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Author response letter for “Large ensemble modeling of last deglacial retreat of the West 1 

Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques”, by D. Pollard, 2 

W.Chang, M.Haran, P. Applegate and R. DeConto. 3 

 4 

We thank the reviewers for their careful and helpful comments on the original version of the 5 

manuscript. Our responses and changes are described below point by point, with reviewer text 6 

in italics. This is followed by a “tracked-changes” manuscript file showing all changes from the 7 

original version.  8 

 9 

In summary, the main changes are: 10 

• All “future” simulation segments in text and figures are removed (Reviewer 1). 11 

• References to upcoming work and papers are reduced, and we make clear that this paper 12 

stands on its own (Reviewer 1). 13 

• Alternate “close-to-Gaussian” approach to misfits and scoring are added, discussed, and 14 

results compared, in sections 2.3 and 2.4, Appendices B and new C (Reviewer 2). 15 

• Spans of model results over all runs are shown to encompass the various types of 16 

observations, in new Appendix D (Reviewer 2). 17 

• Description and discussion of the advanced statistical techniques are expanded, and their 18 

role made clearer, in sections 2.5 and 5 (Reviewer 2). 19 

 20 

Reviewer 1: 21 

 22 

Overview: 23 

 24 

The submitted paper presents results from a large ensemble of ice-sheet model simulations 25 

of the West Antarctic Ice Sheet through the last glacial termination and into 26 

the future. The ensemble aims to explore a broad envelope of parameter space, and 27 

two different techniques are employed to assess the results. As far as I can tell, the 28 

primary justification for the paper lies in the intercomparison of so-called ’simple’ and 29 

’advanced’ statistical techniques, rather than the presentation of realistic simulations of 30 

the deglacial and future states of the ice sheet. 31 

 32 

This is correct: the primary purpose of the paper is to compare ‘simple’ and ‘advanced’ 33 

techniques (see next response below). 34 

 35 
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Overall the paper is well-written and clearly laid out, with thorough explanation of the 1 

salient aspects of the study and sufficient reference to the preceding studies on which 2 

it builds. The figures are clear and effective. As a methodological paper it is clearly 3 

well-suited to GMD. 4 

 5 

General issues: 6 

 7 

I have detailed a few points lower down that I think need further explanation or clarification, 8 

but I have two more general issues with the manuscript as it stands. 9 

 10 

Firstly, there are numerous (at least 8) instances in the text (p6 lines 22/23; p7 lines 11 

18/19; p13 lines 19/20; p14 lines 8/9; p16 lines 1/2; p16 lines 17-21; p18 lines 6-8; p18 12 

lines 23-25) where the authors refer to ’future work’ that will either develop or change 13 

some aspects of the study as presented here. Whilst it is of course quite usual that 14 

submitted work forms part of a project that is ongoing, I found the repetition of these 15 

statements quite off-putting in the sense that they give the reader the impression that 16 

the current study is in some way ’incomplete’, or worse still, inferior with respect to 17 

something similar that is being prepared for another journal (for example, the reference 18 

to Pollard et al., 2015b, which is a paper that is only ’in preparation’). I think the paper 19 

should be able to stand alone, and if important aspects of the study are either yet to 20 

be developed, or modified, then what is the rush to publish seemingly incomplete work 21 

here? Will the forthcoming papers build on this one, or undermine it? 22 

 23 

As mentioned above, the primary purpose of this paper is to compare the simple and advanced 24 

techniques, using the same large ensemble (stated in section 1). We agree that the numerous 25 

instances referring to other work detracted from this purpose. The current paper definitely 26 

stands on its own and is complete, and the results do not depend on or will be changed by any 27 

of these instances. Accordingly, (i) we emphasize more the purpose of this paper in the 28 

introduction, (ii) we have removed many of these instances where they do not contribute to the 29 

M/S, (iii) where the follow-on paper (Pollard et al., 2016) is first mentioned, we explain that it 30 

deals solely with specific glaciological aspects, not statistical, and does not undermine or alter 31 

the results here at all. 32 

In the concluding Section 5, we still mention several avenues and plans for further work, which 33 

all concern glaciological aspects, not statistical. As the reviewer mentions, this type of 34 

discussion is quite usual in the concluding sections of papers. 35 

 36 
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The second issue I have with the manuscript as it stands is the inclusion of the ’future’ 1 

scenario modelling. The title and majority of the paper deal with the deglacial, and 2 

since the primary purpose of the paper is to compare results from different statistical 3 

methods (for which any results would do) I see no reason to include the additional 4 

5000 year experiments. They are barely discussed in the paper and have no relation 5 

to the deglacial experiments. Furthermore, as detailed below the basis for the 6C/2C 6 

air/ocean warmings is not clear. If they are arbitrary, then what is the justification for 7 

adding them to the end of a supposedly ’realistic’ deglacial run? And if they are meant 8 

to represent a future emissions scenario such as RCP 8.5, then some explanation is 9 

needed to clarify why this is used rather than, for example, RCP 6 or any of the others. 10 

To my mind it looks like these data have been added to the paper somewhat opportunistically, 11 

rather than for any particular purpose. And by the authors own admission 12 

these simulations use a climate warming that is ’very simple’ (p14, line 7), and the 13 

future simulations themselves will be presented in more detail in, once again, the forthcoming 14 

Pollard et al 2015b paper currently ’in preparation’. On this basis I think these 15 

arbitrary extensions to 5000 CE should be removed and saved for the other pending 16 

publications. 17 

 18 

We have removed all mention of the simple “future” extensions in the M/S. These extensions 19 

were part of earlier work exploring the response to future warming, but have been superceded 20 

by further work with more realistic future climate RCP scenarios (with references cited here). 21 

This is a natural extension of the past simulations here, but we agree that they do not add to the 22 

purpose of this M/S (and again, do not change the statistical results at all), and belong 23 

appropriately in subsequent papers. 24 

 25 

Specific points: 26 

 27 

p6 - I think the justification for not using the ’drastic ice-retreat mechanisms’ of Pollard 28 

et al 2015a should be more fully discussed. Either these mechanisms are necessary 29 

for realistic simulations (as argued in the EPSL paper), or not. Or do the processes 30 

only happen during warm periods and not cold periods? It seems that any complex 31 

statistical analysis of results is only useful if it helps reduce uncertainties, but if the 32 

largest uncertainty is ignored (ie uncertainty over the inclusion or exclusion of ’drastic’ 33 

mechanisms) then the results are inherently biased. It would be useful to see how the 34 
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results change when the ’drastic’ mechanisms are included. 1 

 2 

These mechanisms are only triggered in warmer climates than present, as the reviewer suggests. 3 

They do not play any roles in the glacial-to-deglacial sequence of the last ~40 kyrs, as 4 

confirmed by tests (not shown here). We note this in the model description section 2.1. 5 

 6 

p7 - Liu et al 2009 present a transient run that ends at 14 ka BP, so what is used to 7 

drive the model from 14 ka to present? 8 

 9 

Although the Liu et al. (2009) paper only describes results to 14 ka BP, their simulation has 10 

been extended to the present, which they call the “TraCE-21k” experiment; see 11 

www.cgd.ucar.edu/ccr/TraCE. We note this in the references and acknowledgements. 12 

 13 

p7 - what is the basis of the 6 and 2 C air / ocean temp increases? RCP 8.5 after 14 

150 yrs equals c. 6 C air temp above present, but CMIP models suggest 6 C air 15 

would equate to 1.5 C in the ocean, not 2 C, which presumably could affect the results 16 

presented here? Similarly, the extended RCP scenarios define warming trajectories 17 

that increase steadily to 2300, and remain constant thereafter, rather than flat-lining at 18 

2150 as implied here. 19 

 20 

This is no longer pertinent since all text and figures concerning the future extensions are 21 

removed (see above).  22 

 23 

p7 - since these "future" simulations are regarded as unrealistic, why include them? 24 

Particularly if the ’drastic ice-retreat mechanisms’ aren’t included. 25 

 26 

As above, no longer pertinent.  27 

 28 

p15 - ’Macintosh’ should be ’Mackintosh’ 29 

 30 

This is corrected. 31 

 32 

Fig. 5 - y-axis label is ’sea level rise (m)’, which implies that it is showing time-varying 33 

rates of change in sea level, but I think it is actually showing the change relative to 34 
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present? Otherwise the value of c. -6 m from -20 ka to -15 ka could be read as 1 

indicating that the sea level was falling constantly by 6 m through that period. 2 

 3 

The label is changed to “equivalent sea level (m)”. 4 

 5 

 6 

 7 

Reviewer 2: 8 

 9 

The submission can be an informative (and relatively succinct) comparison of two different 10 

approaches to making inferences about past ice sheet evolution given modelling 11 

and paleo observations. Some specific issues (including some mis-citations) are detailed 12 

below. There are four key deficiencies that have to be remedied (to change the 13 

above "can be" to "is"): 14 

 15 

1) Currently there are no plots nor discussion of model fits to constraint data and as 16 

such it is not clear whether this ensemble actually covers the constraint data. 17 

 18 

We have added a new Appendix D with extensive figures and some discussion, showing the 19 

span of results of all 625 runs of the large ensemble (LE) compared to observations, for the 20 

various past data types. This consists of individual plots for specific sites for Relative Sea Level 21 

and cosmogenic elevation-age data, and a single plot for modern uplift rate sites. Also, maps of 22 

grounded-ice probability computed from the LE are compared with maps of reconstructed 23 

grounding line positions at specific past times, and similarly for grounding-line distances vs. 24 

time along paleo-troughs of the major embayments. These plots show that the span of model 25 

results does by and large encompass the observations with no serious outliers, as required for 26 

meaningful interpretation of the statistical LE results. 27 

 28 

2) The handling of data uncertainties for all the misfit metrics needs to be spelled out 29 

(some treatments are spelled out, but not all). Eg, TROUGH will have dating and 30 

downscaling/resolution uncertainties. If these uncertainties are ignored, the inferences 31 

based on these metrics are biased and incorrect. 32 

 33 

Considerably more detailed description and formulae of all misfit calculations are given in an 34 

expanded Appendix B. This aims to give a complete description of all calculations. 35 
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 1 

3) how are data weighted within each class? If no weighting is done, then the statistical 2 

modelling is assuming all data/model residuals are not correlated, which is incorrect 3 

(though commonly implemented...). 4 

 5 

Within each class, intra-data-type-weighting is done, very much the same as in Briggs at 6 

Tarasov (2013), for past data with individual sites: Relative Sea Level, elevation-age, and uplift 7 

rates. Full details are now given in Appendix B. 8 

 9 

4) There has to be justification for giving all data classes the same weight. There are 10 

only 8 RSL data sites, all located on the periphery of the ice sheet. There is no basis 11 

to give this geographically restricted data the same weight as, for instance, the RMS 12 

error between the dynamically modelled and observed present day ice sheet. 13 

 14 

We agree that this is a significant issue, but take a different strategy than in the Briggs et al. 15 

papers. Here, we assume that each data type is of equal importance to the overall score, and that 16 

if any one individual score is very bad (Si ≈ 0), the overall score S should also be ≈ 0. This 17 

corresponds to the notion that if any single data type is completely mismatched, the run should 18 

be rejected as unrealistic, regardless of the fit to the other data types. The fits to past data, even 19 

if more uncertain and sparser than modern, seem equally important to the goal of obtaining the 20 

best calibration for future applications with very large departures from modern conditions. This 21 

differs from the “inter-data-type” weighting based on “volumes of influence” in Briggs et al., 22 

which is interesting and logical, but we suggest is heuristic and not the only reasonable way. 23 

Our strategy is explained in the revised section 2.4. Also see the response to “Gaussian forms” 24 

point (4th below). 25 

 26 

If the "advanced statistical method" does use a complete error model that addresses 27 

points 2-4 above, then this should be made clear in detail. Ie, are you saying that we 28 

can ignore all these issues, do simple latin hypercube sampling (albeit with a large 29 

enough sample, but still orders of magnitude smaller than required for proper MCMC), 30 

and get roughly the same result as a complete Bayesian calibration determination of 31 

the posterior (ie with a complete error/uncertainty model that accounts for uncertainties 32 

in the constraint data, structural uncertainties, and correlation between residuals and 33 

that covers the constraint data set)? If so, then this claim need to be much more clearly 34 

spelled out. 35 

 36 
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We acknowledge that some sentences in the M/S were somewhat unclear regarding this point, 1 

which are clarified. In this paper, the advanced techniques do not use a Latin HyperCube large 2 

ensemble (LE), but are applied to the same LE as the simple averaging method, which is a 625-3 

member LE with full factorial sampling. The purpose of this paper is just to compare statistical 4 

results of the two methods, with the advanced techniques acting as a benchmark. In previous 5 

studies (Applegate et al., 2012; Chang et al., 2014), the advanced techniques yielded successful 6 

results when applied to some relatively small-sized LE’s with coarse Latin HyperCube 7 

sampling, for which the simple methods failed. This is because the interpolation capability of 8 

the advanced techniques (emulation, MCMC) is much better than the simple method 9 

(essentially none). However, this distinction depends on the size of the LE and the coarseness 10 

of the sampling; somewhat larger LE’s with Latin HyperCube sampling and fewer parameters 11 

can be amenable to the simple method. This is now briefly noted in the conclusions, where we 12 

emphasize that it is not otherwise the subject of this paper.  13 

 14 

Once these (and the comments below) are addressed, I would agree with Nick 15 

Golledge as this being a methodological paper that is well-suited to GMD. 16 

 17 

# Specific comments: 18 

 19 

# How is relative sealevel computed? What visco-elastic earth model is used and is 20 

geoidal deformation computed? 21 

 22 

The bedrock response component in the ice sheet model is a basic ELRA (Elastic Lithosphere 23 

Relaxing Asthenosphere) model. Sea level vs. time in the ice model itself is prescribed from 24 

ICE-5G. These are noted in the model description section 2.1. 25 

The calculation of relative sea level at specific grid points for comparison with RSL geologic 26 

data is as in Briggs and Tarasov (2013), and is now described fully in Appendix B. 27 

 28 

"Tarasov et al. (2012) used Artificial Neural Nets in North American ice-sheet modeling 29 

to fill in parameter space between LE simulations, and have mentioned their potential 30 

application to Antarctica (Briggs and Tarasov, 5 2013)." 31 

 32 

# actually this was as much if not more of a "calibration" as the authors’ "advanced 33 

statistical technique" and should be clearly stated as such. That 2012 paper also used 34 

MCMC to compute a posterior distribution of ensemble parameters given fits to paleo 35 

constraint data. The reason that "calibration" wasn’t used in the title of that paper was 36 

1) ensemble didn’t cover data constraints (attaining coverage is a big challenge given 37 
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the large size of the constraint data set), and 2) it had an incomplete error model especially 1 

with respect to quantifying structural uncertainties. Unfortunately, "Calibration" 2 

has become a poorly understood buzzword whose meaning is being watered down in 3 

some recent ice sheet relevant publications. To me, if "calibration" is not confidently 4 

estimating the probability distribution and thereby the uncertainties of predictions (with 5 

the unavoidable clear specification of uncertainties not accounted for), then it should 6 

not be called calibration. But this may be a loosing battle... 7 

 8 

We have rephrased the relevant sentence to address this concern, as follows: 9 

Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North 10 

American ice sheets, and have mentioned their potential application to Antarctica 11 

(Briggs and Tarasov, 2013). 12 

 13 

"Then the geometric (logarithmic) average of the 8 individual Si ’s is taken to yield the 14 

aggregate score S for each run" 15 

 16 

# This choice makes no sense to me and needs to be justified. RMSE is effectively 17 

log(Gaussian). So your weighted score is (logGauss1*logGauss2*..)ˆ1/8. How does 18 

one interpret this? If you are using a non-Gaussian error model, then what is it? 19 

 20 

We propose that the formulae chosen for misfits and scoring are somewhat heuristic and there 21 

is more than one reasonable approach, and that strict adherence to Gaussian error model forms 22 

is not the only possibility. In section 2.3 we have added the following text to explain and justify 23 

this viewpoint: 24 

 25 

One approach to calculating misfits and scores is to borrow from Gaussian error 26 

distribution concepts, i.e., individual misfits M of the form [(mod-obs) / σ]2 and 27 

overall scores of the form  e-M/s, where mod is a model quantity, obs is a 28 

corresponding observation, σ is an observational or scaling uncertainty, M is an 29 

average of individual misfits over data sites and types of measurements, and s is 30 

another scaling value (Briggs and Tarasov, 2013; Briggs et al., 2014). However, the 31 

choice of these forms is somewhat heuristic, and different choices are also 32 

appropriate for complex model-data comparisons with widespread data points, very 33 

different types of data, and with many model-data error types not being strictly 34 

Gaussian. In order to determine the influence of these choices on the results, we 35 

compare two approaches: (a) with formulae adhering closely to Gaussian forms 36 

throughout, and (b) with some non-Gaussian aspects attempting to provide more 37 

straightforward and interpretable scalings between different data types. Both 38 
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approaches are described fully below (next section, and Appendix B). They yield 1 

very similar results, with no significant differences between the two, as shown in 2 

Appendix C. The second more heuristic approach (b) is used for results in the main 3 

paper. 4 

 5 

Accordingly, we have made a significant addition to the paper, adding a new set of formulae for 6 

misfits and scores, that do adhere closely to Gaussian error forms. We call this “approach (a)”, 7 

vs. “approach (b)” for the existing set of formulae. Both sets of formulae are described in an 8 

expanded Appendix B and in Section 2.4. Comparisons of all results are presented for both 9 

approaches in a new Appendix C, which show no significant differences, indicating that they 10 

are robust and independent of the choice of approaches to misfits and scoring. 11 

 12 

"It differs from from the weighting in Briggs and Tarasov (2013) (their “inter-data-type”), 13 

which is algebraic and depends heavily (80%) on the fit to modern ice distribution." 14 

 15 

# This is incorrect. The weightings are for the RSME score components, but the final 16 

weighting is e to the power of the sum of these normalized components (ie assumes a 17 

pseudo-Gaussian error model). This is therefore not algebraic. Furthermore, Briggs, 18 

Pollard, and Tarasov (2014) should be cited instead. They give a corrected inter-datatype 19 

relative weighting of < 50% for present-day data (Coauthors should know the 20 

papers their names are on, rap knuckles.., :) ). 21 

 22 

The relevant sentence in Section 2.4 is rephrased, avoiding specific values: 23 

Of the two approaches, this most closely follows Briggs and Tarasov (2013) and Briggs et 24 

al. (2014), except for their inter-data-type weighting, which assigns very different weights 25 

to the individual types based on spatial and temporal volumes of influence (Briggs and 26 

Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2). 27 

 28 

"3. Consistent with trends in recent Antarctic modeling studies (Ritz et al., 2001; Huy20 29 

brechts, 2002; Philippon et al., 2006; Briggs et al., 2013, 2014; Whitehouse et al., 30 

2012a, b; Golledge et al., 2012, 2013, 2014), the greater total Antarctic ice amount 31 

at the Last Glacial Maximum is less than in earlier papers, equivalent to 5 to 10m of 32 

global equivalent sea level below modern" 33 

 34 

# Incorrect citation of Briggs et al, 2014: Their confidence interval for LGM Antarctic 35 

ice volume excess has an upper bound of 14.3 m eustatic equivalent, with lower 36 
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confidence is > 10 m, and one of their single best fit runs has an excess of 13.2 m. 1 

Furthermore, they raise the point that their (well our) model had insufficient grounding line 2 

response compared to proxy paleo data, suggesting that LGM grounded ice volume 3 

could be under-estimated. So there is no basis to lump this in with other studies 4 

claiming </= 10 m of eustatic sealevel equivalent. 5 

 6 

This is a valid point, stemming from the sentence not being clear; we meant “5 to 10m” to refer 7 

just to our results. We have clarified the sentence as follows: 8 

3. The total Antarctic ice amount at the Last Glacial Maximum is equivalent to ~5 to 9 

10 meters of global equivalent sea level below modern (Fig. 5). This is consistent 10 

with the trend in recent modeling studies (Ritz et al., 2001; Huybrechts, 2002; 11 

Philippon et al., 2006; Briggs et al., 2014; Whitehouse et al., 2012a,b; Golledge et al., 12 

2012,2013,2014, whose LGM amounts are generally less than in older papers. 13 

 14 

"For ELEV: the minimum squared mismatch of ice elevation and time, within the constraints 15 

of descending elevation trend, each relative to the observational uncertainties 16 

of elevation and time" 17 

 18 

#Bit unclear. Is this the same error model as Briggs and Tarasov 2013? 19 

 20 

It is very close to the same. Full details are be given in the new Appendix B. 21 

 22 

A. Kergweg: 23 

 24 

Dear authors, 25 

In my role as executive editor I ask you to move the Code Availability Section to its 26 

usually place after the conclusion but in front of the Appendix when revising your article. 27 

Thanks, Astrid Kerkweg 28 

 29 

This section is moved as requested. 30 

 31 

  32 
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Large ensemble modeling of last deglacial retreat of the 1 

West Antarctic Ice Sheet: Comparison of simple and 2 

advanced statistical techniques 3 

 4 

D. Pollard1, W.Chang2, M.Haran3, P. Applegate1,4 and R. DeConto5 5 

 6 

[1] {Earth and Environmental Systems Institute, Pennsylvania State University, University 7 

Park} 8 

[2] {Department of Statistics, University of Chicago, Illinois} 9 

[3] {Department of Statistics, Pennsylvania State University, University Park} 10 

[4] {Earth Sciences Program, Pennsylvania State University, DuBois} 11 

[5] {Department of Geosciences, University of Massachusetts, Amherst} 12 

Correspondence to: D. Pollard (pollard@essc.psu.edu)  13 

 14 

Abstract 15 

A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice 16 

Sheet over the last ~20,000 years. A large ensemble of 625 model runs is used to calibrate the 17 

model to modern and geologic data, including reconstructed grounding lines, relative sea-level 18 

records, elevation-age data and uplift rates, with an aggregate score computed for each run that 19 

measures overall model-data misfit. Two types of statistical methods are used to analyze the 20 

large-ensemble results: simple averaging weighted by the aggregate score, and more advanced 21 

Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov 22 

chain Monte Carlo. The analyses provide sea-level-rise envelopes with well defined parametric 23 

uncertainty bounds, but the simple averaging method only provides robust results with full-24 

factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and 25 

envelopes of equivalent sea-level rise with the simple averaging method agree quite well with 26 

the more advanced techniques, but only for a large ensemble with full factorial parameter 27 

sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, 28 
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including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 1 

years into the “future” with idealized ramped climate warming. In the majority of runs with 2 

reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, 3 

and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty 4 

bounds. 5 

 6 

1. Introduction 7 

Modeling studies of future variability of the Antarctic Ice Sheet have focused to date on the 8 

Amundsen Sea Embayment (ASE) sector of West Antarctica, including the Pine Island and 9 

Thwaites Glacier basins. These basins are currently undergoing rapid thinning and acceleration, 10 

producing the largest Antarctic contribution to sea level rise (Shepherd et al., 2012; Rignot et 11 

al., 2014). The main cause is thought to be increasing oceanic melt below their floating ice 12 

shelves, which reduces back pressure on the grounded inland ice (buttressing; Pritchard et al., 13 

2012; Dutrieux et al., 2014). There is a danger of much more drastic grounding-line retreat and 14 

sea-level rise in the future, because bed elevations in the Pine Island and Thwaites Glacier basin 15 

interiors deepen to depths of a kilometer or more below sea level, potentially allowing Marine 16 

Ice Sheet Instability (MISI) due to the strong dependence of ice flux on grounding-line depth 17 

(Weertman, 1974; Mercer, 1978; Schoof, 2007; Vaughan, 2008; Rignot et al., 2014; Joughin et 18 

al., 2014). 19 

  20 

Recent studies have mostly used high-resolution models and/or relatively detailed treatments of 21 

ice dynamics (higher order or full Stokes dynamical equations; Morlighem et al., 2010; 22 

Gladstone et al., 2012; Cornford et al., 2013; Parizek et al., 2013; Docquier et al., 2014; Favier 23 

et al., 2014; Joughin et al., 2014). Because of this dynamical and topographic detail, models 24 

with two horizontal dimensions have been confined spatially to limited regions of the ASE and 25 

temporally to durations on the order of centuries to one millennium. On the one hand, these 26 

types of models are desirable because highly resolved bed topography and accurate ice 27 

dynamics near the modern grounding line could well be important on timescales of the next few 28 

decades to century (references above, and Durand et al., 2011; Favier et al., 2012). On the other 29 

hand, the computational run-time demands of these models limit their applicability to small 30 
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domains and short time scales, and they can only be calibrated against the modern observed 1 

state and decadal trends at most. 2 

  3 

Here we take an alternate approach, using a relatively coarse-grid ice sheet model with hybrid 4 

dynamics. This allows run durations of manyseveral 10,000 years, so that model parameters can 5 

be calibrated against geologic data of major retreat across the continental shelf since the Last 6 

Glacial Maximum (LGM) over the last ~20,000 years. The approach is a trade-off between (i) 7 

less model resolution and dynamical fidelity, which degrades future predictions on the scale of 8 

~10's km and the next few decades (sill-to-sill retreat immediately upstream from modern 9 

grounding lines), and (ii) more confidence on larger scales of 100's km and 1000's years (deeper 10 

into the interior basins, further into the future) provided by calibration versus LGM extents and 11 

deglacial retreat of the past 20,000 years. Also the approach allows more thorough exploration 12 

of uncertain parameter ranges and their interactions, such as sliding coefficients on modern 13 

ocean beds, oceanic melting strengths, and different Earth treatments of bedrock deformation. 14 

  15 

A substantial body of geologic data is available for the last deglacial retreat in the ASE and 16 

other Antarctic sectors. Notably this includes recent reconstructions of grounding-line locations 17 

over the last 25 kyrs by the RAISED Consortium (RAISED, 2014). Other types of data at 18 

specific sites include relative sea-level records, cosmogenic elevation-age data, and modern 19 

uplift rates (compiled in RAISED, 2014; Briggs and Tarasov, 2013, Briggs et al., 2013, 2014; 20 

Whitehouse et al., 2012a,b). Following several recent Antarctic modeling studies (Briggs et al. 21 

and Whitehouse et al. as above; Golledge et al., 2014; Maris et al., 2015), we utilize these 22 

datasets in conjunction with large ensembles (LE), i.e., sets of hundreds of simulations over the 23 

last deglacial period with systematic variations of selected model parameters. LE studies have 24 

also been performed for past variations of the Greenland Ice Sheet, for instance by Applegate et 25 

al. (2012) and Stone et al. (2013). 26 

 27 
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This paper follows on from Chang et al. (2015a,b2015, 2016), who apply relatively advanced 1 

Bayesian statistical techniques to LE’s generated by our ice-sheet model. The statistical steps 2 

are described in detail in Chang et al. (2015a2015, 2016), and include: 3 

• Statistical emulators, used to interpolate results in parameter space, constructed using a new 4 

emulation technique based on principal components.  5 

• Probability models, replacing raw root-mean-square-error (RMSE) model-data misfits with 6 

formal likelihood functions, using a new approach for binary spatial data such as grounding-7 

line maps.  8 

• Markov Chain Monte Carlo (MCMC) methods, used to produce posterior distributions 9 

which are continuous probability density functions of parameter estimates and projected 10 

results based on formally combining the information from the above two steps in a Bayesian 11 

inferential framework. 12 

 13 

Some of these techniques were applied to LE modeling for Greenland in Chang et al. (2014). 14 

McNeall et al. (2013) used a Gaussian process emulator, and scoring similar to our simple 15 

method, in their study of observational constraints for a Greenland ice sheet model ensemble. 16 

Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North 17 

American ice-sheet modeling to fill in parameter space between LE simulations sheets, and 18 

have mentioned their potential application to Antarctica (Briggs and Tarasov, 2013). Apart 19 

from these examples, to our knowledge the statistical techniques in Chang et al. (2015a,b2015, 20 

2016) are considerably more advanced than the simpler averaging method used in most 21 

previous LE ice-sheet studies; these previous studies have involved 22 

(i) Computing a single objective score for each LE member that measures the misfit between 23 

the model simulation and geologic and modern data, and  24 

(ii) Calculating parameter ranges and envelopes of model results by straightforward averaging 25 

over all LE members, weighted by the scores. 26 

The more advanced statistical techniques offer substantial advantages over the simple averaging 27 

method, such as providing robust and smooth probability density functions in parameter space. 28 

As shown inFor instance, Applegate et al. (2012) and Chang et al. (2014),) show that the simple 29 
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averaging method fails to provide reasonable results for LE’s with coarsely spaced Latin 1 

HyperCube sampling, whereas emulation andfor the othersame LE, the advanced 2 

stepstechniques successfully interpolate in parameter space, and provide smooth and 3 

meaningful probability densities. 4 

 5 

However, the advanced techniques in Chang et al. (2015a,b2015, 2016) require statistical 6 

expertise not readily available to most ice-sheet modeling groups. It may be that the simple 7 

averaging method still gives reasonable results, especially for LE’s with full factorial sampling, 8 

i.e., with every possible combination of selected parameter values (also referred to as grid or 9 

Cartesian product; Urban and Fricker, 2010). The purpose of this paper is to apply both the 10 

advanced statistical and simple averaging methods to the same Antarctic LE, compare the 11 

results, and thus assess whether the simple (and commonly used) method is a viable alternative 12 

to the more advanced techniques, at least for full factorial LEs. The results include probabilistic 13 

ranges of model parameter values, and envelopes of model results such as equivalent sea-level 14 

rise. Further types of results related to specific glaciological problems (LGM ice volume, 15 

MeltWater Pulse 1A, future retreat) will be presented in Pollard et al. (2016) using the simple-16 

averaging method, and do not modify or extend the comparisons of the two methods in this 17 

paper. 18 

 19 

Sections 2a-b describes2.1 and 2.2 describe the model, the setup for the last deglacial 20 

simulations, and the model parameters chosen for the full factorial LE. Sections 2c-e2.3 to 2.4 21 

describe the objective scoring vs. past and modern data used in the simple averaging method, 22 

and data used inSect. 2.5 provides an overview of the advanced statistical techniques. Results 23 

are shown for best-fit model parameter ranges and equivalent sea-level envelopes in 24 

sectionsSects. 3 and 4, comparing simple and advanced techniques. Conclusions and steps for 25 

further work are described in sectionSect. 5. 26 

  27 

2. Methods 28 

 29 
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2.1. Ice sheet model and simulations 1 

The 3-D ice-sheet model has previously been applied to past Antarctic variations in Pollard and 2 

DeConto (2009), DeConto et al. (2012) and Pollard et al. (2015a2015). The model predicts ice 3 

thickness and temperature distributions, evolving due to slow deformation under its own 4 

weight, and to mass addition and removal (precipitation, basal melt and runoff, oceanic melt, 5 

and calving of floating ice). Floating ice shelves and grounding-line migration are included. It 6 

uses hybrid ice dynamics and an internal condition on ice velocity at the grounding line 7 

(Schoof, 2007). The simplified dynamics (compared to full Stokes or higher-order) captures 8 

grounding-line migration reasonably well (Pattyn et al., 2013), while still allowing O(10,000's) 9 

year runs to be feasible. As in many long-term ice sheet models, bedrock deformation is 10 

modeled as an elastic lithospheric plate above local isostatic relaxation. Details of the model 11 

formulation are described in Pollard and DeConto (2012a,b). The drastic ice-retreat 12 

mechanisms of hydrofracturing and ice-cliff failure proposed in Pollard et al. (2015a) are not 13 

included here, but will be combined with LE’s in Pollard et al. (2015b).(2015) are only 14 

triggered in warmer-than-present climates and so do not play any role in the glacial-deglacial 15 

simulations here; in fact they are switched off in all runs. Tests show that they play no 16 

perceptible role in simulations over the last 40 kyears.  17 

  18 

The model is applied to a limited area nested domain spanning all of West Antarctica, with a 19 

20-km grid resolution. Lateral boundary conditions on ice thicknesses and velocities are 20 

provided by a previous continental-scale run. The model is run over the last 30,000 years, 21 

initialized appropriately at 30 ka (30,000 years before present, relative to 1950 AD) from a 22 

previous longer-term run. Atmospheric forcing is computed using a modern climatological 23 

Antarctic dataset (ALBMAP: Le Brocq, 2010), with uniform cooling perturbations proportional 24 

to a deep-sea core δ18O record (as in Pollard and DeConto, 2009, 2012a). Oceanic forcing uses 25 

using archived ocean temperatures from a global climate model simulation of the last 22 kyr 26 

(Liu et al., 2009). Sea level variations versus time, which are controlled predominantly by 27 

Northern Hemispheric ice sheet variations, are prescribed from the ICE-5G dataset (Peltier, 28 

2004). Modern bedrock elevations are obtained from the Bedmap2 dataset (Fretwell et al., 29 

2013). 30 
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  1 

Each simulation is run from 30 ka to the present, and is extended 5,000 years into the “future” 2 

with a very simple prescribed warming. Atmospheric and oceanic temperatures are uniformly 3 

increased by 6 and 2 oC, respectively, ramped linearly from the present to 150 years AP (after 4 

present) and held constant thereafter. Ocean-temperature increases are confined to a 5 

longitudinal sector (90 to 120o W) enclosing the Amundsen Sea Embayment of West 6 

Antarctica, corresponding to the main region of observed sub-ice-shelf melt increases in recent 7 

decades. This simple prescription of future temperatures produces MISI and drastic ice retreat 8 

into the West Antarctic interior in many of the runs (as in Pollard and DeConto, 2009). More 9 

realistic future warming scenarios are planned for future work. 10 

  11 

2.2. Large ensemble and model parameters  12 

The large ensemble analyzed in this study uses full factorial sampling, i.e., a run for every 13 

possible combination of parameter values, with 4 parameters varied and with each parameter 14 

taking 5 values, requiring 625 (=54) runs. As discussed above, results are analyzed in two ways: 15 

(1) using the relatively advanced statistical techniques (emulators, likelihood functions, 16 

MCMC) in Chang et al. (2015a,b2015, 2016), and (2) using the much simpler averaging 17 

method of calculating an aggregate score for each run that measures model-data misfit, and 18 

computing results as averages over all runs weighted by their score. Because the second method 19 

has no means of interpolating results between sparsely separated points in multi-dimensional 20 

parameter space, it is effectively limited to full factorial sampling with only a few parameters 21 

and a small number of values each. The small number of values is nevertheless sufficient to 22 

span the full reasonable “prior” range for each parameter, and although the results are very 23 

coarse with the second method, they show the basic patterns adequately. Furthermore, 24 

envelopes of results of all model runs are compared in Appendix D with corresponding data, 25 

and demonstrate that the ensemble results do adequately “span” the data, i.e., there are no 26 

serious outliers of data far from the range of model results. 27 
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The 4 parameters and their 5 values are: 1 

  2 

OCFAC: Sub-ice oceanic melt coefficient.  3 

    Values are 0.1, 0.3, 1, 3, 10 (non-dimensional). 4 

    Corresponds to K in Eq. 17 of Pollard and Deconto (2012a). 5 

  6 

CALV: Factor in calving of icebergs at oceanic edge of floating ice shelves.  7 

    Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).  8 

    Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. (2015). 9 

  10 

CSHELF: Basal sliding coefficient for ice grounded on modern-ocean beds.  11 

    Values are10-9, 10-8, 10-7, 10-6, 10-5 (m yr-1 Pa-2).  12 

    Corresponds to C in Eq. 11 of Pollard and Deconto (2012a). 13 

  14 

TAUAST: e-folding time of bedrock relaxation towards isostatic equilibrium.  15 

    Values are 1, 2, 3, 5, 7 kyrs.  16 

    Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a). 17 

 18 

The 4 parameters were chosen based on prior experience with the model; each has a strong 19 

effect on the results, yet their values are particularly uncertain. The first 3 involve oceanic 20 

processes or properties of modern ocean-bed areas. Parameters whose effects are limited to 21 

modern grounded-ice areas are reasonably well constrained by earlier work, such as basal 22 

sliding coefficients under modern grounded ice which are obtained by inverse methods (e.g., 23 

 
Table 1. The 4 parameters varied in the large ensemble, and their 5 values. 
  
OCFAC: Sub-ice oceanic melt coefficient.  
    Values are 0.1, 0.3, 1, 3, 10 (non-dimensional). 
    Corresponds to K in Eq. 17 of Pollard and Deconto (2012a). 
  
CALV: Factor in calving of icebergs at oceanic edge of floating ice shelves.  
    Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).  
    Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. (2015a). 
  
CSHELF: Basal sliding coefficient for ice grounded on modern-ocean beds.  
    Values are10-9, 10-8, 10-7, 10-6, 10-5 (m yr-1 Pa-2).  
    Corresponds to C in Eq. 11 of Pollard and Deconto (2012a). 
  
TAUAST: e-folding time of bedrock relaxation towards isostatic equilibrium.  
    Values are 1, 2, 3, 5, 7 kyrs.  
    Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a). 
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Pollard and DeConto, 2012b, for this model). More discussion of the physics and uncertainties 1 

associated with these parameters is given in Appendix A.  2 

 3 

2.3. Individual data types and scoring 4 

Following Whitehouse (2012a,b), Briggs and Tarasov (2013) and Briggs et al. (2013, 2014), we 5 

test the model against 3 types of data for the modern observed state, and 5 types of geologic 6 

data relevant to ice-sheet variations of the last ~20,000 years, using straightforward mean 7 

squared or root-mean-square (RMSE) misfits in most cases. Each misfit (Mi, i = 1 to 8) is 8 

normalized into an individual score (Si), which are then combined into one aggregate score (S) 9 

for each member of the LE. Only data within the domain of the model (West Antarctica) is used 10 

in the calculation of the misfits. 11 

 12 
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We first describe One approach to calculating misfits and scores is to borrow from Gaussian 1 

error distribution concepts, i.e., individual misfits M of the full calculation used form [(mod-2 

obs) / σ]2 and overall scores of the form  e-M/s, where mod is a model quantity, obs is a 3 

corresponding observation, σ is an observational or scaling uncertainty, M is an average of 4 

individual misfits over data sites and types of measurements, and s is another scaling value 5 

(Briggs and Tarasov, 2013; Briggs et al., 2014). However, the choice of these forms is 6 

 

Table 2. Data types used in evaluating model simulations. 
 

1. TOTE: Modern grounding-line locations.  
    Misfit M1: based on total area of model-data mismatch for grounded ice. 
    Data: Bedmap2 (Fretwell et al., 2013). 
 
2. TOTI: Modern floating ice-shelf locations.  
    Misfit M2: based on total area of model-data mismatch for floating ice. 
    Data: Bedmap2 (Fretwell et al., 2013). 
 
3. TOTDH: Modern grounded ice thicknesses.  
    Misfit M3: based on RMS model-data difference of grounded ice thicknesses. 
    Data: Bedmap2 (Fretwell et al., 2013). 
 
4. TROUGH: Past grounding-line distance vs. time along the centerline trough of Pine Island 
Glacier. Centerline data for the Ross and Weddell basins can also be used, but not in this study. 
    Misfit M4 : based on RMS model-data difference over the period 20 to 0 ka. 
    Data: RAISED (2014). 
  
5. GL2D: Past grounding-line locations (see Fig. 1). Only the Amundsen Sea region is used in this 
study. 
    Misfit M5: based on model-data mismatches for 20, 15, 10, 5 ka. 
    Data: RAISED (2014). 
 
 6. RSL: Past Relative Sea Level (RSL) records.  
    Misfit M6 : based on χ-squared measure of model-data differences at individual sites.  
    Data: compilation in Briggs and Tarasov (2013). 
 
7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF). 
    Misfits M7a, M7b: based on model-data differences at individual sites, combined as in Appendix B. 
    Data: compilations in Briggs and Tarasov (2013) for ELEV, in RAISED (2014) for DSURF. 
  
8. UPL: Modern uplift rates on rock outcrops. 
    Misfit M8: based on RMS model-data difference at individual sites. 
    Data: compilation in Whitehouse et al. (2012b). 
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somewhat heuristic, and different choices are also appropriate for complex model-data 1 

comparisons with widespread data points, very different types of data, and with many model-2 

data error types not being strictly Gaussian. In order to determine the influence of these choices 3 

on the results, we compare two approaches: (a) with formulae adhering closely to Gaussian 4 

forms throughout, and (b) with some non-Gaussian aspects attempting to provide more 5 

straightforward and interpretable scalings between different data types. Both approaches are 6 

described fully below (next section, and Appendix B). They yield very similar results, with no 7 

significant differences between the two, as shown in the simple averaging methodAppendix C. 8 

The second more heuristic approach (b) is used for results in the main paper. 9 

 10 

The 8 individual data types and model-data misfits are described briefly in Table 2, with more 11 

listed below, with basic information that applies to both of the above approaches. More details 12 

are given in Appendix B, followed by the methodincluding formulae for the two approaches, 13 

and “intra-data-type weighting” that is important for closely spaced sites (Briggs and Tarasov, 14 

2013). The two approaches of combining themthe individual scores into one aggregate score S 15 

for the simple averaging method are described in the following Sect. 2.4. The more advanced 16 

statistical techniques (Chang et al., 2015a,b2015, 2016) use elements of these calculations, but 17 

differ fundamentally in some aspects, as discussed further belowoutlined in Sect. 2.5. 18 

The 8 individual data types are: 19 

 20 

1. TOTE: Modern grounding-line locations.  21 

    Misfit M1: based on total area of model-data mismatch for grounded ice. 22 

    Data: Bedmap2 (Fretwell et al., 2013). 23 

 24 

2. TOTI: Modern floating ice-shelf locations.  25 

    Misfit M2: based on total area of model-data mismatch for floating ice. 26 

    Data: Bedmap2 (Fretwell et al., 2013). 27 

 28 

3. TOTDH: Modern grounded ice thicknesses.  29 

    Misfit M3: based on model-data differences of grounded ice thicknesses. 30 

    Data: Bedmap2 (Fretwell et al., 2013). 31 

 32 

4. TROUGH: Past grounding-line distance vs. time along the centerline trough of Pine Island Glacier. 33 

Centerline data for the Ross and Weddell basins can also be used, but not in this study. 34 

    Misfit M4 : based on model-data differences over the period 20 to 0 ka. 35 

    Data: RAISED (2014) (Anderson et al., 2014, for the Ross; Hillenbrand et al., 2014, for the Weddell; 36 
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    Larter et al., 2014, for the Amundsen Sea). 1 

  2 

5. GL2D: Past grounding-line locations (see Fig. 1). Only the Amundsen Sea region is used in this 3 

study. 4 

    Misfit M5: based on model-data mismatches for 20, 15, 10, 5 ka. 5 

    Data: RAISED (2014) (Anderson et al., 2014; Hillenbrand et al., 2014; Larter et al., 2014; 6 

    Mackintosh et al., 2014; O Cofaigh et al., 2014). 7 

. 8 

 9 

 6. RSL: Past Relative Sea Level (RSL) records.  10 

    Misfit M6 : based on χ-squared measure of model-data differences at individual sites.  11 

    Data: compilation in Briggs and Tarasov (2013). 12 

 13 

7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF). 14 

    Misfits M7a, M7b: based on model-data differences at individual sites, combined as in Appendix B. 15 

    Data: compilations in Briggs and Tarasov (2013) for ELEV; in RAISED (2014) with individual  16 

    citations as above for DSURF. 17 

  18 

8. UPL: Modern uplift rates on rock outcrops. 19 

    Misfit M8: based on model-data difference at individual sites. 20 

    Data: compilation in Whitehouse et al. (2012b). 21 

 22 

2.4. Combination into one aggregate score for simple averaging method 23 

Each of the RMSE or χ-squared misfits above are first transformed into a normalized individual 24 

score for each data type i = 1 to 8,. The transformations differ for the two approaches 25 

mentioned above. 26 

(a) For approach (a), closely following Gaussian error forms, using misfits Mi as described in 27 

Appendix B: 28 

• For a given data type i, the misfits Mi for all runs (1 to 625) are sorted, and normalized 29 

using the median value Mi
50, i.e., Mi′=Mi / Mi

50. This is somewhat analogous to the 30 

heuristic scaling for overall scores in Briggs et al., (2014, their sec. 2.3), but applied 31 

here to individual types. 32 

• The individual score Si for data type i and each run is set to e-Mi′ 
  33 

• The aggregate score for each run is S = S1 S2 S3 S4 S5 S6 S7 S8,  i.e.,  e -ΣMi′ 
  34 

Of the two approaches, this most closely follows. A Briggs and Tarasov (2013) and Briggs 35 

et al. (2014), except for their inter-data-type weighting, which assigns very different 36 
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weights to the individual types based on spatial and temporal volumes of influence (Briggs 1 

and Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2). Here, we assume that 2 

each data type is of equal importance to the overall score, and that if any one individual 3 

score is very bad (Si ≈ 0), the overall score S should also be ≈ 0. This corresponds to the 4 

notion that if any single data type is completely mismatched, the run should be rejected as 5 

unrealistic, regardless of the fit to the other data types. The fits to past data, even if more 6 

uncertain and sparser than modern, seem equally important to the goal of obtaining the best 7 

calibration for future applications with very large departures from modern conditions. 8 

 9 

(b) For the more heuristic approach (b), using misfits Mi as described in Appendix B: 10 

• For a given data type i, a “cutoff” value Ci is set by taking the geometric mean (i.e., 11 

logarithmic mean, square root of the product) of (i) the minimum (best) RMSE 12 

valuemisfits Mi over all the LE runs 1 to 625, and (ii) the algebraic average of the 10 13 

largest (worst) values. The 10 worst values are used to avoid a single outlier that could 14 

be unbounded; the single best value is used because it is bounded by zero, and is not an 15 

outlier but represents close-to-the-best possible simulation with the current model. The 16 

geometric mean and not the algebraic mean of these two numbers is more appropriate if 17 

the values range over many orders of magnitude.  18 

  19 

• The individual score Si = max [0, min [1, 1 -normalized misfit Mi/Ci]],′ for each 20 

ensemble run and for each data type i=1 and each run is set to 8. Each Mi and Ci is a 21 

recognizable physical quantity or ratio, and ifMi/Ci . We implicitly assume that Mi > Ci, 22 

the simulation is definitely very poor, not even resembling the appropriate data. Si′ 23 

values close to 10 (Mi << Ci) represent very good simulations of this data type, close to 24 

the best possible within the LE. SiMi′ values of 0≥ 1 (Mi  ≥ Ci) represent very badpoor 25 

simulations, diverging from this data type so much that the run should be rejected no 26 

matter what the other scores are. 27 

  28 

Formatted:

0.25" + Indent

Formatted:

0.25" + Indent

Formatted:

Formatted:



 

24 

 

• Then the geometric (logarithmic) average of the 8The individual Si'sscore Si for data 1 

type i and each run is takenset to yield themax [0, 1 - Mi′]  2 

The aggregate score for each run is S for each run: 3 

 4 

• S = (= ( S1 S2 S3 S4 S5 S6 S7 S8)  )
1/8 5 

  6 

This formula (as opposed to the algebraic mean of the Si for instance) means that if any 7 

individual score is 0, then S is zero. It corresponds to the notion that if any single data type 8 

is completely mismatched, the run should be rejected as unrealistic, regardless of the fit to 9 

the other data types. It differs from the weighting in Briggs and Tarasov (2013) (their 10 

“inter-data-type”), which is algebraic and depends heavily (80%) on the fit to modern ice 11 

distribution. Here we more heavily emphasize the fit to past data, even if more uncertain 12 

and sparser than modern, which seems pertinent to future simulations with very large 13 

departures from modern conditions. Our overall approach hasIn both approaches, the 14 

formulae apply equal weights to the individual data types, and do not use “inter-data-type” 15 

weighting (Briggs and Tarasov 2013; Briggs et al. 2014). As in (a), if any individual score 16 

Si is ≈ 0, then the overall score S is ≈ 0, and the discussion above also applies to approach 17 

(b). Both approaches have loose links to the calibration technique in Gladstone et al. (2012) 18 

and the more formal treatment in McNeall et al. (2013). 19 

 20 

2.5. Advanced statistical techniques 21 

The more advanced statistical techniques (Chang et al., 2015a,b) do not use the aggregate score 22 

S at all, but perform statistical 2015, 2016) consist of an emulation of modern and past 23 

grounding-line locations. Chang et al. (2015b) used exactlya calibration stage, involving the 24 

same 4 model parameters and the 625-member LE as above. The aggregate scores S described 25 

in Sect. 2.4 are not used at all. The techniques are outlined here, applying; full accounts are 26 

given in Chang et al. (2015, 2016). 27 

 28 
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Emulation phase:  1 

Emulation is the statistical approach by which a computer model is approximated by a 2 

statistical emulators, probability models and likelihood functionsmodel. This statistical 3 

approximation is obtained by running the model at many parameter settings and then “fitting” a 4 

Gaussian process model to the input-output combinations, analogous to fitting a regression 5 

model that relates independent variables (parameters) to dependent variables (model output) in 6 

order to make predictions of the dependent variable at new values of the independent variables. 7 

Of course, unlike basic regression, the model output may itself be multivariate. An emulator is 8 

useful because: (i) modern grounding-line geographicalit provides a computationally 9 

inexpensive method for approximating the output of a computer model at any parameter setting 10 

without having to actually run the model each time, and (ii) it provides a statistical model 11 

relating parameter values to computer model output – this means the approximations 12 

automatically include uncertainties, with larger uncertainties at parameter settings that are far 13 

from parameter values where the computer model has already been run. Specifically, the model 14 

output consisting of (i) modern grounding line maps, and (ii) past locations of grounding lines 15 

versus time along the centerline trough of Pine Island Glacier (replacing the data types TOTE, 16 

TROUGH and GL2D above)., are first reduced in dimensionality by computing Principal 17 

Components (PCs) over all LE runs. (Principal components are often referred to in the 18 

atmospheric science literature as empirical orthogonal functions or EOFs.) The first 10 PCs are 19 

used for modern maps, and the first 20 for past trough locations. Hence, we develop a Gaussian 20 

process emulator for each of the above PCs. Gaussian process emulators work especially well 21 

for model outputs that are scalars. The emulators are “fitted” to the PCs using a maximum 22 

likelihood estimation-based approach developed in Chang et al. (2015) that addresses the 23 

complications that arise due to the fact that the data are non-Gaussian. Details are available in 24 

(Chang et al., 2015, 2016). The emulators provide a statistical model that essentially replaces 25 

the data types TOTE, TROUGH and GL2D described in Sect. 2.3. 26 

 27 

For this paper, the advanced techniquesIn an extension to Chang et al. (2016), Gaussian process 28 

emulators are extended to additionally use the also used here to estimate distributions of 29 

individual score values for the 5 data types TOTI, TOTDH, RSL, ELEV/DSURF and UPL, (S2, 30 
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S3, S6, S7, S8). The raw data, approach (b), Sect. 2.3 and Appendix B), one emulator per score. 1 

Again, emulators are developed for these quantities are less amenable to each of the scores by 2 

using the Gaussian process machinery and maximum likelihood estimation. 3 

 4 

Calibration phase: 5 

The calibration stage solves the following problem in a statistically rigorous fashion: given 6 

observations and model runs at various parameter settings, which parameters of the model are 7 

most likely? In a Bayesian inferential framework, this translates to learning about the posterior 8 

probability distribution of the parameter values given all the available computer model runs and 9 

observations. The approach may be sketched out as follows. The emulation, especially those 10 

phase provides a statistical model connecting the parameters to the model output. Suppose it is 11 

assumed that the model at a particular (ideal) set of parameter values produces output that 12 

resembles the observations of the process. We also allow for measurement error and systematic 13 

discrepancies between the computer model and the real physical system. We do this via a 14 

“discrepancy function” that simultaneously accounts for both; this is reasonable because both 15 

sources of error are important while also being difficult to tease apart. Hence, one can think of 16 

our approach as assuming that the observations  are modeled as the model output at an ideal 17 

parameter setting,  added to a discrepancy function. Once we are able to specify a model in this 18 

fashion, Bayesian inference provides a a very standard approach to obtain the resulting 19 

posterior distribution of the parameters: we start with site-specific records (a prior distribution 20 

for the parameters, where we assume that all the values are equally likely before any 21 

observations are obtained, and then use Bayes theorem to find the posterior distribution given 22 

the data.  The posterior distribution cannot be found in analytical form. Hence, in this second 23 

“calibration” stage, posterior densities of the model parameters are inferred via Markov Chain 24 

Monte Carlo (MCMC). The observation and model quantities used in emulation and calibration 25 

consist of the modern and past grounding-line locations, and 5 individual scores. The 26 

discrepancy function is accounted for in assessing model vs. observed grounding-line fits in our 27 

Bayesian approach, and is based in part on locations and times in which grounded ice occurs in 28 

the model and not in the observations, or vice versa, in 50% or more of the LE runs (Chang et 29 

al., 2015, 2016). For the individual scores, we use exponential marginal densities, whose rate 30 
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parameters receive gamma priors scaled in such a way that the 90th percentile of the prior 1 

density coincides with each score’s cutoff value Ci in Sect. 2.4.b.  2 

 3 

In the above procedures, observational error enters for the individual scores RSL, 4 

ELEV/DSURF, and UPL). The use of, via the individual stores iscalculations described in 5 

Appendix CB. It is implicitly taken into account by the discrepancy function for grounding-line 6 

locations. Observational error is considered to be negligible for modern TOTI and TOTDH 7 

scores. 8 

 9 

3. Results: Aggregate scores with simple averaging method 10 

Fig. 2 shows the aggregate scores S for all 625 members of the LE, over the 4-dimensional 11 

space of the parameters CSHELF, TAUAST, OCFAC and CALV. Each individual subpanel 12 

shows TAUAST versus CSHELF, and the subpanels are arranged left-to-right for varying 13 

CALV, and bottom-to-top for varying OCFAC. 14 

 15 

3.1. “Outer” variations, CALV and OCFAC 16 

All scores with the largest CALV value of 1.7 (right-hand column of subpanels) are 0. In these 17 

runs, excessive calving results in very little floating ice shelves and far too much grounding 18 

line-retreat. Conversely, with the smallest CALV value of 0.3 (left-hand column of subpanels) , 19 

most runs have too much floating ice and too advanced grounding lines during the runs, so most 20 

of this column also has zero scores. However, small CALV can be partially compensated by 21 

large OCFAC (strong ocean melting), so there are some non-zero scores in the upper-left 22 

subpanels. 23 

 24 

3.2. “Inner” variations, CSHELF and TAUAST 25 

For mid-range CALV and OCFAC (subpanels near the center of the figure), the best scores 26 

require high CSHELF (inner x axis) values, i.e., slippery ocean-bed coefficients of 10-6 to 10-5 27 

m a-1 Pa-2.This is the most prominent signal in Fig. 2, and is consistent with the widespread 28 
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extent of deformable sediments on continental shelves noted above. Ideally the LE should have 1 

included CSHELF values greater than 10-5, but the model frequently proved to be numerically 2 

unstable in that range. In a subsequent paper this instability is avoided and a larger CSHELF 3 

range is explored (Pollard et al., 2015b).. However, we note that values of 10-5 to 10-6 have 4 

been found to well represent active Siple Coast ice-stream beds in model inversions (Pollard 5 

and DeConto, 2012b). Subsequent work with wider CSHELF ranges confirms that values 6 

around 10-5 are in fact optimal, with unrealistic behavior for larger values (Pollard et al., 2016). 7 

 8 

Somewhat lower but still reasonable scores exist for lower CSHELF values of 10-7, but only for 9 

higher OCFAC (3 to 10) and smaller TAUAST (1 to 2 kyr). This is of interest because smaller 10 

CSHELF values support thicker ice thicknesses at LGM where grounded ice has expanded over 11 

continental shelves, producing greater equivalent sea-level lowering and alleviating the LGM 12 

“missing-ice” problem (Clark and Tarasov, 2014). In order for the extra ice to be melted by 13 

present day, ocean melting needs to be more aggressive (higher OCFAC), and to recover in 14 

time from the greater bedrock depression at LGM, TAUAST has to be smaller (more rapid 15 

bedrock rebound). This region of parameter spaceglaciological aspect is explored further in 16 

Pollard et al. (2015b2016). 17 

 18 

Scores are quite insensitive to the asthenospheric rebound time scale TAUAST (inner y axis), 19 

although there is a tendency to cluster around 2 to 3 kyr and to disfavor higher values (5 to 7 20 

kyr) especially for high OCFAC. 21 

 22 

4. Results: Comparisons of simple averaging vs. advanced statistical techniques 23 

 24 

4.1. Single parameter ranges 25 

The main results seen in Fig. 2 are borne out in Fig. 3. The left-hand panels show results using 26 

the simple averaging method, i.e., the average score for all runs in the LE with a particular 27 

parameter value. Triangles in these panels show the mean parameter value Vm = Σ (S(n)
 V

(n)
) / Σ 28 

S
(n), where S(n) is the aggregate score and V(n) is the value of this parameter for run n (1 to 625), 29 
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and whiskers show the standard deviation. The prominent signal of high CSHELF values 1 

(sticky ocean beds) is evident, along with the absence (near absence) of positive scores for the 2 

extreme CALV values of 1.7 (0.3), and the more subtle trends for OCFAC and TAUAST. 3 

 4 

The right-hand panels of Fig. 3 show the same single-parameter “marginal” probably density 5 

functions for this LE, using the advanced statistical techniques described in Chang et al. 6 

(2015a,b2015, 2016) and summarized above. For OCFAC, CSHELF and TAUAST, there is 7 

substantial agreement with the simple-averaging results in both the peak “best-fit” values and 8 

the width of the ranges. For CALV, the peak values agree quite well, but the simple-averaging 9 

distribution has a significant tail for lower CALV values that disagrees with zero probabilitiesis 10 

not present in the advanced results. We will investigate; this disagreementmight be due to the 11 

discrepancy function in further workthe advanced method (Sect. 2.5), which has no counterpart 12 

in the simple averaging method. 13 

  14 

4.2. Paired parameter ranges 15 

Probability densities for pairs of parameter values are useful in evaluating the quality of LE 16 

analysis, and can display offsetting physical processes that together maintain realistic results, 17 

e.g., greater OCFAC and lesser CALV (Chang et al., 2014; 2015a,b2015, 2016). In Fig. 4, the 18 

left-hand panels show mean scores for pairs of the 4 parameters, using the simple averaging 19 

method and averaged over all LE runs with a particular pair of values. The right-hand panels 20 

show corresponding densities for the same parameter pairs using the advanced statistical 21 

techniques. Overall the same encouraging agreement is seen as for the single-parameter 22 

densities in Fig 3, with the locations of the main maxima being roughly the same for each 23 

parameter pair. There are some differences in the extents of the maxima, notable for CALV 24 

where the zone of high scores with the simple averaging method extends to lower CALV values 25 

than with the advanced techniques, as seen for the individual parameters in Fig. 3. In general, 26 

though, there is good agreement between the two methods regarding parameter ranges in Figs. 27 

3 and 4, suggesting that the simple averaging method is viable, at least for LE’s with full 28 

factorial sampling of parameter space. 29 
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 1 

4.3. Past and future equivalentEquivalent-sea-level changecontribution 2 

Fig. 5 illustrates the use of the LE to produce past and future envelopes of model 3 

predictionssimulations. Fig. 5a,b show equivalent sea-level (ESL) scatter plots for all 625 runs. 4 

Early in the runs around LGM (20 to 15 ka), the curves cluster into noticeable groups with the 5 

same CSHELF values, due to the relatively weak effects of the other parameters (OCFAC, 6 

CALV and TAUAST) for cold climates and ice sheets in near equilibrium. Fig. 5c,d show the 7 

mean and one-sided standard deviations for the simple method. Most of the retreat and sea-level 8 

rise occurs between ~14 to 10 ka, and is somewhat more sudden and earlier than in other 9 

versions of the model due to a new feedback in the calving parameterization. This may be too 10 

strong and is re-evaluated in a subsequent paper (Pollard et al., 2015b. Glaciological aspects of 11 

the retreat will be discussed in more detail in Pollard et al. (2016). 12 

 13 

Fig. 5e,f shows the equivalent mean and standard deviations derived from the advanced 14 

statistical techniques. There is substantial agreement with the simple-method curves in Fig. 15 

5c,d, for most of the duration of the runs. The largest difference is around the Last Glacial 16 

Maximum ~20 to 15 ka, when mean sea levels are up tonearly ~2.5 m lower (larger LGM ice 17 

volumes) in the simpler method compared to the advanced. This may be due to the simpler 18 

method’s scoring withscores using past 2-D grounding-line reconstructions (GL2D data type 19 

GL2D), which are not used in the advanced technique; this difference will be examined further 20 

in ongoing worktechniques. 21 

 22 

The majority of runs with reasonably good aggregate scores produce substantial “future” WAIS 23 

collapse, with Marine Ice Sheet Instability causing grounding-line retreat of the Pine Island and 24 

Thwaites glaciers into the West Antarctic interior.  As seen in Fig. 5, this produces up to 2.6 25 

meters of equivalent sea-level (ESL) rise on several-century to thousand-year time scales (1.7 m 26 

after 1000 years, 2.6 after 5000 years), consistent with earlier model behavior in Pollard and 27 

DeConto (2009). Note that the prescribed “future” warming here is very simple, with linear 28 
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ramps of all atmospheric and oceanic temperatures as described above. More detailed future 1 

climate-warming scenarios are explored using LE methods in Pollard et al. (2015b).  2 

 3 

Fig. 6 shows probability densities of equivalent sea level rise at particular times in the runs, 4 

including +500, +1000 and +5000 years after modern. Fig. 6a-d show results with the simple 5 

averaging method, computed using score-weighted densities and 0.2-m wide ESL bins (see 6 

caption). The uneven noise in this figure is due to the small number of parameter values in our 7 

LE. The separate peaks for LGM (-15000 yr) in Fig. 6a and b are due to the widely separated 8 

CSHELF values, and the relatively weak effects of the other parameters (OCFAC, CALV and 9 

TAUAST) for cold climates and ice sheets in near equilibrium. Fig. 6e shows the equivalent but 10 

much smoother probability densities using the advanced statistical techniques, for the “future” 11 

times. There is fair agreement. All major aspects agree reasonably well with the simple 12 

averaging results, including the skewed tendency at +5000 yearsand the separate peaks for -13 

15000 yr are smoothed into a single broad range. 14 

 15 

5. Conclusions and further work 16 

1. The simple averaging method, with quantities weighted by RMSE-based aggregate scores, 17 

produces results that are reasonably compatible with relatively sophisticated statistical 18 

techniques involving emulation, probability model/likelihood functions, and MCMC (Chang et 19 

al., 2015a,b2015, 2016; Sect. 2e; Appendix C). However, we have shown this only for an2.5). 20 

They are applied to the same LE with full factorial sampling in parameter space. , for which 21 

both techniques yield smooth and robust results, and the advanced technique acts as a 22 

benchmark against which the simple method can be compared.  23 

 24 

Unlike the advanced techniques, the simple averaging method cannot interpolate in parameter 25 

space, and so is limited practically to relatively few parameters (4 here) and a small number of 26 

values for each (5 here). As shown in Chang et al. (2014), the simple averaging method fails to 27 

yield meaningful results for LEs with sparse LatinHyperCube sampling. In contrast, the 28 

advanced techniques permit Latin HyperCube sampling with at least ~10 parameters (Chang et 29 
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al., 2015a), and produce robust and smooth probability densities for parameter values and 1 

modeled quantities as shown herePrevious work using LE’s with Latin HyperCube sampling 2 

(Applegate et al., 2012; Chang et al., 2014, 2015) has shown that the simple averaging method 3 

can fail if the sampling is too coarse, whereas the advanced technique provides smooth and 4 

meaningful results. This is primarily due to emulation and MCMC in the advanced techniques, 5 

which still interpolate successfully in the coarsely sampled parameter space. Of course, this 6 

distinction depends on the size of the LE and the coarseness of the sampling; somewhat larger 7 

LE’s with Latin HyperCube sampling and fewer parameters can be amenable to the simple 8 

method. Note that this is not addressed in this paper; where just one full-factorial LE is used. 9 

  10 

2. The best-fit parameter ranges deduced from the LE analysis generally fit prior expectations. 11 

In particular, the results strongly confirm that large basal sliding coefficients (i.e., slippery 12 

beds) are appropriate for modern continental-shelf oceanic areas. In further work we will assess 13 

heterogeneous bed properties such as the inner region of hard outcropping basement observed 14 

in the ASE (Gohl et al., 2013).The best-fit range for the asthenospheric relaxation time scale 15 

TAUAST values is quite broad, including the prior nominal valuesreference value ~3 kyr, but 16 

extending to shorter times ~1 kyr. This may be connected with low upper-mantle viscosities 17 

and thin crustal thicknesses suggested in recent work (Whitehouse et al., 2012b; Chaput et al., 18 

2014), which will be examined in further work with full Earth models (Gomez et al., 2013, 19 

2015; Konrad et al., 2015). 20 

  21 

3. ConsistentThe total Antarctic ice amount at the Last Glacial Maximum is equivalent to ~5 to 22 

10 meters of global equivalent sea level below modern (Fig. 5). This is consistent with 23 

trendsthe trend in recent Antarctic modeling studies (Ritz et al., 2001; Huybrechts, 2002; 24 

Philippon et al., 2006; Briggs et al., 2013,2014; Whitehouse et al., 2012a,b; Golledge et al., 25 

2012,2013,2014), the greater total Antarctic ice amount at the Last Glacial Maximum is , whose 26 

LGM amounts are generally less than in earlierolder papers, equivalent to ~5 to 10 meters of 27 

global equivalent sea level below modern. (This contribution is. (Note that Fig. 5 shows 28 

contributions only from our limited West Antarctic domain, but as shown in 29 

MacintoshMackintosh et al., 2011, the contribution from East Antarctica at LGM is much 30 
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smaller, ~1 mesl). This suggests that Antarctic expansion is insufficient to explain the “missing 1 

ice” problem, i.e., the total volume of reconstructed ice sheets worldwide is less than the 2 

equivalent fall in sea-level records at that time by 15 to 20 meters (Clark and Tarasov, 2014). A 3 

subsequent paper (Pollard et al., 2015b) uses a similar LE to evaluate the potential for greater 4 

LGM ice volumes2016) examines this glaciological aspect in more detail but does not alter the 5 

conclusions here. 6 

 7 

4. There are only minor episodes of accelerated WAIS retreat and equivalent sea-level rise in 8 

the simulations (Fig. 5), and none with magnitudes comparable to Melt Water Pulse 1A for 9 

instance, with ~15 mesl rise in ~350 years around ~14.5 ka (Deschamps et al., 2012), in 10 

apparent conflict with significant Antarctic contribution implied by sea-level fingerprinting 11 

studies (Bassett et al., 2005; Deschamps et al., 2012) and IRD-core analysis (Weber et al., 12 

2014). Model retreat rates are examined in more detail in Pollard et al. (2015b), where the 13 

potential for greater pulses is assessed by imposing episodes of ocean warming around 15 to 14 14 

ka, similarly to Golledge et al. (2014).(2016), again without altering the findings here. 15 

 16 

5. One robust conclusionA natural extension of this work is that most parameter combinations 17 

with reasonable scores produce retreat deep into the West to extend the Antarctic interior in 18 

response to simple idealized “model simulations and LE methods into the future”, using 19 

climates and ocean warming, causing up to ~2 to 3 m equivalent sea-level rise on several 20 

century to few millennia timescales. It is driven by  following Representative Concentration 21 

Pathway scenarios (Meinshausen et al., 2011). In these warmer climates we expect Marine Ice 22 

Sheet Instability to occur in WAIS basins, consistent with past retreats simulated in Pollard and 23 

DeConto (2009). DeConto and Pollard (2015) use more detailed future climate warming 24 

(Representative Concentration Pathways, Meinshausen et al., 2011), and also includeAlso 25 

drastic retreat mechanisms of hydrofracture and ice-cliff failure and another type of LE 26 

analysis. These aspects are combined with the LE methods described here in Pollard et al. 27 

(2015b, not triggered in the colder-than-present simulations of this paper, may play a role, as 28 

found for the Pliocene in Pollard et al. (2015). Future applications with simple-average LE’s are 29 
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described in Pollard et al. (2016), and detailed future scenarios with another type of LE are 1 

described in DeConto and Pollard (2016). 2 
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Appendix A: Model parameters varied in the large ensemble 1 

The four model parameters (OCFAC, CALV, CSHELF and TAUAST) and their ranges in the 2 

large ensemble are summarized in Table 1 above.Sect. 2.2. Their physical effects in the model 3 

and associated uncertainties are discussed in more detail here. 4 

  5 

OCFAC is the main coefficient in the parameterization of sub-ice-shelf oceanic melt, which is 6 

proportional to the square of the difference between nearby water temperature at 400 m, and the 7 

pressure-melting point of ice. Oceanic melting (or freezing) erodes (or grows on) the base of 8 

floating ice shelves, as warm waters at intermediate depths flow into the cavities below the 9 

shelves. The resulting ice-shelf thinning reduces pinning points and lateral friction, and thus 10 

back stress on grounded interior ice. As mentioned above, recent increases in ocean melt rates 11 

are considered to be the main cause of ongoing downdraw and acceleration of interior ice in the 12 

ASE sector of WAIS (Pritchard et al., 2012; Dutrieux et al., 2014). High-resolution dynamical 13 

ocean models (Hellmer et al., 2012) are not yet practical on these time scales, and simple 14 

parameterizations of sub-ice-shelf melting such as the one used here are quite uncertain (eg., 15 

Holland et al., 2008). For small (large) OCFAC values, oceanic melting is reduced (increased), 16 

ice shelves thicken (thin), discharge of interior ice across the grounding line decreases 17 

(increases), and grounding lines tend to advance (retreat). 18 

  19 

CALV is the main factor in the parameterization of iceberg calving at the oceanic edges of 20 

floating shelves. Calving has important effects on ice-shelf extent with strong feedback effects 21 

via buttressing of interior ice. However, the processes controlling calving are not well 22 

understood, probably depending on a combination of pre-existing fracture regime, large-scale 23 

stresses, and hydrofracturing by surface meltwater. There is little consensus on calving 24 

parameterizations. We use a common approach based on parameterized crevasse depths and 25 

their ratio to ice thickness (Benn et al. 2007; Nick et al., 2010). For small (large) CALV, 26 

calving is decreased (increased), producing more (less) extensive floating shelves, and greater 27 

(lesser) buttressing of interior ice. 28 

  29 
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CSHELF is the basal sliding coefficient for ice grounded on areas that are ocean bed today 1 

(and is not frozen to the bed). Coefficients under modern grounded ice are deduced by inverse 2 

methods (Pollard and DeConto, 2012b; Morlighem et al., 2013), but they are relatively 3 

unconstrained for modern oceanic beds, across which grounded ice advanced at the Last Glacial 4 

Maximum ~20 to 15 ka. Most oceanic beds around Antarctica are covered in deformable 5 

sediment today, due to Holocene marine sedimentation, and to earlier transport and deposition 6 

of till by previous ice advances. For these regions, coefficients are expected to be relatively 7 

high (i.e., slippery bed), but there is still a plausible range that has significant effects on model 8 

results, because it strongly controls the steepness of the ice-sheet surface profile and ice 9 

thicknesses, and thus the sensitivity to climate change. In this paper, we vary the sliding 10 

coefficient CSHELF uniformly for all modern-oceanic areas. (In further work, we will allow for 11 

heterogeneity such as the hard crystalline bedrock zone observed in the inner Amundsen Sea 12 

Embayment; Gohl et al., 2013). 13 

  14 

TAUAST is the e-folding time of asthenosephic relaxation in the bedrock model component. 15 

Ice sheet evolution on long timescales is affected quite strongly by the bedrock response to 16 

varying ice loads, especially for marine ice sheets in contact with the ocean where bathymetry 17 

determines grounding-line depths. During deglacial retreat, the bedrock rebounds upwards due 18 

to reduced ice load, which slows down ice retreat due to shallower grounding-line depths and 19 

less discharge of interior ice. However, the O(103)-year lag in this process is important in 20 

reducing this negative feedback, and accelerates the positive feedback of Marine Ice Sheet 21 

Instability if the bed deepens into the ice-sheet interior. As in many large-scale ice-sheet 22 

models, our bedrock response is represented by a simple Earth model consisting of an elastic 23 

plate over a local e-folding relaxation towards isostatic equilibrium (Elastic Lithosphere 24 

Relaxing Asthenosphere). Based on more sophisticated global Earth models, the asthenospheric 25 

e-folding time scale is commonly set to 3 kyr (e.g., Gomez et al., 2013), but note that recent 26 

geophysical studies suggest considerably shorter time scales for some West Antarctic regions 27 

(Whitehouse et al., 2012b; Chaput et al., 2014). In further work we plan to perform large 28 

ensembles with the ice sheet model coupled to a full Earth model, extending Gomez et al (2013, 29 

2015). 30 

  31 
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Appendix B: Data types and individual misfits 1 

The 8 types of modern and past data used in evaluating the model simulations are summarized 2 

in TableSect. 2 above.3. More details on the data and the algorithms used to compute the 3 

individual mismatches M1 to M8 with model quantities are given below. The term “domain” 4 

refers to the nested model grid that spans all of West Antarctica, and we only compare with 5 

observational sites and data within this domain. Modern observed data is from the Bedmap2 6 

dataset (Fretwell et al., 2013). 7 

 8 

As discussed in Sects. 2.3 and 2.4, we use 2 approaches in scoring: (a) more closely following 9 

Gaussian error forms, and (b) with more heuristic forms. Some of the algorithms for individual 10 

misfits differ between the two, as indicated by bullets (a) and (b) below. For most data types, 11 

approach (a) uses mean-square errors, and (b) uses root-mean-square errors. For some data 12 

types, the errors are normalized not by observational uncertainty, but by an “acceptable model 13 

error magnitude” representing typical model departures from observations in reasonably 14 

realistic runs, if this is larger than observational error. Note that if this scaling uncertainty is the 15 

same for all data of a given type, it cancels out in the normalization of individual misfits (Mi to 16 

Mi′ in Sect. 2.4), so has no effect on the further results. 17 

 18 

1. TOTE: Modern grounding-line locations. The misfit M1 is the 19 

A′ = total area of mismatch where model is grounded and observed is floating ice or ocean, or 20 

vice versa, relative to . Atot =  total area of the domain.  21 

Approach (a): Misfit M1 = (A′ / B)2, where B = (Atot)
1/2 σw . Here B is the product of the linear 22 

domain size, and σw = 30 km representing the typical size of modern grounding-line location 23 

errors in “reasonable” model runs. 24 

Approach (b): Misfit M1 = A′ / Atot 25 

 26 

2. TOTI: Modern floating ice-shelf locations. The misfit M2 is the 27 
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A′ = total area of mismatch where model has floating ice and observed does not, or vice versa), 1 

relative to the . Atot =  total area of the domain. 2 

Approach (a): Misfit M1 = (A′ / B)2, where B = (Atot)
1/2 σw .  Here B is the product of the linear 3 

domain size, and σw = 30 km representing the typical size of modern floating-ice extent errors 4 

in “reasonable” model runs. 5 

Approach (b): Misfit M1 = A′ / Atot 6 

 7 

3. TOTDH: Modern grounded ice thicknesses. The misfit 8 

Approach (a): Misfit M3 is the RMS difference between model and mean of ((h - hobs) / σh)
2, 9 

where h is model ice thickness, hobs is observed ice thicknesses,thickness, and σh = 10 m 10 

represents the typical size of modern ice thickness errors in “reasonable” model runs. The mean 11 

is taken over areas with observed modern grounded ice. 12 

Approach (b): Misfit M3 is the root mean square of (h - hobs), over areas with observed modern 13 

grounded ice. 14 

 15 

4. TROUGH: Past grounding-line distance vs. time along centerline troughs of Pine Island 16 

Glacier, and optionally the Ross and Weddell basins. Observed distances at ages 20, 15, 10 and 17 

5 ka are obtained from grounding-line reconstructions of the RAISED Consortium (2014), ): 18 

Anderson et al. (2014) for the Ross; Larter et al. (2014) for the Amundsen Sea, and Hillenbrand 19 

et al. (2014) for the Weddell, using their Scenario A (of most retreated Weddell ice) for the 20 

Weddell, and. Distances are then linearly interpolated in time between these dates. The 21 

centerline trough for Pine Island Glacier is extended across the continental shelf following the 22 

paleo-ice-stream trough shown in Jakkobsen et al. (2011). The resulting Pine- Island Glacier 23 

transect vs. time is similar to that in Smith et al. (2014). The misfit 24 

Approach (a): Misfit M4 is the RMS difference in mean of ((x - xobs) / σx)
2, where x is model vs. 25 

observed grounding-line distanceposition on the transect at a given time, xobs is the 26 

reconstructed position, and σx = 30 km represents a typical difference in “reasonable” model 27 
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runs, and is also midway between ‘measured’ and ‘inferred’ uncertainties in the reconstructed 1 

data (RAISED, 2014). The mean is taken over the period 20 to 0 ka.  2 

Approach (b): Misfit M4 is the root-mean-square of (x - xobs), over the period 20 to 0 ka.  3 

In this study just the Pine Island Glacier trough is used, but if the Ross and Weddell are used 4 

also, the RMS difference is calculatedmeans are taken over all data points3 troughs. 5 

  6 

5. GL2D: Past grounding-line locations. This uses reconstructed grounding-line maps for 20, 7 

15, 10, 5 ka (by the RAISED, 2014, Consortium (RAISED, 2014; Anderson et al., 2014; 8 

Hillenbrand et al., 2014; Larter et al., 2014; Mackintosh et al., 2014; O Cofaigh et al., 2014), 9 

with vertices provided by S. Jamieson, pers. comm.)., and choosing their Scenario A for the 10 

Weddell embayment (Hillenbrand et al., 2014). The modern grounding line (0 ka, ) is derived 11 

from the Bedmap2,  dataset (Fretwell et al., 2013). The past maps (RAISED, 2014) are only 12 

available around West Antarctica, so the calculations below do not include the East Antarctic 13 

margin for ensembles spanning the entire ice sheet. Furthermore, forFor this study only the 14 

Amundsen Sea region was used.is considered. We allow for uncertainty in the past 15 

reconstructions by setting a probability of reconstructed floating ice or open ocean at each point 16 

Pobs as follows:  17 

(i) Computing the distance D1 from the reconstructed grounding line.  18 

(ii) Dividing this distance by the sum D2 of the (Kriged) reported uncertainty of nearby vertices 19 

(interpreting their “measured”= 10 km, “inferred”=50 km, “speculative”=100 km) and a 20 

distance that ramps up to 100 km depending on distance to the nearest vertex dv (i.e., 100 21 

max [0, min [1, (dv-100)/200]] ), to obtain a scaled distance Ds = D1/D2.  22 

(iii) Setting the probability Pobs to a value decaying upwards or downwards from 0.5, i.e., to 0.5 23 

e-Ds if on the grounded side of the grounding line, or to 1 - 0.5 e-Ds if on the non-grounded 24 

side. 25 

  26 

Then the “mismatch probability” Pmis at each model grid point is set to 2 (0.5 - Pobs) if Pobs < 27 

0.5 and the model is not grounded, or 2 (Pobs - 0.5) if Pobs > 0.5 and the model is grounded. The 28 

mismatchPmis is zero if the model is not grounded anywhere on the non-grounded side of the 29 
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observed grounding line, or if it is grounded anywhere on the grounded side. Thus, if the model 1 

and observed grounding lines coincide exactly everywhere, then the mismatchPmis is zero at all 2 

points, regardless of the observational uncertainty reflected in Pobs (which seems a desirable 3 

feature). The total misfit (M5) is the areally weighted sum of the mismatches for all points in the 4 

domain, relative to total domain area.  5 

 Approach (a): Misfit M5 is the mean of the squared mismatch probabilities (Pmis)
2, with means 6 

computed over3 separate subdomains: Ross Sea, Amundsen Sea, and Weddell Sea embayments 7 

(defined crudely by intervals of longitude: 150E to 120W, 120W to 90W, and 90W to 0, 8 

respectively). In this study we only use the mean for the Amundsen Sea sector. Similarly to 9 

TOTE and TOTI, the areal mean is increased by a factor (Atot)
1/2 / σw, where Atot is the total 10 

subdomain area and σw = 100 km is a representative width scale of reasonable past grounding-11 

zone mismatches. Finally, the mean values for each of the reconstructed past times (20, 15, 10 12 

and 5 ka) are averaged together equally. 13 

Approach (b): Misfit M5 is the mean of Pmis over the Amundsen Sea sector subdomain, with no 14 

adjustment factor to Atot, and otherwise as for (a) above. 15 

 16 

6. RSL: Past Relative Sea Level (RSL) records. This uses the compilation by Briggs and 17 

Tarasov (2013) of published RSL data vs. time at sites aroundclose to the modern coastline. 18 

Following those authors, a χ-squared measure vs. model output is computed, i.e., the sum of 19 

squared model minus observed δ RSL for each site and time datum, divided by the 20 

observational RSL uncertainty, i.e., (δ RSL)
2 / σzo

2. The model RSL = [SL(t) - hb(t)] - [SL(0) - 21 

hb(0)], where SL(t) is global sea level (with t=0 at modern) and hb is bed elevation, at the closest 22 

model grid point to the observed site. The minimum model-minus-observed difference δ RSL 23 

for each observed datum is used, i.e., the minimum elevation difference value over all model 24 

times within the range of the observational time uncertainty (tobs ± σto). As in Briggs and 25 

Tarasov (2013), the elevation uncertainty σzo is much larger for one-sided constraints than 26 

absolute constraints (if the model is on the correct side). The sum of (δ RSL)
2 / σzo

2 is taken 27 

over all observed sites and times to obtain the overall misfit M6. To reduce the influence of 28 

many closely spaced sites, following Briggs and Tarasov (2013) an “intra-data-type weighting” 29 
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is applied that is inversely proportional to the number of data points within a distance L of each 1 

other, where L is equivalent to 5o latitude (~550 km). 2 

 Approach (a): Misfit M6 is the weighted mean of (δ RSL / σzo) 
2, where σzo is the observational 3 

RSL uncertainty. Just as in Briggs and Tarasov (2013), the default for σzo is much larger for 4 

one-sided constraints (50 m) than absolute constraints (2 m). To reduce the influence of many 5 

nearby (and presumably correlated) data, we closely follow Briggs and Tarasov (2013) and 6 

apply “intra-data-type weighting” in calculating the mean. The weights are inversely 7 

proportional to the number of measurements within a distance L of each other, where L is 8 

equivalent to 5o  latitude (~550 km), so that each ~L-sized cluster of data contributes ~equally 9 

to the overall mean. 10 

Approach (b): Misfit M6 is the weighted mean of max [0, |RSL| - σzo]. The uncertainties σzo and 11 

the intra-data-type weights are the same as in (a). 12 

 13 

7. ELEV/DSURF: This uses a combination of two compilationcompilations of cosmogenic 14 

data: elevation vs. age in Briggs and Tarasov (2013) for ELEV, and thickness change from 15 

modern vs. age in RAISED (2014) (with individual citations as above) for DSURF.  16 

For ELEV, the calculations closely follow Briggs and Tarasov (2013, their sec. 4.2):  17 

(i) a time series of model ice surface is used, with sea level and bedrock elevation changes 18 

subtracted out, for the closest model grid point to each ELEV datum. 19 

(ii) Only model elevations with a “deglaciating trend” are used, i.e., the model elevation for 20 

each time is replaced by the maximum elevation between that time and the present, if the 21 

latter is greater, allowing for an uncertainty ∆h = √2 σh, as in Briggs and Tarasov (2013). 22 

(iii) The mismatch for each datum is the minimum of (δh/ σh)
2 + (δt/ σt)

2 over the time series, 23 

where δh is the elevation difference from observed and δt is the time difference, σh = 24 

[σhobs
2+ (100 meters)2]1/2 , and σhobs and σt are the observational uncertainties in elevation 25 

and time respectively.  26 
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Approach (a): Misfit M7 is the weighted mean of the mismatches for ELEV above, with intra-1 

data-type weighting exactly as described for RSL above. The DSURF type is not used in 2 

approach (a). 3 

Approach (b): For approach (b), ELEV calculations as above are combined with DSURF 4 

calculations. 5 

The DSURF calculations are simpler: for each datum, the time series of model outputsurface 6 

elevations hs at the closest model grid point is used to find:  7 

• For ELEV: the minimum squared mismatch of ice elevation and time, within the 8 

constraints of descending elevation trend, each relative to the observational uncertainties of 9 

elevation and time.  10 

• For DSURF: the. The minimum mismatch in ice thickness change,model-minus-11 

observed difference δ hs
min is found, i.e., the minimum difference over all model times within 12 

the range of observational time uncertainty, reduced by the the observational thickness 13 

uncertainty.  14 

Mismatches are averaged over all observed sites and timestime uncertainty (tobs ± σto). The 15 

mismatch for the datum is max [0, δhs
min - σh] where σh is the observational elevation 16 

uncertainty. The mean over all data is taken, weighted by intra-data-type weighting as described 17 

for RSL above. Mismatches (M7a, M7b) are calculated separately forFinally, the ELEV and 18 

DSURF, and misfits are converted into separate normalized scores (S7a, S7b) as described 19 

below. The two separate scoresin Sect. 2.4(b), which are then combined into one by taking the 20 

square root of their product, i.e., individual score S7 = (S7a S7b)
1/2

. 21 

  22 

8. UPL: This uses modern uplift rates on rock outcrops, using the compilation in Whitehouse et 23 

al. (2012b). For each observed site, the model's modern ∂hb / ∂t at the closest model grid point 24 

is used. The overall misfit M8 is the RMS difference from observed, equally weighted (not 25 

using intra-data-type weighting or accounting for observational uncertainty).  26 



 

43 

 

Approach (a): The mismatch at each datum is [ (Umod - Uobs) / σuobs ] 
2, where Umod and  Uobs are  1 

model and observed uplift rates respectively, and σuobs is the observed 1-σ uncertainty. The 2 

misfit M8 is the mean over all data points, using intra-data-type weighting as above. 3 

Approach (b): The mismatch at each datum is (Umod - Uobs )
2
, and the misfit M8 is the root-4 

mean-square over all data points, with no intra-data-type weighting (justified by the relatively 5 

uniform distribution of data points). 6 

  7 Formatted:
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Appendix C: Using Comparison of results with two scoring approaches 1 

 2 

As discussed in Sect. 2.3, the choice of formulae and algorithms to calculate model vs. data 3 

misfits and scores in the simple averaging method is somewhat heuristic, and different choices 4 

are also appropriate for complex model-data comparisons with widespread data points, very 5 

different types of data, and with many model-data error types not being strictly Gaussian. Two 6 

possible approaches are described above (Sect. 2.4, Appendix B): Approach (a) uses formulae 7 

closely following Gaussian error distribution forms, and approach (b) uses more heuristic 8 

forms. Approach (b) is used for all results in the main paper. In this appendix the simple-9 

averaging results (Figs. 2-5) are compared using both approaches. No significant differences are 10 

found, especially in the LE-averaged results, which suggests that different reasonable 11 

approaches to misfits and scoring yield robust statistical results for the ensemble. 12 

 13 

In Fig. C1, the individual scores in the advanced statistical techniqueshave much the 14 

same patterns over 4-D parameter space. There are some minor differences in the relative 15 

magnitudes of very good, vs. poor but still meaningful scores, which we have compensated for 16 

to some extent in the two color scales, but these do not lead to any significant differences in the 17 

averaged results in the following figures. 18 

 19 

In the parameter-pair scores (Fig. C2), the overall patterns are very similar. The biggest 20 

difference is for CALV vs. TAUAST, where the scores for approach (a) are higher and more 21 

tightly concentrated. 22 

 23 

In the plots of equivalent sea level versus time (Fig. C3), approach (a) generally favors runs 24 

with less ice volume during LGM and retreat, compared to approach (b) (red curves, Figs. C3c 25 

vs. d). On the other hand, the single best-scoring run in approach (a) retreats later than the 26 

corresponding run in approach (b) (black curves, Fig. C3a vs. b). Generally, these differences 27 

are minor compared to the overall model behavior through the deglaciation.  28 

 29 
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In the density distributions of equivalent sea level at particular times (Fig. C4), there is very 1 

little difference between the 2 approaches. The size of the ~5 m peak at 15 ka is larger in 2 

approach (b), but as discussed in Sect. 4.3, these separate peaks at 15 ka are due to the widely 3 

spaced CSHELF parameter values in the ensemble, and their relative sizes have little 4 

significance. 5 

  6 
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 1 

Appendix D: Span of data by the Large Ensemble 2 

 3 

This appendix describes the use of individual data-type scores (TOTI, TOTDH, RSL, 4 

ELEV/DSURF and UPL) in the advanced statistical techniques, as mentioned in Sect. 5 

2e.compares envelopes of model results with corresponding types of geologic data used in the 6 

LE scoring. The main goal is to demonstrate that the envelopes of the 625-member ensemble 7 

adequately spans the data; i.e., at least some runs yield results that fall on both sides of each 8 

type of data, so that ensemble averages may potentially represent reasonably realistic ice sheet 9 

behavior (even if no single  model run is close to all data types). 10 

 11 

Our two-stage approach consists of an emulation and a calibration stage. In the emulation stage 12 

we build separate statistical emulators for the modern and past grounding-line locations and the 13 

individual scores. For details of emulating the modern and past grounding-line locations we 14 

refer to Chang et al. 2015a and 2015b. To use individual scores for particular data types, we 15 

build a Gaussian process emulator with a separable covariance structure between the input 16 

parameter settings and different scores. The covariance matrix for different input parameter 17 

settings is defined using an exponential covariance function, with parameters estimated by 18 

maximizing the likelihood function. The covariance matrix for the different score values is 19 

estimated as the sample covariance matrix computed from the LE, by treating different input 20 

parameter settings as replicates. 21 

 22 

In the calibration stage we define the posterior densities of input parameters, based on modern 23 

and past grounding-line locations and the individual scores, to infer the input parameters based 24 

on those densities via Markov Chain Monte Carlo (MCMC) using the standard Metropolis-25 

Hastings algorithm. Again, we refer to Chang et al. 2015a and 2015b for details of defining the 26 

posterior densities for modern and past grounding-line locations. To define the likelihood 27 

function based on the individual score values we use exponential marginal densities and a 28 

Gaussian copula. The rate parameter for each exponential density receives gamma prior with a 29 
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shape parameter of 30 and a scale parameter specified in a way that the 90th percentile of the 1 

prior density coincides with the cutoff Ci (Sect. 2d). The correlation matrix for the Gaussian 2 

copula is estimated as the sample rank correlations matrix for the individual score values in the 3 

LE, again by treating the different input parameter settings as replicates. 4 

 5 

Code availability. The code for the ice-sheet model (PSUICE-3D) is available on request 6 

from D. Pollard (pollard@essc.psu.edu). The postprocessing codes for the large-ensemble 7 

statistical analyses are highly tailored to specific sets of model output and are not made 8 

available; however, modules that compute scores for the individual data types (Table 2, 9 

Appendix B) are available on request to pollard@essc.psu.edu. 10 

 11 
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For modern data (grounded and floating ice extents, grounded ice thicknesses), the standard 20 

model has previously been shown to yield quite realistic simulations, both for perpetual modern 21 

climate and at the end of long-term glacial-interglacial runs (Pollard and DeConto, 2012a). 22 

Modern grounded ice thicknesses are close to observed mainly because of the inverse procedure 23 

in specifying the distribution of basal sliding coefficients (Pollard and DeConto, 2012b). Here 24 

we concentrate on fits to geologic data. 25 

 26 

Fig. D1 compares scatter plots of Relative Sea Level in all 625 runs with RSL records, for the 3 27 

sites within the model’s West Antarctic domain (Briggs and Tarasov, 2013). The data for each 28 

site fall well within the overall model envelope, and in most cases within the envelopes of the 29 
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top 120-scoring runs (colored curves). Similar comparisons for single runs are shown in Gomez 1 

et al. (2013), both using the simple bedrock model as here (their “uncoupled” runs), and 2 

coupled to a global Earth-sea level model. 3 

 4 

Similarly, Fig. D2 compares elevation vs. age time series for all 625 runs with cosmogenic data 5 

at the 18 sites within the model domain (Briggs and Tarasov, 2013). With a few exceptions, the 6 

data lie within the LE model envelopes, although elevations at many of the sites are lower than 7 

in most of the model runs. At Reedy Glacier, the model exhibits oscillations of ~200 m 8 

amplitude and several hundred year period; these might be due to internal variability of ice 9 

streams as seen elsewhere in West Antarctica in Pollard and DeConto (2009). 10 

 11 

Fig. D3 shows modern uplift rates for all model runs, at the 26 sites in the Whitehouse et al. 12 

(2012b) compilation that lie within the mode domain. Again, nearly all of the observed values 13 

lie within the overall model envelope. The geographic distribution for single runs is compared 14 

with observed in Gomez et al. (2013), both using a simple bedrock model (“uncoupled”), and 15 

coupled to a global Earth-sea level model. 16 

 17 

The remaining past data types (GL2D and TROUGH) concern grounding-line locations during 18 

last deglacial retreat, and are less amenable to scatter plots, but can be  compared with model 19 

averaged results. Fig. D4 shows maps of probability (0-1) of the presence of grounded ice at 20 

particular times, deduced by score-weighted averages over the ensemble. The thick black lines 21 

at 20, 15, 10 and 5 ka show grounding-line positions in the reconstructions of the RAISED 22 

Consortium (RAISED, 2014). (The figures do not show the uncertainty information associated 23 

with the data, which is used in the scoring; Appendix B). At all of these times, the envelopes of 24 

the model “grounding zone”, i.e., the areas with intermediate probability values, span or are 25 

close to the observed positions. 26 

 27 
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Similarly, Fig. D5 shows model probabilities (0-1) of grounded ice vs. time along the centerline 1 

transects of the major West Antarctic embayments. Again, the model envelopes mostly span the 2 

various observed estimates for each transect (from RAISED, 2014, and various earlier studies). 3 

 4 

Taken together, the various model vs. data comparisons in this Appendix show that the model’s 5 

ensemble envelopes do encompass the ranges of data satisfactorily, as necessary for meaningful 6 

interpretations of the statistical results. 7 
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Table 1. The 4 parameters varied in the large ensemble, and their 5 values. 1 

 2 

  3 

 
OCFAC: Sub-ice oceanic melt coefficient.  
    Values are 0.1, 0.3, 1, 3, 10 (non-dimensional). 
    Corresponds to K in Eq. 17 of Pollard and Deconto (2012a). 
  
CALV: Factor in calving of icebergs at oceanic edge of floating ice shelves.  
    Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).  
    Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. 

(2015a). 
  
CSHELF: Basal sliding coefficient for ice grounded on modern-ocean beds.  
    Values are10-9, 10-8, 10-7, 10-6, 10-5 (m yr-1 Pa-2).  
    Corresponds to C in Eq. 11 of Pollard and Deconto (2012a). 
  
TAUAST: e-folding time of bedrock relaxation towards isostatic equilibrium.  
    Values are 1, 2, 3, 5, 7 kyrs.  
    Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a). 
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Table 2. Data types used in evaluating model simulations. 1 

 2 

  3 

 

1. TOTE: Modern grounding-line locations.  
    Misfit M1: based on total area of model-data mismatch for grounded ice. 
    Data: Bedmap2 (Fretwell et al., 2013). 
 
2. TOTI: Modern floating ice-shelf locations.  
    Misfit M2: based on total area of model-data mismatch for floating ice. 
    Data: Bedmap2 (Fretwell et al., 2013). 
 
3. TOTDH: Modern grounded ice thicknesses.  
    Misfit M3: based on RMS model-data difference of grounded ice thicknesses. 
    Data: Bedmap2 (Fretwell et al., 2013). 
 
4. TROUGH: Past grounding-line distance vs. time along the centerline trough of Pine Island 
Glacier. Centerline data for the Ross and Weddell basins can also be used, but not in this 
study. 
    Misfit M4 : based on RMS model-data difference over the period 20 to 0 ka. 
    Data: RAISED (2014). 
  
5. GL2D: Past grounding-line locations (see Fig. 1). Only the Amundsen Sea region is used 
in this study. 
    Misfit M5: based on model-data mismatches for 20, 15, 10, 5 ka. 
    Data: RAISED (2014). 
 
 6. RSL: Past Relative Sea Level (RSL) records.  
    Misfit M6 : based on χ-squared measure of model-data differences at individual sites.  
    Data: compilation in Briggs and Tarasov (2013). 
 
7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age 
(DSURF). 
    Misfits M7a, M7b: based on model-data differences at individual sites, combined as in 
Appendix B. 
    Data: compilations in Briggs and Tarasov (2013) for ELEV, in RAISED (2014) for 
DSURF. 
  
8. UPL: Modern uplift rates on rock outcrops. 
    Misfit M8: based on RMS model-data difference at individual sites. 
    Data: compilation in Whitehouse et al. (2012b). 
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 1 

Figure 1. Geographical map of West Antarctica. Light yellow shows the modern extent of 2 

grounded ice (using Bedmap2 data; Fretwell et al., 2013). Blue and purple areas show expanded 3 

grounded-ice extents at 5, 10, 15 and 20 ka (thousands of years before present) reconstructed by 4 

the RAISED consortium (2014), plotted using their vertex information (S. Jamieson, pers. 5 

comm.), and choosing their Scenario A for the Weddell embayment. (Hillenbrand et al., 2014). 6 

These maps are used in the large ensemble scoring (TOTE, TROUGH and GL2D data types, 7 

TableSect. 2.3). 8 
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 1 

 2 

Figure 2. Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model 3 

parameters, 5 values each, as in Table 1Sect. 2.2), used in the simple method with score-4 

weighted averaging. The score values range from 0 (white, no skill) to 100 (dark red, perfect 5 

fit). The figure is organized to show the scores in the four-dimensional space of parameter 6 

variations. The four parameters are: CSHELF = basal sliding coefficient in modern oceanic 7 

areas (exponent x, 10-x m a-1 Pa-2). TAUAST = e-folding time of bedrock-elevation isostatic 8 

relaxation (kyrs). OCFAC = oceanic-melt-rate coefficient at base of floating ice shelves (non-9 

dimensional). CALV = calving-rate factor at edge of floating ice shelves (non-dimensional). 10 

Since each parameter only takes 5 values, the results are blocky, but effectively show the 11 

behavior of the score over the full range of plausible parameter values. 12 
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 1 

 2 

Figure 3. Left-hand panels: Ensemble-mean scores for individual parameter values, using the 3 

simple averaging method. The red triangle shows the mean, and whiskers show the 1-sigma 4 

standard deviations. Right-hand panels: Probability densities for individual parameters, using 5 

the advanced statistical techniques in Chang et al. (2015b2016) extended as described in Sect. 6 

2e and Appendix C 2.5. 7 
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 1 

Figure 4. Left-hand panels: Ensemble-mean scores for pairs of parameters, using the simple 2 

averaging method. Right-hand panels: Probability densities for pairs of parameters, using the 3 

advanced statistical techniques in Chang et al. (2015b2016) extended as described in Sect. 2e 4 

and Appendix C 2.5. 5 

  6 



 

64 

 

 1 

Figure 5. Equivalent global-mean sea level risecontribution (ESL) relative to modern vs. time. 2 

Time runs from 20,000 years before present to 5000 years after presentmodern. ESL changes 3 

are calculated from the total ice amount in the domain divided by global ocean area, allowing 4 

for less contribution from ice grounded below sea level. The runs are extended 5000 years into 5 

the future with idealized linearly ramped climate warming.  6 

(a) Scatter plot of all 625 individual runs in the LE. ESL amounts are calculated relative to 7 

modern observed Antarctica, so non-zero values at time=0 imply departures from the observed 8 

ice state. Grey curves are for runs with aggregate score S =equal to or very close to 0, and 9 

colored curves are for S > 0the 120 top-scoring runs  in descending S order with 2520 curves 10 

per color (red, orange, yellow, green, cyan, blue in descending order). The best scoring 11 

individual run is shown by a thick black curve (OCFAC=3, CALV=1, CSHELF=-5, 12 

TAUAST=3, with S = 0.570571). 13 

(b) As (a) but with ESL amounts relative to each run’s modern value, so the curves pass exactly 14 

through zero at time=0. 15 

(c) Score weighted curves over the whole LE, using the simple statistical method. Red curve is 16 

the score-weighted mean, i.e., 17 

Σ{S
(n) ESL

(n)(t)} / Σ{S
(n)} 18 

where S(n) is the aggregate score for run n, ESL
(n)(t) is the equivalent sea-level rise for run n at 19 

time t., and the sums are over all n (1 to 625) in the LE. Black curves show the one-sided 20 

standard deviations, i.e., the root mean square of deviations for ESL
(n) above the mean (upper 21 

curve) or below the mean (lower curve) at each time t. ESL
(n)(t) are relative to modern observed 22 

Antarctica, as in panel (a). 23 

(d) As (c) but with ESL
(n)(t) relative to each run’s modern value as in (b). 24 

(e) and (f): Corresponding results to (c) and (d) respectively, using the advanced statistical 25 

techniques in Chang et al. (2015b2016) extended as described in Sect. 2e and Appendix C 2.5. 26 
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 1 

 2 

Figure 6. (a) Probability densities of equivalent sea level (ESL) rise at particular times in the 3 

LE simulations, computed with the simple averaging method. At a given time t, the density 4 

P(E) is the sum of aggregate scores S(n) for all runs n with equivalent sea-level rise ESL
(n)(t) 5 

within the bin E - 0.1 to E + 0.1 m, i.e., using equispaced bins 0.2 m wide. The resulting P(E) 6 

are normalized so that the integral with respect to E is 1. ESL
(n)(t) are relative to modern 7 

observed Antarctica, as in Fig. 5a. 8 

(b) As (a) but with ESL
(n)(t) relative to each run’s modern value, as in Fig. 5b. 9 

(c) and (d): As (a) and (b) respectively, but only showing times +500, +1000 and +5000 years 10 

after present. 11 

(e) and (f): Corresponding results to (ca) and (db) respectively, using the advanced statistical 12 

techniques in Chang et al. (2015b2016) extended as described in Sect. 2e and Appendix C2.5. 13 
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 1 

Figure C1. Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model 2 

parameters, 5 values each), used in the simple method with score-weighted averaging. The 3 

organization of the figure regarding the 4 parameter ranges is as described in Fig. 2. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B). The score values in 5 

this plot are normalized relative to the maximum score of the LE, and the color scale is adjusted 6 

to illustrate the similar qualitative distribution to (b). 7 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 2. 8 
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 2 

Figure C2. Ensemble-mean scores for individual parameter values, using the simple averaging 3 

method as in Fig. 3. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).  5 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 3.  6 
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 2 

Figure C3. Ensemble-mean scores for pairs of parameters, using the simple averaging method 3 

as in Fig. 4. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).  5 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 4.  6 
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 2 

 3 

Figure C4. Equivalent global-mean sea level contribution (ESL) relative to modern vs. time as 4 

in Fig. 5. 5 

(a) Scatter plot of all 625 individual runs in the LE, using close-to-Gaussian scoring approach 6 

(a) (Sect. 2.4, Appendix B).  7 

(b) As (a) except using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in 8 

Fig. 5. 9 

(c) Score weighted mean and one-sided standard deviations, using close-to-Gaussian scoring 10 

approach (a). 11 

(d) As (c) except using the more heuristic approach (b), exactly as in Fig. 5. 12 
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 2 

Figure C5. Probability densities of equivalent sea level (ESL) rise at particular times as in Fig. 3 

6. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).  5 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 6.  6 
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 1 

 2 

Figure D1. Model vs. observed Relative Sea Level (RSL) data, for the 3 RSL sites (Briggs and 3 

Tarasov, 2013) that lie within and away from the edges of the model’s West Antarctic domain. 4 

The observations and uncertainty ranges are shown as black dots and whiskers. Model curves 5 

are shown for all 625 runs, with aggregate scores S indicated by colors as in Fig. 5. The run 6 

with the best individual score for each site is shown as a thick black line, and the run with best 7 

aggregate score S is shown as a thick blue line. 8 

(a) Southern Scott Coast, ~77.3S, 163.6E.  9 

(b) Terra Nova Bay,  ~74.9N, 163.8E. 10 

(c) Marguerite Bay, ~67.7S, 67.3W. 11 
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Figure D2. 3 
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 1 

Figure D2 continued. 2 

 3 

Figure D2 and D2 continued. Model vs. observed elevation vs. age data, for the 18 sites in the 4 

compilation (Briggs and Tarasov, 2013) that lie within and away from the edges of the model’s 5 

West Antarctic domain, shown roughly in west-to-east order. The observations and uncertainty 6 

ranges are shown as black dots and whiskers. Model curves are shown for all 625 runs, with 7 

aggregate scores S indicated by colors as in Fig. 5. The run with the best individual score for 8 

each site is shown as a thick black line, and the run with best aggregate score S is shown as a 9 

thick blue line. Sites shown (Briggs and Tarasov, 2013) are: 10 

Reedy Glacier 1                      ~ 85.9S,  132.6W 11 

Reedy Glacier 2,                     ~ 86.1S,  131.0W 12 

Reedy Glacier 3,                     ~ 86.3S,  126.1W 13 

Hatherton glacier                     ~ 79.9S,  156.8E 14 

Clark Mts,                               ~ 77.3S,  142.1W 15 

Allegheny Mts,                       ~ 77.3S,  143.3W 16 

Western Sarnoff Mts,             ~ 77.1S,  145.5W 17 

Eastern Fosdick Mts,              ~ 76.5S,  144.5W 18 

Executive Committee Range, ~ 77.2S,  127.1W 19 

Pine Island Bay 1,                  ~ 75.2S,  111.2W 20 

Pine Island Bay 2,                    ~ 74.5S,  99.2W 21 

West Palmer Land,                   ~ 71.6S,  67.4W 22 

Alexander Island South,           ~ 72.0S,  68.5W 23 

Alexander Island North,           ~ 70.9S,  68.4W 24 

Behrendt Mts,                           ~ 75.3S,  72.3W 25 

Ellsworth Mts,                          ~ 80.3S,  82.2W 26 

Shackleton Range 1,                 ~ 80.4S,  30.1W 27 

Shackleton Range 2,                 ~ 80.1S,  25.8W 28 
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Figure D3. Model vs. observed modern uplift rates, for the 25 sites in the compilation 3 

(Whitehouse et al., 2012b) that lie within the model’s West Antarctic domain, shown roughly in 4 

west-to-east order. The observations and uncertainty ranges are shown as black dots and 5 

whiskers. Model rates are shown for all 625 runs, with straight lines joining the sites, and 6 

aggregate scores S indicated by colors as in Fig. 5. The run with best aggregate score S is 7 

shown as a thick blue line. Sites shown, with labels as in Whitehouse et al. (2012b, Supp. Inf.), 8 

are: 9 

1.  FTP1,                  78.93S,   162.57E 10 

2.  ROB1,                77.03S,   163.19E 11 

3.  TNB1,                 74.70S,   164.10E 12 

4.  MCM4_AV,       77.85S,   166.76E 13 

5.  MBL1_AV,        78.03S,  155.02W 14 

6.  W01_AV,           87.42S,  149.43W 15 

7.  MBL2,                76.32S,  144.30W 16 

8.  MBL3,                77.34S,  141.87W 17 

9.  W09,                   82.68S,  104.39W 18 

10. W06A,               79.63S,   91.28W 19 

11. W07_AV,          80.32S,   81.43W 20 

12. W05_AV,          80.04S,   80.56W 21 

13. HAAG,              77.04S,   78.29W 22 

14. W08A/B,           75.28S,   72.18W 23 

15. W02_AV,          85.61S,   68.55W 24 

16. OHIG,               63.32S,   57.90W 25 

17. PALM,              64.78S,   64.05W 26 

18. ROTB,               67.57S,   68.13W 27 

19. SMRT,               68.12S,   67.10W 28 

20. FOS1,                71.31S,   68.32W 29 

21. BREN,               72.67S,   63.03W 30 

22. W04_AV,          82.86S,   53.20W 31 

23. BELG,               77.86S,   34.62W 32 

24. W03_AV,          81.58S,   28.40W 33 
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25. SVEA,               74.58S,   11.22W 1 
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Figure D4. Score-weighted probability (0 to 1) of grounded ice vs. floating ice or open ocean at 3 

each grid point (see text), for various times over the last 20,000 years, concentrating on the 4 

period of rapid retreat between 15 and 10 ka. The LE and model version is essentially the same 5 

as above, except with all-Antarctic coverage to include East Antarctic variations. The quantity 6 

shown is the sum of scores S(n) for runs n with grounded ice at each grid point and time, 7 

divided by the sum of scores for all runs in the ensemble. Thick black lines in the panels for 20, 8 

15, 10 and 5 ka show grounding lines reconstructed for West Antarctica by the RAISED 9 

consortium (RAISED, 2014), plotted using their vertex information (S. Jamieson, pers. comm.), 10 

and choosing their Scenario A for the Weddell embayment (Hillenbrand et al., 2014). For 20 11 

and 15 ka around East Antarctica, the black line is from the 20 ka RAISED timeslice which for 12 

EAIS is based on Livingston et al. (2012) and Mackintosh et al. (2014). Similarly the modern 13 

grounding line (Fretwell et al., 2013) is shown by a thick black line for 0 ka, which is also used 14 

around East Antarctica for 10 and 5 ka.  15 
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 1 

Figure D5. Upper panels: Score-weighted probability (0 to 1) of grounded ice vs. time, as in 2 

Fig. D4 but along centerline transects of (i) Pine Island Glacier and its paleo-trough, (ii) Ross 3 

embayment and (iii) Weddell embayment. Black symbols show various published data: 4 

Pine Island, circles: Larter et al., 2014 (the RAISED Consortium). 5 

Pine Island, crosses: Kirshner et al., 2012; Hillenbrand et al., 2013; Smith et al., 2014. 6 

Ross, circles: Anderson et al., 2014 (the RAISED Consortium). 7 

Ross, crosses: Conway et al., 1999; McKay et al., 2008. 8 

Weddell, ‘A’ and ‘B’: Hillenbrand et al., 2014 (the RAISED Consortium), Scenarios A and 9 

B respectively. 10 

Lower panels: Modern bathymetric profiles along each transect (from Bedmap2; Fretwell et al. 11 

2013). 12 
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