainty ($t_{obs} \pm \sigma_{to}$). ~~As in Briggs and~~
26 ~~Tarasov (2013), the elevation uncertainty σ_{eo} is much larger for one-sided constraints than~~
27 ~~absolute constraints (if the model is on the correct side). The sum of $(\delta RSL)^2 / \sigma_{eo}^2$ is taken~~
28 ~~over all observed sites and times to obtain the overall misfit M_6 . To reduce the influence of~~
29 ~~many closely spaced sites, following Briggs and Tarasov (2013) an “intra-data-type weighting”~~

1 is applied that is inversely proportional to the number of data points within a distance L of each
2 other, where L is equivalent to 5° latitude (~550 km).

3 Approach (a): Misfit M_6 is the weighted mean of $(\delta RSL / \sigma_{zo})^2$, where σ_{zo} is the observational
4 RSL uncertainty. Just as in Briggs and Tarasov (2013), the default for σ_{zo} is much larger for
5 one-sided constraints (50 m) than absolute constraints (2 m). To reduce the influence of many
6 nearby (and presumably correlated) data, we closely follow Briggs and Tarasov (2013) and
7 apply “intra-data-type weighting” in calculating the mean. The weights are inversely
8 proportional to the number of measurements within a distance L of each other, where L is
9 equivalent to 5° latitude (~550 km), so that each ~ L -sized cluster of data contributes ~equally
10 to the overall mean.

11 Approach (b): Misfit M_6 is the weighted mean of $\max[0, |RSL| - \sigma_{zo}]$. The uncertainties σ_{zo} and
12 the intra-data-type weights are the same as in (a).

13 ▲-----
14 **7. ELEV/DSURF:** This uses a combination of two compilations of cosmogenic
15 data: elevation vs. age in Briggs and Tarasov (2013) for ELEV, and thickness change from
16 modern vs. age in RAISED (2014) (with individual citations as above) for DSURF.

17 For ELEV, the calculations closely follow Briggs and Tarasov (2013, their sec. 4.2):

- 18 (i) a time series of model ice surface is used, with sea level and bedrock elevation changes
19 subtracted out, for the closest model grid point to each ELEV datum.
- 20 (ii) Only model elevations with a “deglaciating trend” are used, i.e., the model elevation for
21 each time is replaced by the maximum elevation between that time and the present, if the
22 latter is greater, allowing for an uncertainty $\Delta h = \sqrt{2} \sigma_h$, as in Briggs and Tarasov (2013).
- 23 (iii) The mismatch for each datum is the minimum of $(\delta h / \sigma_h)^2 + (\delta t / \sigma_t)^2$ over the time series,
24 where δh is the elevation difference from observed and δt is the time difference, $\sigma_h =$
25 $[\sigma_{hobs}^2 + (100 \text{ meters})^2]^{1/2}$, and σ_{hobs} and σ_t are the observational uncertainties in elevation
26 and time respectively.

Formatted

1 Approach (a): Misfit M_7 is the weighted mean of the mismatches for ELEV above, with intra-
2 data-type weighting exactly as described for RSL above. The DSURF type is not used in
3 approach (a).

4 Approach (b): For approach (b), ELEV calculations as above are combined with DSURF
5 calculations.

6 The DSURF calculations are simpler: for each datum, the time series of model outputsurface
7 elevations h_s at the closest model grid point is used to find:

8 ~~For ELEV: the minimum squared mismatch of ice elevation and time, within the~~
9 ~~constraints of descending elevation trend, each relative to the observational uncertainties of~~
10 ~~elevation and time.~~

11 ~~For DSURF: the, The minimum mismatch in ice thickness change, model-minus-~~
12 ~~observed difference δh_s^{\min} is found, i.e., the minimum difference over all model times within~~
13 ~~the range of observational time uncertainty, reduced by the the observational thickness~~
14 ~~uncertainty.~~

15 ~~Mismatches are averaged over all observed sites and time uncertainty ($t_{obs} \pm \sigma_{t_{obs}}$). The~~
16 ~~mismatch for the datum is max [0, $\delta h_s^{\min} - \sigma_h$] where σ_h is the observational elevation~~
17 ~~uncertainty. The mean over all data is taken, weighted by intra-data-type weighting as described~~
18 ~~for RSL above. Mismatches (M_{7a}, M_{7b}) are calculated separately for Finally, the ELEV and~~
19 ~~DSURF, and misfits are converted into separate normalized scores (S_{7a}, S_{7b}) as described~~
20 ~~below. The two separate scores in Sect. 2.4(b), which are then combined into one by taking the~~
21 ~~square root of their product, i.e., individual score $S_7 = (S_{7a} S_{7b})^{1/2}$.~~

22

23 **8. UPL:** This uses modern uplift rates on rock outcrops, using the compilation in Whitehouse et
24 al. (2012b). For each observed site, the model's modern $\partial h_b / \partial t$ at the closest model grid point
25 is used. ~~The overall misfit M_8 is the RMS difference from observed, equally weighted (not~~
26 ~~using intra-data-type weighting or accounting for observational uncertainty).~~

1 Approach (a): The mismatch at each datum is $\lfloor (U_{mod} - U_{obs}) / \sigma_{uobs} \rfloor^2$, where U_{mod} and U_{obs} are
2 model and observed uplift rates respectively, and σ_{uobs} is the observed 1- σ uncertainty. The
3 misfit M_8 is the mean over all data points, using intra-data-type weighting as above.

4 Approach (b): The mismatch at each datum is $(U_{mod} - U_{obs})^2$, and the misfit M_8 is the root-
5 mean-square over all data points, with no intra-data-type weighting (justified by the relatively
6 uniform distribution of data points).

7 Formatted
Line spacing

1 **Appendix C: Using Comparison of results with two scoring approaches**

2

3 As discussed in Sect. 2.3, the choice of formulae and algorithms to calculate model vs. data
4 misfits and scores in the simple averaging method is somewhat heuristic, and different choices
5 are also appropriate for complex model-data comparisons with widespread data points, very
6 different types of data, and with many model-data error types not being strictly Gaussian. Two
7 possible approaches are described above (Sect. 2.4, Appendix B): Approach (a) uses formulae
8 closely following Gaussian error distribution forms, and approach (b) uses more heuristic
9 forms. Approach (b) is used for all results in the main paper. In this appendix the simple-
10 averaging results (Figs. 2-5) are compared using both approaches. No significant differences are
11 found, especially in the LE-averaged results, which suggests that different reasonable
12 approaches to misfits and scoring yield robust statistical results for the ensemble.

13

14 In Fig. C1, the individual scores ~~in the advanced statistical techniques~~ have much the
15 same patterns over 4-D parameter space. There are some minor differences in the relative
16 magnitudes of very good, vs. poor but still meaningful scores, which we have compensated for
17 to some extent in the two color scales, but these do not lead to any significant differences in the
18 averaged results in the following figures.

19

20 In the parameter-pair scores (Fig. C2), the overall patterns are very similar. The biggest
21 difference is for CALV vs. TAUAST, where the scores for approach (a) are higher and more
22 tightly concentrated.

23

24 In the plots of equivalent sea level versus time (Fig. C3), approach (a) generally favors runs
25 with less ice volume during LGM and retreat, compared to approach (b) (red curves, Figs. C3c
26 vs. d). On the other hand, the single best-scoring run in approach (a) retreats later than the
27 corresponding run in approach (b) (black curves, Fig. C3a vs. b). Generally, these differences
28 are minor compared to the overall model behavior through the deglaciation.

29 Formatted

1 In the density distributions of equivalent sea level at particular times (Fig. C4), there is very
2 little difference between the 2 approaches. The size of the ~5 m peak at 15 ka is larger in
3 approach (b), but as discussed in Sect. 4.3, these separate peaks at 15 ka are due to the widely
4 spaced CSHELF parameter values in the ensemble, and their relative sizes have little
5 significance.

Appendix D: Span of data by the Large Ensemble

This appendix describes the use of individual data type scores (TOTI, TOTDH, RSL, ELEV/DSURF and UPL) in the advanced statistical techniques, as mentioned in Sect. 2e. compares envelopes of model results with corresponding types of geologic data used in the LE scoring. The main goal is to demonstrate that the envelopes of the 625-member ensemble adequately spans the data; i.e., at least some runs yield results that fall on both sides of each type of data, so that ensemble averages may potentially represent reasonably realistic ice sheet behavior (even if no single model run is close to all data types).

Our two stage approach consists of an emulation and a calibration stage. In the emulation stage we build separate statistical emulators for the modern and past grounding line locations and the individual scores. For details of emulating the modern and past grounding line locations we refer to Chang et al. 2015a and 2015b. To use individual scores for particular data types, we build a Gaussian process emulator with a separable covariance structure between the input parameter settings and different scores. The covariance matrix for different input parameter settings is defined using an exponential covariance function, with parameters estimated by maximizing the likelihood function. The covariance matrix for the different score values is estimated as the sample covariance matrix computed from the LE, by treating different input parameter settings as replicates.

In the calibration stage we define the posterior densities of input parameters, based on modern and past grounding line locations and the individual scores, to infer the input parameters based on those densities via Markov Chain Monte Carlo (MCMC) using the standard Metropolis-Hastings algorithm. Again, we refer to Chang et al. 2015a and 2015b for details of defining the posterior densities for modern and past grounding line locations. To define the likelihood function based on the individual score values we use exponential marginal densities and a Gaussian copula. The rate parameter for each exponential density receives gamma prior with a

1 shape parameter of 30 and a scale parameter specified in a way that the 90th percentile of the
2 prior density coincides with the cutoff C_i (Sect. 2d). The correlation matrix for the Gaussian
3 copula is estimated as the sample rank correlations matrix for the individual score values in the
4 LE, again by treating the different input parameter settings as replicates.

5

6 **Code availability.** The code for the ice sheet model (PSUICE 3D) is available on request
7 from D. Pollard (pollard@esee.psu.edu). The postprocessing codes for the large ensemble
8 statistical analyses are highly tailored to specific sets of model output and are not made
9 available; however, modules that compute scores for the individual data types (Table 2,
10 Appendix B) are available on request to pollard@esee.psu.edu.

11

12 **Acknowledgements**

13 We thank Zhengyu Liu and his group at U. Wisconsin for providing output of their coupled
14 GCM simulation (TRACE; Liu et al., 2009, He et al., 2013) used for ocean forcing over the last
15 20,000 years. This work was supported in part by the following grants from the National
16 Science Foundation: NSF DMS 1418090 and the Network for Sustainable Climate Risk
17 Management (SCRiM) under NSF cooperative agreement GEO1240507 (DP, MH); OCE-
18 1202632, OPP-1341394 (DP); NSF Statistical Methods in the Atmospheric Sciences Network
19 1106862, 1106974, and 1107046 (WC).

20 For modern data (grounded and floating ice extents, grounded ice thicknesses), the standard
21 model has previously been shown to yield quite realistic simulations, both for perpetual modern
22 climate and at the end of long-term glacial-interglacial runs (Pollard and DeConto, 2012a).
23 Modern grounded ice thicknesses are close to observed mainly because of the inverse procedure
24 in specifying the distribution of basal sliding coefficients (Pollard and DeConto, 2012b). Here
25 we concentrate on fits to geologic data.

26

27 Fig. D1 compares scatter plots of Relative Sea Level in all 625 runs with RSL records, for the 3
28 sites within the model's West Antarctic domain (Briggs and Tarasov, 2013). The data for each
29 site fall well within the overall model envelope, and in most cases within the envelopes of the

Formatted

1 top 120-scoring runs (colored curves). Similar comparisons for single runs are shown in Gomez
2 et al. (2013), both using the simple bedrock model as here (their “uncoupled” runs), and
3 coupled to a global Earth-sea level model.

4

5 Similarly, Fig. D2 compares elevation vs. age time series for all 625 runs with cosmogenic data
6 at the 18 sites within the model domain (Briggs and Tarasov, 2013). With a few exceptions, the
7 data lie within the LE model envelopes, although elevations at many of the sites are lower than
8 in most of the model runs. At Reedy Glacier, the model exhibits oscillations of ~200 m
9 amplitude and several hundred year period; these might be due to internal variability of ice
10 streams as seen elsewhere in West Antarctica in Pollard and DeConto (2009).

11

12 Fig. D3 shows modern uplift rates for all model runs, at the 26 sites in the Whitehouse et al.
13 (2012b) compilation that lie within the mode domain. Again, nearly all of the observed values
14 lie within the overall model envelope. The geographic distribution for single runs is compared
15 with observed in Gomez et al. (2013), both using a simple bedrock model (“uncoupled”), and
16 coupled to a global Earth-sea level model.

17

18 The remaining past data types (GL2D and TROUGH) concern grounding-line locations during
19 last deglacial retreat, and are less amenable to scatter plots, but can be compared with model
20 averaged results. Fig. D4 shows maps of probability (0-1) of the presence of grounded ice at
21 particular times, deduced by score-weighted averages over the ensemble. The thick black lines
22 at 20, 15, 10 and 5 ka show grounding-line positions in the reconstructions of the RAISED
23 Consortium (RAISED, 2014). (The figures do not show the uncertainty information associated
24 with the data, which is used in the scoring; Appendix B). At all of these times, the envelopes of
25 the model “grounding zone”, i.e., the areas with intermediate probability values, span or are
26 close to the observed positions.

1 Similarly, Fig. D5 shows model probabilities (0-1) of grounded ice vs. time along the centerline
2 transects of the major West Antarctic embayments. Again, the model envelopes mostly span the
3 various observed estimates for each transect (from RAISED, 2014, and various earlier studies).

4

5 Taken together, the various model vs. data comparisons in this Appendix show that the model's
6 ensemble envelopes do encompass the ranges of data satisfactorily, as necessary for meaningful
7 interpretations of the statistical results.

1 **References**

2

3 [Anderson, J.B., Conway, H., Bart, P.J., Witus, A.E., Greenwood, S.L., McKay, R.M., Hall, B.L., Ackert, R.P., Licht, K., Jakobsson M., and Stone, J.O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Res., 100, 31-54, 2014.](#)

4

5

6 Applegate, P.J., Kirchner, N., Stone, E.J., Keller, K., and Greve, R.: An assessment of key
7 model parametric uncertainties in projections of Greenland Ice Sheet behavior. The
8 Cryosphere, 6, 589-606. 2012.

9 Bassett, S.E., Milne, G.A., Mitrovica, J.X., and Clark, P.U.: Ice sheet and solid Earth influences
10 on far-field sea-level histories, Science, 309, 925-928, 2005.

11 Benn, D.I., Warren, C.R., and Mottram, R.H.: Calving processes and the dynamics of calving
12 glaciers. Earth-Sci. Rev. 82, 143–179, 2007.

13 Briggs, R.D. and Tarasov, L.: How to evaluate model-derived deglaciation chronologies: a case
14 study using Antarctica. Quat. Sci. Rev., 63, 109-127, 2013.

15 Briggs, R.D., Pollard, D., and Tarasov, L.: A glacial systems model configured for large
16 ensemble analysis of Antarctic deglaciation. The Cryosphere, 7, 1949-1970, 2013.

17 Briggs, R.D., Pollard, D., and Tarasov, L.: A data-constrained large-ensemble analysis of
18 Antarctic evolution since the Eemian. Quat. Sci. Rev., 103, 91-115, 2014.

19 Chang, W., Applegate, P., Haran, M., and Keller, K: Probabilistic calibration of a Greenland
20 Ice Sheet model using spatially-resolved synthetic observations: Toward projections of ice
21 mass loss with uncertainties. Geosci. Model Devel., 7, 1933-1943, 2014.

22 Chang, W., Haran, M., Applegate, P., and Pollard, D.: Calibrating an ice sheet model using
23 high-dimensional non-Gaussian spatial data. J. Amer. Stat. Assoc., [in press](#).
24 [doi:10.1080/01621459.2015.1108199](#). Also available at:
25 <http://arxiv.org/abs/1501.01937>, [2015a2015](#).

26 Chang, W., Haran, M., Applegate, P., and Pollard, D.: Improving ice sheet model calibration
27 using paleo and modern observations: A reduced dimensional approach. Available at:
28 <http://arxiv.org/abs/1510.01676>, [2015b2016](#).

1 Chaput, J., Aster, R., Huerta, A., Sun, X., Lloyd, A., Wiens, D., Nyblade, A., Anandakishnan,
2 S., Winberry, P., and Wilson, T.: The crustal thickness of West Antarctica. *J. Geophys.*
3 *Res.*, 119, 1–18, doi:10.1002/2013JB010642, 2014.

4 Clark, P.U. and Tarasov, L.: Closing the sea level budget at the Last Glacial Maximum. *Proc.*
5 *Nat. Acad. Sci.*, 111, 15861–15862, 2014.

6 Cornford, S.L. et al.: Adaptive mesh, finite volume modeling of marine ice sheets. *J. Comp.*
7 *Phys.*, 232, 529-549, 201.

8 DeConto, R.M., Pollard, D., and Kowalewski, D.: Modeling Antarctic ice sheet and climate
9 variations during Marine Isotope Stage 31. *Glob. Plan. Change*, 88-89, 45-52, 2012.

10 DeConto, R.M. and Pollard, D.: Antarctica's contribution to Last Interglacial and future sea-
11 level rise. *Nature*, in [review, 2015](#)[press, 2016](#).

12 Deschamps, P. et al.: Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years
13 ago. *Nature*, 483, 559-564, 2012.

14 Docquier, D., Pollard, D., and Pattyn, F.: Thwaites Glacier grounding-line retreat: Influence of
15 width and buttressing parameterizations. *J. Glaciol.*, 60, 305-313, 2014.

16 Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and le Meur, E.: Impact of bedrock
17 description on modeling ice sheet dynamics. *Geophys. Res. Lett.*, 38, L20501, doi:
18 10.1029/2011GL048892, 2011.

19 Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P.R., Ha, H.K., Lee, S.H., Steig, E.J., Ding, Q.,
20 Abrahamsen E.P., and Schröder, M.: Strong sensitivity of Pine Island ice-shelf melting to
21 climatic variability. *Science*, 373, 174-178, 2014.

22 Favier, L., Gagliardini, O., Durand G., and Zwinger, T.: A three-dimensional full Stokes model
23 of the grounding line dynamics: effect of a pinning point beneath the ice shelf. *The*
24 *Cryosphere*, 6, 101-112, 2012.

25 Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet, F.,
26 Zwinger, T., Payne, A.J., and Le Brocq, A.M.: Retreat of Pine Island Glacier controlled by
27 marine ice-sheet instability. *Nature Clim. Change*, 4, 117-121, 2014.

1 Fretwell, P., et al.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica.
2 The Cryosphere, 7, 375-393, 2013.

3 Gohl, K., Uenzelmann-Neben, G., Larter, R.D., Hillenbrand, C.-D., Hochmuth, K., Kalberg, T.,
4 Weigelt, E., Davy, B., Kuhn, G., and Nitsche, F.O.: Seismic stratigraphic record of the
5 Amundsen Sea Embayment shelf from pre-glacial to recent times: Evidence for a dynamic
6 West Antarctic ice sheet. Marine Geol., 344, 115-131, 2013.

7 Gladstone, R.P., Lee, V., Rougier, J., Payne, A.J., Hellmer, H., LeBrocq, A.M., Shepherd, A.,
8 Edwards, T.L., Gregory, J., and Cornford, S.: Calibrated prediction of Pine Island Glacier
9 retreat during the 21st and 22nd centuries with a coupled flowline model. Earth Planet. Sci.
10 Lett., 333-334, 191-199, 2012.

11 Golledge, N.R., Fogwill, C.J., Mackintosh, A.N., and Buckley. K.M.: Dynamics of the last
12 glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Nat. Acad.
13 Sci., 109, 16052-16056, 2012.

14 Golledge, N.R., Levy, R.H., McKay, R.M., Fogwill, C.J., White, D.A., Graham, A.G.C., Smith,
15 J.A., Hillenbrand, C.-D., Licht, K.J., Denton, G.H., Ackert Jr., R.P., Maas, S.M., and Hall,
16 B.L.: Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet.
17 Quat. Sci. Rev., 78, 225-247, 2013.

18 Golledge, N.R., Menviel, L., Carter, L., Fogwill, C.J., England, M.H., Cortese, G., and Levy,
19 R.H.: Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean
20 overturning. Nature Comm., doi: 10.1038/ncomms6107, 2014.

21 Gomez, N., Pollard, D., and Mitrovica, J.X.: A 3-D coupled ice sheet-sea level model applied to
22 Antarctica through the last 40 ky. Earth Plan. Sci. Lett., 384, 88-99, 2013.
23 Gomez, N., Pollard, D., and Holland, D.: Sea level feedback lowers projections of future
24 Antarctic Ice Sheet mass loss. Nature Commun., [in press](#), 8798, doi:10.1038/ncomms9798,
25 2015.

26 He, F., Shakun, J.D., Clark, P.U., Carlson, A.E., Liu, Z., Otto-Bliesner, B.L., and Kutzbach,
27 J.E.: Northern Hemisphere forcing of Southern Hemisphere climate during the last
28 deglaciation. Nature, 494, 81-85, 2013.

1 Hellmer, H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.: Twenty-first-century
2 warming of a large Antarctic ice-shelf cavity by a redirected coastal current. *Nature*, 485,
3 225–228. 2012.

4 [Hillenbrand, C.-D., Bentley, M.J., Stolldorf, T., Hein, A.S., Kuhn, G., Graham, A.C.G.,](#)
5 [Fogwill, C.J., Kristoffersen, Y., Smith, J.A., Anderson, J.B., Larter, R.D., Melles, M.,](#)
6 [Hodgson, D.A., Mulvaney, R., and Sugden, D.E.: Reconstruction of changes in the Weddell](#)
7 [Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. *Quat. Sci. Rev.*, 100,](#)
8 [111-136, 2014.](#)

9 [Hjort, C., Ingolfsson, O., McEllister, P., Lirio, J.M., 1997.](#)

10 Holland, P.R., Jenkins, A., and Holland, D.M.: The response of ice shelf basal melting to
11 variations in ocean temperature. *J. Clim.*, 21, 2558-2572, 2008.

12 Holschuh, N., Pollard, D., Anandakrishnan, S., and Alley, R.: Evaluating Marie Byrd Land
13 stability using an improved basal topography. *Earth Plan. Sci. Lett.*, 408, 362-369, 2014.

14 Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions of the
15 Greenland and Antarctic ice sheets during the glacial cycles. *Quat Sci Rev*: 21, 203-231,
16 2002.

17 Jakobsson, M. et al.: Geological record of ice shelf break-up and grounding line retreat, Pine
18 Island Bay, West Antarctica. *Geology*, 39, 691-694, 2011.

19 Joughin, I., Smith, B.E., and Medley, B.: Marine ice sheet collapse potentially under way for
20 the Thwaites Glacier basin, West Antarctica. *Science*, 344, 735–738, 2014.

21 Konrad, H., Sasgen, S., Pollard, D., and Kleemann, V.: Potential of the solid-Earth response for
22 limiting long-term West Antarctic Ice Sheet retreat in a warming climate. *Earth Plan. Sci.*
23 *Lett.*, [in press432, 254-264](#), 2015.

24 [Larter, R.D., Anderson, J.B., Graham, A.G.C., Gohl, K., Hillenbrand, C.-D., Jakobsson, M.,](#)
25 [Johnson, J.S., Kuhn, G., Nitsche, F.O., Smith, J.A., Witus, A.E., Bentley, M.J.,](#)
26 [Dowdeswell, J.A., Ehrmann, W., Klages, J.P., Lindow, J., Ó Cofaigh, C., and Spiegel, C.:](#)
27 [Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West](#)
28 [Antarctic Ice Sheet since the Last Glacial Maximum. *Quat. Sci. Rev.*, 100, 55-86, 2014.](#)

1 Le Brocq, A.M., Payne, A.J., and Vieli, A.: An improved Antarctic dataset for high resolution
2 numerical ice sheet models (ALBMAP v1). *Earth Sys. Sci. Data*, 2, 247-260, 2010.

3 Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., Lynch-
4 Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.:
5 Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød
6 warming. *Science*, 325, 310-314, 2009. [Extended to modern: www.cgd.ucar.edu/ccb/TraCE](http://www.cgd.ucar.edu/ccb/TraCE).

7 Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D.,
8 DeConto, R., Fink, D., Zwartz, D., Gore, D., and Lavoie, C.: Retreat of the East Antarctic
9 ice sheet during the last glacial termination. *Nature Geosci.*, 4, 195-202, 2011.

10 [Mackintosh, A.N., Verleyen, E., O'Brien, P.E., White, D.A., Jones, R.S., McKay, R., Dunbar,](#)
11 [R., Gore, D.B., Fink, D., Post, A.L., Miura, H., Leventer, A., Goodwin, I., Hodgson, D.A.,](#)
12 [Lilly, K., Crosta, X., Golledge, N.R., Wagner, B., Berg, S., van Ommen, T., Zwartz, D.,](#)
13 [Roberts, S.J., Vyverman, W., and Masse, G.: Retreat history of the East Antarctic Ice Sheet](#)
14 [since the Last Glacial Maximum. Quat. Sci. Rev.](#) 100, 10-30, 2014.

15 Maris, M.N.A., van Wessem, J.M., van de Berg, W.J., de Boer, B., and Oerlemans, J.: A model
16 study of the effect of climate and sea-level change on the evolution of the Antarctic Ice
17 Sheet from the Last Glacial Maximum to 2100. *Clim. Dyn.*, 45, 837-851, 2015.

18 McNeall, D.J., Challenor, P.G., Gattiker, J.R., and Stone, E.J.: The potential of an observational
19 data set for calibration of a computationally expensive computer model. *Geosci. Model*
20 *Dev.*, 6, 1715-1728, 2013.

21 Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.-F.,
22 Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M.,
23 and van Vuuren, D.P.P.: The RCP greenhouse gas concentrations and their extensions from
24 1765 to 2300. *Clim. Change*, 109, 213-241, 2011.

25 Mercer, J.H.: West Antarctic ice sheet and CO₂ greenhouse effect: a threat of disaster. *Nature*,
26 271, 321–325, 1978.

27 Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D: Spatial
28 patterns of basal drag inferred using control methods from a full-Stokes and simpler models

1 for Pine Island Glacier, West Antarctica. *Geophys. Res. Lett.*, 37, L14502, 1-6, doi:
2 10.1029/2010GL043853, 2010.

3 Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal friction in
4 Antarctica using exact and incomplete adjoints of a higher-order model. *J. Geophys. Res.-*
5 *Earth Surface*, 3, 1746-1753, 2013.

6 Nick, F.M., van der Veen, C.J., Vieli, A., and Benn, D.I.: A physically based calving model
7 applied to marine outlet glaciers and implications for the glacier dynamics. *J. Glaciol.* 56,
8 781–794, 2010.

9 O Cofaigh, C., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P.,
10 Hodgson, D.A., Anderson, J.B., Bentley, M.J., Canals, M., Domack, E., Dowdeswell, J.A.,
11 Evans, J., Glasser, N.F., Hillenbrand, C.-D., Larter, R.D., Roberts, S.J., and Simms, A.R.:
12 Reconstruction of Ice-Sheet Changes in the Antarctic Peninsula Since the Last Glacial
13 Maximum. *Quat. Sci. Rev.* 100, 87-110, 2014.

14 Parizek, B.R., Christianson, K., Anandakrishnan, S., Alley, R.B., Walker, R.T., Edwards, R.A.,
15 Wolfe, D.S., Bertini, G.T., Rinehart, S.K., Bindschadler, R.A., and Nowicki, S.M.J.:
16 Dynamic (in)stability of Thwaites Glacier, West Antarctica. *J. Geophys. Res.: Earth*
17 *Surface*, 118, 638–655, 2013.

18 Pattyn, F. and 27 co-authors: Grounding-line migration in plan-view marine ice-sheet models:
19 results of the ice2sea MISMIP3d intercomparison. *J. Glaciol.*, 59, 410-422, 2013.

20 Peltier, W.R. 2004. Global glacial isostacy and the surface of the ice-age Earth: The ICE-5G
21 (VM2) model and GRACE. 2004. *Ann. Rev. Earth Planet. Sci.*, 32, 111–149.

22 Philippon, G., Ramstein, G., Charbit, S., Kageyama, M., Ritz, C., and Dumas, C.: Evolution of
23 the Antarctic ice sheet throughout the last deglaciation: A study with a new coupled climate
24 - north and south hemisphere ice sheet model. *Earth Plan. Sci. Lett.*, 248, 750-758, 2006.

25 Pollard, D. and DeConto, R.M.: Modelling West Antarctic ice sheet growth and collapse
26 through the past five million years. *Nature*, 458, 329-332, 2009.

27 Pollard, D. and DeConto, R.M.: Description of a hybrid ice sheet-shelf model, and application
28 to Antarctica. *Geosci. Model Devel.*, 5, 1273-1295, 2012a.

1 Pollard, D. and DeConto, R.M.: A simple inverse method for the distribution of basal sliding
2 coefficients under ice sheets, applied to Antarctica. *The Cryosphere*, 6, 953-971, 2012b.

3 Pollard, D., DeConto, R.M., and Alley, R.B.: Potential Antarctic Ice Sheet retreat driven by
4 hydrofracturing and ice cliff failure. *Earth Plan. Sci. Lett.*, 412, 112-121, [2015a2015](#).

5 Pollard, D., DeConto, R., Chang, W., Haran, M., and Applegate, P.: Large ensemble modeling
6 of the Antarctic Ice Sheet: Contributions to past and future sea-level rise. *The Cryosphere*
7 *Discuss.*, to be submitted, [2015b2016](#).

8 Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R., and
9 Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves. *Nature*, 484,
10 502-505, 2012.

11 Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the evolution of Antarctic ice sheet over
12 the last 420,000 years: Implications for altitude changes in the Vostok region. *J Geophys*
13 *Res-Atmos* 106, 31943-31964, 2001.

14 The RAISED Consortium: A community-based geological reconstruction of Antarctic Ice Sheet
15 deglaciation since the Last Glacial Maximum. *Quat. Sci. Rev.*, 100, 1-9, 2014.

16 Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B: Widespread, rapid
17 grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica,
18 from 1992 to 2011. 2014. *Geophys. Res. Lett.*, doi: 10.1002/2014GL060140, 3502-3509,
19 2014.

20 Schoof, C.: Ice sheet grounding line dynamics: steady states, stability, and hysteresis. *J.*
21 *Geophys. Res. - Earth Surf.*, 112, F03S28, doi: 10.1029/2006JF000664, 2007.

22 Shepherd, A. et al.: A reconciled estimate of ice-sheet mass balance. *Science*, 338, 1193-1198,
23 2012.

24 Smith, J.A., Hillenbrand, C.-D., Kuhn, G., Klages, J.P., Graham, A.G.C., Larter, R.T.,
25 Ehrmann, W., Moreton, S.G., Wiers, S., and Frederichs, T.: New constraints on the timing
26 of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the last Glacial
27 Maximum. *Glob. Planet. Change*, 122, 224-237, 2014.

1 Stone, E.J., Lunt, D.J., Annan, J.D., and Hargreaves, J.C.: Quantification of the Greenland ice
2 sheet contribution to Last Interglacial sea level rise. *Clim. Past*, 9, 621-639, 2013.

3 Tarasov, L., Dyke, A.S., Neal, R.M., and Peltier, W.R.: A data-calibrated distribution of
4 deglacial chronologies for the North American ice complex from glaciological modeling.
5 *Earth Plan. Sci. Lett.*, 315-316, 30-40, 2012.

6 Urban, N.M. and Fricker, T.E.: A comparison of Latin hypercube and grid ensemble designs for
7 the multivariate emulation of an Earth System model. *Computers and Geosciences*, 36, 746-
8 755, 2010.

9 Vaughan, D.G.: West Antarctic Ice Sheet collapse: the fall and rise of a paradigm. *Clim.*
10 *Change*, 91, 65–79, 2008.

11 Weber, M. et al.: Millennial-scale variability in Antarctic ice-sheet discharge during the last
12 deglaciation. *Nature*, 510, 134-138, 2014.

13 Weertman, J.: Stability of the junction of an ice sheet and an ice shelf. *J.Glaciol.*13, 3–11, 1974.

14 Whitehouse, P.L., Bentley, M.J., and Le Brocq, A.M.: A deglacial model for Antarctica:
15 geological constraints and glaciological modeling as a basis for a new model of Antarctic
16 glacial isostatic adjustment. *Quat. Sci. Res.*, 32, 1-24, 2012a.

17 Whitehouse, P.L., Bentley, M.J., Milne, G.A., King, M.A., and Thomas, I.D.: A new glacial
18 isostatic model for Antarctica: calibrated and tested using observations of relative sea-level
19 change and present-day uplifts. *Geophys. J. Internat.*, 190, 1464-1482 2012b.

20

Table 1. The 4 parameters varied in the large ensemble, and their 5 values.**OCPAC:** Sub-ice oceanic melt coefficient.

— Values are 0.1, 0.3, 1, 3, 10 (non-dimensional).

— Corresponds to K in Eq. 17 of Pollard and Deconto (2012a).**CALV:** Factor in calving of icebergs at oceanic edge of floating ice shelves.

— Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).

— Multiplies combined crevasse depth to ice thickness ratio r in Eq. B7 of Pollard et al. (2015a).**CSHELF:** Basal sliding coefficient for ice grounded on modern ocean beds.— Values are $10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}$ (m yr⁻¹ Pa⁻²).— Corresponds to C in Eq. 11 of Pollard and Deconto (2012a).**TAUAST:** e-folding time of bedrock relaxation towards isostatic equilibrium.

— Values are 1, 2, 3, 5, 7 kyr.

— Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a).

1 | **Table 2.** Data types used in evaluating model simulations.

1. TOTE: Modern grounding line locations.

— Misfit M_1 : based on total area of model data mismatch for grounded ice.

— Data: Bedmap2 (Fretwell et al., 2013).

2. TOTI: Modern floating ice shelf locations.

— Misfit M_2 : based on total area of model data mismatch for floating ice.

— Data: Bedmap2 (Fretwell et al., 2013).

3. TOTDH: Modern grounded ice thicknesses.

— Misfit M_3 : based on RMS model data difference of grounded ice thicknesses.

— Data: Bedmap2 (Fretwell et al., 2013).

4. TROUGH: Past grounding line distance vs. time along the centerline trough of Pine Island Glacier. Centerline data for the Ross and Weddell basins can also be used, but not in this study.

— Misfit M_4 : based on RMS model data difference over the period 20 to 0 ka.

— Data: RAISED (2014).

5. GL2D: Past grounding line locations (see Fig. 1). Only the Amundsen Sea region is used in this study.

— Misfit M_5 : based on model data mismatches for 20, 15, 10, 5 ka.

— Data: RAISED (2014).

6. RSL: Past Relative Sea Level (RSL) records.

— Misfit M_6 : based on χ^2 squared measure of model data differences at individual sites.

— Data: compilation in Briggs and Tarasov (2013).

7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF).

— Misfits M_{7a}, M_{7b} : based on model data differences at individual sites, combined as in Appendix B.

— Data: compilations in Briggs and Tarasov (2013) for ELEV, in RAISED (2014) for DSURF.

8. UPL: Modern uplift rates on rock outcrops.

— Misfit M_8 : based on RMS model data difference at individual sites.

— Data: compilation in Whitehouse et al. (2012b).

1

2 **Figure 1.** Geographical map of West Antarctica. Light yellow shows the modern extent of
3 grounded ice (using Bedmap2 data; Fretwell et al., 2013). Blue and purple areas show expanded
4 grounded-ice extents at 5, 10, 15 and 20 ka (thousands of years before present) reconstructed by
5 the RAISED consortium (2014), plotted using their vertex information (S. Jamieson, pers.
6 comm.), and choosing their Scenario A for the Weddell embayment-[\(Hillenbrand et al., 2014\)](#).
7 These maps are used in the large ensemble scoring (TOTE, TROUGH and GL2D data types,
8 [TableSect. 2.3](#)).
9

1

2

3 **Figure 2.** Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model
4 parameters, 5 values each, [as in Table 1 Sect. 2.2](#)), used in the simple method with score-
5 weighted averaging. The score values range from 0 (white, no skill) to 100 (dark red, perfect
6 fit). The figure is organized to show the scores in the four-dimensional space of parameter
7 variations. The four parameters are: CSHELP = basal sliding coefficient in modern oceanic
8 areas (exponent x , 10^{-x} m a^{-1} Pa^{-2}). TAUAST = e-folding time of bedrock-elevation isostatic
9 relaxation (kyrs). OCFAC = oceanic-melt-rate coefficient at base of floating ice shelves (non-
10 dimensional). CALV = calving-rate factor at edge of floating ice shelves (non-dimensional).
11 Since each parameter only takes 5 values, the results are blocky, but effectively show the
12 behavior of the score over the full range of plausible parameter values.

13

1

2

3 **Figure 3. Left-hand panels:** Ensemble-mean scores for individual parameter values, using the
4 simple averaging method. The red triangle shows the mean, and whiskers show the 1-sigma
5 standard deviations. **Right-hand panels:** Probability densities for individual parameters, using
6 the advanced statistical techniques in Chang et al. (2015b2016) extended as described in Sect.
7 [2e](#) and [Appendix C 2.5](#).

8

1

2 **Figure 4. Left-hand panels:** Ensemble-mean scores for pairs of parameters, using the simple
3 averaging method. **Right-hand panels:** Probability densities for pairs of parameters, using the
4 advanced statistical techniques in Chang et al. (2015b2016) extended as described in Sect. 2e
5 and Appendix C 2.5.

6

1
2 **Figure 5.** Equivalent global-mean sea level ~~risecontribution~~ (ESL) ~~relative to modern~~ vs. time.
3 Time runs from 20,000 years before present to ~~5000 years after presentmodern~~. ESL changes
4 are calculated from the total ice amount in the domain divided by global ocean area, allowing
5 for less contribution from ice grounded below sea level. ~~The runs are extended 5000 years into~~
6 ~~the future with idealized linearly ramped climate warming.~~

7 (a) Scatter plot of all 625 individual runs in the LE. ESL amounts are calculated relative to
8 modern observed Antarctica, so non-zero values at time=0 imply departures from the observed
9 ice state. Grey curves are for runs with aggregate score S ~~=equal to or very close to~~ 0, and
10 colored curves are for ~~S>0~~ the 120 top-scoring runs in descending S order with 2520 curves
11 per color (red, orange, yellow, green, cyan, blue ~~in descending order~~). The best scoring
12 individual run is shown by a thick black curve (OCFAC=3, CALV=1, CSHELF=-5,
13 TAUAST=3, with $S = 0.570571$).

14 (b) As (a) but with ESL amounts relative to each run's modern value, so the curves pass exactly
15 through zero at time=0.

16 (c) Score weighted curves over the whole LE, using the simple statistical method. Red curve is
17 the score-weighted mean, i.e.,

18
$$\Sigma\{S^{(n)} ESL^{(n)}(t)\} / \Sigma\{S^{(n)}\}$$

19 where $S^{(n)}$ is the aggregate score for run n , $ESL^{(n)}(t)$ is the equivalent sea-level rise for run n at
20 time t , and the sums are over all n (1 to 625) in the LE. Black curves show the one-sided
21 standard deviations, i.e., the root mean square of deviations for $ESL^{(n)}$ above the mean (upper
22 curve) or below the mean (lower curve) at each time t . $ESL^{(n)}(t)$ are relative to modern observed
23 Antarctica, as in panel (a).

24 (d) As (c) but with $ESL^{(n)}(t)$ relative to each run's modern value as in (b).

25 (e) and (f): Corresponding results to (c) and (d) respectively, using the advanced statistical
26 techniques in Chang et al. (2015b2016) extended as described in Sect. 2e and Appendix C 2.5.

1
2
3 **Figure 6.** (a) Probability densities of equivalent sea level (ESL) rise at particular times in the
4 LE simulations, computed with the simple averaging method. At a given time t , the density
5 $P(E)$ is the sum of aggregate scores $S^{(n)}$ for all runs n with equivalent sea-level rise $ESL^{(n)}(t)$
6 within the bin $E - 0.1$ to $E + 0.1$ m, i.e., using equispaced bins 0.2 m wide. The resulting $P(E)$
7 are normalized so that the integral with respect to E is 1. $ESL^{(n)}(t)$ are relative to modern
8 observed Antarctica, as in Fig. 5a.
9 (b) As (a) but with $ESL^{(n)}(t)$ relative to each run's modern value, as in Fig. 5b.
10 (c) and (d): ~~As (a) and (b) respectively, but only showing times +500, +1000 and +5000 years after present.~~
11 Formatted
12 (e) and (f): Corresponding results to (ea) and (eb) respectively, using the advanced statistical
13 techniques in Chang et al. (2015b2016) extended as described in Sect. 2e and Appendix C2.5.
14

1
2 **Figure C1.** Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model
3 parameters, 5 values each), used in the simple method with score-weighted averaging. The
4 organization of the figure regarding the 4 parameter ranges is as described in Fig. 2.

5 (a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B). The score values in
6 this plot are normalized relative to the maximum score of the LE, and the color scale is adjusted
7 to illustrate the similar qualitative distribution to (b).

8 (b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 2.
9

1
2
3 **Figure C2.** Ensemble-mean scores for individual parameter values, using the simple averaging
4 method as in Fig. 3.

5 **(a)** Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).

6 **(b)** Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 3.

1
2
3 **Figure C3.** Ensemble-mean scores for pairs of parameters, using the simple averaging method
4 as in Fig. 4.

5 (a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).

6 (b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 4.

1
2
3
4 **Figure C4.** Equivalent global-mean sea level contribution (ESL) relative to modern vs. time as
5 in Fig. 5.

6 **(a)** Scatter plot of all 625 individual runs in the LE, using close-to-Gaussian scoring approach

7 (a) (Sect. 2.4, Appendix B).

8 **(b)** As (a) except using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in
9 Fig. 5.

10 **(c)** Score weighted mean and one-sided standard deviations, using close-to-Gaussian scoring
11 approach (a).

12 **(d)** As (c) except using the more heuristic approach (b), exactly as in Fig. 5.

1
2
3 **Figure C5.** Probability densities of equivalent sea level (ESL) rise at particular times as in Fig.
4
5
6.

7
5 **(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).**

6 **(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 6.**

Figure D1. Model vs. observed Relative Sea Level (RSL) data, for the 3 RSL sites (Briggs and Tarasov, 2013) that lie within and away from the edges of the model's West Antarctic domain. The observations and uncertainty ranges are shown as black dots and whiskers. Model curves are shown for all 625 runs, with aggregate scores S indicated by colors as in Fig. 5. The run with the best individual score for each site is shown as a thick black line, and the run with best aggregate score S is shown as a thick blue line.

(a) Southern Scott Coast, ~77.3S, 163.6E.

(b) Terra Nova Bay, ~74.9N, 163.8E.

(c) Marguerite Bay, ~67.7S, 67.3W.

1
2
3
4

Figure D2.

1
2 **Figure D2 continued.**
3

4 **Figure D2 and D2 continued.** Model vs. observed elevation vs. age data, for the 18 sites in the
5 compilation (Briggs and Tarasov, 2013) that lie within and away from the edges of the model's
6 West Antarctic domain, shown roughly in west-to-east order. The observations and uncertainty
7 ranges are shown as black dots and whiskers. Model curves are shown for all 625 runs, with
8 aggregate scores S indicated by colors as in Fig. 5. The run with the best individual score for
9 each site is shown as a thick black line, and the run with best aggregate score S is shown as a
10 thick blue line. Sites shown (Briggs and Tarasov, 2013) are:

11	<u>Reedy Glacier 1</u>	$\sim 85.9S, 132.6W$
12	<u>Reedy Glacier 2,</u>	$\sim 86.1S, 131.0W$
13	<u>Reedy Glacier 3,</u>	$\sim 86.3S, 126.1W$
14	<u>Hatherton glacier</u>	$\sim 79.9S, 156.8E$
15	<u>Clark Mts,</u>	$\sim 77.3S, 142.1W$
16	<u>Allegheny Mts,</u>	$\sim 77.3S, 143.3W$
17	<u>Western Sarnoff Mts,</u>	$\sim 77.1S, 145.5W$
18	<u>Eastern Fosdick Mts,</u>	$\sim 76.5S, 144.5W$
19	<u>Executive Committee Range,</u>	$\sim 77.2S, 127.1W$
20	<u>Pine Island Bay 1,</u>	$\sim 75.2S, 111.2W$
21	<u>Pine Island Bay 2,</u>	$\sim 74.5S, 99.2W$
22	<u>West Palmer Land,</u>	$\sim 71.6S, 67.4W$
23	<u>Alexander Island South,</u>	$\sim 72.0S, 68.5W$
24	<u>Alexander Island North,</u>	$\sim 70.9S, 68.4W$
25	<u>Behrendt Mts,</u>	$\sim 75.3S, 72.3W$
26	<u>Ellsworth Mts,</u>	$\sim 80.3S, 82.2W$
27	<u>Shackleton Range 1,</u>	$\sim 80.4S, 30.1W$
28	<u>Shackleton Range 2,</u>	$\sim 80.1S, 25.8W$
29		

Figure D3. Model vs. observed modern uplift rates, for the 25 sites in the compilation (Whitehouse et al., 2012b) that lie within the model's West Antarctic domain, shown roughly in west-to-east order. The observations and uncertainty ranges are shown as black dots and whiskers. Model rates are shown for all 625 runs, with straight lines joining the sites, and aggregate scores S indicated by colors as in Fig. 5. The run with best aggregate score S is shown as a thick blue line. Sites shown, with labels as in Whitehouse et al. (2012b, Supp. Inf.), are:

1. FTP1,	78.93S, 162.57E
2. ROB1,	77.03S, 163.19E
3. TNB1,	74.70S, 164.10E
4. MCM4 AV,	77.85S, 166.76E
5. MBL1 AV,	78.03S, 155.02W
6. W01 AV,	87.42S, 149.43W
7. MBL2,	76.32S, 144.30W
8. MBL3,	77.34S, 141.87W
9. W09,	82.68S, 104.39W
10. W06A,	79.63S, 91.28W
11. W07 AV,	80.32S, 81.43W
12. W05 AV,	80.04S, 80.56W
13. HAAG,	77.04S, 78.29W
14. W08A/B,	75.28S, 72.18W
15. W02 AV,	85.61S, 68.55W
16. OHIG,	63.32S, 57.90W
17. PALM,	64.78S, 64.05W
18. ROTB,	67.57S, 68.13W
19. SMRT,	68.12S, 67.10W
20. FOS1,	71.31S, 68.32W
21. BREN,	72.67S, 63.03W
22. W04 AV,	82.86S, 53.20W
23. BELG,	77.86S, 34.62W
24. W03 AV,	81.58S, 28.40W

1 | 25. SVEA, 74.58S, 11.22W
2 |

Figure D4. Score-weighted probability (0 to 1) of grounded ice vs. floating ice or open ocean at each grid point (see text), for various times over the last 20,000 years, concentrating on the period of rapid retreat between 15 and 10 ka. The LE and model version is essentially the same as above, except with all-Antarctic coverage to include East Antarctic variations. The quantity shown is the sum of scores $S(n)$ for runs n with grounded ice at each grid point and time, divided by the sum of scores for all runs in the ensemble. Thick black lines in the panels for 20, 15, 10 and 5 ka show grounding lines reconstructed for West Antarctica by the RAISED consortium (RAISED, 2014), plotted using their vertex information (S. Jamieson, pers. comm.), and choosing their Scenario A for the Weddell embayment (Hillenbrand et al., 2014). For 20 and 15 ka around East Antarctica, the black line is from the 20 ka RAISED timeslice which for EAIS is based on Livingston et al. (2012) and Mackintosh et al. (2014). Similarly the modern grounding line (Fretwell et al., 2013) is shown by a thick black line for 0 ka, which is also used around East Antarctica for 10 and 5 ka.

1
2 **Figure D5. Upper panels:** Score-weighted probability (0 to 1) of grounded ice vs. time, as in
3 Fig. D4 but along centerline transects of (i) Pine Island Glacier and its paleo-trough, (ii) Ross
4 embayment and (iii) Weddell embayment. Black symbols show various published data:

5 Pine Island, circles: Larter et al., 2014 (the RAISED Consortium).

6 Pine Island, crosses: Kirshner et al., 2012; Hillenbrand et al., 2013; Smith et al., 2014.

7 Ross, circles: Anderson et al., 2014 (the RAISED Consortium).

8 Ross, crosses: Conway et al., 1999; McKay et al., 2008.

9 Weddell, 'A' and 'B': Hillenbrand et al., 2014 (the RAISED Consortium), Scenarios A and
10 B respectively.

11 **Lower panels:** Modern bathymetric profiles along each transect (from Bedmap2; Fretwell et al.
12 2013).

← Formatted
spacing: si