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Abstract 15 

A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice 16 

Sheet over the last ~20,000 years. A large ensemble of 625 model runs is used to calibrate the 17 

model to modern and geologic data, including reconstructed grounding lines, relative sea-level 18 

records, elevation-age data and uplift rates, with an aggregate score computed for each run that 19 

measures overall model-data misfit. Two types of statistical methods are used to analyze the 20 

large-ensemble results: simple averaging weighted by the aggregate score, and more advanced 21 

Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov 22 

chain Monte Carlo. The analyses provide sea-level-rise envelopes with well defined parametric 23 

uncertainty bounds, but the simple averaging method only provides robust results with full-24 

factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and 25 

envelopes of equivalent sea-level rise with the simple averaging method agree well with the 26 

more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior 27 

model tuning, including large basal sliding coefficients on modern ocean beds. 28 
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 1 

1. Introduction 2 

Modeling studies of future variability of the Antarctic Ice Sheet have focused to date on the 3 

Amundsen Sea Embayment (ASE) sector of West Antarctica, including the Pine Island and 4 

Thwaites Glacier basins. These basins are currently undergoing rapid thinning and acceleration, 5 

producing the largest Antarctic contribution to sea level rise (Shepherd et al., 2012; Rignot et 6 

al., 2014). The main cause is thought to be increasing oceanic melt below their floating ice 7 

shelves, which reduces back pressure on the grounded inland ice (buttressing; Pritchard et al., 8 

2012; Dutrieux et al., 2014). There is a danger of much more drastic grounding-line retreat and 9 

sea-level rise in the future, because bed elevations in the Pine Island and Thwaites Glacier basin 10 

interiors deepen to depths of a kilometer or more below sea level, potentially allowing Marine 11 

Ice Sheet Instability (MISI) due to the strong dependence of ice flux on grounding-line depth 12 

(Weertman, 1974; Mercer, 1978; Schoof, 2007; Vaughan, 2008; Rignot et al., 2014; Joughin et 13 

al., 2014). 14 

  15 

Recent studies have mostly used high-resolution models and/or relatively detailed treatments of 16 

ice dynamics (higher order or full Stokes dynamical equations; Morlighem et al., 2010; 17 

Gladstone et al., 2012; Cornford et al., 2013; Parizek et al., 2013; Docquier et al., 2014; Favier 18 

et al., 2014; Joughin et al., 2014). Because of this dynamical and topographic detail, models 19 

with two horizontal dimensions have been confined spatially to limited regions of the ASE and 20 

temporally to durations on the order of centuries to one millennium. On the one hand, these 21 

types of models are desirable because highly resolved bed topography and accurate ice 22 

dynamics near the modern grounding line could well be important on timescales of the next few 23 

decades to century (references above, and Durand et al., 2011; Favier et al., 2012). On the other 24 

hand, the computational run-time demands of these models limit their applicability to small 25 

domains and short time scales, and they can only be calibrated against the modern observed 26 

state and decadal trends at most. 27 

  28 
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Here we take an alternate approach, using a relatively coarse-grid ice sheet model with hybrid 1 

dynamics. This allows run durations of several 10,000 years, so that model parameters can be 2 

calibrated against geologic data of major retreat across the continental shelf since the Last 3 

Glacial Maximum (LGM) over the last ~20,000 years. The approach is a trade-off between (i) 4 

less model resolution and dynamical fidelity, which degrades future predictions on the scale of 5 

~10's km and the next few decades (sill-to-sill retreat immediately upstream from modern 6 

grounding lines), and (ii) more confidence on larger scales of 100's km and 1000's years (deeper 7 

into the interior basins, further into the future) provided by calibration versus LGM extents and 8 

deglacial retreat of the past 20,000 years. Also the approach allows more thorough exploration 9 

of uncertain parameter ranges and their interactions, such as sliding coefficients on modern 10 

ocean beds, oceanic melting strengths, and different Earth treatments of bedrock deformation. 11 

  12 

A substantial body of geologic data is available for the last deglacial retreat in the ASE and 13 

other Antarctic sectors. Notably this includes recent reconstructions of grounding-line locations 14 

over the last 25 kyrs by the RAISED Consortium (RAISED, 2014). Other types of data at 15 

specific sites include relative sea-level records, cosmogenic elevation-age data, and modern 16 

uplift rates (compiled in RAISED, 2014; Briggs and Tarasov, 2013, Briggs et al., 2013, 2014; 17 

Whitehouse et al., 2012a,b). Following several recent Antarctic modeling studies (Briggs et al. 18 

and Whitehouse et al. as above; Golledge et al., 2014; Maris et al., 2015), we utilize these 19 

datasets in conjunction with large ensembles (LE), i.e., sets of hundreds of simulations over the 20 

last deglacial period with systematic variations of selected model parameters. LE studies have 21 

also been performed for past variations of the Greenland Ice Sheet, for instance by Applegate et 22 

al. (2012) and Stone et al. (2013). 23 

 24 

This paper follows on from Chang et al. (2015, 2016), who apply relatively advanced Bayesian 25 

statistical techniques to LE’s generated by our ice-sheet model. The statistical steps are 26 

described in detail in Chang et al. (2015, 2016), and include: 27 

• Statistical emulators, used to interpolate results in parameter space, constructed using a new 28 

emulation technique based on principal components.  29 
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• Probability models, replacing raw square-error model-data misfits with formal likelihood 1 

functions, using a new approach for binary spatial data such as grounding-line maps.  2 

• Markov Chain Monte Carlo (MCMC) methods, used to produce posterior distributions 3 

which are continuous probability density functions of parameter estimates and projected 4 

results based on formally combining the information from the above two steps in a Bayesian 5 

inferential framework. 6 

 7 

Some of these techniques were applied to LE modeling for Greenland in Chang et al. (2014). 8 

McNeall et al. (2013) used a Gaussian process emulator, and scoring similar to our simple 9 

method, in their study of observational constraints for a Greenland ice sheet model ensemble. 10 

Tarasov et al. (2012) used Artificial Neural Nets in their LE calibration study of North 11 

American ice sheets, and have mentioned their potential application to Antarctica (Briggs and 12 

Tarasov, 2013). Apart from these examples, to our knowledge the statistical techniques in 13 

Chang et al. (2015, 2016) are considerably more advanced than the simpler averaging method 14 

used in most previous LE ice-sheet studies; these previous studies have involved 15 

(i) Computing a single objective score for each LE member that measures the misfit between 16 

the model simulation and geologic and modern data, and  17 

(ii) Calculating parameter ranges and envelopes of model results by straightforward averaging 18 

over all LE members, weighted by the scores. 19 

The more advanced statistical techniques offer substantial advantages over the simple averaging 20 

method, such as providing robust and smooth probability density functions in parameter space. 21 

For instance, Applegate et al. (2012) and Chang et al. (2014) show that the simple averaging 22 

method fails to provide reasonable results for LE’s with coarsely spaced Latin HyperCube 23 

sampling, whereas for the same LE, the advanced techniques successfully interpolate in 24 

parameter space and provide smooth and meaningful probability densities. 25 

 26 

However, the advanced techniques in Chang et al. (2015, 2016) require statistical expertise not 27 

readily available to most ice-sheet modeling groups. It may be that the simple averaging 28 

method still gives reasonable results, especially for LE’s with full factorial sampling, i.e., with 29 
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every possible combination of selected parameter values (also referred to as grid or Cartesian 1 

product; Urban and Fricker, 2010). The purpose of this paper is to apply both the advanced 2 

statistical and simple averaging methods to the same Antarctic LE, compare the results, and 3 

thus assess whether the simple (and commonly used) method is a viable alternative to the more 4 

advanced techniques, at least for full factorial LEs. The results include probabilistic ranges of 5 

model parameter values, and envelopes of model results such as equivalent sea-level rise. 6 

Further types of results related to specific glaciological problems (LGM ice volume, MeltWater 7 

Pulse 1A, future retreat) will be presented in Pollard et al. (2016) using the simple-averaging 8 

method, and do not modify or extend the comparisons of the two methods in this paper. 9 

 10 

Sections 2.1 and 2.2 describe the model, the setup for the last deglacial simulations, and the 11 

model parameters chosen for the full factorial LE. Sections 2.3 to 2.4 describe the objective 12 

scoring vs. past and modern data used in the simple averaging method, and Sect. 2.5 provides 13 

an overview of the advanced statistical techniques. Results are shown for best-fit model 14 

parameter ranges and equivalent sea-level envelopes in Sects. 3 and 4, comparing simple and 15 

advanced techniques. Conclusions and steps for further work are described in Sect. 5. 16 

 17 

2. Methods 18 

 19 

2.1. Ice sheet model and simulations 20 

The 3-D ice-sheet model has previously been applied to past Antarctic variations in Pollard and 21 

DeConto (2009), DeConto et al. (2012) and Pollard et al. (2015). The model predicts ice 22 

thickness and temperature distributions, evolving due to slow deformation under its own 23 

weight, and to mass addition and removal (precipitation, basal melt and runoff, oceanic melt, 24 

and calving of floating ice). Floating ice shelves and grounding-line migration are included. It 25 

uses hybrid ice dynamics and an internal condition on ice velocity at the grounding line 26 

(Schoof, 2007). The simplified dynamics (compared to full Stokes or higher-order) captures 27 

grounding-line migration reasonably well (Pattyn et al., 2013), while still allowing O(10,000's) 28 

year runs to be feasible. As in many long-term ice sheet models, bedrock deformation is 29 
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modeled as an elastic lithospheric plate above local isostatic relaxation. Details of the model 1 

formulation are described in Pollard and DeConto (2012a,b). The drastic ice-retreat 2 

mechanisms of hydrofracturing and ice-cliff failure proposed in Pollard et al. (2015) are only 3 

triggered in warmer-than-present climates and so do not play any role in the glacial-deglacial 4 

simulations here; in fact they are switched off in all runs. Tests show that they play no 5 

perceptible role in simulations over the last 40 kyears.  6 

 7 

The model is applied to a limited area nested domain spanning all of West Antarctica, with a 8 

20-km grid resolution. Lateral boundary conditions on ice thicknesses and velocities are 9 

provided by a previous continental-scale run. The model is run over the last 30,000 years, 10 

initialized appropriately at 30 ka (30,000 years before present, relative to 1950 AD) from a 11 

previous longer-term run. Atmospheric forcing is computed using a modern climatological 12 

Antarctic dataset (ALBMAP: Le Brocq, 2010), with uniform cooling perturbations proportional 13 

to a deep-sea core δ18O record (as in Pollard and DeConto, 2009, 2012a). Oceanic forcing uses 14 

using archived ocean temperatures from a global climate model simulation of the last 22 kyr 15 

(Liu et al., 2009). Sea level variations versus time, which are controlled predominantly by 16 

Northern Hemispheric ice sheet variations, are prescribed from the ICE-5G dataset (Peltier, 17 

2004). Modern bedrock elevations are obtained from the Bedmap2 dataset (Fretwell et al., 18 

2013). 19 

 20 

2.2. Large ensemble and model parameters  21 

The large ensemble analyzed in this study uses full factorial sampling, i.e., a run for every 22 

possible combination of parameter values, with 4 parameters varied and with each parameter 23 

taking 5 values, requiring 625 (=54) runs. As discussed above, results are analyzed in two ways: 24 

(1) using the relatively advanced statistical techniques (emulators, likelihood functions, 25 

MCMC) in Chang et al. (2015, 2016), and (2) using the much simpler averaging method of 26 

calculating an aggregate score for each run that measures model-data misfit, and computing 27 

results as averages over all runs weighted by their score. Because the second method has no 28 

means of interpolating results between sparsely separated points in multi-dimensional 29 

parameter space, it is effectively limited to full factorial sampling with only a few parameters 30 
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and a small number of values each. The small number of values is nevertheless sufficient to 1 

span the full reasonable “prior” range for each parameter, and although the results are very 2 

coarse with the second method, they show the basic patterns adequately. Furthermore, 3 

envelopes of results of all model runs are compared in Appendix D with corresponding data, 4 

and demonstrate that the ensemble results do adequately “span” the data, i.e., there are no 5 

serious outliers of data far from the range of model results. 6 

  7 

The 4 parameters and their 5 values are: 8 

  9 

OCFAC: Sub-ice oceanic melt coefficient.  10 

    Values are 0.1, 0.3, 1, 3, 10 (non-dimensional). 11 

    Corresponds to K in Eq. 17 of Pollard and Deconto (2012a). 12 

  13 

CALV: Factor in calving of icebergs at oceanic edge of floating ice shelves.  14 

    Values are 0.3, 0.7, 1, 1.3, 1.7 (non-dimensional).  15 

    Multiplies combined crevasse-depth-to-ice-thickness ratio r in Eq. B7 of Pollard et al. (2015). 16 

  17 

CSHELF: Basal sliding coefficient for ice grounded on modern-ocean beds.  18 

    Values are10-9, 10-8, 10-7, 10-6, 10-5 (m yr-1 Pa-2).  19 

    Corresponds to C in Eq. 11 of Pollard and Deconto (2012a). 20 

  21 

TAUAST: e-folding time of bedrock relaxation towards isostatic equilibrium.  22 

    Values are 1, 2, 3, 5, 7 kyrs.  23 

    Corresponds to τ in Eq. 33 of Pollard and Deconto (2012a). 24 

 25 

The 4 parameters were chosen based on prior experience with the model; each has a strong 26 

effect on the results, yet their values are particularly uncertain. The first 3 involve oceanic 27 

processes or properties of modern ocean-bed areas. Parameters whose effects are limited to 28 

modern grounded-ice areas are reasonably well constrained by earlier work, such as basal 29 

sliding coefficients under modern grounded ice which are obtained by inverse methods (e.g., 30 

Pollard and DeConto, 2012b, for this model). More discussion of the physics and uncertainties 31 

associated with these parameters is given in Appendix A.  32 

 33 

2.3. Individual data types and scoring 34 

Following Whitehouse (2012a,b), Briggs and Tarasov (2013) and Briggs et al. (2013, 2014), we 35 

test the model against 3 types of data for the modern observed state, and 5 types of geologic 36 
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data relevant to ice-sheet variations of the last ~20,000 years, using straightforward mean 1 

squared or root-mean-square misfits in most cases. Each misfit (Mi, i = 1 to 8) is normalized 2 

into an individual score (Si), which are then combined into one aggregate score (S) for each 3 

member of the LE. Only data within the domain of the model (West Antarctica) is used in the 4 

calculation of the misfits. 5 

 6 

One approach to calculating misfits and scores is to borrow from Gaussian error distribution 7 

concepts, i.e., individual misfits M of the form [(mod-obs) / σ]2 and overall scores of the form  8 

e-M/s, where mod is a model quantity, obs is a corresponding observation, σ is an observational 9 

or scaling uncertainty, M is an average of individual misfits over data sites and types of 10 

measurements, and s is another scaling value (Briggs and Tarasov, 2013; Briggs et al., 2014). 11 

However, the choice of these forms is somewhat heuristic, and different choices are also 12 

appropriate for complex model-data comparisons with widespread data points, very different 13 

types of data, and with many model-data error types not being strictly Gaussian. In order to 14 

determine the influence of these choices on the results, we compare two approaches: (a) with 15 

formulae adhering closely to Gaussian forms throughout, and (b) with some non-Gaussian 16 

aspects attempting to provide more straightforward and interpretable scalings between different 17 

data types. Both approaches are described fully below (next section, and Appendix B). They 18 

yield very similar results, with no significant differences between the two, as shown in 19 

Appendix C. The second more heuristic approach (b) is used for results in the main paper. 20 

 21 

The 8 individual data types and model-data misfits are listed below, with basic information that 22 

applies to both of the above approaches. More details are given in Appendix B, including 23 

formulae for the two approaches, and “intra-data-type weighting” that is important for closely 24 

spaced sites (Briggs and Tarasov, 2013). The two approaches of combining the individual 25 

scores into one aggregate score S for the simple averaging method are described in the 26 

following Sect. 2.4. The more advanced statistical techniques (Chang et al., 2015, 2016) use 27 

elements of these calculations but differ fundamentally in some aspects, as outlined in Sect. 2.5. 28 

The 8 individual data types are: 29 

 30 
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1. TOTE: Modern grounding-line locations.  1 

    Misfit M1: based on total area of model-data mismatch for grounded ice. 2 

    Data: Bedmap2 (Fretwell et al., 2013). 3 

 4 

2. TOTI: Modern floating ice-shelf locations.  5 

    Misfit M2: based on total area of model-data mismatch for floating ice. 6 

    Data: Bedmap2 (Fretwell et al., 2013). 7 

 8 

3. TOTDH: Modern grounded ice thicknesses.  9 

    Misfit M3: based on model-data differences of grounded ice thicknesses. 10 

    Data: Bedmap2 (Fretwell et al., 2013). 11 

 12 

4. TROUGH: Past grounding-line distance vs. time along the centerline trough of Pine Island Glacier. 13 

Centerline data for the Ross and Weddell basins can also be used, but not in this study. 14 

    Misfit M4 : based on model-data differences over the period 20 to 0 ka. 15 

    Data: RAISED (2014) (Anderson et al., 2014, for the Ross; Hillenbrand et al., 2014, for the Weddell; 16 

    Larter et al., 2014, for the Amundsen Sea). 17 

  18 

5. GL2D: Past grounding-line locations (see Fig. 1). Only the Amundsen Sea region is used in this 19 

study. 20 

    Misfit M5: based on model-data mismatches for 20, 15, 10, 5 ka. 21 

    Data: RAISED (2014) (Anderson et al., 2014; Hillenbrand et al., 2014; Larter et al., 2014; 22 

    Mackintosh et al., 2014; O Cofaigh et al., 2014). 23 

. 24 

 25 

 6. RSL: Past Relative Sea Level (RSL) records.  26 

    Misfit M6 : based on χ-squared measure of model-data differences at individual sites.  27 

    Data: compilation in Briggs and Tarasov (2013). 28 

 29 

7. ELEV/DSURF: Past cosmogenic elevation vs. age (ELEV) and thickness vs. age (DSURF). 30 

    Misfits M7a, M7b: based on model-data differences at individual sites, combined as in Appendix B. 31 

    Data: compilations in Briggs and Tarasov (2013) for ELEV; in RAISED (2014) with individual  32 

    citations as above for DSURF. 33 

  34 

8. UPL: Modern uplift rates on rock outcrops. 35 

    Misfit M8: based on model-data difference at individual sites. 36 

    Data: compilation in Whitehouse et al. (2012b). 37 

 38 

2.4. Combination into one aggregate score for simple averaging method 39 

Each of the misfits above are first transformed into a normalized individual score for each data 40 

type i = 1 to 8. The transformations differ for the two approaches mentioned above. 41 

(a) For approach (a), closely following Gaussian error forms, using misfits Mi as described in 42 

Appendix B: 43 
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• For a given data type i, the misfits Mi for all runs (1 to 625) are sorted, and normalized 1 

using the median value Mi
50, i.e., Mi′=Mi / Mi

50. This is somewhat analogous to the 2 

heuristic scaling for overall scores in Briggs et al., (2014, their sec. 2.3), but applied 3 

here to individual types. 4 

• The individual score Si for data type i and each run is set to e-Mi′ 
  5 

• The aggregate score for each run is S = S1 S2 S3 S4 S5 S6 S7 S8,  i.e.,  e -ΣMi′ 
  6 

Of the two approaches, this most closely follows Briggs and Tarasov (2013) and Briggs et 7 

al. (2014), except for their inter-data-type weighting, which assigns very different weights 8 

to the individual types based on spatial and temporal volumes of influence (Briggs and 9 

Tarasov, 2013, their sec. 4.3.2; Briggs et al., 2014, their sec. 2.2). Here, we assume that 10 

each data type is of equal importance to the overall score, and that if any one individual 11 

score is very bad (Si ≈ 0), the overall score S should also be ≈ 0. This corresponds to the 12 

notion that if any single data type is completely mismatched, the run should be rejected as 13 

unrealistic, regardless of the fit to the other data types. The fits to past data, even if more 14 

uncertain and sparser than modern, seem equally important to the goal of obtaining the best 15 

calibration for future applications with very large departures from modern conditions. 16 

 17 

(b) For the more heuristic approach (b), using misfits Mi as described in Appendix B: 18 

• For a given data type i, a “cutoff” value Ci is set by taking the geometric mean (i.e., 19 

square root of the product) of (i) the minimum (best) misfits Mi over all runs 1 to 625, 20 

and (ii) the algebraic average of the 10 largest (worst) values. The 10 worst values are 21 

used to avoid a single outlier that could be unbounded; the single best value is used 22 

because it is bounded by zero, and is not an outlier but represents close-to-the-best 23 

possible simulation with the current model. The geometric mean and not the algebraic 24 

mean of these two numbers is more appropriate if the values range over many orders of 25 

magnitude.  26 

• The normalized misfit Mi′ for data type i and each run is set to Mi/Ci . We implicitly 27 

assume that Mi′ values close to 0 (Mi << Ci) represent very good simulations of this data 28 

type, close to the best possible within the LE. Mi′ values ≥ 1 (Mi ≥ Ci) represent very 29 
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poor simulations, diverging from this data type so much that the run should be rejected 1 

no matter what the other scores are. 2 

• The individual score Si for data type i and each run is set to max [0, 1 - Mi′]  3 

• The aggregate score for each run is S = ( S1 S2 S3 S4 S5 S6 S7 S8 )
1/8 4 

In both approaches, the formulae apply equal weights to the individual data types, and do 5 

not use “inter-data-type” weighting (Briggs and Tarasov 2013; Briggs et al. 2014). As in 6 

(a), if any individual score Si is ≈ 0, then the overall score S is ≈ 0, and the discussion above 7 

also applies to approach (b). Both approaches have loose links to the calibration technique 8 

in Gladstone et al. (2012) and the more formal treatment in McNeall et al. (2013). 9 

 10 

2.5. Advanced statistical techniques 11 

The more advanced statistical techniques (Chang et al., 2015, 2016) consist of an emulation and 12 

a calibration stage, involving the same 4 model parameters and the 625-member LE as above. 13 

The aggregate scores S described in Sect. 2.4 are not used at all. The techniques are outlined 14 

here; full accounts are given in Chang et al. (2015, 2016). 15 

 16 

Emulation phase:  17 

Emulation is the statistical approach by which a computer model is approximated by a 18 

statistical model. This statistical approximation is obtained by running the model at many 19 

parameter settings and then “fitting” a Gaussian process model to the input-output 20 

combinations, analogous to fitting a regression model that relates independent variables 21 

(parameters) to dependent variables (model output) in order to make predictions of the 22 

dependent variable at new values of the independent variables. Of course, unlike basic 23 

regression, the model output may itself be multivariate. An emulator is useful because: (i) it 24 

provides a computationally inexpensive method for approximating the output of a computer 25 

model at any parameter setting without having to actually run the model each time, and (ii) it 26 

provides a statistical model relating parameter values to computer model output – this means 27 

the approximations automatically include uncertainties, with larger uncertainties at parameter 28 
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settings that are far from parameter values where the computer model has already been run. 1 

Specifically, the model output consisting of (i) modern grounding line maps, and (ii) past 2 

locations of grounding lines versus time along the centerline trough of Pine Island, are first 3 

reduced in dimensionality by computing Principal Components (PCs) over all LE runs. 4 

(Principal components are often referred to in the atmospheric science literature as empirical 5 

orthogonal functions or EOFs.) The first 10 PCs are used for modern maps, and the first 20 for 6 

past trough locations. Hence, we develop a Gaussian process emulator for each of the above 7 

PCs. Gaussian process emulators work especially well for model outputs that are scalars. The 8 

emulators are “fitted” to the PCs using a maximum likelihood estimation-based approach 9 

developed in Chang et al. (2015) that addresses the complications that arise due to the fact that 10 

the data are non-Gaussian. Details are available in (Chang et al., 2015, 2016). The emulators 11 

provide a statistical model that essentially replaces the data types TOTE, TROUGH and GL2D 12 

described in Sect. 2.3. 13 

 14 

In an extension to Chang et al. (2016), Gaussian process emulators are also used here to 15 

estimate distributions of individual score values for the 5 data types TOTI, TOTDH, RSL, 16 

ELEV/DSURF and UPL (S2, S3, S6, S7, S8, approach (b), Sect. 2.3 and Appendix B), one 17 

emulator per score. Again, emulators are developed for each of the scores by using the 18 

Gaussian process machinery and maximum likelihood estimation. 19 

 20 

Calibration phase: 21 

The calibration stage solves the following problem in a statistically rigorous fashion: given 22 

observations and model runs at various parameter settings, which parameters of the model are 23 

most likely? In a Bayesian inferential framework, this translates to learning about the posterior 24 

probability distribution of the parameter values given all the available computer model runs and 25 

observations. The approach may be sketched out as follows. The emulation phase provides a 26 

statistical model connecting the parameters to the model output. Suppose it is assumed that the 27 

model at a particular (ideal) set of parameter values produces output that resembles the 28 

observations of the process. We also allow for measurement error and systematic discrepancies 29 

between the computer model and the real physical system. We do this via a “discrepancy 30 
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function” that simultaneously accounts for both; this is reasonable because both sources of error 1 

are important while also being difficult to tease apart. Hence, one can think of our approach as 2 

assuming that the observations are modeled as the model output at an ideal parameter setting, 3 

added to a discrepancy function. Once we are able to specify a model in this fashion, Bayesian 4 

inference provides a a very standard approach to obtain the resulting posterior distribution of 5 

the parameters: we start with a prior distribution for the parameters, where we assume that all 6 

the values are equally likely before any observations are obtained, and then use Bayes theorem 7 

to find the posterior distribution given the data.  The posterior distribution cannot be found in 8 

analytical form. Hence, in this second “calibration” stage, posterior densities of the model 9 

parameters are inferred via Markov Chain Monte Carlo (MCMC). The observation and model 10 

quantities used in emulation and calibration consist of the modern and past grounding-line 11 

locations, and 5 individual scores. The discrepancy function is accounted for in assessing model 12 

vs. observed grounding-line fits in our Bayesian approach. It is based in part on the locations 13 

and times in which grounded ice occurs in the model and not in the observations, or vice versa, 14 

in 50% or more of the LE runs (Chang et al., 2015, 2016). For the individual scores, we use 15 

exponential marginal densities, whose rate parameters receive gamma priors scaled in such a 16 

way that the 90th percentile of the prior density coincides with each score’s cutoff value Ci in 17 

Sect. 2.4.b.  18 

 19 

In the above procedures, observational error enters for the individual scores RSL, 20 

ELEV/DSURF and UPL via the calculations described in Appendix B. It is implicitly taken into 21 

account by the discrepancy function for grounding-line locations. Observational error is 22 

considered to be negligible for modern TOTI and TOTDH scores. 23 

 24 

3. Results: Aggregate scores with simple averaging method 25 

Fig. 2 shows the aggregate scores S for all 625 members of the LE, over the 4-dimensional 26 

space of the parameters CSHELF, TAUAST, OCFAC and CALV. Each individual subpanel 27 

shows TAUAST versus CSHELF, and the subpanels are arranged left-to-right for varying 28 

CALV, and bottom-to-top for varying OCFAC. 29 
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 1 

3.1. “Outer” variations, CALV and OCFAC 2 

All scores with the largest CALV value of 1.7 (right-hand column of subpanels) are 0. In these 3 

runs, excessive calving results in very little floating ice shelves and far too much grounding 4 

line-retreat. Conversely, with the smallest CALV value of 0.3 (left-hand column of subpanels) , 5 

most runs have too much floating ice and too advanced grounding lines during the runs, so most 6 

of this column also has zero scores. However, small CALV can be partially compensated by 7 

large OCFAC (strong ocean melting), so there are some non-zero scores in the upper-left 8 

subpanels. 9 

 10 

3.2. “Inner” variations, CSHELF and TAUAST 11 

For mid-range CALV and OCFAC (subpanels near the center of the figure), the best scores 12 

require high CSHELF (inner x axis) values, i.e., slippery ocean-bed coefficients of 10-6 to 10-5 13 

m a-1 Pa-2.This is the most prominent signal in Fig. 2, and is consistent with the widespread 14 

extent of deformable sediments on continental shelves noted above. Ideally the LE should have 15 

included CSHELF values greater than 10-5. However, we note that values of 10-5 to 10-6 have 16 

been found to well represent active Siple Coast ice-stream beds in model inversions (Pollard 17 

and DeConto, 2012b). Subsequent work with wider CSHELF ranges confirms that values 18 

around 10-5 are in fact optimal, with unrealistic behavior for larger values (Pollard et al., 2016). 19 

 20 

Somewhat lower but still reasonable scores exist for lower CSHELF values of 10-7, but only for 21 

higher OCFAC (3 to 10) and smaller TAUAST (1 to 2 kyr). This is of interest because smaller 22 

CSHELF values support thicker ice thicknesses at LGM where grounded ice has expanded over 23 

continental shelves, producing greater equivalent sea-level lowering and alleviating the LGM 24 

“missing-ice” problem (Clark and Tarasov, 2014). In order for the extra ice to be melted by 25 

present day, ocean melting needs to be more aggressive (higher OCFAC), and to recover in 26 

time from the greater bedrock depression at LGM, TAUAST has to be smaller (more rapid 27 

bedrock rebound). This glaciological aspect is explored in Pollard et al. (2016). 28 

 29 
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Scores are quite insensitive to the asthenospheric rebound time scale TAUAST (inner y axis), 1 

although there is a tendency to cluster around 2 to 3 kyr and to disfavor higher values (5 to 7 2 

kyr) especially for high OCFAC. 3 

 4 

4. Results: Comparisons of simple averaging vs. advanced statistical techniques 5 

 6 

4.1. Single parameter ranges 7 

The main results seen in Fig. 2 are borne out in Fig. 3. The left-hand panels show results using 8 

the simple averaging method, i.e., the average score for all runs in the LE with a particular 9 

parameter value. Triangles in these panels show the mean parameter value Vm = Σ (S(n)
 V

(n)
) / Σ 10 

S
(n), where S(n) is the aggregate score and V(n) is the value of this parameter for run n (1 to 625), 11 

and whiskers show the standard deviation. The prominent signal of high CSHELF values 12 

(sticky ocean beds) is evident, along with the absence (near absence) of positive scores for the 13 

extreme CALV values of 1.7 (0.3), and the more subtle trends for OCFAC and TAUAST. 14 

 15 

The right-hand panels of Fig. 3 show the same single-parameter “marginal” probably density 16 

functions for this LE, using the advanced statistical techniques described in Chang et al. (2015, 17 

2016) and summarized above. For OCFAC, CSHELF and TAUAST, there is substantial 18 

agreement with the simple-averaging results in both the peak “best-fit” values and the width of 19 

the ranges. For CALV, the peak values agree quite well, but the simple-averaging distribution 20 

has a significant tail for lower CALV values that is not present in the advanced results; this 21 

might be due to the discrepancy function in the advanced method (Sect. 2.5), which has no 22 

counterpart in the simple averaging method. 23 

  24 

4.2. Paired parameter ranges 25 

Probability densities for pairs of parameter values are useful in evaluating the quality of LE 26 

analysis, and can display offsetting physical processes that together maintain realistic results, 27 

e.g., greater OCFAC and lesser CALV (Chang et al., 2014; 2015, 2016). In Fig. 4, the left-hand 28 
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panels show mean scores for pairs of the 4 parameters, using the simple averaging method and 1 

averaged over all LE runs with a particular pair of values. The right-hand panels show 2 

corresponding densities for the same parameter pairs using the advanced statistical techniques. 3 

Overall the same encouraging agreement is seen as for the single-parameter densities in Fig 3, 4 

with the locations of the main maxima being roughly the same for each parameter pair. There 5 

are some differences in the extents of the maxima, notable for CALV where the zone of high 6 

scores with the simple averaging method extends to lower CALV values than with the 7 

advanced techniques, as seen for the individual parameters in Fig. 3. In general, though, there is 8 

good agreement between the two methods regarding parameter ranges in Figs. 3 and 4, 9 

suggesting that the simple averaging method is viable, at least for LE’s with full factorial 10 

sampling of parameter space. 11 

 12 

4.3. Equivalent-sea-level contribution 13 

Fig. 5 illustrates the use of the LE to produce past envelopes of model simulations. Fig. 5a,b 14 

show equivalent sea-level (ESL) scatter plots for all 625 runs. Early in the runs around LGM 15 

(20 to 15 ka), the curves cluster into noticeable groups with the same CSHELF values, due to 16 

the relatively weak effects of the other parameters (OCFAC, CALV and TAUAST) for cold 17 

climates and ice sheets in near equilibrium. Fig. 5c,d show the mean and one-sided standard 18 

deviations for the simple method. Most of the retreat and sea-level rise occurs between ~14 to 19 

10 ka. Glaciological aspects of the retreat will be discussed in more detail in Pollard et al. 20 

(2016). 21 

 22 

Fig. 5e,f shows the equivalent mean and standard deviations derived from the advanced 23 

statistical techniques. There is substantial agreement with the simple-method curves in Fig. 24 

5c,d, for most of the duration of the runs. The largest difference is around the Last Glacial 25 

Maximum ~20 to 15 ka, when mean sea levels are nearly ~2 m lower (larger LGM ice volumes) 26 

in the simpler method compared to the advanced. This may be due to the simpler method’s 27 

scores using past 2-D grounding-line reconstructions (data type GL2D), which are not used in 28 

the advanced techniques. 29 
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 1 

Fig. 6 shows probability densities of equivalent sea level rise at particular times in the runs. Fig. 2 

6a-d show results with the simple averaging method, computed using score-weighted densities 3 

and 0.2-m wide ESL bins (see caption). The uneven noise in this figure is due to the small 4 

number of parameter values in our LE. The separate peaks for LGM (-15000 yr) in Fig. 6a and 5 

b are due to the widely separated CSHELF values, and the relatively weak effects of the other 6 

parameters (OCFAC, CALV and TAUAST) for cold climates and ice sheets in near 7 

equilibrium. Fig. 6e shows the equivalent but much smoother probability densities using the 8 

advanced statistical techniques. All major aspects agree reasonably well with the simple 9 

averaging results, and the separate peaks for -15000 yr are smoothed into a single broad range. 10 

 11 

5. Conclusions and further work 12 

1. The simple averaging method, with quantities weighted by aggregate scores, produces results 13 

that are reasonably compatible with relatively sophisticated statistical techniques involving 14 

emulation, probability model/likelihood functions, and MCMC (Chang et al., 2015, 2016; Sect. 15 

2.5). They are applied to the same LE with full factorial sampling in parameter space, for which 16 

both techniques yield smooth and robust results, and the advanced technique acts as a 17 

benchmark against which the simple method can be compared.  18 

 19 

Unlike the advanced techniques, the simple averaging method cannot interpolate in parameter 20 

space, and so is limited practically to relatively few parameters (4 here) and a small number of 21 

values for each (5 here). Previous work using LE’s with Latin HyperCube sampling (Applegate 22 

et al., 2012; Chang et al., 2014, 2015) has shown that the simple averaging method can fail if 23 

the sampling is too coarse, whereas the advanced technique provides smooth and meaningful 24 

results. This is primarily due to emulation and MCMC in the advanced techniques, which still 25 

interpolate successfully in the coarsely sampled parameter space. Of course, this distinction 26 

depends on the size of the LE and the coarseness of the sampling; somewhat larger LE’s with 27 

Latin HyperCube sampling and fewer parameters can be amenable to the simple method. Note 28 

that this is not addressed in this paper; where just one full-factorial LE is used. 29 
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 1 

2. The best-fit parameter ranges deduced from the LE analysis generally fit prior expectations. 2 

In particular, the results strongly confirm that large basal sliding coefficients (i.e., slippery 3 

beds) are appropriate for modern continental-shelf oceanic areas. In further work we will assess 4 

heterogeneous bed properties such as the inner region of hard outcropping basement observed 5 

in the ASE (Gohl et al., 2013).The best-fit range for the asthenospheric relaxation time scale 6 

TAUAST values is quite broad, including the prior reference value ~3 kyr but extending to 7 

shorter times ~1 kyr. This may be connected with low upper-mantle viscosities and thin crustal 8 

thicknesses suggested in recent work (Whitehouse et al., 2012b; Chaput et al., 2014), which 9 

will be examined in further work with full Earth models (Gomez et al., 2013, 2015; Konrad et 10 

al., 2015). 11 

 12 

3. The total Antarctic ice amount at the Last Glacial Maximum is equivalent to ~5 to 10 meters 13 

of global equivalent sea level below modern (Fig. 5). This is consistent with the trend in recent 14 

modeling studies (Ritz et al., 2001; Huybrechts, 2002; Philippon et al., 2006; Briggs et al., 15 

2014; Whitehouse et al., 2012a,b; Golledge et al., 2012,2013,2014, whose LGM amounts are 16 

generally less than in older papers. (Note that Fig. 5 shows contributions only from our limited 17 

West Antarctic domain, but as shown in Mackintosh et al., 2011, the contribution from East 18 

Antarctica at LGM is much smaller, ~1 mesl). This suggests that Antarctic expansion is 19 

insufficient to explain the “missing ice” problem, i.e., the total volume of reconstructed ice 20 

sheets worldwide is less than the equivalent fall in sea-level records at that time by 15 to 20 21 

meters (Clark and Tarasov, 2014). A subsequent paper (Pollard et al., 2016) examines this 22 

glaciological aspect in more detail but does not alter the conclusions here. 23 

 24 

4. There are only minor episodes of accelerated WAIS retreat and equivalent sea-level rise in 25 

the simulations (Fig. 5), and none with magnitudes comparable to Melt Water Pulse 1A for 26 

instance, with ~15 mesl rise in ~350 years around ~14.5 ka (Deschamps et al., 2012), in 27 

apparent conflict with significant Antarctic contribution implied by sea-level fingerprinting 28 

studies (Bassett et al., 2005; Deschamps et al., 2012) and IRD-core analysis (Weber et al., 29 
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2014). Model retreat rates are examined in more detail in Pollard et al. (2016), again without 1 

altering the findings here. 2 

A natural extension of this work is to extend the Antarctic model simulations and LE methods 3 

into the future, using climates and ocean warming following Representative Concentration 4 

Pathway scenarios (Meinshausen et al., 2011). In these warmer climates we expect Marine Ice 5 

Sheet Instability to occur in WAIS basins, consistent with past retreats simulated in Pollard and 6 

DeConto (2009). Also drastic retreat mechanisms of hydrofracture and ice-cliff failure, not 7 

triggered in the colder-than-present simulations of this paper, may play a role, as found for the 8 

Pliocene in Pollard et al. (2015). Future applications with simple-average LE’s are described in 9 

Pollard et al. (2016), and detailed future scenarios with another type of LE are described in 10 

DeConto and Pollard (2016). 11 

 12 
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Appendix A: Model parameters varied in the large ensemble 1 

The four model parameters (OCFAC, CALV, CSHELF and TAUAST) and their ranges in the 2 

large ensemble are summarized in Sect. 2.2. Their physical effects in the model and associated 3 

uncertainties are discussed in more detail here. 4 

  5 

OCFAC is the main coefficient in the parameterization of sub-ice-shelf oceanic melt, which is 6 

proportional to the square of the difference between nearby water temperature at 400 m, and the 7 

pressure-melting point of ice. Oceanic melting (or freezing) erodes (or grows on) the base of 8 

floating ice shelves, as warm waters at intermediate depths flow into the cavities below the 9 

shelves. The resulting ice-shelf thinning reduces pinning points and lateral friction, and thus 10 

back stress on grounded interior ice. As mentioned above, recent increases in ocean melt rates 11 

are considered to be the main cause of ongoing downdraw and acceleration of interior ice in the 12 

ASE sector of WAIS (Pritchard et al., 2012; Dutrieux et al., 2014). High-resolution dynamical 13 

ocean models (Hellmer et al., 2012) are not yet practical on these time scales, and simple 14 

parameterizations of sub-ice-shelf melting such as the one used here are quite uncertain (eg., 15 

Holland et al., 2008). For small (large) OCFAC values, oceanic melting is reduced (increased), 16 

ice shelves thicken (thin), discharge of interior ice across the grounding line decreases 17 

(increases), and grounding lines tend to advance (retreat). 18 

  19 

CALV is the main factor in the parameterization of iceberg calving at the oceanic edges of 20 

floating shelves. Calving has important effects on ice-shelf extent with strong feedback effects 21 

via buttressing of interior ice. However, the processes controlling calving are not well 22 

understood, probably depending on a combination of pre-existing fracture regime, large-scale 23 

stresses, and hydrofracturing by surface meltwater. There is little consensus on calving 24 

parameterizations. We use a common approach based on parameterized crevasse depths and 25 

their ratio to ice thickness (Benn et al. 2007; Nick et al., 2010). For small (large) CALV, 26 

calving is decreased (increased), producing more (less) extensive floating shelves, and greater 27 

(lesser) buttressing of interior ice. 28 

  29 
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CSHELF is the basal sliding coefficient for ice grounded on areas that are ocean bed today 1 

(and is not frozen to the bed). Coefficients under modern grounded ice are deduced by inverse 2 

methods (Pollard and DeConto, 2012b; Morlighem et al., 2013), but they are relatively 3 

unconstrained for modern oceanic beds, across which grounded ice advanced at the Last Glacial 4 

Maximum ~20 to 15 ka. Most oceanic beds around Antarctica are covered in deformable 5 

sediment today, due to Holocene marine sedimentation, and to earlier transport and deposition 6 

of till by previous ice advances. For these regions, coefficients are expected to be relatively 7 

high (i.e., slippery bed), but there is still a plausible range that has significant effects on model 8 

results, because it strongly controls the steepness of the ice-sheet surface profile and ice 9 

thicknesses, and thus the sensitivity to climate change. In this paper, we vary the sliding 10 

coefficient CSHELF uniformly for all modern-oceanic areas. (In further work, we will allow for 11 

heterogeneity such as the hard crystalline bedrock zone observed in the inner Amundsen Sea 12 

Embayment; Gohl et al., 2013). 13 

  14 

TAUAST is the e-folding time of asthenosephic relaxation in the bedrock model component. 15 

Ice sheet evolution on long timescales is affected quite strongly by the bedrock response to 16 

varying ice loads, especially for marine ice sheets in contact with the ocean where bathymetry 17 

determines grounding-line depths. During deglacial retreat, the bedrock rebounds upwards due 18 

to reduced ice load, which slows down ice retreat due to shallower grounding-line depths and 19 

less discharge of interior ice. However, the O(103)-year lag in this process is important in 20 

reducing this negative feedback, and accelerates the positive feedback of Marine Ice Sheet 21 

Instability if the bed deepens into the ice-sheet interior. As in many large-scale ice-sheet 22 

models, our bedrock response is represented by a simple Earth model consisting of an elastic 23 

plate over a local e-folding relaxation towards isostatic equilibrium (Elastic Lithosphere 24 

Relaxing Asthenosphere). Based on more sophisticated global Earth models, the asthenospheric 25 

e-folding time scale is commonly set to 3 kyr (e.g., Gomez et al., 2013), but note that recent 26 

geophysical studies suggest considerably shorter time scales for some West Antarctic regions 27 

(Whitehouse et al., 2012b; Chaput et al., 2014). In further work we plan to perform large 28 

ensembles with the ice sheet model coupled to a full Earth model, extending Gomez et al (2013, 29 

2015). 30 

  31 
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Appendix B: Data types and individual misfits 1 

The 8 types of modern and past data used in evaluating the model simulations are summarized 2 

in Sect. 2.3. More details on the algorithms used to compute the individual mismatches M1 to 3 

M8 with model quantities are given below. The term “domain” refers to the nested model grid 4 

that spans all of West Antarctica, and we only compare with observational sites and data within 5 

this domain. Modern observed data is from the Bedmap2 dataset (Fretwell et al., 2013). 6 

 7 

As discussed in Sects. 2.3 and 2.4, we use 2 approaches in scoring: (a) more closely following 8 

Gaussian error forms, and (b) with more heuristic forms. Some of the algorithms for individual 9 

misfits differ between the two, as indicated by bullets (a) and (b) below. For most data types, 10 

approach (a) uses mean-square errors, and (b) uses root-mean-square errors. For some data 11 

types, the errors are normalized not by observational uncertainty, but by an “acceptable model 12 

error magnitude” representing typical model departures from observations in reasonably 13 

realistic runs, if this is larger than observational error. Note that if this scaling uncertainty is the 14 

same for all data of a given type, it cancels out in the normalization of individual misfits (Mi to 15 

Mi′ in Sect. 2.4), so has no effect on the further results. 16 

 17 

1. TOTE: Modern grounding-line locations. 18 

A′ = total area of mismatch where model is grounded and observed is floating ice or ocean, or 19 

vice versa. Atot =  total area of the domain. 20 

Approach (a): Misfit M1 = (A′ / B)2, where B = (Atot)
1/2 σw . Here B is the product of the linear 21 

domain size, and σw = 30 km representing the typical size of modern grounding-line location 22 

errors in “reasonable” model runs. 23 

Approach (b): Misfit M1 = A′ / Atot 24 

 25 

2. TOTI: Modern floating ice-shelf locations. 26 

A′ = total area of mismatch where model has floating ice and observed does not, or vice versa. 27 

Atot =  total area of the domain. 28 
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Approach (a): Misfit M1 = (A′ / B)2, where B = (Atot)
1/2 σw .  Here B is the product of the linear 1 

domain size, and σw = 30 km representing the typical size of modern floating-ice extent errors 2 

in “reasonable” model runs. 3 

Approach (b): Misfit M1 = A′ / Atot 4 

 5 

3. TOTDH: Modern grounded ice thicknesses.  6 

Approach (a): Misfit M3 is the mean of ((h - hobs) / σh)
2, where h is model ice thickness, hobs is 7 

observed ice thickness, and σh = 10 m represents the typical size of modern ice thickness errors 8 

in “reasonable” model runs. The mean is taken over areas with observed modern grounded ice. 9 

Approach (b): Misfit M3 is the root mean square of (h - hobs), over areas with observed modern 10 

grounded ice. 11 

 12 

4. TROUGH: Past grounding-line distance vs. time along centerline troughs of Pine Island 13 

Glacier, and optionally the Ross and Weddell basins. Observed distances at ages 20, 15, 10 and 14 

5 ka are obtained from grounding-line reconstructions of the RAISED Consortium (2014): 15 

Anderson et al. (2014) for the Ross; Larter et al. (2014) for the Amundsen Sea, and Hillenbrand 16 

et al. (2014) for the Weddell, using their Scenario A of most retreated Weddell ice. Distances 17 

are then linearly interpolated in time between these dates. The centerline trough for Pine Island 18 

Glacier is extended across the continental shelf following the paleo-ice-stream trough shown in 19 

Jakkobsen et al. (2011). The resulting Pine Island Glacier transect vs. time is similar to that in 20 

Smith et al. (2014).  21 

Approach (a): Misfit M4 is the mean of ((x - xobs) / σx)
2, where x is model grounding-line 22 

position on the transect at a given time, xobs is the reconstructed position, and σx = 30 km 23 

represents a typical difference in “reasonable” model runs, and is also midway between 24 

‘measured’ and ‘inferred’ uncertainties in the reconstructed data (RAISED, 2014). The mean is 25 

taken over the period 20 to 0 ka. 26 

Approach (b): Misfit M4 is the root-mean-square of (x - xobs), over the period 20 to 0 ka.  27 
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In this study just the Pine Island Glacier trough is used, but if the Ross and Weddell are used 1 

also, the means are taken over all 3 troughs. 2 

  3 

5. GL2D: Past grounding-line locations. This uses reconstructed grounding-line maps for 20, 4 

15, 10, 5 ka by the RAISED Consortium (RAISED, 2014; Anderson et al., 2014; Hillenbrand et 5 

al., 2014; Larter et al., 2014; Mackintosh et al., 2014; O Cofaigh et al., 2014), with vertices 6 

provided by S. Jamieson, pers. comm., and choosing their Scenario A for the Weddell 7 

embayment (Hillenbrand et al., 2014). The modern grounding line (0 ka) is derived from the 8 

Bedmap2 dataset (Fretwell et al., 2013). For this study only the Amundsen Sea region is 9 

considered. We allow for uncertainty in the past reconstructions by setting a probability of 10 

reconstructed floating ice or open ocean at each point Pobs as follows:  11 

(i) Computing the distance D1 from the reconstructed grounding line.  12 

(ii) Dividing this distance by the sum D2 of the (Kriged) reported uncertainty of nearby vertices 13 

(interpreting their “measured”= 10 km, “inferred”=50 km, “speculative”=100 km) and a 14 

distance that ramps up to 100 km depending on distance to the nearest vertex dv (i.e., 100 15 

max [0, min [1, (dv-100)/200]] ), to obtain a scaled distance Ds = D1/D2.  16 

(iii) Setting the probability Pobs to a value decaying upwards or downwards from 0.5, i.e., to 0.5 17 

e-Ds if on the grounded side of the grounding line, or to 1 - 0.5 e-Ds if on the non-grounded 18 

side. 19 

Then the “mismatch probability” Pmis at each model grid point is set to 2 (0.5 - Pobs) if Pobs < 20 

0.5 and the model is not grounded, or 2 (Pobs - 0.5) if Pobs > 0.5 and the model is grounded. Pmis 21 

is zero if the model is not grounded anywhere on the non-grounded side of the observed 22 

grounding line, or if it is grounded anywhere on the grounded side. Thus, if the model and 23 

observed grounding lines coincide exactly everywhere, then Pmis is zero at all points, regardless 24 

of the observational uncertainty reflected in Pobs (which seems a desirable feature).  25 

Approach (a): Misfit M5 is the mean of the squared mismatch probabilities (Pmis)
2, with means 26 

computed over3 separate subdomains: Ross Sea, Amundsen Sea, and Weddell Sea embayments 27 

(defined crudely by intervals of longitude: 150E to 120W, 120W to 90W, and 90W to 0, 28 

respectively). In this study we only use the mean for the Amundsen Sea sector. Similarly to 29 
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TOTE and TOTI, the areal mean is increased by a factor (Atot)
1/2 / σw, where Atot is the total 1 

subdomain area and σw = 100 km is a representative width scale of reasonable past grounding-2 

zone mismatches. Finally, the mean values for each of the reconstructed past times (20, 15, 10 3 

and 5 ka) are averaged together equally. 4 

Approach (b): Misfit M5 is the mean of Pmis over the Amundsen Sea sector subdomain, with no 5 

adjustment factor to Atot, and otherwise as for (a) above. 6 

 7 

6. RSL: Past Relative Sea Level (RSL) records. This uses the compilation by Briggs and 8 

Tarasov (2013) of published RSL data vs. time at sites close to the modern coastline. Following 9 

those authors, the model RSL = [SL(t) - hb(t)] - [SL(0) - hb(0)], where SL(t) is global sea level 10 

(with t=0 at modern) and hb is bed elevation, at the closest model grid point to the observed site. 11 

The minimum model-minus-observed difference δ RSL for each observed datum is used, i.e., 12 

the minimum elevation difference value over all model times within the range of the 13 

observational time uncertainty (tobs ± σto). 14 

Approach (a): Misfit M6 is the weighted mean of (δ RSL / σzo) 
2, where σzo is the observational 15 

RSL uncertainty. Just as in Briggs and Tarasov (2013), the default for σzo is much larger for 16 

one-sided constraints (50 m) than absolute constraints (2 m). To reduce the influence of many 17 

nearby (and presumably correlated) data, we closely follow Briggs and Tarasov (2013) and 18 

apply “intra-data-type weighting” in calculating the mean. The weights are inversely 19 

proportional to the number of measurements within a distance L of each other, where L is 20 

equivalent to 5o  latitude (~550 km), so that each ~L-sized cluster of data contributes ~equally 21 

to the overall mean. 22 

Approach (b): Misfit M6 is the weighted mean of max [0, |RSL| - σzo]. The uncertainties σzo and 23 

the intra-data-type weights are the same as in (a). 24 

 25 

7. ELEV/DSURF: This uses a combination of two compilations of cosmogenic data: elevation 26 

vs. age in Briggs and Tarasov (2013) for ELEV, and thickness change from modern vs. age in 27 

RAISED (2014) (with individual citations as above) for DSURF.  28 
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For ELEV, the calculations closely follow Briggs and Tarasov (2013, their sec. 4.2):  1 

(i) a time series of model ice surface is used, with sea level and bedrock elevation changes 2 

subtracted out, for the closest model grid point to each ELEV datum. 3 

(ii) Only model elevations with a “deglaciating trend” are used, i.e., the model elevation for 4 

each time is replaced by the maximum elevation between that time and the present, if the 5 

latter is greater, allowing for an uncertainty ∆h = √2 σh, as in Briggs and Tarasov (2013). 6 

(iii) The mismatch for each datum is the minimum of (δh/ σh)
2 + (δt/ σt)

2 over the time series, 7 

where δh is the elevation difference from observed and δt is the time difference, σh = 8 

[σhobs
2+ (100 meters)2]1/2 , and σhobs and σt are the observational uncertainties in elevation 9 

and time respectively.  10 

Approach (a): Misfit M7 is the weighted mean of the mismatches for ELEV above, with intra-11 

data-type weighting exactly as described for RSL above. The DSURF type is not used in 12 

approach (a). 13 

Approach (b): For approach (b), ELEV calculations as above are combined with DSURF 14 

calculations. 15 

The DSURF calculations are simpler: for each datum, the time series of model surface 16 

elevations hs at the closest model grid point is used. The minimum model-minus-observed 17 

difference δ hs
min is found, i.e., the minimum difference over all model times within the range 18 

of the observational time uncertainty (tobs ± σto). The mismatch for the datum is max [0, δhs
min - 19 

σh] where σh is the observational elevation uncertainty. The mean over all data is taken, 20 

weighted by intra-data-type weighting as described above. Finally, the ELEV and DSURF 21 

misfits are converted into separate normalized scores (S7a, S7b) as in Sect. 2.4(b), which are then 22 

combined into one individual score S7 = (S7a S7b)
1/2

. 23 

 24 

8. UPL: This uses modern uplift rates on rock outcrops, using the compilation in Whitehouse et 25 

al. (2012b). For each observed site, the model's modern ∂hb / ∂t at the closest model grid point 26 

is used.  27 
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Approach (a): The mismatch at each datum is [ (Umod - Uobs) / σuobs ] 
2, where Umod and  Uobs are  1 

model and observed uplift rates respectively, and σuobs is the observed 1-σ uncertainty. The 2 

misfit M8 is the mean over all data points, using intra-data-type weighting as above. 3 

Approach (b): The mismatch at each datum is (Umod - Uobs )
2
, and the misfit M8 is the root-4 

mean-square over all data points, with no intra-data-type weighting (justified by the relatively 5 

uniform distribution of data points). 6 

  7 
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Appendix C: Comparison of results with two scoring approaches 1 

 2 

As discussed in Sect. 2.3, the choice of formulae and algorithms to calculate model vs. data 3 

misfits and scores in the simple averaging method is somewhat heuristic, and different choices 4 

are also appropriate for complex model-data comparisons with widespread data points, very 5 

different types of data, and with many model-data error types not being strictly Gaussian. Two 6 

possible approaches are described above (Sect. 2.4, Appendix B): Approach (a) uses formulae 7 

closely following Gaussian error distribution forms, and approach (b) uses more heuristic 8 

forms. Approach (b) is used for all results in the main paper. In this appendix the simple-9 

averaging results (Figs. 2-5) are compared using both approaches. No significant differences are 10 

found, especially in the LE-averaged results, which suggests that different reasonable 11 

approaches to misfits and scoring yield robust statistical results for the ensemble. 12 

 13 

In Fig. C1, the individual scores have much the same patterns over 4-D parameter space. There 14 

are some minor differences in the relative magnitudes of very good, vs. poor but still 15 

meaningful scores, which we have compensated for to some extent in the two color scales, but 16 

these do not lead to any significant differences in the averaged results in the following figures. 17 

 18 

In the parameter-pair scores (Fig. C2), the overall patterns are very similar. The biggest 19 

difference is for CALV vs. TAUAST, where the scores for approach (a) are higher and more 20 

tightly concentrated. 21 

 22 

In the plots of equivalent sea level versus time (Fig. C3), approach (a) generally favors runs 23 

with less ice volume during LGM and retreat, compared to approach (b) (red curves, Figs. C3c 24 

vs. d). On the other hand, the single best-scoring run in approach (a) retreats later than the 25 

corresponding run in approach (b) (black curves, Fig. C3a vs. b). Generally, these differences 26 

are minor compared to the overall model behavior through the deglaciation.  27 

 28 
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In the density distributions of equivalent sea level at particular times (Fig. C4), there is very 1 

little difference between the 2 approaches. The size of the ~5 m peak at 15 ka is larger in 2 

approach (b), but as discussed in Sect. 4.3, these separate peaks at 15 ka are due to the widely 3 

spaced CSHELF parameter values in the ensemble, and their relative sizes have little 4 

significance. 5 

  6 
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 1 

Appendix D: Span of data by the Large Ensemble 2 

 3 

This appendix compares envelopes of model results with corresponding types of geologic data 4 

used in the LE scoring. The main goal is to demonstrate that the envelopes of the 625-member 5 

ensemble adequately spans the data; i.e., at least some runs yield results that fall on both sides 6 

of each type of data, so that ensemble averages may potentially represent reasonably realistic 7 

ice sheet behavior (even if no single  model run is close to all data types). 8 

 9 

For modern data (grounded and floating ice extents, grounded ice thicknesses), the standard 10 

model has previously been shown to yield quite realistic simulations, both for perpetual modern 11 

climate and at the end of long-term glacial-interglacial runs (Pollard and DeConto, 2012a). 12 

Modern grounded ice thicknesses are close to observed mainly because of the inverse procedure 13 

in specifying the distribution of basal sliding coefficients (Pollard and DeConto, 2012b). Here 14 

we concentrate on fits to geologic data. 15 

 16 

Fig. D1 compares scatter plots of Relative Sea Level in all 625 runs with RSL records, for the 3 17 

sites within the model’s West Antarctic domain (Briggs and Tarasov, 2013). The data for each 18 

site fall well within the overall model envelope, and in most cases within the envelopes of the 19 

top 120-scoring runs (colored curves). Similar comparisons for single runs are shown in Gomez 20 

et al. (2013), both using the simple bedrock model as here (their “uncoupled” runs), and 21 

coupled to a global Earth-sea level model. 22 

 23 

Similarly, Fig. D2 compares elevation vs. age time series for all 625 runs with cosmogenic data 24 

at the 18 sites within the model domain (Briggs and Tarasov, 2013). With a few exceptions, the 25 

data lie within the LE model envelopes, although elevations at many of the sites are lower than 26 

in most of the model runs. At Reedy Glacier, the model exhibits oscillations of ~200 m 27 

amplitude and several hundred year period; these might be due to internal variability of ice 28 

streams as seen elsewhere in West Antarctica in Pollard and DeConto (2009). 29 
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 1 

Fig. D3 shows modern uplift rates for all model runs, at the 26 sites in the Whitehouse et al. 2 

(2012b) compilation that lie within the mode domain. Again, nearly all of the observed values 3 

lie within the overall model envelope. The geographic distribution for single runs is compared 4 

with observed in Gomez et al. (2013), both using a simple bedrock model (“uncoupled”), and 5 

coupled to a global Earth-sea level model. 6 

 7 

The remaining past data types (GL2D and TROUGH) concern grounding-line locations during 8 

last deglacial retreat, and are less amenable to scatter plots, but can be  compared with model 9 

averaged results. Fig. D4 shows maps of probability (0-1) of the presence of grounded ice at 10 

particular times, deduced by score-weighted averages over the ensemble. The thick black lines 11 

at 20, 15, 10 and 5 ka show grounding-line positions in the reconstructions of the RAISED 12 

Consortium (RAISED, 2014). (The figures do not show the uncertainty information associated 13 

with the data, which is used in the scoring; Appendix B). At all of these times, the envelopes of 14 

the model “grounding zone”, i.e., the areas with intermediate probability values, span or are 15 

close to the observed positions. 16 

 17 

Similarly, Fig. D5 shows model probabilities (0-1) of grounded ice vs. time along the centerline 18 

transects of the major West Antarctic embayments. Again, the model envelopes mostly span the 19 

various observed estimates for each transect (from RAISED, 2014, and various earlier studies). 20 

 21 

Taken together, the various model vs. data comparisons in this Appendix show that the model’s 22 

ensemble envelopes do encompass the ranges of data satisfactorily, as necessary for meaningful 23 

interpretations of the statistical results. 24 

  25 
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 1 

Figure 1. Geographical map of West Antarctica. Light yellow shows the modern extent of 2 

grounded ice (using Bedmap2 data; Fretwell et al., 2013). Blue and purple areas show expanded 3 

grounded-ice extents at 5, 10, 15 and 20 ka (thousands of years before present) reconstructed by 4 

the RAISED consortium (2014), plotted using their vertex information (S. Jamieson, pers. 5 

comm.), and choosing their Scenario A for the Weddell embayment (Hillenbrand et al., 2014). 6 

These maps are used in the large ensemble scoring (TOTE, TROUGH and GL2D data types, 7 

Sect. 2.3). 8 
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 1 

Figure 2. Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model 2 

parameters, 5 values each, Sect. 2.2), used in the simple method with score-weighted averaging. 3 

The score values range from 0 (white, no skill) to 100 (dark red, perfect fit). The figure is 4 

organized to show the scores in the four-dimensional space of parameter variations. The four 5 

parameters are: CSHELF = basal sliding coefficient in modern oceanic areas (exponent x, 10-x 6 

m a-1 Pa-2). TAUAST = e-folding time of bedrock-elevation isostatic relaxation (kyrs). OCFAC 7 

= oceanic-melt-rate coefficient at base of floating ice shelves (non-dimensional). CALV = 8 

calving-rate factor at edge of floating ice shelves (non-dimensional). Since each parameter only 9 

takes 5 values, the results are blocky, but effectively show the behavior of the score over the 10 

full range of plausible parameter values. 11 
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Figure 3. Left-hand panels: Ensemble-mean scores for individual parameter values, using the 3 

simple averaging method. The red triangle shows the mean, and whiskers show the 1-sigma 4 

standard deviations. Right-hand panels: Probability densities for individual parameters, using 5 

the advanced statistical techniques in Chang et al. (2016) extended as described in Sect. 2.5. 6 

  7 
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 1 

Figure 4. Left-hand panels: Ensemble-mean scores for pairs of parameters, using the simple 2 

averaging method. Right-hand panels: Probability densities for pairs of parameters, using the 3 

advanced statistical techniques in Chang et al. (2016) extended as described in Sect. 2.5. 4 
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Figure 5. Equivalent global-mean sea level contribution (ESL) relative to modern vs. time. 2 

Time runs from 20,000 years before present to modern. ESL changes are calculated from the 3 

total ice amount in the domain divided by global ocean area, allowing for less contribution from 4 

ice grounded below sea level. 5 

(a) Scatter plot of all 625 individual runs in the LE. ESL amounts are calculated relative to 6 

modern observed Antarctica, so non-zero values at time=0 imply departures from the observed 7 

ice state. Grey curves are for runs with aggregate score S equal to or very close to 0, and 8 

colored curves are for the 120 top-scoring runs  in descending S order with 20 curves per color 9 

(red, orange, yellow, green, cyan, blue). The best scoring individual run is shown by a thick 10 

black curve (OCFAC=3, CALV=1, CSHELF=-5, TAUAST=3, with S = 0.571). 11 

(b) As (a) but with ESL amounts relative to each run’s modern value, so the curves pass exactly 12 

through zero at time=0. 13 

(c) Score weighted curves over the whole LE, using the simple statistical method. Red curve is 14 

the score-weighted mean, i.e., 15 
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Σ{S
(n) ESL

(n)(t)} / Σ{S
(n)} 1 

where S(n) is the aggregate score for run n, ESL
(n)(t) is the equivalent sea-level rise for run n at 2 

time t., and the sums are over all n (1 to 625) in the LE. Black curves show the one-sided 3 

standard deviations, i.e., the root mean square of deviations for ESL
(n) above the mean (upper 4 

curve) or below the mean (lower curve) at each time t. ESL
(n)(t) are relative to modern observed 5 

Antarctica, as in panel (a). 6 

(d) As (c) but with ESL
(n)(t) relative to each run’s modern value as in (b). 7 

(e) and (f): Corresponding results to (c) and (d) respectively, using the advanced statistical 8 

techniques in Chang et al. (2016) extended as described in Sect. 2.5. 9 
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Figure 6. (a) Probability densities of equivalent sea level (ESL) rise at particular times in the 2 

LE simulations, computed with the simple averaging method. At a given time t, the density 3 

P(E) is the sum of aggregate scores S(n) for all runs n with equivalent sea-level rise ESL
(n)(t) 4 

within the bin E - 0.1 to E + 0.1 m, i.e., using equispaced bins 0.2 m wide. The resulting P(E) 5 

are normalized so that the integral with respect to E is 1. ESL
(n)(t) are relative to modern 6 

observed Antarctica, as in Fig. 5a. 7 

(b) As (a) but with ESL
(n)(t) relative to each run’s modern value, as in Fig. 5b. 8 

(c) and (d): Corresponding results to (a) and (b) respectively, using the advanced statistical 9 

techniques in Chang et al. (2016) extended as described in Sect. 2.5. 10 
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Figure C1. Aggregate scores for the complete large ensemble suite of runs (625 runs, 4 model 2 

parameters, 5 values each), used in the simple method with score-weighted averaging. The 3 

organization of the figure regarding the 4 parameter ranges is as described in Fig. 2. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B). The score values in 5 

this plot are normalized relative to the maximum score of the LE, and the color scale is adjusted 6 

to illustrate the similar qualitative distribution to (b). 7 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 2. 8 
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Figure C2. Ensemble-mean scores for individual parameter values, using the simple averaging 3 

method as in Fig. 3. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).  5 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 3.  6 
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Figure C3. Ensemble-mean scores for pairs of parameters, using the simple averaging method 3 

as in Fig. 4. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).  5 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 4.  6 

  7 



50 

 

 1 

 2 

 3 

Figure C4. Equivalent global-mean sea level contribution (ESL) relative to modern vs. time as 4 

in Fig. 5. 5 

(a) Scatter plot of all 625 individual runs in the LE, using close-to-Gaussian scoring approach 6 

(a) (Sect. 2.4, Appendix B).  7 

(b) As (a) except using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in 8 

Fig. 5. 9 

(c) Score weighted mean and one-sided standard deviations, using close-to-Gaussian scoring 10 

approach (a). 11 

(d) As (c) except using the more heuristic approach (b), exactly as in Fig. 5. 12 
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Figure C5. Probability densities of equivalent sea level (ESL) rise at particular times as in Fig. 3 

6. 4 

(a) Using close-to-Gaussian scoring approach (a) (Sect. 2.4, Appendix B).  5 

(b) Using the more heuristic approach (b) (Sect. 2.4, Appendix B), exactly as in Fig. 6.  6 

  7 
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Figure D1. Model vs. observed Relative Sea Level (RSL) data, for the 3 RSL sites (Briggs and 3 

Tarasov, 2013) that lie within and away from the edges of the model’s West Antarctic domain. 4 

The observations and uncertainty ranges are shown as black dots and whiskers. Model curves 5 

are shown for all 625 runs, with aggregate scores S indicated by colors as in Fig. 5. The run 6 

with the best individual score for each site is shown as a thick black line, and the run with best 7 

aggregate score S is shown as a thick blue line. 8 

(a) Southern Scott Coast, ~77.3S, 163.6E.  9 

(b) Terra Nova Bay,  ~74.9N, 163.8E. 10 

(c) Marguerite Bay, ~67.7S, 67.3W. 11 
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Figure D2. 3 
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 1 

Figure D2 continued. 2 

 3 

Figure D2 and D2 continued. Model vs. observed elevation vs. age data, for the 18 sites in the 4 

compilation (Briggs and Tarasov, 2013) that lie within and away from the edges of the model’s 5 

West Antarctic domain, shown roughly in west-to-east order. The observations and uncertainty 6 

ranges are shown as black dots and whiskers. Model curves are shown for all 625 runs, with 7 

aggregate scores S indicated by colors as in Fig. 5. The run with the best individual score for 8 
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each site is shown as a thick black line, and the run with best aggregate score S is shown as a 1 

thick blue line. Sites shown (Briggs and Tarasov, 2013) are: 2 

Reedy Glacier 1                      ~ 85.9S,  132.6W 3 

Reedy Glacier 2,                     ~ 86.1S,  131.0W 4 

Reedy Glacier 3,                     ~ 86.3S,  126.1W 5 

Hatherton glacier                     ~ 79.9S,  156.8E 6 

Clark Mts,                               ~ 77.3S,  142.1W 7 

Allegheny Mts,                       ~ 77.3S,  143.3W 8 

Western Sarnoff Mts,             ~ 77.1S,  145.5W 9 

Eastern Fosdick Mts,              ~ 76.5S,  144.5W 10 

Executive Committee Range, ~ 77.2S,  127.1W 11 

Pine Island Bay 1,                  ~ 75.2S,  111.2W 12 

Pine Island Bay 2,                    ~ 74.5S,  99.2W 13 

West Palmer Land,                   ~ 71.6S,  67.4W 14 

Alexander Island South,           ~ 72.0S,  68.5W 15 

Alexander Island North,           ~ 70.9S,  68.4W 16 

Behrendt Mts,                           ~ 75.3S,  72.3W 17 

Ellsworth Mts,                          ~ 80.3S,  82.2W 18 

Shackleton Range 1,                 ~ 80.4S,  30.1W 19 

Shackleton Range 2,                 ~ 80.1S,  25.8W 20 
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Figure D3. Model vs. observed modern uplift rates, for the 25 sites in the compilation 3 

(Whitehouse et al., 2012b) that lie within the model’s West Antarctic domain, shown roughly in 4 

west-to-east order. The observations and uncertainty ranges are shown as black dots and 5 

whiskers. Model rates are shown for all 625 runs, with straight lines joining the sites, and 6 

aggregate scores S indicated by colors as in Fig. 5. The run with best aggregate score S is 7 

shown as a thick blue line. Sites shown, with labels as in Whitehouse et al. (2012b, Supp. Inf.), 8 

are: 9 

1.  FTP1,                  78.93S,   162.57E 10 

2.  ROB1,                77.03S,   163.19E 11 

3.  TNB1,                 74.70S,   164.10E 12 

4.  MCM4_AV,       77.85S,   166.76E 13 

5.  MBL1_AV,        78.03S,  155.02W 14 

6.  W01_AV,           87.42S,  149.43W 15 

7.  MBL2,                76.32S,  144.30W 16 

8.  MBL3,                77.34S,  141.87W 17 

9.  W09,                   82.68S,  104.39W 18 
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10. W06A,               79.63S,   91.28W 1 

11. W07_AV,          80.32S,   81.43W 2 

12. W05_AV,          80.04S,   80.56W 3 

13. HAAG,              77.04S,   78.29W 4 

14. W08A/B,           75.28S,   72.18W 5 

15. W02_AV,          85.61S,   68.55W 6 

16. OHIG,               63.32S,   57.90W 7 

17. PALM,              64.78S,   64.05W 8 

18. ROTB,               67.57S,   68.13W 9 

19. SMRT,               68.12S,   67.10W 10 

20. FOS1,                71.31S,   68.32W 11 

21. BREN,               72.67S,   63.03W 12 

22. W04_AV,          82.86S,   53.20W 13 

23. BELG,               77.86S,   34.62W 14 

24. W03_AV,          81.58S,   28.40W 15 

25. SVEA,               74.58S,   11.22W 16 
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Figure D4. Score-weighted probability (0 to 1) of grounded ice vs. floating ice or open ocean at 3 

each grid point (see text), for various times over the last 20,000 years, concentrating on the 4 

period of rapid retreat between 15 and 10 ka. The LE and model version is essentially the same 5 

as above, except with all-Antarctic coverage to include East Antarctic variations. The quantity 6 

shown is the sum of scores S(n) for runs n with grounded ice at each grid point and time, 7 

divided by the sum of scores for all runs in the ensemble. Thick black lines in the panels for 20, 8 

15, 10 and 5 ka show grounding lines reconstructed for West Antarctica by the RAISED 9 

consortium (RAISED, 2014), plotted using their vertex information (S. Jamieson, pers. comm.), 10 

and choosing their Scenario A for the Weddell embayment (Hillenbrand et al., 2014). For 20 11 

and 15 ka around East Antarctica, the black line is from the 20 ka RAISED timeslice which for 12 

EAIS is based on Livingston et al. (2012) and Mackintosh et al. (2014). Similarly the modern 13 
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grounding line (Fretwell et al., 2013) is shown by a thick black line for 0 ka, which is also used 1 

around East Antarctica for 10 and 5 ka.  2 
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 1 

Figure D5. Upper panels: Score-weighted probability (0 to 1) of grounded ice vs. time, as in 2 

Fig. D4 but along centerline transects of (i) Pine Island Glacier and its paleo-trough, (ii) Ross 3 

embayment and (iii) Weddell embayment. Black symbols show various published data: 4 

Pine Island, circles: Larter et al., 2014 (the RAISED Consortium). 5 

Pine Island, crosses: Kirshner et al., 2012; Hillenbrand et al., 2013; Smith et al., 2014. 6 

Ross, circles: Anderson et al., 2014 (the RAISED Consortium). 7 

Ross, crosses: Conway et al., 1999; McKay et al., 2008. 8 

Weddell, ‘A’ and ‘B’: Hillenbrand et al., 2014 (the RAISED Consortium), Scenarios A and 9 

B respectively. 10 

Lower panels: Modern bathymetric profiles along each transect (from Bedmap2; Fretwell et al. 11 

2013). 12 
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