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Abstract: 12	
  

We present the Efficient CH4-CO-OH chemistry module (ECCOH) that allows for the 13	
  
simulation of the methane, carbon monoxide and hydroxyl radical (CH4-CO-OH) system, 14	
  
within a chemistry climate model, carbon cycle model, or earth system model. The 15	
  
computational efficiency of the module allows many multi-decadal sensitivity simulations of 16	
  
the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing 17	
  
capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-18	
  
OH system and understanding the perturbations to methane, CO and OH and the concomitant 19	
  
impacts on climate. We implemented the ECCOH chemistry module into the NASA GEOS-20	
  
5 Atmospheric Global Circulation Model (AGCM), performed multiple sensitivity 21	
  
simulations of the CH4-CO-OH system over two decades, and evaluated the model output 22	
  
with surface and satellite datasets of methane and CO. The favorable comparison of output 23	
  
from the ECCOH chemistry module (as configured in the GEOS-5 AGCM) with 24	
  
observations demonstrates the fidelity of the module for use in scientific research. 25	
  

1   Introduction 26	
  

The coupled methane - carbon monoxide - hydroxyl radical (CH4-CO-OH) system is 27	
  
nonlinear (e.g., Prather, 1994) and important in determining the atmosphere’s oxidizing 28	
  
capacity (e.g., Chameides et al., 1976).  Methane is the second most important anthropogenic 29	
  
greenhouse gas (GHG), though its 100-year global warming potential (GWP) is 34 times 30	
  
larger than that for carbon dioxide (CO2; Myhre et al., 2013).  Methane is responsible for 31	
  
about 20% of the warming induced by long-lived GHG’s since pre-industrial times (Kirschke 32	
  
et al., 2013).  The CH4-CO-OH system has implications for tropospheric ozone and, 33	
  
subsequently, air quality (e.g., Fiore et al., 2002).  A thorough understanding of historical 34	
  
methane, CO and OH trends and variations is necessary to credibly predict future changes 35	
  
and their climate feedback, as well as, to develop strategic national and international 36	
  
emission reduction policies.  37	
  

The major limitation of forward modeling studies of trends and variability in the CH4-CO-38	
  
OH system is the computational expense associated with simulating ozone-nitrogen oxides-39	
  
volatile organic compounds (O3-NOx-VOC) photochemistry for the determination of OH, 40	
  
particularly since perturbations to relatively long-lived methane (~8-10 y) can take several 41	
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decades to fully evolve (e.g., Prather, 1996).  There are few forward modeling studies in the 42	
  
literature that carry a full representation of O3-NOx-VOC chemistry, and they necessarily 43	
  
present a limited number of sensitivity simulations (e.g., Fiore et al., 2006; Voulgarakis et 44	
  
al., 2015).  45	
  

To overcome this computational expense, global modeling communities often use archived 46	
  
and annually-repeating monthly OH fields to simulate the oxidation of methane and CO. In 47	
  
the TransCom methane model intercomparison project (MIP), archived and annually-48	
  
repeating OH fields were used from a climatology (Spivakovsky et al., 2000). Wang et al. 49	
  
(2004) used archived and annually-varying OH fields from Duncan et al. (2007a) to explain 50	
  
the causes of observed interannual variations in methane and the observed slowdown in its 51	
  
growth rate from 1988 to 1997. 52	
  

Limitations of using archived, monthly OH fields for studies of methane’s and CO’s 53	
  
evolution are that feedbacks of the CH4-CO-OH system on methane, CO and OH are not 54	
  
captured as the losses of methane and CO by reaction with OH are assumed to be linearly 55	
  
proportional to the OH fields.  For methane, this assumption is not desirable, particularly on 56	
  
multi-decadal time-scales (e.g., Prather, 1996).  Chen and Prinn (2006) found that using an 57	
  
archived, annual cycle of OH may mask or bias the interannual changes of methane.  For 58	
  
relatively short-lived CO (~1-2 months), this assumption is not valid given the strong 59	
  
feedback between CO and OH (e.g., Duncan and Logan, 2008; Voulgarakis et al., 2015). If a 60	
  
multi-decadal simulation of methane or CO using archived and annually-repeating OH 61	
  
reproduces observations, then there must be some compensating factor, for example a bias in 62	
  
emissions.  That is, the simulation reproduces observations, but for the wrong reason. The 63	
  
models in the TranCom MIP adjusted down (by 8%) the archived OH climatology of 64	
  
Spivakovsky et al. (2000) so that the simulated decline in the global, atmospheric 65	
  
methylchloroform (MCF) concentration since 2000 better matched that observed (Patra et al, 66	
  
2011).  Adjusting archived OH to improve a simulation of MCF, methane and/or CO makes 67	
  
the specious assumption that emissions inventories, model dynamics, etc. used in the 68	
  
simulation are correct.  If using archived and annually-repeating OH, whether adjusted or 69	
  
not, inverse modeling studies of methane and CO will incorrectly determine a posteriori 70	
  
fluxes as the impact of nonlinear feedbacks of the CH4-CO-OH system on concentrations 71	
  
will be erroneously folded into the flux estimates. Therefore, there is a need for a 72	
  
computationally-efficient solution to simulate credible temporal and spatial distributions of 73	
  
OH over several decades, while capturing the nonlinear feedbacks of the CH4-CO-OH 74	
  
system. 75	
  

In this manuscript, we present and validate the new, computationally-Efficient CH4-CO-76	
  
OH (ECCOH; pronounced like “echo”) chemistry module to interactively simulate the 77	
  
chemistry of the CH4-CO-OH system within a chemistry-climate model, carbon cycle model, 78	
  
or Earth System Model.  The computational efficiency of the ECCOH chemistry module 79	
  
allows many sensitivity simulations of multiple decades to be performed, which is important 80	
  
for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the 81	
  
perturbations to methane and the concomitant impacts on climate. The ECCOH chemistry 82	
  
module allows one to deconvolve the impacts of various causal factors (e.g., overhead ozone 83	
  
column, NOx, VOCs, water vapor, etc.) on OH and, subsequently, on methane and CO. 84	
  
Therefore, this capability is valuable in determining these impacts, especially, given that 85	
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simulated OH varies widely between models (Shindell et al., 2006; Fiore et al., 2009) for a 86	
  
variety of reasons, including differences in the causal factors that influence OH (Shindell et 87	
  
al., 2006). For instance, Voulgarakis et al. (2013) found that simulated tropospheric methane 88	
  
lifetimes of various models ranged from ~7 to ~14 years; this spread is similar to that 89	
  
calculated by Shindell et al. (2006) and Fiore et al. (2009), even when all participating 90	
  
models used identical methane abundances and CO emissions (Shindell et al., 2006). 91	
  
Shindell et al. (2006) related the wide spread of simulated CO between models to the large 92	
  
spread in simulated OH. Furthermore, simulated OH from full chemistry mechanisms in 93	
  
global models is still highly uncertain because of incomplete knowledge and representation 94	
  
of OH sources, sinks and recycling (e.g., Elshorbany et al., 2010, 2012a, 2012b, 2014; Stone 95	
  
et al., 2012).  For example, 1) nitrous acid (HONO) is typically underestimated in models by 96	
  
an order of magnitude (Elshorbany et al., 2012b), which can lead to a significant 97	
  
underestimation of OH, especially in urban high-NOx regions; 2) in unpolluted, forested 98	
  
environments, significant discrepancies exist between models and measurements (Stone et 99	
  
al., 2012); and 3) Patra et al. (2014) indicate that the inter-hemispheric OH ratio (northern to 100	
  
southern hemisphere) is near unity, while a recent model inter-comparison had a multi-model 101	
  
average of about 1.3. 102	
  

The manuscript is organized as follows: In Sect. 2, we 1) describe the ECCOH chemistry 103	
  
module as implemented in the NASA Goddard Earth Observing System, Version 5 104	
  
Atmospheric General Circulation Model (GEOS-5 AGCM), and 2) and describe a series of 105	
  
simulations, which we refer to as “scenarios” hereafter, to illustrate the utility of the ECOOH 106	
  
module for understanding the influence of various factors on the observed spatial 107	
  
distributions and temporal evolution of methane, CO, and OH. In Sect. 3, we show that the 108	
  
simulated trends and variations of methane and CO in our reference scenario agree well with 109	
  
in situ and satellite measurements.  In Sect. 4, we demonstrate the ability of the ECCOH 110	
  
chemistry module to capture the nonlinear chemistry of the CH4-CO-OH system with output 111	
  
from our sensitivity scenarios. 112	
  

2   Technical Approach and Methodology 113	
  

2.1   Description of the ECCOH Chemistry Module and Its Implementation 114	
  

The ECCOH chemistry module is composed of a parameterization of tropospheric OH and 115	
  
tracers of methane and CO as shown in Fig. 1. The advantage of the ECCOH chemistry 116	
  
module over a full representation of O3-NOx-VOC chemistry is computational 117	
  
efficiency.  The computational cost of simulating tropospheric OH is reduced by about a 118	
  
factor of 500 when the full O3-NOx-VOC chemistry is replaced by the parameterization of 119	
  
OH (Duncan et al., 2000).  This computationally-efficient parameterization of OH allows 1) 120	
  
for many multi-decadal model sensitivity simulations to be performed and 2) one to 121	
  
deconvolve the impact of various factors on the observed trends and variability in methane 122	
  
and CO.  It is based on the method described by Spivakovsky et al. (1990a), who developed 123	
  
an earlier version of the parameterization of OH used in several studies, including 124	
  
Spivakovsky et al. (1990b) and Prather and Spivakovsky (1990).  The parameterization of 125	
  
OH of Duncan et al. (2000) is designed to simulate OH over the range of photochemical 126	
  
environments found throughout the troposphere, including a wide enough range so as to be 127	
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applicable to preindustrial, present day and possible future conditions (Duncan et al., 2000).  128	
  
It has been implemented into two host atmospheric models and has been used in several 129	
  
studies of the nonlinear feedbacks of CO and OH (Duncan et al., 2007a; Duncan and Logan, 130	
  
2008; Strode et al., 2015). 131	
  

The parameterization of OH accurately represents OH predicted by a full chemical 132	
  
mechanism as a set of high-order polynomials that describe the functional relationship 133	
  
between the concentration of OH and meteorological variables (i.e., pressure, temperature, 134	
  
cloud albedo), solar irradiance variables (i.e., ozone column, surface albedo, declination 135	
  
angle, latitude) and chemical variables, including CO and methane as well as nitrogen oxides 136	
  
(as a family), ozone, water vapor, and various VOCs.  That is, the 24-hour average OH is 137	
  
calculated interactively in the model and responds to changes in the concentrations of trace 138	
  
gases and meteorology.	
   Input variables to the parameterization of OH may be taken from 139	
  
archived fields from, for instance, an observational climatology or archived fields from a 140	
  
model simulation with a full representation of trace gas and aerosol atmospheric chemistry, 141	
  
and may be annually-repeating or annually-varying. Some variables (e.g., water vapor, 142	
  
clouds) may be taken from the host model as the simulation progresses. Ideally, all input 143	
  
variables should be annually-varying so as to best capture the nonlinear feedbacks of the 144	
  
CH4-CO-OH system. If one chooses to use output from a single computationally-expensive 145	
  
full chemistry model simulation as input to the parameterization of OH, subsequent 146	
  
sensitivity simulations using the ECCOH chemistry module will be far less computationally-147	
  
expensive relative to that single expensive simulation, which is the primary strength of using 148	
  
the parameterization of OH. In Section 2.2, we discuss the setup of the simulations presented 149	
  
in this study. 150	
  

We adjust the OH from the parameterization to account for important updates in kinetic 151	
  
information of O1D reactions by water vapor, molecular nitrogen, and molecular oxygen 152	
  
(Sander et al., 2011).  These reactions are key as the primary production pathway (P) for OH 153	
  
involves the formation of excited O1D atoms by photolysis of ozone (O3), followed by their 154	
  
reaction with water vapor in competition with their collisional quenching by molecular 155	
  
nitrogen and oxygen: P = j[O3] * 2k1[H2O] / (k1[H2O] + k2[N2] + k3[O2]), where j is the 156	
  
ozone photolysis rate and k1, k2 and k3 are the rate constants of O1D reactions with water 157	
  
vapor, nitrogen and oxygen, respectively.  Typically, this adjustment decreases OH by 10-158	
  
30%, depending on altitude and season.  Recent updates in isoprene chemistry are not 159	
  
reflected in the parameterization of OH, so OH near the surface in clean, forested 160	
  
environments (e.g., Amazon and Congo basins) is too low relative to current knowledge 161	
  
(e.g., Fuchs et al., 2013).  However, the contribution of these regions to global methane and 162	
  
CO loss is small (i.e., < 1%) and the current knowledge of isoprene photochemistry is still 163	
  
highly uncertain (Fuchs et al., 2013). Ultimately, the parameterization of OH reflects 164	
  
uncertainties in the chemistry upon which it is based, as do the photochemical mechanisms 165	
  
in all atmospheric chemistry models (e.g., Stone et al., 2012; Fuchs et al., 2013).  The losses 166	
  
of methane and CO in the ECCOH chemistry module are determined by their reaction with 167	
  
tropospheric OH.  Additional losses of methane in the stratosphere occur by reactions with 168	
  
OH, Cl and O1D, whose distributions are simulated using archived and annually-repeating 169	
  
monthly fields.  170	
  

We implemented the ECCOH chemistry module into the Goddard Earth Observing 171	
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System, Version 5 Atmospheric General Circulation Model (GEOS-5 AGCM, Fortuna 172	
  
version, Rienecker et al., 2008; Pawson et al., 2008; Ott et al., 2010; Molod et al., 2012).  173	
  
The AGCM combines the finite volume dynamical core described by Lin (2004) with the 174	
  
GEOS-5 column physics package, as summarized by Rienecker et al. (2008).  The AGCM 175	
  
domain extends from the surface to 0.01 mb and uses 72 hybrid layers that transition from 176	
  
terrain following near the surface to pure pressure levels above 180 mb.  We use a horizontal 177	
  
resolution of 2° latitude × 2.5° longitude and the time step is 30 minutes for physical 178	
  
computations.  179	
  

2.2   Description of the Reference and Sensitivity Scenarios 180	
  
To demonstrate the utility of the ECCOH chemistry module for multi-decadal studies, we 181	
  
performed several model simulations using the module in the GEOS-5 AGCM (Table 1 and 182	
  
Table 2). The model setup (i.e., emissions, input to the parameterization of OH, and 183	
  
dynamics) of the reference scenario, which we refer to as the Base scenario, is detailed in 184	
  
Table 1. Compared to the sensitivity scenarios described in Table 2, the Base scenario is the 185	
  
least complex. For example, all CO emissions and natural methane emissions are for one 186	
  
year that are repeated for each year of the simulation (1988-2007); therefore, interannual 187	
  
variations in methane and CO levels caused by variations in these emissions will not be 188	
  
captured in the Base scenario. However, there are two important sources of variability that 189	
  
are included in the Base scenario. First, the dynamics are constrained by varying sea surface 190	
  
temperatures and sea ice concentrations. Therefore, the Base scenario will capture variations 191	
  
in methane, CO, and OH resulting from meteorological variations, such as those associated 192	
  
with the El Niño Southern Oscillation (ENSO). In addition, atmospheric temperature, 193	
  
pressure and specific humidity are calculated online by the GEOS-5 AGCM and are fed into 194	
  
the parameterization of OH as the runs progress, so interannual variations in water vapor, 195	
  
temperature, and cloud cover are also included in the Base scenario. These factors are known 196	
  
to influence variations in OH and thus CO and methane (e.g., Holmes et al., 2013).  Second, 197	
  
interannual variations in anthropogenic methane sources are included in the Base scenario. In 198	
  
Sect. 3, we evaluate model output from the Base scenario with the observational datasets 199	
  
described in Table 3. 200	
  

We present the results of our sensitivity scenarios in Sect. 4.  We explore the influence of 201	
  
several causal factors on the observed spatial distributions and temporal evolutions of 202	
  
methane, CO, and OH. These causal factors include annually-varying methane and CO 203	
  
emissions (i.e., Scenarios 2-4 in Table	
  2; natural methane emissions, and anthropogenic and 204	
  
natural CO emissions, Figs. S1 and S2 in the Supplement) and annually-varying input 205	
  
variables to the parameterization of OH (i.e., Scenario 5 in Table	
  2).  206	
  

3   Evaluation of the Base Scenario 207	
  

We evaluate the model output of methane and CO from the Base scenario with satellite 208	
  
and in situ observations (Table	
  3). We also compare simulated OH with that from a GEOS-5 209	
  
AGCM simulation (with a full representation of O3-NOx-VOC chemistry (Strode et al., 210	
  
2015)). We highlight where the Base scenario’s simplicity results in a poor or satisfactory 211	
  
comparison of the model output with the observed temporal and spatial distributions of 212	
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methane, CO, and OH. We demonstrate that the ECCOH chemistry module for this scenario 213	
  
reasonably captures the distributions of methane and CO, within the limitations of this 214	
  
scenario, as compared to measurements and other model studies (e.g., Shindell et al. 2006; 215	
  
Patra et al., 2011; Naik et al., 2013). 216	
  

3.1   Tropospheric OH 217	
  

There are very few direct observations of OH with which to constrain models (e.g., Stone 218	
  
et al., 2012) and none on regional or global scales. Therefore, the MCF lifetime inferred 219	
  
from measurements serves as a widely used, indirect proxy for global OH abundance (e.g., 220	
  
Lawrence et al., 2001). Though useful, the MCF lifetime gives an incomplete description of 221	
  
the spatial and vertical distributions of OH (e.g., Lawrence et al., 2001) and there are 222	
  
uncertainties concerning MCF emissions and the resulting lifetime estimate (e.g., Wang et 223	
  
al., 2008). Nevertheless, the MCF data have been recently used to infer the ratio of OH in the 224	
  
Northern to the Southern Hemisphere (Patra et al., 2014). 225	
  
Despite the challenges concerning OH, we show in this section that the spatial and vertical 226	
  
distributions of simulated global mean OH (Fig. 2 and Fig. 3) from the Base scenario are 227	
  
reasonable relative to the MCF proxy for OH as well as to simulated OH from other models. 228	
  
Related to the OH dependency on UV radiation (Rohrer and Berresheim, 2006), the 229	
  
maximum and minimum OH levels at any given location occur in local summer and winter, 230	
  
respectively (Fig. 2).  OH maximizes around 600 mb because of vertical dependencies of the 231	
  
main sources and sinks of OH (Spivakovsky et al., 1990). The seasonal and vertical 232	
  
distributions of the zonal mean OH in the Base scenario are quite comparable to the OH 233	
  
climatology of Spivakovsky et al. (2000; see Figure 6 of Spivakovsky et al.), despite the 234	
  
different inputs given to the parameterization of OH in the two studies.  235	
  

The interannual variations in global OH (given by the annual mean standard deviation, not 236	
  
shown) are small (<5%) and mainly related to meteorological variations (e.g., water vapor, 237	
  
clouds, temperature, and transport) as annually-repeating emissions are used in the Base 238	
  
scenario, except for anthropogenic methane emissions (Table	
   1, Fig.	
   S	
   1, Fig.	
   S	
   2). This 239	
  
result is consistent with Voulgarakis et al. (2013) who show that OH has the strongest 240	
  
relationship with changes in temperature and humidity when emissions do not vary 241	
  
interannually.  As discussed in Sect. 4, we see considerably larger variations in OH in several 242	
  
of our more complex sensitivity simulations, which have interannual variations in methane 243	
  
and CO emissions as well as in factors that affect OH.  244	
  

Over our simulation period, the range of annual mean, atmospheric MCF lifetimes is 245	
  
6.08±0.60 to 6.53±0.65 years with respect to loss by reaction with tropospheric OH for the 246	
  
Base scenario, assuming a MCF uniform mixing ratio.  Our lifetimes are similar to values 247	
  
reported in the literature (e.g., 6.0+0.5−0.4 years (Prinn et al., 2005); multi-model mean of 248	
  
5.7±0.9 years (Naik et al., 2013); 6.3±0.9 years (Prather et al., 2012)). The global, annual 249	
  
mean lifetime of methane with respect to tropospheric OH ranges from 10.10±1.06 to 250	
  
10.86±1.15 years. These values are similar to those inferred from measurements (e.g., 251	
  
10.2+0.9−0.7 years (Prinn et al., 2005)) as well as to those reported in previous multi-model 252	
  
comparison studies (e.g., 9.7±1.7 years (Shindell et al., 2006); 10.19±1.72 years (Fiore et al., 253	
  
2009); 9.7±1.5 years (Naik et al., 2013)). The lifetime of methane is calculated by dividing 254	
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the total atmospheric burden by the tropospheric methane loss rate (e.g., Fiore et al., 2009).  255	
  
We also compare our simulated OH with that from a GEOS-5 AGCM simulation that 256	
  

carries a full representation of O3-NOx-VOC chemistry.  This simulation was included in the 257	
  
Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, Lamarque et 258	
  
al., 2013; the model is designated as “GEOSCCM”).  Henceforth, we refer to this simulation 259	
  
as the “ACCMIP simulation”.  The same CO emissions (annually-repeating emissions for 260	
  
year 2000) are used in both the Base and ACCMIP simulations, but there are differences 261	
  
between the simulations (e.g., model dynamics, prescribed methane, etc.).  Despite these 262	
  
differences, we find that the spatial and vertical distributions of OH are quite similar with 263	
  
differences generally less than 10% (Fig.	
   S	
   17). The global, mean tropospheric OH in the 264	
  
Base scenario of 10.9x105 molecules cm-3 also compares well with that of 11.4x105 265	
  
molecules cm-3 from the ACCMIP simulation (the 2000 time slice) as well as within the 266	
  
range of means from other models (e.g., 6.5 – 13.4 x105 molecules cm-3 (Voulgarakis et al., 267	
  
2013)).  268	
  

3.2   Methane 269	
  

GMD surface data:  We evaluate our simulated surface distributions of methane with data 270	
  
from the NOAA Global Monitoring Division (GMD) network.  The simulated, interannual 271	
  
variation of methane’s global growth rate agrees reasonably well (R2 = 0.44) with that 272	
  
estimated from GMD data, using all available data from 92 stations over the simulation 273	
  
period 1988-2007 (Fig. 4a).  The agreement of model output with observations is worse (R2 274	
  
= 0.33) when we only use the 17 stations that cover the entire simulation period (Fig. 4b).  275	
  
We decided to include all 92 stations, even those without records that cover the entire 276	
  
simulation period, as we are able to nearly reproduce Fig. 4a using 46 stations that have at 277	
  
least 75% data coverage (not shown).  A relatively high correlation coefficient (R2 = 0.44) 278	
  
implies that interannual variations in anthropogenic methane emissions and dynamics 279	
  
explain much of methane’s growth rate over the study period, which is consistent with the 280	
  
findings of the TransCom MIP (Patra et al., 2011). 281	
  

Overall, the comparison of model output and data at individual GMD stations is favorable. 282	
  
Fig. 5 to Fig. 7 show comparisons for monthly averages, seasonal averages, and annual 283	
  
differences, respectively, at six GMD stations, which were chosen as they have long time 284	
  
records and cover a wide range of latitudes. Over the simulation period (1988-2007), the 285	
  
correlation slope (S) and coefficient (R2) for these six stations (Table 4) range from 0.56 to 286	
  
0.79 and from 0.58 to 0.91, respectively.   287	
  

There are two important features of the observations that are not simulated in the Base 288	
  
scenario.  First, the Base scenario overestimates methane concentrations by 20-30 ppbv at 289	
  
the northern high latitude stations of Alert and Barrow during the 1980s and 1990s (Fig. 5-290	
  
Fig. 7). The overestimation of methane in the northern hemisphere during the 1990s occurs 291	
  
because of regional high biases in natural methane emissions (Fig. S 1 and Patra et al., 2011). 292	
  
As shown in Sect. 4.3, simulated methane improves significantly in the northern hemisphere 293	
  
in the ECH4Vary scenario, which includes annually-varying natural methane emissions.  294	
  
Second, the Base scenario captures the increasing observed methane trend in the 1990s, but 295	
  
under-predicts methane in the 2000’s (Fig. 7). Both of these features (i.e., high bias at high 296	
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northern latitudes in the 1990’s and low bias in the 2000’s) are consistent with the findings 297	
  
of the TransCom MIP that used the same methane emissions (Table 1 and Patra et al., 2011).  298	
  

SCIAMACHY methane: We compare the simulated methane dry columns to those from 299	
  
SCIAMACHY (Table 3, Fig. 8). The data have the best global spatial coverage during boreal 300	
  
summer because of lower cloud cover during this season (Schneising et al., 2011). The 301	
  
observed methane dry columns reach their highest levels during boreal summer and fall, 302	
  
maximizing over Asia (eastern China and northern India) because of high emissions from 303	
  
wetlands and rice paddies.  The Base scenario reproduces the spatial distribution of the data 304	
  
well with a bias of < 2% over most of the globe, except over eastern Asia and western US 305	
  
during boreal summer where it is biased low, but still within the measurement uncertainties 306	
  
(~7-10%; Gloudemans et al., 2008; Houweling et al., 2014). Houweling et al. (2014) 307	
  
demonstrate that SCIAMACHY data have a seasonal bias that ranges from about -50 ppb 308	
  
during boreal winter to about +50 ppb during boreal summer as compared to the Total 309	
  
Carbon Column Observing Network (TCCON) measurements, which may also explain the 310	
  
simulated seasonal biases (Fig.	
  8).  311	
  

3.3   CO 312	
  

GMD surface data:  The Base scenario captures the monthly variability of GMD CO data 313	
  
well with a mean correlations slope (S) and coefficient (R2) of 0.81 and 0.72, respectively 314	
  
(Fig. 9 to Fig. 11, Table 4).  This result indicates that the seasonal CO cycle is well captured 315	
  
in the Base scenario (Fig. 11), which includes annually-repeating, but seasonally-varying 316	
  
biomass burning emissions (Fig. S 2).  As expected, the Base scenario does not capture the 317	
  
significant interannual variations associated with strong variations in emissions (Fig. 9, Fig. 318	
  
10). The low biases reach ~40 ppb in boreal winter and spring at high northern latitudes.  319	
  
During the 1980’s and 1990’s, CO levels in the northern hemisphere declined substantially 320	
  
because of changing patterns of emissions (Duncan et al., 2007a), which is not simulated 321	
  
with annually-repeating CO emissions. These results are in agreement with the findings of 322	
  
the multi-model ACCENT study (using annually-repeating CO emissions), in which there 323	
  
was a low bias of ~50 ppbv at northern hemisphere high latitude stations (Shindell et al., 324	
  
2006), as well as with other recent studies (e.g., Monks et al., 2015). 325	
  

MOPITT and TES/MLS CO: The primary advantage of satellite data, above ground-based 326	
  
networks, is spatial coverage, so we compare the spatial and seasonal distributions of 327	
  
simulated CO with those from the MOPITT and TES/MLS instruments (Fig.	
   12, Fig.	
   13).  328	
  
The distributions of CO from the Base scenario compare well overall with the data.  The 329	
  
mean biases relative to both datasets are within ±10% over most of the globe and in all 330	
  
seasons.  For example, the seasonal correlation slopes (S) range from 0.75 to 0.98 and 331	
  
coefficients (R2) range from 0.80 to 0.98, respectively, between MOPITT, TES/MLS data 332	
  
and the Base scenario output with the agreement generally highest during boreal winter and 333	
  
lowest during boreal summer.  However, the largest biases (Fig.	
  12) occur over 1) tropical 334	
  
and subtropical biomass burning regions (~20%) during boreal winter, indicating that either 335	
  
the CO emissions used in the Base scenario are too high or that simulated OH is too low, and 336	
  
2) most of the northern hemisphere (< -20%) during the summer season, indicating that 337	
  
either CO emissions are too low or that OH levels are too high, which is consistent with 338	
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previous studies using similar emissions (e.g., Shindell et al., 2006; Strode et al., 2015).  In 339	
  
addition to possible biases associated with emissions, some of the model-observation 340	
  
discrepancies may be associated with uncertainties in the satellite datasets (Ho et al., 2009; 341	
  
Deeter et al., 2012; Amnuaylojaroen et al., 2014).  Based on direct comparison with Tall 342	
  
Tower measurements, Deeter et al. (2012) find that a smoothing error, which depends on the 343	
  
retrieval averaging kernels and CO variability in the lower troposphere, exhibits strong 344	
  
geographical and seasonal variability.  Amnuaylojaroen et al. (2014) find that simulated CO 345	
  
concentrations are significantly and consistently higher than that of MOPITT V6 data over 346	
  
areas of biomass burning in Southeast Asia, similar to our results. 347	
  

The primary advantage of the TES/MLS joint CO product is that it gives information on 348	
  
vertical distributions (Fig.	
   13).  The simulation captures the tropospheric vertical profiles 349	
  
reasonably well (within ±1σ of TES/MLS mean) at the selected locations in the northern and 350	
  
southern hemispheres and in all seasons, except over West Africa in boreal winter during the 351	
  
peak of biomass burning.  The adjustment of the simulated CO with the TES/MLS averaging 352	
  
kernel (AK) significantly improves the agreement above 300 mb, over all locations and in all 353	
  
seasons while near the surface the effect is geographically varying, in agreement with other 354	
  
studies (e.g., Deeter et al., 2012).  Over the eastern US, the adjustment of simulated CO 355	
  
causes a slightly larger positive bias compared to that without adjustment. Though simulated 356	
  
CO is significantly improved near the surface, it is still biased high over West Africa by 357	
  
~50% during the peak of biomass burning, also consistent with other studies 358	
  
(Amnuaylojaroen et al., 2014).  359	
  

4   ECCOH as a Tool for Studying the Nonlinear CH4-CO-OH System 360	
  

In this section, we 1) present the justification for simulating the nonlinear chemistry of the 361	
  
CH4-CO-OH system as opposed to using a static climatology of OH distributions, and 2) 362	
  
demonstrate the utility of the ECCOH chemistry module for studying the CH4-CO-OH 363	
  
system.  In Sect. 4.1, we discuss the nontrivial, large-scale interannual variations of methane, 364	
  
CO, and OH in our scenarios.  In Sect. 4.2, we discuss the considerable spatial and temporal 365	
  
heterogeneity of OH and methane and CO loss rates, which would not be captured if a static 366	
  
climatology of OH distributions was used. In Sect. 4.3, we present the results of our 367	
  
sensitivity scenarios (Table 2), which demonstrate the utility of the ECCOH chemistry 368	
  
module for studying the CH4-CO-OH system. 369	
  

4.1  Large Scale Interannual Variations in Methane, CO, and OH 370	
  

Even on a global scale, there are large interannual variations in methane, CO, and OH.  371	
  
The deviations of mass-weighted concentrations of methane, CO, and OH for both the Base 372	
  
and AllVary scenarios are shown in Fig. 14. The magnitudes of the year-to-year deviations in 373	
  
methane are not substantially different between the two scenarios, since the Base scenario 374	
  
includes the important source of variation associated with anthropogenic methane emissions 375	
  
and methane’s background is large. On the other hand, the deviations for CO and OH are far 376	
  
greater in the AllVary scenario. The magnitude of the CO deviations is a factor of ten greater 377	
  
in the AllVary scenario than the Base scenario, which has annually-repeating CO emissions. 378	
  
The magnitude of the OH deviations increase ±2% to ±5%, though as discussed below, there 379	
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are much larger variations on regional scales that are masked in the global average. In 380	
  
general, CO and OH deviations are coincident, but of opposite sign as reaction of CO with 381	
  
OH is the primary sink for both gases on a global scale. Similar deviations are seen in the 382	
  
mid-latitudes of both hemispheres, indicating the global extent of some specific events, such 383	
  
as large biomass burning events. These results are also consistent with Voulgarakis et al. 384	
  
(2015) who, using full chemistry simulations, found large deviations (> 15%) in CO using 385	
  
annually-varying CO biomass burning emissions as compared to annually-repeating 386	
  
emissions. 387	
  

The nonlinear effects of the CH4-CO-OH system on the temporal evolution of global 388	
  
mass-weighted methane are smaller, but significant, as compared to the effects of variations 389	
  
of methane emissions. The ECH4Vary scenario includes variations in anthropogenic and 390	
  
natural methane emissions and also variations in meteorology (e.g., temperature, water 391	
  
vapor) that influence the distributions of methane, CO, and OH. The AllVary scenario 392	
  
includes also variations in CO emissions and all the other factors that influence OH, such as 393	
  
the overhead ozone column, NOx, tropospheric ozone, and VOCs. The influence of the 394	
  
nonlinear effects of the CH4-CO-OH system is shown in the difference of the AllVary and 395	
  
ECH4Vary scenarios.  For example, the shaded area between the two scenarios in Fig. 4 396	
  
illustrates the combined effect of nonlinearities of the CH4-CO-OH system on methane’s 397	
  
growth rate. The growth rate in the AllVary scenario is about 4 ppb/yr higher than in the 398	
  
ECH4Vary scenario during the early 1990s, a time when stratospheric ozone was impacted by 399	
  
the eruption of Mt. Pinatubo, emissions from the Soviet Union changed as it contracted 400	
  
economically, and there was a prolonged El Niño.  While these factors caused changes in 401	
  
methane emissions, they also caused substantial variations in CO and OH (Duncan and 402	
  
Logan, 2008) that influenced methane’s growth rate. Briefly in the mid-1990s, the growth 403	
  
rate in the AllVary scenario becomes lower than in the ECH4Vary scenario. The decline in 404	
  
methane growth rate in 1994-1997 is primarily related to the variability of the factors that 405	
  
influence OH (Fig. S 4) while the other non-linear feedbacks are primarily related to 406	
  
variability in CO emissions (Fig. S 5). Worldwide, there were record wildfires in 1997 and 407	
  
1998 that were associated with a record El Niño, which began in 1997, that transitioned to a 408	
  
record La Niña in 1998 (Duncan et al., 2003a, 2003b). Consequently, there were large 409	
  
variations in CO (Duncan and Logan, 2008) that causes methane’s growth rate to become 410	
  
higher again in the AllVary scenario. During the 2000s, a relatively quiet period with few 411	
  
large wildfires or notable ENSO events, the growth rate is lower in the AllVary than the 412	
  
ECH4Vary scenario. In summary, the nonlinear effects of the CH4-CO-OH system cause 413	
  
important fluctuations in methane’s growth rate over our study period of ±4 ppb/yr. 414	
  

We compare simulated, mass-weighted pseudo first order rate constants (k’), a proxy for 415	
  
OH interannual variations, from each of our scenarios to that inferred from MCF 416	
  
measurements (Fig. 15; 1998-2007; Montzka et al., 2011).  We find that none of our model 417	
  
scenarios are able to reproduce the inferred interannual OH variability of Montzka et al. 418	
  
(2011), though the simulated variability is of similar magnitude and within observational 419	
  
uncertainty. Our findings are consistent with other modeling studies (Montzka et al., 2011; 420	
  
Holmes et al., 2013; Murray et al., 2013 and references therein). While global interannual 421	
  
variations are informative, there can be considerable OH interannual variations regionally (as 422	
  
discussed in Sections 4.2 and 4.3) that may not be reflected in the global average (Lelieveld 423	
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et al., 2002; Wild and Palmer, 2008). 424	
  
Despite the lack of agreement between the inferred and simulated OH variations, this 425	
  

comparison exercise allows us to understand the contribution of various factors to the 426	
  
simulated interannual variations of tropospheric OH and, subsequently, the growth rate of 427	
  
methane (Fig. 4). As shown in Fig. 15, the Base scenario has ±3% interannual variability.  428	
  
This scenario includes interannual variations in meteorology, such as in clouds, water vapor, 429	
  
temperature and solar radiation, which are known to be important drivers of OH (e.g., Rohrer 430	
  
and Berresheim, 2006; Rohrer et al., 2014). The only large deviation in OH from the Base 431	
  
scenario occurs in 1997 and 1998 in the BBECOVary scenario. There were several major 432	
  
wildfires that account for this deviation, including fires in Indonesia, Mexico, and the boreal 433	
  
forests of Asia and North America (e.g., Duncan et al., 2003a). OH is lower in the AllVary 434	
  
scenario than the Base scenario because of higher CO emissions from the fires. For instance, 435	
  
Duncan et al. (2003b) used a model to show that the Indonesian wildfires in 1997 depressed 436	
  
OH levels by more than 20% over the Indian Ocean and 5-10% over much of the tropics for 437	
  
several months. Lower OH during 1997 and 1998 in the AllVary scenario is consistent with 438	
  
the higher methane growth rate as compared to the Base scenario (Fig. 3). 439	
  

ENSO affects the variability of sea surface temperatures, water vapor, deep convection, 440	
  
etc., and, subsequently, OH over large regions of the tropics. As shown in Fig.	
   16, the 441	
  
deviations of mass-weighted OH from various scenarios over Indonesia (100°-150°E; 6°N-442	
  
6°S) are generally anti-correlated with the Multivariate ENSO Index (MEI, Wolter et al., 443	
  
2011), a proxy of ENSO. OH variations in the Base scenario, which includes meteorological 444	
  
variations that affect OH via variations in water vapor, clouds, etc., are ±4% (R2 = 0.20), but 445	
  
much higher in the scenarios that include variations in biomass burning emissions (e.g., 446	
  
AllVary scenario), which better capture the ENSO variability (R2 = 0.59).  447	
  

4.2  Spatial and Temporal Distributions of the Production/Loss Rates of 448	
  
Methane and CO 449	
  

Any model simulation using annually-repeating and archived OH will not accurately 450	
  
capture regional and interannual variations in the loss rates of methane and CO.  A 451	
  
simulation using zonally-averaged archived OH (e.g., Spivakovsky et al., 2000), such as was 452	
  
done in the TransCom MIP, will not capture any regional and interannual variations. For 453	
  
example, Fig. S 7 and Fig. S 12 reproduce Fig. 4a and Fig. 5, respectively, but include 454	
  
methane from a simulation using archived and annually-repeating OH of the NASA Global 455	
  
Modeling Initiative (GMI) model (Duncan et al., 2007b; Strahan et al., 2007). The simulated 456	
  
longer methane lifetime (Fig. S 7), using archived OH, leads to an accumulation of methane 457	
  
over the multi-decadal simulation. In this situation, the archived OH would need to be 458	
  
adjusted higher to improve the simulation of methane as compared to observations. 459	
  

Even though methane is relatively well mixed in the troposphere due to its long lifetime, 460	
  
there is important spatial heterogeneity in methane’s and CO’s loss rates (Fig. 17 to Fig. 461	
  
21), which is associated with the distribution of sources and reaction with OH, and changes 462	
  
in the density of air with altitude.  The global methane loss rate maximizes during boreal 463	
  
summer and reaches a minimum during boreal winter (Fig. 17).  Most methane loss occurs 464	
  
between 30ºS and 30ºN (Fig. 17) since OH is most abundant in this region and methane’s 465	
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reaction with OH is temperature dependent (Sander et al., 2011).  In addition, most loss 466	
  
occurs near the surface despite higher OH in the mid-troposphere (Fig. 2) because of higher 467	
  
methane mole fractions near the surface (e.g., ~3 % over Alaska, but higher over source 468	
  
regions), the altitude dependence of air density, and the temperature dependence of the loss 469	
  
rate (Fig. 18). Methane’s loss rates in the AllVary scenario are relatively higher, especially 470	
  
over biomass burning regions (Fig. 17) and have much higher spatial variability than in the 471	
  
Base scenario (Fig. 19).  In contrast to methane, a higher proportion of CO is lost at 472	
  
northern hemisphere mid-latitudes as the CO loss rate is less temperature dependent than 473	
  
methane’s and the lifetime is shorter (Fig. 20).  The CO loss rate also varies strongly with 474	
  
altitude (not shown), similar to that of methane. The simulated seasonal mean loss rate of 475	
  
CO from the AllVary scenario is also relatively higher over biomass burning regions but 476	
  
lower over Asia (Fig. 20), and has much higher variability that reaches up to ~20% 477	
  
compared to about 5% in the Base scenario (Fig. 21).  478	
  

4.3   Factors that Influence the Nonlinear CH4-CO-OH System 479	
  

The differences in global abundances of CO and OH between our least complex (Base, 480	
  
Table	
  1) and most complex (AllVary, Table	
  2) scenarios are substantial and their impact on 481	
  
methane’s evolution is nontrivial as discussed in Sect. 4.1 and 4.2. Therefore, model studies 482	
  
of methane and/or CO, which use archived fields of OH distributions, will not capture these 483	
  
important nonlinear feedbacks of the CH4-CO-OH system (e.g., Fig.	
  4). Here, we discuss the 484	
  
contribution of various factors to the observed spatial distributions and temporal evolution of 485	
  
observed methane, CO, and OH to demonstrate the utility of the ECCOH chemistry module 486	
  
for studying the CH4-CO-OH system. We provide a brief summary of our conclusions from 487	
  
the scenarios at the end of this section. 488	
  
ECH4Vary Scenario: In the ECH4Vary scenario, all methane emissions are annually-varying 489	
  
(Fig. S 1). Variations in emissions from wetlands are the largest single contributor to global 490	
  
interannual variations, with biomass burning being a lesser contributor (e.g., Bousquet et al., 491	
  
2006). Patra et al. (2011) reported that up to 60% of methane’s observed interannual 492	
  
variation can be explained by variations in meteorology as well as interannual variations in 493	
  
wetland and biomass burning emissions. Given the high methane background concentration, 494	
  
the spatial differences of methane columns between the ECH4Vary and Base scenarios are 495	
  
rather small (about ±5 ppb (-1 to 1%)) over most of the globe when taken as seasonal 496	
  
averages of 1988-2007 (Fig. S 19).  Consistent with the annually-varying natural emissions 497	
  
of methane, the largest differences occur over rice-producing regions of India and 498	
  
Bangladesh (up to ~5%)) and the wetlands of South America (down to -5%), including the 499	
  
Pantanal. The simulated methane monthly variations from the ECH4Vary scenario are in better 500	
  
agreement for the northern hemisphere high latitude GMD station observations as compared 501	
  
to the Base scenario (Fig. S 8), which is also consistent with the findings of the TransCom 502	
  
MIP (Patra et al., 2011).  The impact of annually-varying natural methane emissions has a 503	
  
small effect (-1% to 1%), as expected, on the spatial distributions of CO and OH because of 504	
  
the slow reaction rate of methane with OH (Fig. S 19; Table 4).  505	
  
BBECOVary and FFBBECOVary Scenarios:  We developed these scenarios to understand the 506	
  
influence of annually-varying CO emissions from biomass burning and fossil fuel 507	
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combustion (Fig. S 2) on the observed interannual variation of methane, CO and OH. 508	
  
Including annually-varying biomass burning emissions (BBECOVary) improves the mean 509	
  
agreement of the simulated CO with GMD observations (mean S=0.83, R2 = 0.70, Table 4), 510	
  
but not at all individual GMD stations (Table 4). Improvements occur particularly during 511	
  
years with large fires (e.g., 1997, 1998, 2003, 2004; Fig. 9 to Fig. 11). Adding annually-512	
  
varying anthropogenic CO emissions in addition to annually-varying biomass burning 513	
  
emissions (FFBBECOVary) further improves the mean comparison (mean S=0.88), 514	
  
particularly in the northern hemisphere during the 1990s (Fig. 10). Overall, annually-varying 515	
  
CO emissions (FFBBECOVary) have a significant impact on the spatial distributions of 516	
  
tropospheric CO (±20%) and OH (±10%) relative to the Base scenario, and influence 517	
  
methane by ±1% (Fig. S 21, Table 4). Simulating annually-varying CO biomass burning 518	
  
emissions (i.e., BBECOVary scenario) improves simulated methane relative to the Base 519	
  
scenario as compared to observations (mean S=0.97, R2= 0.76, Table 4).   520	
  
OHinputVary Scenario:  In this scenario, we look at the impact of other causal factors that 521	
  
influence OH, including trends in NOx and VOC emissions and the overhead ozone column 522	
  
(Table 2).  For example, both variations in the overhead ozone column and NO emissions 523	
  
from lightning are known to cause variations in global OH (e.g., Duncan and Logan, 2008; 524	
  
Murray et al., 2013). Together, these causal factors have a significant influence on the spatial 525	
  
distributions of OH (±20%) and CO (±5%) relative to the Base scenario and a ±1% effect on 526	
  
methane (Fig. S 4, Fig. S 20, Table 4).  527	
  
AllVary Scenario: In this scenario, we investigate the combined effect of all variables (Table 528	
  
2) on the simulated distributions of methane, CO, and OH. The seasonal mean spatial (not 529	
  
shown) and zonal (Fig. 2) distributions of OH are quite comparable to that of the Base 530	
  
scenario. The interannual variations in the seasonal mean OH (Fig. 22) are significantly 531	
  
higher (~20%) as compared to the Base scenario (<5%, sec. 3.1), which is related to the 532	
  
annually-varying methane and CO emissions as well as OH constraints in this scenario.  533	
  
There are large differences in the spatial distributions of methane (±5%), CO (±20%), and 534	
  
OH (±20%) between the Base and AllVary scenarios (Fig. S 22, Table 4).  Despite large 535	
  
spatial differences in OH, the global, mean MCF lifetime for the AllVary scenario, which 536	
  
ranges from 6.01 (±0.51) to 6.67 (±0.61) years over the simulation period, is not significantly 537	
  
different from that of the Base scenario. 538	
  

Summary of Key Findings of Sensitivity Studies: Overall, variations in anthropogenic and 539	
  
natural methane emissions drive the majority of global variations in observed methane and 540	
  
variations in anthropogenic and natural CO emissions drive the majority of global variations 541	
  
in observed CO.  These results are consistent with the findings of other literature studies 542	
  
(e.g., Duncan and Logan, 2008; Patra et al., 2011). We find that the influence of variations of 543	
  
CO emissions and factors that influence OH (e.g., overhead ozone column, VOCs, NOx) 544	
  
have a significant net effect on the distributions and temporal evolution of methane, CO and 545	
  
OH. This result is consistent with the findings of Duncan and Logan (2008) for CO and OH. 546	
  
The significant influence of the combined nonlinear feedbacks on methane is shown in the 547	
  
difference of the AllVary and ECH4Vary scenarios (e.g., Fig.	
  4).  548	
  

Accurate quantification of the magnitude of the combined nonlinear feedbacks is 549	
  
ultimately dependent on the uncertainties and errors of emissions, such as those discussed in 550	
  
Sect. 3, and independent variables, each of which have their own uncertainties, used in the 551	
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parameterization of OH. With our sensitivity simulations, we discussed instances when 552	
  
changes to emissions and/or the input to the parameterization of OH improved or worsened 553	
  
the simulated methane and CO. In some instances, simulated methane and/or CO from the 554	
  
least complex Base scenario more favorably agreed with observations than the other more 555	
  
complex scenarios, including methane in the most complex AllVary scenario (e.g., Table	
  4, 556	
  
Fig.	
   4). However, in these instances, better correlation does not necessarily imply that a 557	
  
simpler scenario, such as the Base scenario or a scenario that uses archived and annually-558	
  
repeating OH, is inherently better. The best scenario is one that accurately simulates the 559	
  
complex interactions of the factors that influence the CH4-CO-OH system, which will give 560	
  
confidence in the response of the system to perturbations, such as from large interannual 561	
  
variations in wetland fluxes, biomass burning, ENSO, and volcanic eruptions. The next steps 562	
  
for our research include quantifying the 1) sensitivity of the simulated CH4-CO-OH system 563	
  
to uncertainties in the factors (e.g., water vapor, clouds, trace gases) that control tropospheric 564	
  
OH so as to improve simulated methane and CO with observations, and 2) the influence of 565	
  
potential large atmospheric carbon perturbations in a warming world, such as may occur 566	
  
from permafrost thaw, methane hydrate release, and enhanced biomass burning. 567	
  

5  Summary 568	
  

We present the fully interactive, computationally Efficient CH4-CO-OH (ECCOH) 569	
  
chemistry module, which we implemented in the NASA GEOS-5 AGCM.  To demonstrate 570	
  
the utility of the ECCOH chemistry module, we exercised the module with a set of scenarios 571	
  
to simulate the influence of various causal factors on OH and the observed variations in 572	
  
methane and CO over 1988-2007, which gives confidence in the fidelity of the module for 573	
  
scientific research. Discrepancies between the output and observations are largely explained 574	
  
by known deficiencies (as reported in the literature) in the methane and CO emissions used 575	
  
as input to the ECCOH chemistry module and AGCM. Through our simulations, we show 576	
  
the importance of using an interactive CH4-CO-OH system as opposed to using static, 577	
  
archived OH fields, as nonlinear feedbacks on methane, CO, and OH are non-trivial. For 578	
  
example, nonlinear feedbacks modulate the global methane growth rate over our study 579	
  
period (±20 ppbv yr-1) by ±4 ppbv yr-1 (Fig.	
  4).” 580	
  

 581	
  
 582	
  
Code availability  583	
  
The GEOS-5 source code is available under the NASA Open-Source Agreement at 584	
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Table 1: Reference Scenario (Base) Description 903	
  
AGCM Input Descriptiona 

     Dynamics 
Model dynamics are constrained by sea surface temperatures and sea ice concentrations from the Community Climate 
System Model (http://www.cesm.ucar.edu/models/ccsm4.0/, CCSM-4) through 2005 and from 2006 to 2007 from CCSM-4 
with Representative Concentration Pathways (RCP 6.0, Fujino et al. (2006); Hijioka et al. (2008)). The methane tracer is 
radiatively inactive and archived annually-varying methane fields used in the radiation code; our aim is reproduce the same 
meteorology in all simulations so as to more cleanly isolate the impact of the causal factors on methane, CO, and OH trends 
and variations. 

Parameterization of OH Input 
     Chemical Variables Nitrogen oxides (as a family), ozone, overhead ozone column, and various VOCs are monthly, archived fields for 2000 and 

are repeated for each year of the Base simulation; these fields were taken from a one year (2000) GEOS-5 AGCM 
simulation, which was part of the ACCMIP study (Lamarque et al., 2013), with a full-representation of ozone-NOx-VOC 
photochemistry (Duncan et al., 2007b; Strahan et al., 2007) and emissions of NOx, VOCs, and species important to the 
stratospheric ozone layer (e.g., N2O, HFCs, CFCs).   

     Meteorological Variables Pressure, temperature, cloud albedo and water vapor are taken from the AGCM as the simulation progresses.  
Emissionsb 
     Methane Annually-repeating natural (e.g., wetlands, biomass burning) and annually-varying anthropogenic emissions (EDGAR 3.2, 

TransCom CTL scenario) are described in Patra et al. (2011).  
     CO Annually-repeating emissions representative for year 2000 time slice of the ACCMIP (Lamarque et al., 2013; Strode et al., 

2015). 
Methane Oxidation 
     Troposphere CH4 + OH → αCO: tropospheric OH calculated by parameterization of OH. CO yield (α) = 1 (Duncan et al., 2007a). 
     Stratosphere Calculated based on its reaction with OH, Cl and O1D from archived monthly fields from one year of an AGCM simulation. 
VOC Oxidationb VOC + OH → αCO; CO yield (α) varies with VOC (Duncan et al., 2007b).  Isoprene + OH → αCO, where CO yield (α) 

varies with [NOx] (Duncan et al., 2007a).   
aAll scenarios are for 1988-2007.  We use the methane initial condition of 1655 ppb by January 1988 at the GMD South Pole (SPO) station, 904	
  
(Patra et al., 2011, TransCom protocolv7), which was reached after a 12-year model spin up; results are thus considered valid from January 1, 905	
  
1988. 906	
  
bOnly methane and CO are treated as emission fluxes. The source of CO via VOC oxidation is calculated using archived, 3d fields from a GEOS-5 AGCM full chemistry 907	
  
simulation.  Figures S1 and S2 show the methane and CO fluxes, respectively, used in all scenarios. 908	
  

909	
  



	
   24	
  

Table 2: Description of Simulation Scenarios 910	
  
Model Scenario Relation to Other Scenarios Purpose of Scenario 
1. Base Table 1. Reference scenario 
2. ECH4Vary 
 
Base + all methane source 
types varying annually 

Same as Base, except that the “EXTRA” methane emission 
scenario is used (Patra et al., 2011).  The primary difference 
between the CTL and EXTRA scenarios is that the CTL 
emissions are composed of repeating annual cycles of all source 
types, except for anthropogenic emissions which varies from 
year-to-year, while the EXTRA emission scenario has all source 
types (e.g., biomass burning, wetlands, rice paddies, etc.) 
varying annually (Fig.	
  S	
  1)). 

To understand the influence of interannual variations in natural 
sources of methane on the trends and variations of model OH and 
observed methane and CO distributions.  Wetlands are the largest 
single source of methane and the largest source of interannual 
variations (e.g., Patra et al., 2011; Voulgarakis et al., 2015). 

3. BBECOVary 
 

Base + BB CO emissions 
varying annually 

Same as Base, except CO emissions from biomass burning (BB) 
annually vary.  Emissions are from the REanalysis of the 
TROpospheric chemical composition (RETRO v2.0, Schultz et. 
al., 2007) emission inventory for 1988-1996 and the Global Fire 
Emissions Database (GFEDv3.1, Giglio et al., 2010; Randerson 
et al., 2013) for years 1997-2007. 

To understand the influence of interannual variations in the 
biomass burning source of CO (Fig.	
  S	
  2). From 1988-2007, there 
were several large events, such as in Indonesia in 1997 [Duncan et 
al., 2003a] and 2006 and worldwide in 1998 [Duncan et al., 
2003b]. 

4. FFBBECOVary 
Base + FF and BB CO 
emissions varying annually 

Same as BBECOVary, except CO emissions from fossil fuels 
annually vary.  Anthropogenic emissions are from the Emission 
Database for Global Atmospheric Research (EDGARv4.2) for 
1988-2007. 

To understand the combined influence of interannual variations in 
the anthropogenic and biomass burning sources of CO.   

5. OHInputVary 
 
Base + parameterization of 
OH chemical variables 
varying annually 

Same as Base, except the monthly, archived chemical variables 
used as input to the parameterization of OH are annually 
varying.  Taken from the same GEOS-5 AGCM simulation as in 
Base scenario with a full-representation of ozone-NOx-VOC 
photochemistry and annually varying anthropogenic and 
biogenic emissions of NOx, VOCs, and species important to the 
stratospheric ozone layer (e.g., N2O, HFCs, CFCs) (Strahan et 
al., 2007; Duncan et al., 2007b; Oman et al., 2011).   

To understand the influence of interannual variations in other 
factors that affect OH.  These factors include the overhead ozone 
column, NOx and anthropogenic VOCs. 

6. AllVary 
 
Base + ECH4Vary + 
FFBBECOVary + OHInputVary  

Annually varying methane and CO emissions from all sources 
and annually-varying factors that influence OH. 

To understand the combined influence of annually-varying 1) CO 
emissions from fossil fuel and biomass burning, 2) effects of NOx 
and VOCs on OH, and 3) methane emissions from all sources. 

 911	
  



Table 3: Data Used In Model Evaluation of Methane, CO, and OH 912	
  
Data Species Quantity Time Range Reference 
NOAA ESRL Global Monitoring Division 
(GMD) surface data 

CO, methane mixing ratio (ppbv) 1980-present Novelli et al., 1992, 1998; Dlugokencky et al., 
2010, 2014. 

Envisat SCanning Imaging Absorption 
spectroMeter for Atmospheric CHartographY 
(SCIAMACHY)a 

methane atmospheric column 
(molec/cm2) 

2003-2005 Bovensmann et al., 1999; Schneising et al., 2009; 
Schneising et al., 2011; Frankenberg et al., 2011 

Terra Measurement of Pollution In The 
Troposphere (MOPITT) Instrumentb 

CO atmospheric column 
(molec/cm2) 

1999-present Worden, 2010; Deeter et al., 2012; Deeter, 2013. 

Aura Tropospheric Emission Spectrometer 
(TES)/Microwave Limb Sounder (MLS) Joint 
Product 

CO mixing ratio (ppbv) 8/2004-10/2012 Luo et al., 2013 

NOAA surface network MCF OH interannual variability 
(IAV)c 

1997-2007 Montzka et al., 2011 

aWe use version 3.7 gridded product of the column-averaged methane dry mole fraction (Schneising et al., 2009; http://www.iup.uni-913	
  
bremen.de/sciamachy/NIR_NADIR_WFM_DOAS/products).The methane data since November 2005 are considered to be of reduced quality (in comparison to data from 914	
  
2003-October 2005) due to detector degradation in the spectral range used for the methane column retrieval (Schneising et al., 2011; Frankenberg et al., 2011). 915	
  
bWe use the gridded monthly CO retrievals (thermal infrared radiances) V006 L3 product (http://eosweb.larc.nasa.gov) 916	
  
cThere are only very sparse and uncertain direct observations (e.g., Stone et al., 2012). 917	
  
 918	
  



Table 4: list of the correlation parameters of the different model scenarios and the monthly  919	
  
GMD measurements for the simulation period (1988-2007) 920	
  

 
ALTa BRW NWR MLO RPB SPO 

Scenario S* R2** S R2 S R2 S R2 S R2 S R2 
CH4 data             
Base 0.56 0.66 0.57 0.60 0.76 0.64 0.76 0.58 0.68 0.82 0.79 0.91 
ECH4Vary 0.74 0.68 0.74 0.56 0.74 0.63 0.79 0.57 0.71 0.72 0.82 0.89 
BBECOVary 0.82 0.68 0.84 0.66 1.03 0.76 1.07 0.72 1.00 0.84 1.07 0.93 
FFBBECOVary 0.58 0.54 0.56 0.46 0.74 0.54 0.77 0.52 0.66 0.64 0.79 0.81 
OHinputVary 0.53 0.63 0.53 0.56 0.71 0.60 0.70 0.56 0.62 0.78 0.74 0.90 
AllVary 0.69 0.49 0.68 0.40 0.64 0.45 0.70 0.43 0.62 0.47 0.76 0.73 

             CO data 
            Base 0.74 0.79 0.70 0.75 0.83 0.57 0.98 0.71 0.74 0.68 0.88 0.82 

ECH4Vary 0.74 0.79 0.70 0.75 0.82 0.57 0.98 0.71 0.73 0.68 0.87 0.82 
BBECOVary 0.81 0.86 0.74 0.73 0.84 0.57 1.01 0.74 0.82 0.68 0.79 0.64 
FFBBECOVary 0.92 0.88 0.97 0.87 0.84 0.42 0.89 0.70 0.83 0.70 0.81 0.63 
OHinputVary 0.74 0.81 0.71 0.77 0.81 0.56 0.93 0.71 0.67 0.66 0.92 0.85 
AllVary 0.90 0.88 0.96 0.85 0.80 0.37 0.82 0.68 0.77 0.67 0.84 0.68 

aGMD stations shown include Alert, Canada (ALT, 82ºN, 62ºW), Point Barrow, USA (BRW, 71ºN, 156ºW), Niwot Ridge, USA (NWR, 40ºN, 105ºW), 921	
  
Mauna Loa, Hawaii, USA (MLO, 20ºN, 155ºW), Ragged Point, Barbados (RPB, 13ºN, 59ºW), and South Pole,  922	
  
Antarctica (SPO, 90ºS, 25ºW). 923	
  
*: “S” refers to the correlation slope (dy/dx) of the simulation/measurement comparison. 924	
  
**: “R2” refers to the correlation coefficient. 925	
  
 926	
  



	
  

Fig.	
  1:	
  Schematic	
  representation	
  of	
  the	
  implementation	
  of	
  the	
  ECCOH	
  module	
  within	
  the	
  GEOS-­‐5	
  AGCM.	
  

 



	
  

Fig.	
   2:	
   Seasonal	
   zonal	
   mean	
   (1988-­‐2007)	
   of	
   OH	
   (x105molecules/cm3)	
   for	
   the	
   Base	
  

scenario	
  (left	
  4	
  panels)	
  and	
  the	
  difference	
  (AllVary-­‐Base,	
  right	
  4	
  panels)	
  for	
  December-­‐

February	
  (DJF),	
  March-­‐May	
  (MAM),	
  June-­‐August	
  (JJA)	
  and	
  September-­‐November	
  (SON).	
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Fig.	
  3:	
  Seasonal	
  mean	
  (1988-­‐2007)	
  OH	
  (x106	
  molecules/cm3)	
  for	
  the	
  Base	
  scenario	
  for	
  

December-­‐	
  February	
  (DJF)	
  and	
  June-­‐August	
  (JJA)	
  at	
  850	
  mb. 

DJF 
 
 
 
 
JJA 
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Fig.	
  4:	
  a)	
  12-­‐month	
  running	
  mean	
  atmospheric	
  growth	
  rate	
  of	
  methane	
  (ppbv	
  yr−1)	
  for	
  

the	
  average	
  of	
  92	
  GMD	
  stations	
  and	
  from	
  model	
  output	
  for	
  several	
  scenarios	
  averaged	
  

for	
  those	
  station	
  locations.	
  The	
  shaded	
  area	
  is	
  the	
  difference	
  between	
  the	
  ECH4Vary	
  and	
  

AllVary	
   scenarios,	
   which	
   indicates	
   the	
   total	
   contribution	
   of	
   nonlinear	
   feedbacks	
   (i.e.,	
  

from	
  variations	
  of	
  CO	
  emissions	
  and	
  variables	
  input	
  to	
  the	
  parameterization	
  of	
  OH)	
  of	
  

the	
  CH4-­‐CO-­‐OH	
  system	
  to	
  methane’s	
  growth	
  rate.	
  b)	
  Same	
  as	
  a)	
  but	
  for	
  the	
  average	
  of	
  

17	
  GMD	
  stations,	
  which	
  covers	
  100%	
  of	
  the	
  simulation	
  period.	
  Refer	
  to	
  Fig.	
  S	
  4	
  to	
  Fig.	
  S	
  

7	
  for	
  methane’s	
  growth	
  rate	
  from	
  other	
  scenarios. 

a) 

b) 
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Fig.	
  5:	
  Monthly	
  methane	
  (ppbv)	
  from	
  the	
  Base	
  and	
  AllVary	
  scenarios	
  and	
  observations	
  

from	
  six	
  GMD	
  stations.	
  Similar	
  plots	
  for	
  the	
  other	
  scenarios	
  are	
  given	
  in	
  Fig.	
  S	
  8	
  to	
  Fig.	
  S	
  

11.	
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Fig.	
   6:	
  Monthly	
  methane	
   (ppbv)	
   averaged	
   over	
   1988-­‐2007	
   for	
   several	
   scenarios	
   and	
  

observations	
  at	
  six	
  GMD	
  stations.	
  Vertical	
  lines	
  represent	
  the	
  standard	
  deviation	
  of	
  the	
  

observed	
  annual	
  mean.	
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Fig.	
  7:	
  Annual	
  methane	
  deviation	
  (ppbv;	
  simulated-­‐measured)	
  for	
  several	
  scenarios	
  and	
  

observations	
  at	
  six	
  GMD	
  stations.	
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Fig.	
  8:	
   	
  Seasonal	
  mean	
  (2004)	
  methane	
  dry	
  column	
  (ppbv;	
   left	
  column)	
  from	
  the	
  Base	
  

scenario	
   and	
   the	
   relative	
   difference	
   (%,	
   (Base-­‐observations)/observations;	
   right	
  

column)	
  with	
   SCIAMACHY	
   data.	
   Simulated	
  methane	
   levels	
   are	
   gridded	
   to	
   the	
   spatial	
  

resolution	
  of	
  the	
  SCIAMACHY	
  data. 
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Fig.	
  9:	
  Monthly	
  CO	
  (ppbv)	
  from	
  the	
  Base	
  and	
  AllVary	
  scenarios	
  and	
  observations	
  from	
  

six	
  GMD	
  stations.	
  Similar	
  plots	
  for	
  the	
  other	
  scenarios	
  are	
  given	
  in	
  Fig.	
  S13	
  to	
  Fig.	
  S16.	
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Fig. 10: Annual mean CO (ppbv) from several scenarios and observations at six GMD 

stations. Vertical lines represent the standard deviation of the observed annual mean. 
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Fig.	
   11:	
   Monthly	
   CO	
   (ppbv)	
   averaged	
   over	
   1998-­‐2007	
   for	
   several	
   scenarios	
   and	
  

observations	
  at	
  six	
  GMD	
  stations.	
  Vertical	
  lines	
  represent	
  the	
  standard	
  deviation	
  of	
  the	
  

observed	
  monthly	
  mean.	
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Fig.	
  12:	
  Seasonal	
  mean	
  (2006-­‐2007)	
  CO	
  columns	
  (x1016	
  molecules/cm2)	
  from	
  the	
  Base	
  

scenario	
   (left	
   column)	
   and	
   the	
   relative	
   difference	
   (%;	
   (Base-­‐

observations)/observations;	
  right	
  column)	
  with	
  MOPITT	
  data.	
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Fig.	
  13:	
  Seasonal	
  mean	
  (2006-­‐2007)	
  CO	
  vertical	
  profiles	
  (ppbv)	
  over	
  select	
  locations	
  of	
  

TES/MLS	
   data,	
   the	
   Base	
   scenario	
   (‘simulated’),	
   and	
   the	
   Base	
   scenario	
   adjusted	
   with	
  

averaging	
   kernels	
   (‘simulated	
   adjusted’).	
   The	
   horizontal	
   bars	
   represent	
   the	
   standard	
  

deviation	
  of	
  the	
  individual	
  overpasses	
  used	
  to	
  create	
  the	
  seasonal	
  mean.	
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Fig.	
   14:	
   Deviations	
   of	
   tropospheric,	
   mass-­‐weighted	
   OH,	
   CO	
   and	
   methane	
   (12	
   month	
  

running	
  mean)	
   from	
   the	
  Base	
   (left)	
   and	
  AllVary	
   (right)	
   scenarios.	
   Note	
   the	
   different	
  

scales	
  of	
  the	
  y-­‐axes. 
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Fig.	
  15:	
  Deviations	
  (%)	
  of	
   the	
  global,	
  mass-­‐weighted,	
  pseudo	
   first	
  order	
  rate	
  constant	
  

(k’)	
  of	
  the	
  reaction	
  of	
  OH	
  with	
  MCF-­‐inferred	
  from	
  MCF	
  measurements	
  (black;	
  adapted	
  

from	
  Montzka	
  et	
  al.,	
  2011)	
  and	
  from	
  several	
  scenarios. 
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Fig.	
   16:	
   Deviation	
   (%)	
   of	
   global,	
   mass-­‐weighted	
   OH	
   from	
   various	
   scenarios	
   and	
   the	
  

Multivarient	
  ENSO	
  Index	
  (MEI).	
  The	
  lines	
  are	
  12-­‐month	
  running	
  means.	
  Positive	
  values	
  

of	
  MEI	
  indicate	
  El	
  Niño	
  conditions	
  and	
  negative	
  values	
  indicate	
  La	
  Niña	
  conditions.	
  The	
  

correlation	
  coefficient	
  (R2)	
  for	
  the	
  Base	
  scenario	
  vs	
  the	
  MEI	
  index	
  is	
  0.20	
  while	
  for	
  the	
  

AllVary	
  scenario	
  is	
  0.59. 



	
   17	
  

	
  

	
  

Fig. 17: Seasonal mean (1988-2007), mass-weighted tropospheric methane loss rate (left 

column; x104 molecules/cm3/s) with relative difference with the AllVary scenario ((Base-

AllVary)/Base; right column). 
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Fig. 18: Mean methane loss rate (1988-2007; x104 molecules/cm3/s) at 500 mb (top) and 850 

mb (bottom) for the Base scenario. 



	
   19	
  

	
  
Fig.	
  19:	
  Seasonal	
  mean	
  (1988-­‐2007)	
  standard	
  deviation	
  of	
  tropospheric	
  methane	
  loss	
  

rates	
  (x104	
  molecules/cm3/s)	
  from	
  the	
  Base	
  (left	
  column)	
  and	
  AllVary	
  (right	
  column)	
  

scenarios.	
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Fig. 20: Seasonal mean (1988-2007), mass-weighted tropospheric CO loss rates (left column; 

x105 molecules/cm3/s) from the Base scenario and relative difference (%) between the Base 

and AllVary scenarios ((Base-AllVary)/Base; right column). 
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Fig.	
  21:	
   Seasonal	
  mean	
  (1988-­‐2007)	
  standard	
  deviation	
  of	
   tropospheric	
  CO	
   loss	
  rates	
  

(x105	
   molecules/cm3/s)	
   from	
   the	
   Base	
   (left	
   column)	
   and	
   AllVary	
   (right	
   column)	
  

scenarios.	
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Fig.	
  22:	
  Seasonal	
  mean	
  (1988-­‐2007)	
  standard	
  deviations	
  of	
  OH	
  (x105	
  molecules/cm3)	
  at	
  

850	
  mb	
  for	
  the	
  AllVary	
  scenario.	
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