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Author response letter for “Large ensemble modeling of last deglacial retreat of the West
Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques”, by D. Pollard,
W.Chang, M.Haran, P. Applegate and R. DeConto.

We thank the reviewers for their careful and helpful comments on the original version of the
manuscript. Our responses and changes are described below point by point, with reviewer text
in italics. This is followed by a “tracked-changes” manuscript file showing all changes from the
original version.

In summary, the main changes are:
e All “future” simulation segments in text and figures are removed (Reviewer 1).

e References to upcoming work and papers are reduced, and we make clear that this paper
stands on its own (Reviewer 1).

e Alternate “close-to-Gaussian™ approach to misfits and scoring are added, discussed, and
results compared, in sections 2.3 and 2.4, Appendices B and new C (Reviewer 2).

e Spans of model results over all runs are shown to encompass the various types of
observations, in new Appendix D (Reviewer 2).

e Description and discussion of the advanced statistical techniques are expanded, and their
role made clearer, in sections 2.5 and 5 (Reviewer 2).

Reviewer 1:

Overview:

The submitted paper presents results from a large ensemble of ice-sheet model simulations
of the West Antarctic Ice Sheet through the last glacial termination and into

the future. The ensemble aims to explore a broad envelope of parameter space, and

two different techniques are employed to assess the results. As far as I can tell, the
primary justification for the paper lies in the intercomparison of so-called ’simple’ and
‘advanced’ statistical techniques, rather than the presentation of realistic simulations of

the deglacial and future states of the ice sheet.

This is correct: the primary purpose of the paper is to compare ‘simple’ and ‘advanced’
techniques (see next response below).
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Overall the paper is well-written and clearly laid out, with thorough explanation of the
salient aspects of the study and sufficient reference to the preceding studies on which
it builds. The figures are clear and effective. As a methodological paper it is clearly

well-suited to GMD.

General issues:

I have detailed a few points lower down that I think need further explanation or clarification,

but I have two more general issues with the manuscript as it stands.

Firstly, there are numerous (at least 8) instances in the text (p6 lines 22/23; p7 lines
18/19; p13 lines 19/20; p14 lines 8/9; p16 lines 1/2; p16 lines 17-21; p18 lines 6-8; p18
lines 23-25) where the authors refer to ’future work’ that will either develop or change
some aspects of the study as presented here. Whilst it is of course quite usual that
submitted work forms part of a project that is ongoing, I found the repetition of these
statements quite off-putting in the sense that they give the reader the impression that

the current study is in some way ’incomplete’, or worse still, inferior with respect to
something similar that is being prepared for another journal (for example, the reference
to Pollard et al., 2015b, which is a paper that is only ’in preparation’). I think the paper
should be able to stand alone, and if important aspects of the study are either yet to

be developed, or modified, then what is the rush to publish seemingly incomplete work

here? Will the forthcoming papers build on this one, or undermine it?

As mentioned above, the primary purpose of this paper is to compare the simple and advanced
techniques, using the same large ensemble (stated in section 1). We agree that the numerous
instances referring to other work detracted from this purpose. The current paper definitely
stands on its own and is complete, and the results do not depend on or will be changed by any
of these instances. Accordingly, (i) we emphasize more the purpose of this paper in the
introduction, (ii) we have removed many of these instances where they do not contribute to the
M/S, (iii) where the follow-on paper (Pollard et al., 2016) is first mentioned, we explain that it
deals solely with specific glaciological aspects, not statistical, and does not undermine or alter
the results here at all.

In the concluding Section 5, we still mention several avenues and plans for further work, which
all concern glaciological aspects, not statistical. As the reviewer mentions, this type of
discussion is quite usual in the concluding sections of papers.
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The second issue I have with the manuscript as it stands is the inclusion of the 'future’
scenario modelling. The title and majority of the paper deal with the deglacial, and

since the primary purpose of the paper is to compare results from different statistical
methods (for which any results would do) I see no reason to include the additional

5000 year experiments. They are barely discussed in the paper and have no relation

to the deglacial experiments. Furthermore, as detailed below the basis for the 6C/2C
air/ocean warmings is not clear. If they are arbitrary, then what is the justification for
adding them to the end of a supposedly ’realistic’ deglacial run? And if they are meant

to represent a future emissions scenario such as RCP 8.5, then some explanation is

needed to clarify why this is used rather than, for example, RCP 6 or any of the others.

To my mind it looks like these data have been added to the paper somewhat opportunistically,
rather than for any particular purpose. And by the authors own admission

these simulations use a climate warming that is 'very simple’ (p14, line 7), and the

future simulations themselves will be presented in more detail in, once again, the forthcoming
Pollard et al 2015b paper currently ’in preparation’. On this basis I think these

arbitrary extensions to 5000 CE should be removed and saved for the other pending

publications.

We have removed all mention of the simple “future” extensions in the M/S. These extensions
were part of earlier work exploring the response to future warming, but have been superceded
by further work with more realistic future climate RCP scenarios (with references cited here).
This is a natural extension of the past simulations here, but we agree that they do not add to the
purpose of this M/S (and again, do not change the statistical results at all), and belong
appropriately in subsequent papers.

Specific points:

po - I think the justification for not using the ’drastic ice-retreat mechanisms’ of Pollard
et al 2015a should be more fully discussed. Either these mechanisms are necessary
for realistic simulations (as argued in the EPSL paper), or not. Or do the processes
only happen during warm periods and not cold periods? It seems that any complex
statistical analysis of results is only useful if it helps reduce uncertainties, but if the
largest uncertainty is ignored (ie uncertainty over the inclusion or exclusion of ’drastic’

mechanisms) then the results are inherently biased. It would be useful to see how the
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results change when the ’drastic’ mechanisms are included.

These mechanisms are only triggered in warmer climates than present, as the reviewer suggests.
They do not play any roles in the glacial-to-deglacial sequence of the last ~40 kyrs, as
confirmed by tests (not shown here). We note this in the model description section 2.1.

p7 - Liu et al 2009 present a transient run that ends at 14 ka BP, so what is used to

drive the model from 14 ka to present?

Although the Liu et al. (2009) paper only describes results to 14 ka BP, their simulation has
been extended to the present, which they call the “TraCE-21k” experiment; see
www.cgd.ucar.edu/ccr/TraCE. We note this in the references and acknowledgements.

p7 - what is the basis of the 6 and 2 C air / ocean temp increases? RCP 8.5 after

150 yrs equals c. 6 C air temp above present, but CMIP models suggest 6 C air

would equate to 1.5 C in the ocean, not 2 C, which presumably could affect the results
presented here? Similarly, the extended RCP scenarios define warming trajectories
that increase steadily to 2300, and remain constant thereafter, rather than flat-lining at

2150 as implied here.

This is no longer pertinent since all text and figures concerning the future extensions are
removed (see above).

p7 - since these "future" simulations are regarded as unrealistic, why include them?

Particularly if the 'drastic ice-retreat mechanisms’ aren’t included.

As above, no longer pertinent.

pl5 - "Macintosh’ should be "Mackintosh’

This is corrected.

Fig. 5 - y-axis label is ’sea level rise (m)’, which implies that it is showing time-varying

rates of change in sea level, but I think it is actually showing the change relative to
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present? Otherwise the value of c. -6 m from -20 ka to -15 ka could be read as

indicating that the sea level was falling constantly by 6 m through that period.

The label is changed to “equivalent sea level (m)”.

Reviewer 2:

The submission can be an informative (and relatively succinct) comparison of two different
approaches to making inferences about past ice sheet evolution given modelling

and paleo observations. Some specific issues (including some mis-citations) are detailed
below. There are four key deficiencies that have to be remedied (to change the

above "can be" to "is"):

1) Currently there are no plots nor discussion of model fits to constraint data and as

such it is not clear whether this ensemble actually covers the constraint data.

We have added a new Appendix D with extensive figures and some discussion, showing the
span of results of all 625 runs of the large ensemble (LE) compared to observations, for the
various past data types. This consists of individual plots for specific sites for Relative Sea Level
and cosmogenic elevation-age data, and a single plot for modern uplift rate sites. Also, maps of
grounded-ice probability computed from the LE are compared with maps of reconstructed
grounding line positions at specific past times, and similarly for grounding-line distances vs.
time along paleo-troughs of the major embayments. These plots show that the span of model
results does by and large encompass the observations with no serious outliers, as required for
meaningful interpretation of the statistical LE results.

2) The handling of data uncertainties for all the misfit metrics needs to be spelled out
(some treatments are spelled out, but not all). Eg, TROUGH will have dating and
downscaling/resolution uncertainties. If these uncertainties are ignored, the inferences

based on these metrics are biased and incorrect.

Considerably more detailed description and formulae of all misfit calculations are given in an
expanded Appendix B. This aims to give a complete description of all calculations.
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3) how are data weighted within each class? If no weighting is done, then the statistical
modelling is assuming all data/model residuals are not correlated, which is incorrect

(though commonly implemented...).

Within each class, intra-data-type-weighting is done, very much the same as in Briggs at
Tarasov (2013), for past data with individual sites: Relative Sea Level, elevation-age, and uplift
rates. Full details are now given in Appendix B.

4) There has to be justification for giving all data classes the same weight. There are
only 8 RSL data sites, all located on the periphery of the ice sheet. There is no basis
to give this geographically restricted data the same weight as, for instance, the RMS

error between the dynamically modelled and observed present day ice sheet.

We agree that this is a significant issue, but take a different strategy than in the Briggs et al.
papers. Here, we assume that each data type is of equal importance to the overall score, and that
if any one individual score is very bad (S; = 0), the overall score S should also be = 0. This
corresponds to the notion that if any single data type is completely mismatched, the run should
be rejected as unrealistic, regardless of the fit to the other data types. The fits to past data, even
if more uncertain and sparser than modern, seem equally important to the goal of obtaining the
best calibration for future applications with very large departures from modern conditions. This
differs from the “inter-data-type” weighting based on “volumes of influence” in Briggs et al.,
which is interesting and logical, but we suggest is heuristic and not the only reasonable way.
Our strategy is explained in the revised section 2.4. Also see the response to “Gaussian forms”
point (4™ below).

If the "advanced statistical method" does use a complete error model that addresses
points 2-4 above, then this should be made clear in detail. Ie, are you saying that we
can ignore all these issues, do simple latin hypercube sampling (albeit with a large
enough sample, but still orders of magnitude smaller than required for proper MCMC),
and get roughly the same result as a complete Bayesian calibration determination of
the posterior (ie with a complete error/uncertainty model that accounts for uncertainties
in the constraint data, structural uncertainties, and correlation between residuals and
that covers the constraint data set)? If so, then this claim need to be much more clearly

spelled out.
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We acknowledge that some sentences in the M/S were somewhat unclear regarding this point,
which are clarified. In this paper, the advanced techniques do not use a Latin HyperCube large
ensemble (LE), but are applied to the same LE as the simple averaging method, which is a 625-
member LE with full factorial sampling. The purpose of this paper is just to compare statistical
results of the two methods, with the advanced techniques acting as a benchmark. In previous
studies (Applegate et al., 2012; Chang et al., 2014), the advanced techniques yielded successful
results when applied to some relatively small-sized LE’s with coarse Latin HyperCube
sampling, for which the simple methods failed. This is because the interpolation capability of
the advanced techniques (emulation, MCMC) is much better than the simple method
(essentially none). However, this distinction depends on the size of the LE and the coarseness
of the sampling; somewhat larger LE’s with Latin HyperCube sampling and fewer parameters
can be amenable to the simple method. This is now briefly noted in the conclusions, where we
emphasize that it is not otherwise the subject of this paper.

Once these (and the comments below) are addressed, I would agree with Nick

Golledge as this being a methodological paper that is well-suited to GMD.

# Specific comments:

# How is relative sealevel computed? What visco-elastic earth model is used and is

geoidal deformation computed?

The bedrock response component in the ice sheet model is a basic ELRA (Elastic Lithosphere
Relaxing Asthenosphere) model. Sea level vs. time in the ice model itself is prescribed from
ICE-5G. These are noted in the model description section 2.1.

The calculation of relative sea level at specific grid points for comparison with RSL geologic
data is as in Briggs and Tarasov (2013), and is now described fully in Appendix B.

"Tarasov et al. (2012) used Artificial Neural Nets in North American ice-sheet modeling
to fill in parameter space between LE simulations, and have mentioned their potential
application to Antarctica (Briggs and Tarasov, 5 2013)."

rn

# actually this was as much if not more of a "calibration” as the authors’ "advanced
statistical technique" and should be clearly stated as such. That 2012 paper also used
MCMC to compute a posterior distribution of ensemble parameters given fits to paleo
constraint data. The reason that "calibration” wasn’t used in the title of that paper was

1) ensemble didn’t cover data constraints (attaining coverage is a big challenge given
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the large size of the constraint data set), and 2) it had an incomplete error model especially
with respect to quantifying structural uncertainties. Unfortunately, "Calibration"

has become a poorly understood buzzword whose meaning is being watered down in

some recent ice sheet relevant publications. To me, if "calibration" is not confidently
estimating the probability distribution and thereby the uncertainties of predictions (with
the unavoidable clear specification of uncertainties not accounted for), then it should

not be called calibration. But this may be a loosing battle...

We have rephrased the relevant sentence to address this concern, as follows:

Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North
American ice sheets, and have mentioned their potential application to Antarctica
(Briggs and Tarasov, 2013).

"Then the geometric (logarithmic) average of the 8 individual Si ’s is taken to yield the

aggregate score S for each run"

# This choice makes no sense to me and needs to be justified. RMSE is effectively
log(Gaussian). So your weighted score is (logGaussl*logGauss2*..)"1/8. How does

one interpret this? If you are using a non-Gaussian error model, then what is it?

We propose that the formulae chosen for misfits and scoring are somewhat heuristic and there
is more than one reasonable approach, and that strict adherence to Gaussian error model forms
is not the only possibility. In section 2.3 we have added the following text to explain and justify
this viewpoint:

One approach to calculating misfits and scores is to borrow from Gaussian error
distribution concepts, i.e., individual misfits M of the form [(mod-obs) / 0']2 and
overall scores of the form ™, where mod is a model quantity, obs is a
corresponding observation, ¢ is an observational or scaling uncertainty, M is an
average of individual misfits over data sites and types of measurements, and s is
another scaling value (Briggs and Tarasov, 2013; Briggs et al., 2014). However, the
choice of these forms is somewhat heuristic, and different choices are also
appropriate for complex model-data comparisons with widespread data points, very
different types of data, and with many model-data error types not being strictly
Gaussian. In order to determine the influence of these choices on the results, we
compare two approaches: (a) with formulae adhering closely to Gaussian forms
throughout, and (b) with some non-Gaussian aspects attempting to provide more
straightforward and interpretable scalings between different data types. Both
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approaches are described fully below (next section, and Appendix B). They yield
very similar results, with no significant differences between the two, as shown in
Appendix C. The second more heuristic approach (b) is used for results in the main

paper.

Accordingly, we have made a significant addition to the paper, adding a new set of formulae for
misfits and scores, that do adhere closely to Gaussian error forms. We call this “approach (a)”,
vs. “approach (b)” for the existing set of formulae. Both sets of formulae are described in an
expanded Appendix B and in Section 2.4. Comparisons of all results are presented for both
approaches in a new Appendix C, which show no significant differences, indicating that they
are robust and independent of the choice of approaches to misfits and scoring.

"It differs from from the weighting in Briggs and Tarasov (2013) (their “inter-data-type”),
which is algebraic and depends heavily (80%) on the fit to modern ice distribution.”

# This is incorrect. The weightings are for the RSME score components, but the final
weighting is e to the power of the sum of these normalized components (ie assumes a
pseudo-Gaussian error model). This is therefore not algebraic. Furthermore, Briggs,
Pollard, and Tarasov (2014) should be cited instead. They give a corrected inter-datatype
relative weighting of < 50% for present-day data (Coauthors should know the

papers their names are on, rap knuckles.., :) ).

The relevant sentence in Section 2.4 is rephrased, avoiding specific values:

Of the two approaches, this most closely follows Briggs and Tarasov (2013) and Briggs et
al. (2014), except for their inter-data-type weighting, which assigns very different weights
to the individual types based on spatial and temporal volumes of influence (Briggs and
Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2).

"3. Consistent with trends in recent Antarctic modeling studies (Ritz et al., 2001; Huy20
brechts, 2002; Philippon et al., 2006, Briggs et al., 2013, 2014; Whitehouse et al.,
2012a, b; Golledge et al., 2012, 2013, 2014), the greater total Antarctic ice amount

at the Last Glacial Maximum is less than in earlier papers, equivalent to 5 to 10m of

global equivalent sea level below modern”

# Incorrect citation of Briggs et al, 2014: Their confidence interval for LGM Antarctic

ice volume excess has an upper bound of 14.3 m eustatic equivalent, with lower
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confidence is > 10 m, and one of their single best fit runs has an excess of 13.2 m.
Furthermore, they raise the point that their (well our) model had insufficient grounding line
response compared to proxy paleo data, suggesting that LGM grounded ice volume

could be under-estimated. So there is no basis to lump this in with other studies

claiming </= 10 m of eustatic sealevel equivalent.

This is a valid point, stemming from the sentence not being clear; we meant “5 to 10m” to refer
just to our results. We have clarified the sentence as follows:

3. The total Antarctic ice amount at the Last Glacial Maximum is equivalent to ~5 to
10 meters of global equivalent sea level below modern (Fig. 5). This is consistent
with the trend in recent modeling studies (Ritz et al., 2001; Huybrechts, 2002;
Philippon et al., 2006; Briggs et al., 2014; Whitehouse et al., 2012a,b; Golledge et al.,
2012,2013,2014, whose LGM amounts are generally less than in older papers.

"For ELEV: the minimum squared mismatch of ice elevation and time, within the constraints
of descending elevation trend, each relative to the observational uncertainties

of elevation and time"

#Bit unclear. Is this the same error model as Briggs and Tarasov 2013?

It is very close to the same. Full details are be given in the new Appendix B.

A. Kergweg:

Dear authors,
In my role as executive editor I ask you to move the Code Availability Section to its
usually place after the conclusion but in front of the Appendix when revising your article.

Thanks, Astrid Kerkweg

This section is moved as requested.
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Abstract

A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice
Sheet over the last ~20,000 years. A large ensemble of 625 model runs is used to calibrate the
model to modern and geologic data, including reconstructed grounding lines, relative sea-level
records, elevation-age data and uplift rates, with an aggregate score computed for each run that
measures overall model-data misfit. Two types of statistical methods are used to analyze the
large-ensemble results: simple averaging weighted by the aggregate score, and more advanced
Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov

chain Monte Carlo. The analyses provide sea-level-rise envelopes with well defined parametric

uncertainty bounds, but the simple averaging method only provides robust results with full-

factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and

envelopes of equivalent sea-level rise with the simple averaging method agree guite-well with

the more advanced techniques;—but—enby—for—atarse—ensemble—with—+fullfactorial parameter

samphng. Best-fit parameter ranges confirm earlier values expected from prior model tuning,

11



10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
30

including large basal sliding coefficients on modern ocean beds.—Each—+unis—extended5000

1. Introduction

Modeling studies of future variability of the Antarctic Ice Sheet have focused to date on the
Amundsen Sea Embayment (ASE) sector of West Antarctica, including the Pine Island and
Thwaites Glacier basins. These basins are currently undergoing rapid thinning and acceleration,
producing the largest Antarctic contribution to sea level rise (Shepherd et al., 2012; Rignot et
al., 2014). The main cause is thought to be increasing oceanic melt below their floating ice
shelves, which reduces back pressure on the grounded inland ice (buttressing; Pritchard et al.,
2012; Dutrieux et al., 2014). There is a danger of much more drastic grounding-line retreat and
sea-level rise in the future, because bed elevations in the Pine Island and Thwaites Glacier basin
interiors deepen to depths of a kilometer or more below sea level, potentially allowing Marine
Ice Sheet Instability (MISI) due to the strong dependence of ice flux on grounding-line depth
(Weertman, 1974; Mercer, 1978; Schoof, 2007; Vaughan, 2008; Rignot et al., 2014; Joughin et
al., 2014).

Recent studies have mostly used high-resolution models and/or relatively detailed treatments of
ice dynamics (higher order or full Stokes dynamical equations; Morlighem et al., 2010;
Gladstone et al., 2012; Cornford et al., 2013; Parizek et al., 2013; Docquier et al., 2014; Favier
et al., 2014; Joughin et al., 2014). Because of this dynamical and topographic detail, models
with two horizontal dimensions have been confined spatially to limited regions of the ASE and
temporally to durations on the order of centuries to one millennium. On the one hand, these
types of models are desirable because highly resolved bed topography and accurate ice
dynamics near the modern grounding line could well be important on timescales of the next few
decades to century (references above, and Durand et al., 2011; Favier et al., 2012). On the other

hand, the computational run-time demands of these models limit their applicability to small

12
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domains and short time scales, and they can only be calibrated against the modern observed

state and decadal trends at most.

Here we take an alternate approach, using a relatively coarse-grid ice sheet model with hybrid
dynamics. This allows run durations of manyseveral 10,000 years, so that model parameters can
be calibrated against geologic data of major retreat across the continental shelf since the Last
Glacial Maximum (LGM) over the last ~20,000 years. The approach is a trade-off between (i)
less model resolution and dynamical fidelity, which degrades future predictions on the scale of
~10's km and the next few decades (sill-to-sill retreat immediately upstream from modern
grounding lines), and (ii) more confidence on larger scales of 100's km and 1000's years (deeper
into the interior basins, further into the future) provided by calibration versus LGM extents and
deglacial retreat of the past 20,000 years. Also the approach allows more thorough exploration
of uncertain parameter ranges and their interactions, such as sliding coefficients on modern

ocean beds, oceanic melting strengths, and different Earth treatments of bedrock deformation.

A substantial body of geologic data is available for the last deglacial retreat in the ASE and
other Antarctic sectors. Notably this includes recent reconstructions of grounding-line locations

over the last 25 kyrs by the RAISED Consortium (RAISED, 2014). Other types of data at

specific sites include relative sea-level records, cosmogenic elevation-age data, and modern
uplift rates (compiled in RAISED, 2014; Briggs and Tarasov, 2013, Briggs et al., 2013, 2014;
Whitehouse et al., 2012a,b). Following several recent Antarctic modeling studies (Briggs et al.
and Whitehouse et al. as above; Golledge et al., 2014; Maris et al., 2015), we utilize these
datasets in conjunction with large ensembles (LE), i.e., sets of hundreds of simulations over the
last deglacial period with systematic variations of selected model parameters. LE studies have
also been performed for past variations of the Greenland Ice Sheet, for instance by Applegate et

al. (2012) and Stone et al. (2013).

13
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‘ This paper follows on from Chang et al. (2045a;62015, 2016), who apply relatively advanced

Bayesian statistical techniques to LE’s generated by our ice-sheet model. The statistical steps

are described in detail in Chang et al. (264522015, 2016), and include:

e Statistical emulators, used to interpolate results in parameter space, constructed using a new

emulation technique based on principal components.

¢ Probability models, replacing raw reet-mean-square-error-RMSE) model-data misfits with
formal likelihood functions, using a new approach for binary spatial data such as grounding-

line maps.

e Markov Chain Monte Carlo (MCMC) methods, used to produce posterior distributions
which are continuous probability density functions of parameter estimates and projected
results based on formally combining the information from the above two steps in a Bayesian

inferential framework.

Some of these techniques were applied to LE modeling for Greenland in Chang et al. (2014).
McNeall et al. (2013) used a Gaussian process emulator, and scoring similar to our simple
method, in their study of observational constraints for a Greenland ice sheet model ensemble.
Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North
American ice-sheet-meodelingto—fill-inparameter spacebetweenE—stmulations_sheets, and

have mentioned their potential application to Antarctica (Briggs and Tarasov, 2013). Apart

from these examples, to our knowledge the statistical techniques in Chang et al. (2845a;62015,
2016) are considerably more advanced than the simpler averaging method used in most

previous LE ice-sheet studies; these previous studies have involved

(i) Computing a single objective score for each LE member that measures the misfit between

the model simulation and geologic and modern data, and

(i1) Calculating parameter ranges and envelopes of model results by straightforward averaging

over all LE members, weighted by the scores.

The more advanced statistical techniques offer substantial advantages over the simple averaging
method, such as providing robust and smooth probability density functions in parameter space.

As-shewn-+nFor instance, Applegate et al. (2012) and Chang et al. (2014);) show that the simple
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averaging method fails to provide reasonable results for LE’s with coarsely spaced Latin

HyperCube sampling, whereas emulation—andfor the ethersame [E, the advanced

stepstechniques successfully interpolate in parameter space; and provide smooth and

meaningful probability densities.

However, the advanced techniques in Chang et al. (2045a;b2015, 2016) require statistical

expertise not readily available to most ice-sheet modeling groups. It may be that the simple
averaging method still gives reasonable results, especially for LE’s with full factorial sampling,
i.e., with every possible combination of selected parameter values (also referred to as grid or
Cartesian product; Urban and Fricker, 2010). The purpose of this paper is to apply both the
advanced statistical and simple averaging methods to the same Antarctic LE, compare the
results, and thus assess whether the simple (and commonly used) method is a viable alternative
to the more advanced techniques, at least for full factorial LEs. The results include probabilistic
ranges of model parameter values, and envelopes of model results such as equivalent sea-level

rise. Further types of results related to specific glaciological problems (LGM ice volume,

MeltWater Pulse 1A, future retreat) will be presented in Pollard et al. (2016) using the simple-

averaging method, and do not modify or extend the comparisons of the two methods in this

aper.

Sections 2a-b—deseribes2.1 and 2.2 describe the model, the setup for the last deglacial

simulations, and the model parameters chosen for the full factorial LE. Sections 2e-e2.3 to 2.4
describe the objective scoring vs. past and modern data used in the simple averaging method,

and data—used—inSect. 2.5 provides an overview of the advanced statistical techniques. Results

are shown for best-fit model parameter ranges and equivalent sea-level envelopes in
seettonsSects. 3 and 4, comparing simple and advanced techniques. Conclusions and steps for

further work are described in seetdonSect. 5.

2. Methods

15
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2.1. Ice sheet model and simulations

The 3-D ice-sheet model has previously been applied to past Antarctic variations in Pollard and
DeConto (2009), DeConto et al. (2012) and Pollard et al. (264522015). The model predicts ice
thickness and temperature distributions, evolving due to slow deformation under its own
weight, and to mass addition and removal (precipitation, basal melt and runoff, oceanic melt,
and calving of floating ice). Floating ice shelves and grounding-line migration are included. It
uses hybrid ice dynamics and an internal condition on ice velocity at the grounding line
(Schoof, 2007). The simplified dynamics (compared to full Stokes or higher-order) captures
grounding-line migration reasonably well (Pattyn et al., 2013), while still allowing O(10,000's)
year runs to be feasible. As in many long-term ice sheet models, bedrock deformation is
modeled as an elastic lithospheric plate above local isostatic relaxation. Details of the model
formulation are described in Pollard and DeConto (2012a,b). The drastic ice-retreat
mechanisms of hydrofracturing and ice-cliff failure proposed in Pollard et al. 26045a)-arenet
included—here,but—will-be—combined—with- EE s—inPellard—et—al—2015b)(2015) are only

trigeered in warmer-than-present climates and so do not play any role in the glacial-deglacial

simulations here; in fact they are switched off in all runs. Tests show that they play no

perceptible role in simulations over the last 40 kyears.

The model is applied to a limited area nested domain spanning all of West Antarctica, with a
20-km grid resolution. Lateral boundary conditions on ice thicknesses and velocities are
provided by a previous continental-scale run. The model is run over the last 30,000 years,
initialized appropriately at 30 ka (30,000 years before present, relative to 1950 AD) from a
previous longer-term run. Atmospheric forcing is computed using a modern climatological
Antarctic dataset (ALBMAP: Le Brocq, 2010), with uniform cooling perturbations proportional
to a deep-sea core 8'%0 record (as in Pollard and DeConto, 2009, 2012a). Oceanic forcing uses
using archived ocean temperatures from a global climate model simulation of the last 22 kyr
(Liu et al., 2009). Sea level variations versus time, which are controlled predominantly by
Northern Hemispheric ice sheet variations, are prescribed from the ICE-5G dataset (Peltier,
2004). Modern bedrock elevations are obtained from the Bedmap2 dataset (Fretwell et al.,
2013).

16
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2.2. Large ensemble and model parameters

The large ensemble analyzed in this study uses full factorial sampling, i.e., a run for every
possible combination of parameter values, with 4 parameters varied and with each parameter
taking 5 values, requiring 625 (=5 runs. As discussed above, results are analyzed in two ways:
(1) using the relatively advanced statistical techniques (emulators, likelithood functions,
MCMC) in Chang et al. (2045a;b2015, 2016), and (2) using the much simpler averaging
method of calculating an aggregate score for each run that measures model-data misfit, and
computing results as averages over all runs weighted by their score. Because the second method
has no means of interpolating results between sparsely separated points in multi-dimensional
parameter space, it is effectively limited to full factorial sampling with only a few parameters
and a small number of values each. The small number of values is nevertheless sufficient to
span the full reasonable “prior” range for each parameter, and although the results are very
coarse with the second method, they show the basic patterns adequately. Furthermore,

envelopes of results of all model runs are compared in Appendix D with corresponding data

and demonstrate that the ensemble results do adequately “span” the data, i.e., there are no

serious outliers of data far from the range of model results.

< —
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The 4 parameters and their 5 values are:

OCFAC: Sub-ice oceanic melt coefficient.
Values are 0.1, 0.3, 1, 3, 10 (non-dimensional).
Corresponds to K in Eq. 17 of Pollard and Deconto (2012a).

CALYV: Factor in calving of icebergs at oceanic edge of floating ice shelves.
Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).
Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. (2015).

CSHELF': Basal sliding coefficient for ice grounded on modern-ocean beds.
Values are10”, 10,107, 10°, 10° (m yr' Pa™).
Corresponds to Cin Eq. 11 of Pollard and Deconto (2012a).

TAUAST: e-folding time of bedrock relaxation towards isostatic equilibrium.
Values are 1, 2, 3, 5, 7 kyrs.
Corresponds to 7in Eq. 33 of Pollard and Deconto (2012a).

The 4 parameters were chosen based on prior experience with the model; each has a strong
effect on the results, yet their values are particularly uncertain. The first 3 involve oceanic
processes or properties of modern ocean-bed areas. Parameters whose effects are limited to
modern grounded-ice areas are reasonably well constrained by earlier work, such as basal

sliding coefficients under modern grounded ice which are obtained by inverse methods (e.g.,

18
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Pollard and DeConto, 2012b, for this model). More discussion of the physics and uncertainties

associated with these parameters is given in Appendix A.

2.3. Individual data types and scoring

Following Whitehouse (2012a,b), Briggs and Tarasov (2013) and Briggs et al. (2013, 2014), we
test the model against 3 types of data for the modern observed state, and 5 types of geologic
data relevant to ice-sheet variations of the last ~20,000 years, using straightforward mean
squared or root-mean-square<RMSE} misfits in most cases. Each misfit (M;, i = 1 to 8) is
normalized into an individual score (S;), which are then combined into one aggregate score ()
for each member of the LE. Only data within the domain of the model (West Antarctica) is used

in the calculation of the misfits.

19



Wefirst-deseribe-One approach to calculating misfits and scores is to borrow from Gaussian

error distribution concepts, i.e., individual misfits M of the ful-ealewlation—used-form [(mod-

S

obs) / 0']2 and overall scores of the form ™ , where mod is a model quantity, obs is a

corresponding observation, ¢ is an observational or scaling uncertainty, M is an average of

individual misfits over data sites and types of measurements, and s is another scaling value

(Briggs and Tarasov, 2013: Briggs et al., 2014). However, the choice of these forms is
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somewhat heuristic, and different choices are also appropriate for complex model-data

comparisons with widespread data points, very different types of data, and with many model-

data error types not being strictly Gaussian. In order to determine the influence of these choices

on the results, we compare two approaches: (a) with formulae adhering closely to Gaussian

forms throughout, and (b) with some non-Gaussian aspects attempting to provide more

straightforward and interpretable scalings between different data types. Both approaches are

described fully below (next section, and Appendix B). They vield very similar results, with no

significant differences between the two, as shown in the-simple-averagingmethodAppendix C.

The second more heuristic approach (b) is used for results in the main paper.

The 8 individual data types and model-data misfits are deseribed-brieflyin-Fable 2—-with-more

listed below, with basic information that applies to both of the above approaches. More details

are given in Appendix B, feHewed-by-the-methodincluding formulae for the two approaches,

and “intra-data-type weighting” that is important for closely spaced sites (Briggs and Tarasov,

2013). The two approaches of combining themthe individual scores into one aggregate score S

for the simple averaging method are described in the following Sect. 2.4. The more advanced

statistical techniques (Chang et al., 2045a;62015, 2016) use elements of these calculations; but
differ fundamentally in some aspects, as diseussed-further-belowoutlined in Sect. 2.5.

The 8 individual data types are:

1. TOTE: Modern grounding-line locations.
Misfit M,: based on total area of model-data mismatch for grounded ice.
Data: Bedmap?2 (Fretwell et al., 2013).

2. TOTI: Modern floating ice-shelf locations.
Misfit M»: based on total area of model-data mismatch for floating ice.
Data: Bedmap?2 (Fretwell et al., 2013).

3. TOTDH: Modern grounded ice thicknesses.
Misfit M;: based on model-data differences of grounded ice thicknesses.
Data: Bedmap?2 (Fretwell et al., 2013).

4. TROUGH: Past grounding-line distance vs. time along the centerline trough of Pine Island Glacier.
Centerline data for the Ross and Weddell basins can also be used, but not in this study.

Misfit M, : based on model-data differences over the period 20 to 0 ka.

Data: RAISED (2014) (Anderson et al., 2014, for the Ross; Hillenbrand et al., 2014, for the Weddell;
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Larter et al., 2014, for the Amundsen Sea).

5. GL2D: Past erounding-line locations (see Fig. 1). Only the Amundsen Sea region is used in this
study.
Misfit Ms: based on model-data mismatches for 20, 15, 10, 5 ka.
Data: RAISED (2014) (Anderson et al., 2014 Hillenbrand et al., 2014 Larter et al., 2014
Mackintosh et al., 2014; O Cofaigh et al., 2014).

6. RSL: Past Relative Sea Level (RSL) records.
Misfit M, : based on y-squared measure of model-data differences at individual sites.
Data: compilation in Briggs and Tarasov (2013).

7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF).
Misfits M;,, M7,: based on model-data differences at individual sites, combined as in Appendix B.
Data: compilations in Briggs and Tarasov (2013) for ELEV; in RAISED (2014) with individual
citations as above for DSURF.

8. UPL: Modern uplift rates on rock outcrops.
Misfit Ms: based on model-data difference at individual sites.
Data: compilation in Whitehouse et al. (2012b).

2.4. Combination into one aggregate score for simple averaging method

Each of the RMSE-ery-squared misfits above are first transformed into a normalized individual

score for each data type i = 1 to 8;. The transformations differ for the two approaches

mentioned above.

(a) For approach (a), closely following Gaussian error forms, using misfits M; as described in -~ @
Appendix B:

e For a given data type i, the misfits M; for all runs (1 to 625) are sorted, and normalized

using the median value M/, i.e.. M/=M; / M;°. This is somewhat analogous to the

heuristic scaling for overall scores in Briggs et al., (2014, their sec. 2.3), but applied

here to individual types.

e The individual score S; for data type i and each run is set to M

e The aggregate score for each runis S = §; 5> 555455 5657 Ss, i.e.. € M

Of the two approaches, this most closely follows—A Briges and Tarasov (2013) and Briges

et al. (2014), except for their inter-data-type weighting, which assigns very different
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welghts to the individual types based on spatial and temporal volumes of influence (Briggs

and Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2). Here, we assume that

each data type is of equal importance to the overall score, and that if any one individual

score is very bad (S; = 0), the overall score S should also be = 0. This corresponds to the

notion that if any single data type is completely mismatched, the run should be rejected as

unrealistic, regardless of the fit to the other data types. The fits to past data, even if more

uncertain and sparser than modern, seem equally important to the goal of obtaining the best

calibration for future applications with very large departures from modern conditions.

(b) For the more heuristic approach (b), using misfits Mi as described in Appendix B:

. D e , . . . . e T Formatt
e For a given data type i, a “cutoff” value C; is set by taking the geometric mean (i.e., Of’erTi Iﬁ:

logarithmie—means;—square root of the product) of (i) the minimum (best) RMSE
vatwemisfits M; over all the=E-runs_1 to 625, and (ii) the algebraic average of the 10
largest (worst) values. The 10 worst values are used to avoid a single outlier that could
be unbounded; the single best value is used because it is bounded by zero, and is not an
outlier but represents close-to-the-best possible simulation with the current model. The
geometric mean and not the algebraic mean of these two numbers is more appropriate if

the values range over many orders of magnitude.

o The individual-seore—S—=maxf0—min+—+ normalized misfit MACH for each”
ensemble-run—and-for-each-data type i=}_and each run is set to 8—Each-M;-and-Cisa
recognizable physical-quantity-orrattoand+tM,/C; . We implicitly assume that Mi>€;;

’

the best possible within the LE. S;M/ values of-0> 1 (M;,> C;) represent very badpoor - { Formatte

. . . . . ) - {F tt
simulations, diverging from this data type so much that the run should be rejected no (Formatte

matter what the other scores are.
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formulae apply equal weights to the individual data types, and do not use “inter-data-type”

weighting (Briges and Tarasov 2013; Briggs et al. 2014). As in (a), if any individual score

Si is = 0, then the overall score S is = 0, and the discussion above also applies to approach

(b). Both approaches have loose links to the calibration technique in Gladstone et al. (2012)

and the more formal treatment in McNeall et al. (2013).

2.5. Advanced statistical techniques

The more advanced statistical techniques (Chang et al., 2015a;b)-do-net-use-the-ageregate-score
S—at—al—butperform—statistieal-2015, 2016) consist of an emulation ef—medern—and past
sroundinglinetocations—Changet-al—(2015b)used-exaetlya calibration stage, involving the

same 4 model parameters and the 625-member LE as above. The aggregate scores S described

in Sect. 2.4 are not used at all. The techniques are outlined here;—applying; full accounts are
given in Chang et al. (2015, 2016).
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Emulation phase:

Emulation is the statistical approach by which a computer model is approximated by a

statistical emulators;—probabiity—medels—and—likelihood—funetionsmodel. This statistical

approximation is obtained by running the model at many parameter settings and then “fitting” a

Gaussian process model to the input-output combinations, analogous to fitting a regression

model that relates independent variables (parameters) to dependent variables (model output) in

order to make predictions of the dependent variable at new values of the independent variables.

Of course, unlike basic regression, the model output may itself be multivariate. An emulator is

useful because: (i) modern—sroundingtine—seographiealit provides a computationally

inexpensive method for approximating the output of a computer model at any parameter setting

without having to actually run the model each time, and (ii) it provides a statistical model

relating parameter values to computer model output — this means the approximations

automatically include uncertainties, with larger uncertainties at parameter settings that are far

from parameter values where the computer model has already been run. Specifically, the model

output consisting of (i) modern grounding line maps, and (i1) past locations of grounding lines

versus time along the centerline trough of Pine Island-Glacier(replacingthe-datatypesFTOTE;
TROUGH and-GE2D—abeove)., are first reduced in dimensionality by computing Principal

Components (PCs) over all LE runs. (Principal components are often referred to in the

atmospheric science literature as empirical orthogonal functions or EOFs.) The first 10 PCs are

used for modern maps, and the first 20 for past trough locations. Hence, we develop a Gaussian

process emulator for each of the above PCs. Gaussian process emulators work especially well

for model outputs that are scalars. The emulators are “fitted” to the PCs using a maximum

likelihood estimation-based approach developed in Chang et al. (2015) that addresses the

complications that arise due to the fact that the data are non-Gaussian. Details are available in

(Chang et al., 2015, 2016). The emulators provide a statistical model that essentially replaces
the data types TOTE, TROUGH and GL2D described in Sect. 2.3.

Eor-this-paper-the-advanced-techniquesln an extension to Chang et al. (2016), Gaussian process

emulators are extended—to—additionalhy—use—the—also used here to estimate distributions of
individual score values for the 5 data types TOTI, TOTDH, RSL, ELEV/DSURF and UPL; (S,
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S3, S, S7, Ssy—Fhe-raw-data, approach (b), Sect. 2.3 and Appendix B), one emulator per score.
Again, emulators are developed for these-quantities—aretess—amenablete-cach of the scores by

using the Gaussian process machinery and maximum likelihood estimation.

Calibration phase:

The calibration stage solves the following problem in a statistically rigorous fashion: given

observations and model runs at various parameter settings, which parameters of the model are

most likely? In a Bayesian inferential framework, this translates to learning about the posterior

probability distribution of the parameter values given all the available computer model runs and

observations. The approach may be sketched out as follows. The emulation;—espeeialy—those

phase provides a statistical model connecting the parameters to the model output. Suppose it is

assumed that the model at a particular (ideal) set of parameter values produces output that

resembles the observations of the process. We also allow for measurement error and systematic

discrepancies between the computer model and the real physical system. We do this via a

“discrepancy function” that simultaneously accounts for both; this is reasonable because both

sources of error are important while also being difficult to tease apart. Hence, one can think of

our approach as assuming that the observations are modeled as the model output at an ideal

parameter setting, added to a discrepancy function. Once we are able to specify a model in this

fashion, Bavesian inference provides a a very standard approach to obtain the resulting

posterior distribution of the parameters: we start with site-speetfierecords—a prior distribution

for the parameters, where we assume that all the values are equally likely before any

observations are obtained, and then use Bayes theorem to find the posterior distribution given

the data. The posterior distribution cannot be found in analytical form. Hence, in this second

“calibration” stage, posterior densities of the model parameters are inferred via Markov Chain

Monte Carlo (MCMC). The observation and model quantities used in emulation and calibration

consist of the modern and past grounding-line locations, and 5 individual scores. The

discrepancy function is accounted for in assessing model vs. observed erounding-line fits in our

Bayesian approach, and is based in part on locations and times in which grounded ice occurs in

the model and not in the observations, or vice versa, in 50% or more of the LE runs (Chang et

al., 2015, 2016). For the individual scores, we use exponential marginal densities, whose rate
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parameters receive gamma priors scaled in such a way that the 9™ percentile of the prior

density coincides with each score’s cutoff value C; in Sect. 2.4.b.

In the above procedures, observational error enters for the individual scores RSL,

ELEV/DSURF; and UPL)—The—use—of, via the individual-stores—scalculations described in

Appendix €B. It is implicitly taken into account by the discrepancy function for grounding-line

locations. Observational error is considered to be negligible for modern TOTI and TOTDH

SCOres.

3. Results: Aggregate scores with simple averaging method

Fig. 2 shows the aggregate scores § for all 625 members of the LE, over the 4-dimensional
space of the parameters CSHELF, TAUAST, OCFAC and CALV. Each individual subpanel
shows TAUAST versus CSHELF, and the subpanels are arranged left-to-right for varying
CALYV, and bottom-to-top for varying OCFAC.

3.1. “Outer” variations, CALV and OCFAC

All scores with the largest CALV value of 1.7 (right-hand column of subpanels) are 0. In these
runs, excessive calving results in very little floating ice shelves and far too much grounding
line-retreat. Conversely, with the smallest CALV value of 0.3 (left-hand column of subpanels) ,
most runs have too much floating ice and too advanced grounding lines during the runs, so most
of this column also has zero scores. However, small CALV can be partially compensated by
large OCFAC (strong ocean melting), so there are some non-zero scores in the upper-left

subpanels.

3.2. “Inner” variations, CSHELF and TAUAST

For mid-range CALV and OCFAC (subpanels near the center of the figure), the best scores
require high CSHELF (inner x axis) values, i.e., slippery ocean-bed coefficients of 10° to 107

m a”' Pa”This is the most prominent signal in Fig. 2, and is consistent with the widespread
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extent of deformable sediments on continental shelves noted above. Ideally the LE should have

included CSHELF values greater than 107 but-the-model frequentlyprovedto-benumerically

= -. However, we note that values of 10° to 10 have
been found to well represent active Siple Coast ice-stream beds in model inversions (Pollard

and DeConto, 2012b). Subsequent work with wider CSHELF ranges confirms that values

around 107 are in fact optimal, with unrealistic behavior for larger values (Pollard et al., 2016).

Somewhat lower but still reasonable scores exist for lower CSHELF values of 10'7, but only for
higher OCFAC (3 to 10) and smaller TAUAST (1 to 2 kyr). This is of interest because smaller
CSHELF values support thicker ice thicknesses at LGM where grounded ice has expanded over
continental shelves, producing greater equivalent sea-level lowering and alleviating the LGM
“missing-ice” problem (Clark and Tarasov, 2014). In order for the extra ice to be melted by
present day, ocean melting needs to be more aggressive (higher OCFAC), and to recover in
time from the greater bedrock depression at LGM, TAUAST has to be smaller (more rapid
bedrock rebound). This regien—ef—parameter—spaeeglaciological aspect is explored further-in
Pollard et al. (2045b2016).

Scores are quite insensitive to the asthenospheric rebound time scale TAUAST (inner y axis),
although there is a tendency to cluster around 2 to 3 kyr and to disfavor higher values (5 to 7

kyr) especially for high OCFAC.

4. Results: Comparisons of simple averaging vs. advanced statistical techniques

4.1. Single parameter ranges

The main results seen in Fig. 2 are borne out in Fig. 3. The left-hand panels show results using
the simple averaging method, i.e., the average score for all runs in the LE with a particular
parameter value. Triangles in these panels show the mean parameter value V,, = £ (S™ V) /%

S™ where S™ is the aggregate score and V™ is the value of this parameter for run n (1 to 625),
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and whiskers show the standard deviation. The prominent signal of high CSHELF values
(sticky ocean beds) is evident, along with the absence (near absence) of positive scores for the

extreme CALYV values of 1.7 (0.3), and the more subtle trends for OCFAC and TAUAST.

The right-hand panels of Fig. 3 show the same single-parameter “marginal” probably density
functions for this LE, using the advanced statistical techniques described in Chang et al.

(2045a;:b2015, 2016) and summarized above. For OCFAC, CSHELF and TAUAST, there is

substantial agreement with the simple-averaging results in both the peak “best-fit” values and

the width of the ranges. For CALV, the peak values agree quite well, but the simple-averaging

distribution has a significant tail for lower CALV values that disagrees—with-zero-probabilitiesis

not present in the advanced results—We—will-investigate; this disagreementmight be due to the
discrepancy function in further-workthe advanced method (Sect. 2.5), which has no counterpart

in the simple averaging method,

4.2. Paired parameter ranges

Probability densities for pairs of parameter values are useful in evaluating the quality of LE
analysis, and can display offsetting physical processes that together maintain realistic results,

e.g., greater OCFAC and lesser CALV (Chang et al., 2014; 2045a;:b2015, 2016). In Fig. 4, the

left-hand panels show mean scores for pairs of the 4 parameters, using the simple averaging
method and averaged over all LE runs with a particular pair of values. The right-hand panels
show corresponding densities for the same parameter pairs using the advanced statistical

techniques. Overall the same encouraging agreement is seen as for the single-parameter

parameter pair. There are some differences in the extents of the maxima, notable for CALV
where the zone of high scores with the simple averaging method extends to lower CALV values
than with the advanced techniques, as seen for the individual parameters in Fig. 3. In general,
though, there is good agreement between the two methods regarding parameter ranges in Figs.
3 and 4, suggesting that the simple averaging method is viable, at least for LE’s with full

factorial sampling of parameter space.
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4.3. Pastand-future-equivalentEquivalent-sea-level changecontribution

Fig. 5 illustrates the use of the LE to produce past and—futare—envelopes of model
predietionssimulations. Fig. 5a,b show equivalent sea-level (ESL) scatter plots for all 625 runs.
Early in the runs around LGM (20 to 15 ka), the curves cluster into noticeable groups with the
same CSHELF values, due to the relatively weak effects of the other parameters (OCFAC,
CALV and TAUAST) for cold climates and ice sheets in near equilibrium. Fig. 5c,d show the
mean and one-sided standard deviations for the simple method. Most of the retreat and sea-level

rise occurs between ~14 to 10 ka—andis—somewhatmoresudden—-andearlierthaninother

the retreat will be discussed in more detail in Pollard et al. (2016).

Fig. 5e,f shows the equivalent mean and standard deviations derived from the advanced
statistical techniques. There is substantial agreement with the simple-method curves in Fig.
5c,d, for most of the duration of the runs. The largest difference is around the Last Glacial
Maximum ~20 to 15 ka, when mean sea levels are up-tenearly ~2-5 m lower (larger LGM ice

volumes) in the simpler method compared to the advanced. This may be due to the simpler

method’s seering—withscores using past 2-D grounding-line reconstructions (GE2B-data type

GL2D), which are not used in the advanced technique;this-ditference-will-be-examined-further
-ongeing-weorktechniques.
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Fig. 6 shows probability densities of equivalent sea level rise at particular times in the runs;

nehading +500,—+1000-and+5000—years—atter modern. Fig. 6a-d show results with the simple

averaging method, computed using score-weighted densities and 0.2-m wide ESL bins (see

caption). The uneven noise in this figure is due to the small number of parameter values in our
LE. The separate peaks for LGM (-15000 yr) in Fig. 6a and b are due to the widely separated
CSHELF values, and the relatively weak effects of the other parameters (OCFAC, CALV and
TAUAST) for cold climates and ice sheets in near equilibrium. Fig. 6e shows the equivalent but

much smoother probability densities using the advanced statistical techniques;for-the—fature”

times—There—is—fair—agreement. All major aspects agree reasonably well with the simple
averaging results, ineludinetheskewed-tendeney—at+5000—yearsand the separate peaks for -

15000 yr are smoothed into a single broad range.

5. Conclusions and further work

produces results that are reasonably compatible with_relatively sophisticated statistical

techniques involving emulation, probability model/likelihood functions, and MCMC (Chang et
al., 20H54b2015. 2016; Sect. 2e-Appendix—However—we haveshownthisontyforan2.5).

They are applied to the same LE with full factorial sampling in parameter space—, for which

both techniques vield smooth and robust results, and the advanced technique acts as a

benchmark against which the simple method can be compared.

Unlike the advanced techniques, the simple averaging method cannot interpolate in parameter
space, and so is limited practically to relatively few parameters (4 here) and a small number of

values for each (5 here).
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modeled-quantities—as—shownherePrevious work using LE’s with Latin HyperCube sampling

(Applegate et al., 2012; Chang et al., 2014, 2015) has shown that the simple averaging method

can fail if the sampling is too coarse, whereas the advanced technique provides smooth and

meaningful results. This is primarily due to emulation and MCMC in the advanced techniques,

which still interpolate successfully in the coarsely sampled parameter space. Of course, this

distinction depends on the size of the LE and the coarseness of the sampling; somewhat larger

LE’s with Latin HyperCube sampling and fewer parameters can be amenable to the simple

method. Note that this is not addressed in this paper; where just one full-factorial LE is used.

- ﬂ Formatte

7 -

In particular, the results strongly confirm that large basal sliding coefficients (i.e., slippery
beds) are appropriate for modern continental-shelf oceanic areas. In further work we will assess
heterogeneous bed properties such as the inner region of hard outcropping basement observed
in the ASE (Gohl et al., 2013).The best-fit range for the asthenospheric relaxation time scale
TAUAST values is quite broad, including the prior reminal-valuesreference value ~3 kyr; but

extending to shorter times ~1 kyr. This may be connected with low upper-mantle viscosities
and thin crustal thicknesses suggested in recent work (Whitehouse et al., 2012b; Chaput et al.,
2014), which will be examined in further work with full Earth models (Gomez et al., 2013,
2015; Konrad et al., 2015).

10 meters of global equivalent sea level below modern (Fig. 5). This is consistent with
trendsthe trend in recent Antaretie-modeling studies (Ritz et al., 2001; Huybrechts, 2002;
Philippon et al., 2006; Briggs et al., 2643;2014; Whitehouse et al., 2012a,b; Golledge et al.,
2012,2013,2014)+the-greater-total-Antarctietec-amountat- the - Last Glacral- Maximum-ts-, whose
LGM amounts are generally less than in earhierolder papers;—egquivalentto—35-to—10-meters—of

obal-eguivalentsealevel-below—modern: H ontribution—s. (Note that Fig. 5 shows

contributions only from our limited West Antarctic domain, but as shown in

MaeintoshMackintosh et al., 2011, the contribution from East Antarctica at LGM is much
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smaller, ~1 mesl). This suggests that Antarctic expansion is insufficient to explain the “missing
ice” problem, i.e., the total volume of reconstructed ice sheets worldwide is less than the
equivalent fall in sea-level records at that time by 15 to 20 meters (Clark and Tarasov, 2014). A

subsequent paper (Pollard et al., 2045b)-uses—a-stmilar EE-to-evaluatethe-potential-forgreater
LGMicevolumes2016) examines this glaciological aspect in more detail but does not alter the

conclusions here.

4. There are only minor episodes of accelerated WAIS retreat and equivalent sea-level rise in ,//@

the simulations (Fig. 5), and none with magnitudes comparable to Melt Water Pulse 1A for
instance, with ~15 mesl rise in ~350 years around ~14.5 ka (Deschamps et al., 2012), in
apparent conflict with significant Antarctic contribution implied by sea-level fingerprinting
studies (Bassett et al., 2005; Deschamps et al., 2012) and IRD-core analysis (Weber et al.,
2014). Model retreat rates are examined in more detail in Pollard et al. 2045b),—where—the

ka;-similarky-to-Goledgeet-al-(2044)-(2016), again without altering the findings here.

5—-One-robust-econclastonA natural extension of this work is that-mest-parametercombinations

with-reasonablescoresproduceretreat-deep—into—the West-to extend the Antarctic interiorin
response—to—stmple—idealized—model simulations and LE methods into the future®, using
climates and ocean warming;—eausing—4p—to—2—to—3—m—equivalent—sealevelrise-on—several
century—to—few—millennia—timeseales—tis—drivenby—_following Representative Concentration

Pathway scenarios (Meinshausen et al., 2011). In these warmer climates we expect Marine Ice

Sheet Instability to occur in WAIS basins, consistent with past retreats simulated in Pollard and

DeConto (2009).

20615b, not triggered in the colder-than-present simulations of this paper, may play a role, as

found for the Pliocene in Pollard et al. (2015). Future applications with simple-average LE’s are
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described in Pollard et al. (2016), and detailed future scenarios with another type of LE are

described in DeConto and Pollard (2016).
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Appendix A: Model parameters varied in the large ensemble

The four model parameters (OCFAC, CALV, CSHELF and TAUAST) and their ranges in the
large ensemble are summarized in Fable1-abeve-Sect. 2.2. Their physical effects in the model

and associated uncertainties are discussed in more detail here.

OCFAC is the main coefficient in the parameterization of sub-ice-shelf oceanic melt, which is
proportional to the square of the difference between nearby water temperature at 400 m, and the
pressure-melting point of ice. Oceanic melting (or freezing) erodes (or grows on) the base of
floating ice shelves, as warm waters at intermediate depths flow into the cavities below the
shelves. The resulting ice-shelf thinning reduces pinning points and lateral friction, and thus
back stress on grounded interior ice. As mentioned above, recent increases in ocean melt rates
are considered to be the main cause of ongoing downdraw and acceleration of interior ice in the
ASE sector of WAIS (Pritchard et al., 2012; Dutrieux et al., 2014). High-resolution dynamical
ocean models (Hellmer et al., 2012) are not yet practical on these time scales, and simple
parameterizations of sub-ice-shelf melting such as the one used here are quite uncertain (eg.,
Holland et al., 2008). For small (large) OCFAC values, oceanic melting is reduced (increased),
ice shelves thicken (thin), discharge of interior ice across the grounding line decreases

(increases), and grounding lines tend to advance (retreat).

CALYV is the main factor in the parameterization of iceberg calving at the oceanic edges of
floating shelves. Calving has important effects on ice-shelf extent with strong feedback effects
via buttressing of interior ice. However, the processes controlling calving are not well
understood, probably depending on a combination of pre-existing fracture regime, large-scale
stresses, and hydrofracturing by surface meltwater. There is little consensus on calving
parameterizations. We use a common approach based on parameterized crevasse depths and
their ratio to ice thickness (Benn et al. 2007; Nick et al., 2010). For small (large) CALYV,
calving is decreased (increased), producing more (less) extensive floating shelves, and greater

(Iesser) buttressing of interior ice.
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CSHELF is the basal sliding coefficient for ice grounded on areas that are ocean bed today
(and is not frozen to the bed). Coefficients under modern grounded ice are deduced by inverse
methods (Pollard and DeConto, 2012b; Morlighem et al., 2013), but they are relatively
unconstrained for modern oceanic beds, across which grounded ice advanced at the Last Glacial
Maximum ~20 to 15 ka. Most oceanic beds around Antarctica are covered in deformable
sediment today, due to Holocene marine sedimentation, and to earlier transport and deposition
of till by previous ice advances. For these regions, coefficients are expected to be relatively
high (i.e., slippery bed), but there is still a plausible range that has significant effects on model
results, because it strongly controls the steepness of the ice-sheet surface profile and ice
thicknesses, and thus the sensitivity to climate change. In this paper, we vary the sliding
coefficient CSHELF uniformly for all modern-oceanic areas. (In further work, we will allow for
heterogeneity such as the hard crystalline bedrock zone observed in the inner Amundsen Sea

Embayment; Gohl et al., 2013).

TAUAST is the e-folding time of asthenosephic relaxation in the bedrock model component.
Ice sheet evolution on long timescales is affected quite strongly by the bedrock response to
varying ice loads, especially for marine ice sheets in contact with the ocean where bathymetry
determines grounding-line depths. During deglacial retreat, the bedrock rebounds upwards due
to reduced ice load, which slows down ice retreat due to shallower grounding-line depths and
less discharge of interior ice. However, the O(10%)-year lag in this process is important in
reducing this negative feedback, and accelerates the positive feedback of Marine Ice Sheet
Instability if the bed deepens into the ice-sheet interior. As in many large-scale ice-sheet
models, our bedrock response is represented by a simple Earth model consisting of an elastic
plate over a local e-folding relaxation towards isostatic equilibrium (Elastic Lithosphere
Relaxing Asthenosphere). Based on more sophisticated global Earth models, the asthenospheric
e-folding time scale is commonly set to 3 kyr (e.g., Gomez et al., 2013), but note that recent
geophysical studies suggest considerably shorter time scales for some West Antarctic regions
(Whitehouse et al., 2012b; Chaput et al., 2014). In further work we plan to perform large
ensembles with the ice sheet model coupled to a full Earth model, extending Gomez et al (2013,

2015).
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Appendix B: Data types and individual misfits

The 8 types of modern and past data used in evaluating the model simulations are summarized
in FableSect. 2—above.3. More details on—the—data—and the algorithms used to compute the
individual mismatches M; to Mg with model quantities are given below. The term “domain”
refers to the nested model grid that spans all of West Antarctica, and we only compare with
observational sites and data within this domain. Modern observed data is from the Bedmap2

dataset (Fretwell et al., 2013).

As discussed in Sects. 2.3 and 2.4, we use 2 approaches in scoring: (a) more closely following

Gaussian error forms, and (b) with more heuristic forms. Some of the algorithms for individual

misfits differ between the two, as indicated by bullets (a) and (b) below. For most data types,

approach (a) uses mean-square errors, and (b) uses root-mean-square errors. For some data

types, the errors are normalized not by observational uncertainty, but by an “acceptable model

error magnitude” representing typical model departures from observations in reasonably

realistic runs, if this is larger than observational error. Note that if this scaling uncertainty is the

same for all data of a given type, it cancels out in the normalization of individual misfits (M, to

M/ in Sect. 2.4), so has no effect on the further results.

1. TOTE: Modern grounding-line locations.-Fhe-misfit M -is-the

A" = total area of mismatch where model is grounded and observed is floating ice or ocean, or

vice versasrelativeto-. A,,, = total area of the domain.

Approach (a): Misfit M; = (A" / B)*, where B = (A,,)"”* G, . Here B is the product of the linear

domain size, and ¢;, = 30 km representing the typical size of modern grounding-line location

errors in “reasonable” model runs.

Approach (b): Misfit M; = A" | A,

2. TOTI: Modern floating ice-shelf locations.-Fhe-mistit M,-is-the
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A’ = total area of mismatch where model has floating ice and observed does not, or vice versay;

relativeto-the-. A,,, = total area of the domain.

Approach (a): Misfit M, = (A" / B)z, where B = (A,(i,,)”2 o, . Here B is the product of the linear

domain size, and o;, = 30 km representing the typical size of modern floating-ice extent errors

in “reasonable” model runs.

Approach (b): Misfit M; = A"/ A,

3. TOTDH: Modern grounded ice thicknesses. The-mistit

Formattec

Approach (a): Misfit M3 is the RMS-difference-between—medel-and-mean of ((h - h,p,) / GhﬁzJ///:

where h is model ice thickness, h,,;_is observed ice thieknesses;thickness, and ¢, = 10 m

represents the typical size of modern ice thickness errors in “reasonable” model runs. The mean

is taken over areas with observed modern grounded ice.

Approach (b): Misfit M; is the root mean square of (& - h,p), over areas with observed modern

grounded ice.

4. TROUGH: Past grounding-line distance vs. time along centerline troughs of Pine Island
Glacier, and optionally the Ross and Weddell basins. Observed distances at ages 20, 15, 10 and
5 ka are obtained from grounding-line reconstructions of the RAISED Consortium (20143-):
Anderson et al. (2014) for the Ross; Larter et al. (2014) for the Amundsen Sea, and Hillenbrand
et al. (2014) for the Weddell, using their Scenario A ¢of most retreated Weddell ice)for-the
Weddel;—and. Distances are then linearly interpolated in time between these dates. The

centerline trough for Pine Island Glacier is extended across the continental shelf following the
paleo-ice-stream trough shown in Jakkobsen et al. (2011). The resulting Pine-_Island Glacier

transect vs. time is similar to that in Smith et al. (2014). Fhe-mistit

Approach (a): Misfit My is the RMS-difference-i-mean of ((x - x,5,) / 6,)°. where x is model ¥s-

observed—grounding-line distaneeposition on the transect at a given time, X, is the

reconstructed position, and o, = 30 km represents a typical difference in “reasonable” model

38



10
11
12
13
14
15
16
17

18

19
20
21
22

23
24
25

26

27
28
29

runs, and is also midway between ‘measured’ and ‘inferred’ uncertainties in the reconstructed

data (RAISED, 2014). The mean is taken over the period 20 to O ka.

Approach (b): Misfit M, is the root-mean-square of (x - x,,,), over the period 20 to 0 ka.

In this study just the Pine Island Glacier trough is used, but if the Ross and Weddell are used
also, the RMS-difference-isealetlatedmeans are taken over all data-peints3 troughs.

5. GL2D: Past grounding-line locations. This uses reconstructed grounding-line maps for 20,
15, 10, 5 ka ¢by the RAISED;—2644; Consortium (RAISED, 2014; Anderson et al., 2014;
Hillenbrand et al., 2014; Larter et al., 2014; Mackintosh et al., 2014; O Cofaigh et al., 2014),

with vertices provided by S. Jamieson, pers. comms., and choosing their Scenario A for the

Weddell embayment (Hillenbrand et al., 2014). The modern grounding line (0 ka;-) is derived
from the Bedmap2;-_dataset (Fretwell et al., 2013). Thepast-mapsRAISED2014)-are-only

11

For this study only the
Amundsen Sea region wwas—used-is considered. We allow for uncertainty in the past
reconstructions by setting a probability of reconstructed floating ice or open ocean at each point

P, as follows:

(i) Computing the distance D; from the reconstructed grounding line. . @

(i1) Dividing this distance by the sum D, of the (Kriged) reported uncertainty of nearby vertices
(interpreting their “measured”= 10 km, “inferred”=50 km, “speculative”=100 km) and a
distance that ramps up to 100 km depending on distance to the nearest vertex dv (i.e., 100

max [0, min [1, (dv-100)/200]] ), to obtain a scaled distance D; = D;/D.

(ii1) Setting the probability P, to a value decaying upwards or downwards from 0.5, i.e., to 0.5
e if on the grounded side of the grounding line, or to 1 - 0.5 ¢ if on the non-grounded

side.

Then the “mismatch_probability” P, at each model grid point is set to 2 (0.5 - Pop) if Pops <
0.5 and the model is not grounded, or 2 (P, - 0.5) if P,y > 0.5 and the model is grounded. Fhe

mismatehP,,; is zero if the model is not grounded anywhere on the non-grounded side of the
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observed grounding line, or if it is grounded anywhere on the grounded side. Thus, if the model
and observed grounding lines coincide exactly everywhere, then the-mismatehP,,; is zero at all
points, regardless of the observational uncertainty reflected in P,,; (which seems a desirable

feature) Fhe-totd-mistit-EM sHsthearealy-wetehted sumotf-the mismatehestor-alpotntsinthe
| innrelat 1d : '

-Approach (a): Misfit M5 is the mean of the squared mismatch probabilities (P,;)°. with means

computed over3 separate subdomains: Ross Sea, Amundsen Sea, and Weddell Sea embayments

(defined crudely by intervals of longitude: 150E to 120W, 120W to 90W, and 90W to O,

respectively). In this study we only use the mean for the Amundsen Sea sector. Similarly to

TOTE and TOTI, the areal mean is increased by a factor (A@)“z/ o,, where A, is the total

subdomain area and g, = 100 km is a representative width scale of reasonable past grounding-

zone mismatches. Finally, the mean values for each of the reconstructed past times (20, 15, 10

and 5 ka) are averaged together equally.

Approach (b): Misfit Ms is the mean of P,,;; over the Amundsen Sea sector subdomain, with no

adjustment factor to A,,,, and otherwise as for (a) above.

6. RSL: Past Relative Sea Level (RSL) records. This uses the compilation by Briggs and
Tarasov (2013) of published RSL data vs. time at sites areundclose to the modern coastline.
Following those authors, a—-squared-measure—~vs—model-outputis—computed;—+e--the-sum—of
ebsew&ﬁe{m-RSJTtmee&amty,—iT%,éé}RSk)g%;.—The model RSL = [SL(t) - hy(t)] - [SL(0) -
hp(0)], where SL(t) is global sea level (with =0 at modern) and 4, is bed elevation, at the closest

model grid point to the observed site. The minimum model-minus-observed difference d RSL

for each observed datum is used, i.e., the minimum elevation difference value over all model

times within the range of the observational time uncertainty (f,ps £ Oj)—As—inBriges—and
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-Approach (a): Misfit My is the weighted mean of (JRSL / ¢.,) >, where o, is the observational

RSL uncertainty. Just as in Briggs and Tarasov (2013), the default for o, is much larger for

one-sided constraints (50 m) than absolute constraints (2 m). To reduce the influence of many

nearby (and presumably correlated) data, we closely follow Briges and Tarasov (2013) and

apply “intra-data-type weighting” in calculating the mean. The weights are inversely

proportional to the number of measurements within a distance L of each other, where L is

equivalent to 5° latitude (~550 km), so that each ~L-sized cluster of data contributes ~equally

to the overall mean.

Approach (b): Misfit M is the weighted mean of max [0, IRSLI - ¢;,]. The uncertainties o, and

the intra-data-type weights are the same as in (a).

Ao -

7. ELEV/DSURF: This uses a combination of two eemp#ationcompilations of cosmogenic

data: elevation vs. age in Briggs and Tarasov (2013) for ELEV, and thickness change from

modern vs. age in RAISED (2014) (with individual citations as above) for DSURF.

For ELEV, the calculations closely follow Briges and Tarasov (2013, their sec. 4.2):

(1) a time series of model ice surface is used, with sea level and bedrock elevation changes

subtracted out, for the closest model grid point to each ELEV datum.

(i1) Only model elevations with a “deglaciating trend” are used, i.e., the model elevation for

each time is replaced by the maximum elevation between that time and the present, if the

latter is greater, allowing for an uncertainty Ah = \2 Oj. as in Briggs and Tarasov (2013).

(iii) The mismatch for each datum is the minimum of (84/ 6,)> + (81/ G,)* over the time series,

where 6h is the elevation difference from observed and &t is the time difference, G, =

[Ghons+ (100 meters)*]"? . and Gjyp, and G, are the observational uncertainties in elevation

and time respectively.
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Approach (a): Misfit M7 is the weighted mean of the mismatches for ELEV above, with intra-

data-type weighting exactly as described for RSL above. The DSURF type is not used in
approach (a).

Approach (b): For approach (b), ELEV calculations as above are combined with DSURF

calculations.

The DSUREF calculations are simpler: for each datum, the time series of model eutputsurface

elevations /i at the closest model grid point is used-te-find:

o—ForDSURE:—the. The minimum mismateh—n—ice—thickness—ehange;model-minus-

observed difference § h,™" is found, i.e., the minimum difference over all model times within

the range of ebservationaltimeunecertainty,—reduced—by—the—the observational thickness
Bt
Mismatehes—are—averaged—over—all-observed-sites—and—timestime uncertainty (¢,,; + 0;,). The

mismatch for the datum is max [0, éh;mn - oy] where ¢y, _is the observational elevation

uncertainty. The mean over all data is taken, weighted by intra-data-type weighting as described

fer RSE-above. Mismatches—(M,.;Mz)are—calenlated—separatelyforFinally, the ELEV and
DSURF;—and_misfits are converted into separate normalized scores (S7,, S75) as deseribed
below-—The-two-separate-seoresin Sect. 2.4(b), which are then combined into one by-takingthe
seqaareroot-of theirproduet+e-individual score S7 = (S7, S7b)

8. UPL: This uses modern uplift rates on rock outcrops, using the compilation in Whitehouse et

al. (2012b). For each observed site, the model's modern 0h;, / Ot at the closest model grid point
is used.—Fhe—-oversHmistitM—is—the RMS—differencetrom—observed—equathy—weishted ot
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Approach (a): The mismatch at each datum is [ (Uuoq - Upps) I Guobs | *, where Unod and U, are

model and observed uplift rates respectively, and o, is the observed 1-6 uncertainty. The

misfit My is the mean over all data points, using intra-data-type weighting as above.

Approach (b): The mismatch at each datum is (Upeg - Upps ). and the misfit My is the root-

mean-square over all data points, with no intra-data-type weighting (justified by the relatively

<- - -~ Formattec
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uniform distribution of data points).
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Appendix C: Using-Comparison of results with two scoring approaches

As discussed in Sect. 2.3, the choice of formulae and algorithms to calculate model vs. data

misfits and scores in the simple averaging method is somewhat heuristic, and different choices

are also appropriate for complex model-data comparisons with widespread data points, very

different types of data, and with many model-data error types not being strictly Gaussian. Two

possible approaches are described above (Sect. 2.4, Appendix B): Approach (a) uses formulae

closely following Gaussian error distribution forms, and approach (b) uses more heuristic

forms. Approach (b) is used for all results in the main paper. In this appendix the simple-

averaging results (Figs. 2-5) are compared using both approaches. No significant differences are

found, especially in the LE-averaged results, which suggests that different reasonable

approaches to misfits and scoring yield robust statistical results for the ensemble.

same patterns over 4-D parameter space. There are some minor differences in the relative

magnitudes of very good, vs. poor but still meaningful scores, which we have compensated for

to some extent in the two color scales, but these do not lead to any significant differences in the

averaged results in the following figures.

In the parameter-pair scores (Fig. C2), the overall patterns are very similar. The biggest

difference is for CALV vs. TAUAST, where the scores for approach (a) are higher and more

tightly concentrated.

In the plots of equivalent sea level versus time (Fig. C3), approach (a) generally favors runs

with less ice volume during LGM and retreat, compared to approach (b) (red curves, Figs. C3c

vs. d). On the other hand, the single best-scoring run in approach (a) retreats later than the

corresponding run in approach (b) (black curves, Fig. C3a vs. b). Generally, these differences

are minor compared to the overall model behavior through the deglaciation.
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In the density distributions of equivalent sea level at particular times (Fig. C4), there is very

little difference between the 2 approaches. The size of the ~5 m peak at 15 ka is larger in

approach (b), but as discussed in Sect. 4.3, these separate peaks at 15 ka are due to the widely

spaced CSHELF parameter values in the ensemble, and their relative sizes have little

significance.
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Appendix D: Span of data by the Large Ensemble

2e.compares envelopes of model results with corresponding types of geologic data used in the

LE scoring. The main goal is to demonstrate that the envelopes of the 625-member ensemble

adequately spans the data; i.e., at least some runs vield results that fall on both sides of each

type of data, so that ensemble averages may potentially represent reasonably realistic ice sheet

behavior (even if no single model run is close to all data types).
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For modern data (grounded and floating ice extents, grounded ice thicknesses), the standard

model has previously been shown to vield quite realistic simulations, both for perpetual modern

climate and at the end of long-term glacial-interglacial runs (Pollard and DeConto, 2012a).

Modern grounded ice thicknesses are close to observed mainly because of the inverse procedure

in specifying the distribution of basal sliding coefficients (Pollard and DeConto, 2012b). Here

we concentrate on fits to geologic data.

Fie. D1 compares scatter plots of Relative Sea Level in all 625 runs with RSL records, for the 3

sites within the model’s West Antarctic domain (Briggs and Tarasov, 2013). The data for each

site fall well within the overall model envelope, and in most cases within the envelopes of the
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top 120-scoring runs (colored curves). Similar comparisons for single runs are shown in Gomez

et al. (2013), both using the simple bedrock model as here (their “uncoupled” runs), and

coupled to a global Earth-sea level model.

Similarly, Fig. D2 compares elevation vs. age time series for all 625 runs with cosmogenic data

at the 18 sites within the model domain (Briggs and Tarasov, 2013). With a few exceptions, the

data lie within the LE model envelopes, although elevations at many of the sites are lower than

in most of the model runs. At Reedy Glacier, the model exhibits oscillations of ~200 m

amplitude and several hundred year period; these might be due to internal variability of ice

streams as seen elsewhere in West Antarctica in Pollard and DeConto (2009).

Fige. D3 shows modern uplift rates for all model runs, at the 26 sites in the Whitehouse et al.

(2012b) compilation that lie within the mode domain. Again, nearly all of the observed values

lie within the overall model envelope. The geographic distribution for single runs is compared

with observed in Gomez et al. (2013), both using a simple bedrock model (‘“uncoupled”), and

coupled to a global Earth-sea level model.

The remaining past data types (GL2D and TROUGH) concern grounding-line locations during

last deglacial retreat, and are less amenable to scatter plots, but can be compared with model

averaged results. Fig. D4 shows maps of probability (0-1) of the presence of grounded ice at

particular times, deduced by score-weighted averages over the ensemble. The thick black lines

at 20, 15, 10 and 5 ka show erounding-line positions in the reconstructions of the RAISED

Consortium (RAISED, 2014). (The figures do not show the uncertainty information associated

with the data, which is used in the scoring; Appendix B). At all of these times, the envelopes of

the model “erounding zone”, i.e., the areas with intermediate probability values, span or are

close to the observed positions.
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Similarly, Fig. D5 shows model probabilities (0-1) of grounded ice vs. time along the centerline

transects of the major West Antarctic embayments. Again, the model envelopes mostly span the

various observed estimates for each transect (from RAISED, 2014, and various earlier studies).

Taken together, the various model vs. data comparisons in this Appendix show that the model’s

ensemble envelopes do encompass the ranges of data satisfactorily, as necessary for meaningful

interpretations of the statistical results.
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Figure 1. Geographical map of West Antarctica. Light yellow shows the modern extent of
grounded ice (using Bedmap?2 data; Fretwell et al., 2013). Blue and purple areas show expanded
grounded-ice extents at 5, 10, 15 and 20 ka (thousands of years before present) reconstructed by

the RAISED consortium (2014), plotted using their vertex information (S. Jamieson, pers.

‘ comm.), and choosing their Scenario A for the Weddell embayment- (Hillenbrand et al., 2014).
These maps are used in the large ensemble scoring (TOTE, TROUGH and GL2D data types,
‘ TableSect. 2.3).
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Figure 2. Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model
parameters, 5 values each, as—n—TFable—tSect. 2.2), used in the simple method with score-
weighted averaging. The score values range from 0 (white, no skill) to 100 (dark red, perfect
fit). The figure is organized to show the scores in the four-dimensional space of parameter
variations. The four parameters are: CSHELF = basal sliding coefficient in modern oceanic
areas (exponent x, 10 m a”' Pa?). TAUAST = e-folding time of bedrock-elevation isostatic
relaxation (kyrs). OCFAC = oceanic-melt-rate coefficient at base of floating ice shelves (non-
dimensional). CALV = calving-rate factor at edge of floating ice shelves (non-dimensional).
Since each parameter only takes 5 values, the results are blocky, but effectively show the

behavior of the score over the full range of plausible parameter values.
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Figure 3. Left-hand panels: Ensemble-mean scores for individual parameter values, using the
simple averaging method. The red triangle shows the mean, and whiskers show the 1-sigma
standard deviations. Right-hand panels: Probability densities for individual parameters, using

the advanced statistical techniques in Chang et al. (2845b2016) extended as described in Sect.
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Figure 4. Left-hand panels: Ensemble-mean scores for pairs of parameters, using the simple
averaging method. Right-hand panels: Probability densities for pairs of parameters, using the

advanced statistical techniques in Chang et al. (2045b2016) extended as described in Sect.2e
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Figure 5. Equivalent global-mean sea level risecontribution (ESL) relative to modern vs. time.
Time runs from 20,000 years before present to S800-years—atterpresentmodern. ESL changes

are calculated from the total ice amount in the domain divided by global ocean area, allowing

for less contribution from ice grounded below sea level.-Fheruns-are-extended 5000-yearsinto
he & i idealized Lineas] Ll -

(a) Scatter plot of all 625 individual runs in the LE. ESL. amounts are calculated relative to
modern observed Antarctica, so non-zero values at time=0 imply departures from the observed

ice state. Grey curves are for runs with aggregate score S =equal to or very close to 0, and

colored curves are for S—>-6the 120 top-scoring runs in descending S order with 2520 curves
per color (red, orange, yellow, green, cyan, blue—in—descending—order). The best scoring
individual run is shown by a thick black curve (OCFAC=3, CALV=1, CSHELF=-5,
TAUAST=3, with S = 0.570571).

(b) As (a) but with ESL amounts relative to each run’s modern value, so the curves pass exactly

through zero at time=0.

(¢) Score weighted curves over the whole LE, using the simple statistical method. Red curve is

the score-weighted mean, i.e.,
2{S™ ESL™(5)} 1 2{s™)}

where S is the aggregate score for run n, ESL"(z) is the equivalent sea-level rise for run n at
time ¢., and the sums are over all n (1 to 625) in the LE. Black curves show the one-sided

(n)

standard deviations, i.e., the root mean square of deviations for ESL"™ above the mean (upper

curve) or below the mean (lower curve) at each time ¢. ESL(”)(t) are relative to modern observed

Antarctica, as in panel (a).
(d) As (c) but with ESL('”(I) relative to each run’s modern value as in (b).

(e) and (f): Corresponding results to (c¢) and (d) respectively, using the advanced statistical

techniques in Chang et al. (2645b2016) extended as described in Sect. 2e-and-Appendix€ 2.5.
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Figure 6. (a) Probability densities of equivalent sea level (ESL) rise at particular times in the
LE simulations, computed with the simple averaging method. At a given time ¢, the density
P(E) is the sum of aggregate scores S" for all runs n with equivalent sea-level rise ESL™(7)
within the bin E - 0.1 to E + 0.1 m, i.e., using equispaced bins 0.2 m wide. The resulting P(FE)
are normalized so that the integral with respect to E is 1. ESL(")(t) are relative to modern

observed Antarctica, as in Fig. 5a.

(b) As (a) but with ESL(”>(t) relative to each run’s modern value, as in Fig. 5b.

(c), and, (d): ay-and(b

i W\ A S Bt e SR Al vRIYy TR VIR RIS PRSIV o [ IYVY A TIVYY L Aol S

after-present:
te)-and—-(H:—Corresponding results to (ea) and (db) respectively, using the advanced statistical
techniques in Chang et al. (2645b2016) extended as described in Sect. 2e-and-AppendixC€2.5.
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Figure C1. Agoregate scores for the complete large ensemble suite of runs (625 runs, 4 model

parameters, 5 values each), used in the simple method with score-weighted averaging. The

organization of the figure regarding the 4 parameter ranges is as described in Fig. 2.

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B). The score values in

this plot are normalized relative to the maximum score of the LE, and the color scale is adjusted

to illustrate the similar qualitative distribution to (b).

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 2.
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Figure C2. Ensemble-mean scores for individual parameter values, using the simple averaging

method as in Fig. 3.

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 3.
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Figure C3. Ensemble-mean scores for pairs of parameters, using the simple averaging method

as in Fig. 4.

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 4.
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Figure C4. Equivalent global-mean sea level contribution (ESL) relative to modern vs. time as

in Fig. 5.

(a) Scatter plot of all 625 individual runs in the LE, using close-to-Gaussian scoring approach

(a) (Sect. 2.4, Appendix B).

(b) As (a) except using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in

Fig. 5.

(¢) Score weighted mean and one-sided standard deviations, using close-to-Gaussian scoring

approach (a).

(d) As (c) except using the more heuristic approach (b), exactly as in Fig. 5.
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Figure C5. Probability densities of equivalent sea level (ESL) rise at particular times as in Fig.

6.

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 6.
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Figure D1. Model vs. observed Relative Sea Level (RSL) data, for the 3 RSL sites (Briggs and

Tarasov, 2013) that lie within and away from the edges of the model’s West Antarctic domain.

The observations and uncertainty ranges are shown as black dots and whiskers. Model curves

are shown for all 625 runs, with ageregate scores S indicated by colors as in Fig. 5. The run

with the best individual score for each site is shown as a thick black line, and the run with best

aggregate score S is shown as a thick blue line.

(a) Southern Scott Coast, ~77.3S, 163.6E.

(b) Terra Nova Bay, ~74.9N, 163.8E.

(¢) Marguerite Bay, ~67.7S, 67.3W.
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Figure D2.
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Figure D2 continued.

Figure D2 and D2 continued. Model vs. observed elevation vs. age data, for the 18 sites in the

compilation (Briges and Tarasov, 2013) that lie within and away from the edges of the model’s

West Antarctic domain, shown roughly in west-to-east order. The observations and uncertainty

ranges are shown as black dots and whiskers. Model curves are shown for all 625 runs, with

agoregate scores S indicated by colors as in Fig. 5. The run with the best individual score for

each site is shown as a thick black line, and the run with best aggregate score S is shown as a

thick blue line. Sites shown (Briges and Tarasov, 2013) are:

Reedy Glacier 1 ~ 85.9S, 132.6W
Reedy Glacier 2, ~86.1S, 131.0W
Reedy Glacier 3, ~ 86.3S, 126.1W
Hatherton glacier ~79.9S, 156.8E
Clark Mts, ~717.3S, 142.1W
Allegheny Mts, ~717.3S, 143.3W
Western Sarnoff Mts, ~77.1S, 145.5W
Eastern Fosdick Mts, ~76.5S, 144.5W
Executive Committee Range, ~ 77.2S, 127.1W
Pine Island Bay 1, ~75.28, 111.2W
Pine Island Bay 2, ~74.5S, 99.2W
West Palmer Land, ~71.6S, 67.4W
Alexander Island South, ~72.0S, 68.5W
Alexander Island North, ~70.9S, 68.4W
Behrendt Mts, ~75.3S, 72.3W
Ellsworth Mts, ~ 80.3S, 82.2W
Shackleton Range 1, ~ 80.4S, 30.1W
Shackleton Range 2, ~ 80.1S, 25.8W
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Figure D3. Model vs. observed modern uplift rates, for the 25 sites in the compilation

(Whitehouse et al., 2012b) that lie within the model’s West Antarctic domain, shown roughly in

west-to-east order. The observations and uncertainty ranges are shown as black dots and

whiskers. Model rates are shown for all 625 runs, with straight lines joining the sites, and

agoregate scores S indicated by colors as in Fig. 5. The run with best ageregate score S is

shown as a thick blue line. Sites shown, with labels as in Whitehouse et al. (2012b, Supp. Inf.),

are:

1. FTP1. 78.93S, 162.57E
2. ROBI, 77.03S, 163.19E
3. TNBI, 74.70S, 164.10E
4. MCM4 AV,  77.85S, 166.76E
5. MBL1 AV, 78.03S, 155.02W
6. W01 AV, 87.42S, 149.43W
7. MBL2, 76.32S, 144.30W
8. MBL3, 77.34S. 141.87TW
9. W09, 82.68S, 104.39W
10. WO6A, 79.63S. 91.28W
11. WO7_AV, 80.32S, 81.43W
12. WO5_AV, 80.04S. 80.56W
13. HAAG, 77.04S, 78.29W
14. WOBA/B, 75.28S, 72.18W
15. W02 AV, 85.61S, 68.55W
16. OHIG, 63.32S. 57.90W
17. PALM, 64.78S, 64.05W
18. ROTB, 67.57S, 68.13W
19. SMRT, 68.12S, 67.10W
20. FOS1, 71.31S. 68.32W
21. BREN, 72.67S, 63.03W
22. W04 AV, 82.86S, 53.20W
23. BELG., 77.86S, 34.62W
24. W03 _AV, 81.58S, 28.40W
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25. SVEA,

74.588S.

11.22W
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Figure D4. Score-weighted probability (0 to 1) of grounded ice vs. floating ice or open ocean at

each grid point (see text), for various times over the last 20,000 years, concentrating on the

period of rapid retreat between 15 and 10 ka. The LE and model version is essentially the same

as above, except with all-Antarctic coverage to include East Antarctic variations. The quantity

shown is the sum of scores S(n) for runs n with grounded ice at each grid point and time,

divided by the sum of scores for all runs in the ensemble. Thick black lines in the panels for 20,

15, 10 and 5 ka show grounding lines reconstructed for West Antarctica by the RAISED

consortium (RAISED, 2014), plotted using their vertex information (S. Jamieson, pers. comm.),

and choosing their Scenario A for the Weddell embayment (Hillenbrand et al., 2014). For 20

and 15 ka around East Antarctica, the black line is from the 20 ka RAISED timeslice which for
EAIS is based on Livingston et al. (2012) and Mackintosh et al. (2014). Similarly the modern

grounding line (Fretwell et al., 2013) is shown by a thick black line for 0 ka, which is also used

around East Antarctica for 10 and 5 ka.
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Figure D5. Upper panels: Score-weighted probability (O to 1) of grounded ice vs. time, as in

Fig. D4 but along centerline transects of (i) Pine Island Glacier and its paleo-trough, (ii) Ross

embayment and (iii) Weddell embayment. Black symbols show various published data:
Pine Island, circles: Larter et al., 2014 (the RAISED Consortium).
Pine Island, crosses: Kirshner et al., 2012; Hillenbrand et al., 2013; Smith et al., 2014.
Ross, circles: Anderson et al., 2014 (the RAISED Consortium).

Ross, crosses: Conway et al., 1999:; McKay et al., 2008.
Weddell, ‘A’ and ‘B’: Hillenbrand et al., 2014 (the RAISED Consortium), Scenarios A and

B respectively.

Lower panels: Modern bathymetric profiles along each transect (from Bedmap?2; Fretwell et al.

2013).
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