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Abstract. We conducted simulations using the Weather Research and Forecasting model coupled

with Chemistry (WRF-Chem) version 3.5 to study air quality in East Asia at a spatial resolution of 20

km × 20 km. We find large discrepancies between two existing emissions inventories: the Regional

Emission Inventory in Asia version 2 (REAS) and the Emissions Database for Global Atmospheric

Research version 4.2 (EDGAR) at the provincial level in China, with maximum differences of up5

to 500 % for CO emissions, 190 % for NO, and 160 % for primary PM10. Such differences in the

magnitude and the spatial distribution of emissions for various species lead to 40–70 % difference

in surface PM10 concentrations, 16–20 % in surface O3 mixing ratios, and over 100 % in SO2

and NO2 mixing ratios in the polluted areas of China. WRF-Chem is sensitive to emissions, with

the REAS-based simulation reproducing observed concentrations and mixing ratios better than the10

EDGAR-based simulation for July 2007. We conduct additional model simulations using REAS

emissions for January, April, July, and October of 2007 and evaluate simulations with available

ground-level observations. The model results illustrate clear regional variations in the seasonal cycle

of surface PM10 and O3 over East Asia. The model meets the air quality model performance criteria

for both PM10 (mean fractional bias, MFB 6 ±60 %) and O3 (MFB 6 ±15 %) in most of the15

observation sites, although the model underestimates PM10 over Northeast China in January. The

model predicts the observed SO2 well at sites in Japan, while it tends to overestimate SO2 in China in

July and October. The model underestimates observed NO2 in all four months. Our study highlights

the importance of constraining emissions at the provincial level for regional air quality modeling over
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East Asia. Our results suggest that future work should focus on the improvement of provincial-level20

emissions especially estimating primary PM, SO2 and NOx.

1 Introduction

Many Asian countries have faced deteriorating air quality since the late 1990s and early 2000s due

to rapid economic development and population growth. According to the latest World Health Or-

ganization (WHO) ambient air pollution database (WHO, 2014) , air quality in China and India25

were ranked 14th and 9th respectively, out of the 91 most polluted countries. Since these countries

have the largest population in the world, exposure to air pollutants poses health risks to billions of

residents. For example, Chen et al. (2013) reported that outdoor air pollution in China alone caused

approximately half a million premature deaths every year. A similar number of premature deaths was

estimated in India in 2010 (HEI, 2013). Air pollution not only impacts human health, but also has30

important potential consequences for natural ecosystems, crop yields, visibility, and radiative forcing

(Seinfeld and Pandis, 2012). In order to mitigate these negative consequences, it is essential to have

a better understanding of air pollutant emissions sources and magnitudes, as well as atmospheric

transport and chemical composition over the region.

Several modeling studies have applied the Weather Research and Forecasting model coupled with35

Chemistry (WRF-Chem) (Grell et al., 2005) to study air quality in Asia. Saikawa et al. (2011) an-

alyzed the impact of China’s vehicle emissions on air quality both within China and across East

Asia. They found that stricter regulation of the road transport sector in China would reduce surface

concentrations of fine particulate matter with an aerodynamic diameter of 2.5µm or less (PM2.5)

and tropospheric ozone (O3) mixing ratios in the region. Kumar et al. (2012) examined ground level40

measurements and satellite observations in South Asia and reported that WRF-Chem could simu-

late O3 and CO well but large discrepancies were found for NO2 due to uncertainties in emissions

from biomass burning and anthropogenic NOx estimates. Wang et al. (2010) conducted sensitivity

analyses of O3, NOx, and sulfur dioxide (SO2) mixing ratios to temporal and vertical emissions;

their results showed that air quality in East Asia was impacted by the diurnal and vertical distri-45

bution of anthropogenic emissions. Studies that have conducted WRF-Chem modeling for PM2.5

and PM10 have found that these surface concentrations were usually underestimated. For example,

Saikawa et al. (2011) reported that modeled four-month average PM2.5 concentrations at Oki and

Rishiri in Japan had a mean normalized bias (MNB) of -34 % compared to observations. Gao et al.

(2014) compared simulated and measured PM10 concentrations at six sites in Japan and found that50

the model underestimated the annual average PM10 at all sites except one.

One of the possible reasons that models underestimate particulate matter (PM) concentrations is

the uncertainty in emissions. Several emissions inventories for Asia have been developed by different

groups, each with different purposes and characteristics (Kurokawa et al., 2013; JRC and PBL, 2010;
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Streets et al., 2003; Klimont et al., 2011). Comparison of the emissions inventories has revealed55

large differences in these emissions estimates. Kurokawa et al. (2013) compared different emissions

inventories for several provinces in China and found that the difference in primary organic carbon

emissions can be as high as 140 %. The possible causes for such discrepancies among emissions

inventories are differences in estimates of: (1) activity level, (2) level of technologies implemented,

and (3) emission factors. Since it is hard to measure emission factors of each individual source at the60

scale of a province or a country, uncertainties arise when emission factors from one place are applied

to another. Activity data or emission factors are often not available at the level of detail required for

making insightful comparisons across emissions inventories.

While comparison of emissions inventories has revealed notable differences in the emissions es-

timates, few studies have addressed to what extent uncertainty in the emissions inventories really65

matters for the outcome of air quality modeling studies. Ma and van Aardenne (2004) compared

simulated surface O3 mixing ratios over China using three different emissions inventories as model

inputs, and found that surface O3 differed as much as 30-50 % among different model simulations.

They also demonstrated that the differences in NOx and non-methane volatile organic compounds

(NMVOCs) among different inventories were dominant factors for the discrepancies in simulated70

O3 mixing ratios. Amnuaylojaroen et al. (2014), on the other hand, studied the effect of different

anthropogenic emissions inventories on air quality over Southeast Asia and found only a small dif-

ference in simulated O3 (about 4.5 %) and CO (about 8 %) mixing ratios. However, these studies did

not investigate the impact of emissions inventories on other pollutant species such as PM. Unlike the

previous studies, which focused on uncertainties of simulated O3, CO and NOx, this study provides75

quantitative information on how emissions inventories impact PM and other pollutants including

SO2.

The first objective of this paper is to study the sensitivity of regional air quality to emissions.

We select two commonly used anthropogenic emissions inventories for comparison: the Regional

Emission Inventory in ASia version 2 (REAS) (Kurokawa et al., 2013) and the Emissions Database80

for Global Atmospheric Research version 4.2 (EDGAR) (JRC and PBL, 2010). By comparing the 2-

week model simulations using these two emissions inventories and observations from July 2007, we

select the REAS inventory to perform air quality simulations over East Asia in different seasons. The

second objective is to evaluate the simulated PM10 concentrations, as well as O3, SO2, and NOx

mixing ratios from four one-month WRF-Chem runs against ground-level observations to build con-85

fidence in its ability to simulate future air quality over this region. WRF-Chem is an online-coupled

meteorology and chemistry model, simulating meteorological quantities and air pollution concen-

trations simultaneously and allowing two-way interactions between meteorological and chemical

constituents. In regions with high PM loading, meteorology-chemistry interaction significantly im-

proves model performance in simulating air pollutant concentrations (Kong et al., 2015). So far,90

many of the WRF-Chem studies that focused on China conducted limited model evaluation due to

3



the scarcity of observations in the region. This study compares the model simulations to observations

from more than 70 sites in China to evaluate the model. There are some studies that have compared

simulation results using a different chemical transport model (i.e., the Community Multi-scale Air

Quality Model), but as far as we are aware, few studies have used as extensive a network of PM1095

observations for WRF-Chem validation in this region as ours has.

This paper is organized as follows. Section 2 explains the regional air quality model (WRF-Chem)

configuration, emissions used for the model, observations used for validation, and data analysis

methods. Section 3 analyzes the differences in emissions inventories and the sensitivity of simulated

pollutant concentrations to the inventory used. Section 4 evaluates model performance by comparing100

observations with model simulations. Section 5 presents a summary of results and suggestions for

future research.

2 Model and observations description

2.1 Model description

We use the fully coupled "online" regional chemical transport model WRF-Chem version 3.5 (Grell105

et al., 2005) in this study. The Regional Acid Deposition Model version 2 (RADM2) atmospheric

chemical mechanism (Stockwell et al., 1990) is used for gas-phase chemistry. Aerosol chemistry is

represented by the Model Aerosol Dynamics for Europe with the Secondary Organic Aerosol Model

(MADE/SORGAM) (Schell et al., 2001; Ackermann et al., 1998) with some aqueous reactions.

This aerosol mechanism is widely used in regional atmospheric chemistry models (Saikawa et al.,110

2011; Gao et al., 2014; Tuccella et al., 2012; Kumar et al., 2012). It predicts the mass of seven

aerosol species (sulfate, ammonium, nitrate, sea salt, BC, OC, and secondary organic aerosols),

using three log-normal aerosol modes (Aitken, accumulation, and coarse). Aerosol dry deposition is

simulated following the approach of Binkowski and Shankar (1995) and the wet removal approach

follows Easter et al. (2004) and Chapman et al. (2009). Photolysis rates are obtained from the Fast-J115

photolysis scheme (Wild et al., 2000). We include the aerosol-radiative feedback in our simulation.

The rapid radiative transfer model (RRTM) scheme (Mlawer et al., 1997) is used to represent both

shortwave and longwave radiation. The horizontal winds, temperature, and moisture are nudged to

2007 meteorological fields at all vertical levels. The 2007 meteorological data are obtained from

the National Center for Environmental Prediction (NCEP) Global Forecast System final gridded120

analysis datasets. We use the Lin et al. (1983) microphysics scheme and the Grell-3d ensemble

cumulus parameterization(Grell and Dévényi, 2002).

The model domain, shown in Fig. 1, covers most of the East and South Asia region with 398 ×
298 grid cells, using a 20-km spacing and a Lambert conformal map projection centered on China at

32◦N, 100◦E. There are 31 vertical levels from the surface to 50 mb. The initial and lateral boundary125

conditions are taken from a time-slice simulation of the GFDL coupled chemistry-climate model
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AM3 (Donner et al., 2011; Naik et al., 2013) for year 2010 following the configuration described by

Naik et al. (2013). This AM3 simulation was driven by climatological mean sea-surface temperature

and sea ice distributions for the 2006-2015 time period derived from the transient GFDL coupled

model (GFDL-CM3) simulations following the Representative Concentration Pathway 8.5 (RCP8.5)130

(John et al., 2012). Concentrations of well-mixed greenhouse gases and ozone depleting substances,

and emissions of short-lived pollutants (ozone precursors and aerosols) were set to year 2010 values

in RCP8.5. We simulate air pollutant concentrations for the central month of each season (January,

April, July, and October) in 2007, to assess seasonal variability in air quality. The model is spun-up

for seven days before the beginning of each monthly simulation. This is sufficient to ventilate our135

regional domain.

2.2 Emissions

The anthropogenic emissions of gaseous pollutants (CO, NOx, NH3, SO2, and NMVOCs) and par-

ticulate matter (BC, OC, PM2.5, and PM10) are taken from REAS (Kurokawa et al., 2013). REAS

covers most of the model domain (see Fig. 1, regions in blue). For the areas of our domain that140

are not covered by the REAS emissions inventory, we use the RCP8.5 emissions dataset for year

2010 (Riahi et al., 2011). RCP8.5 emissions dataset has been used in many studies for air quality

simulations (Gao et al., 2013; Colette et al., 2013; Fry et al., 2012). For emissions from biomass

burning, we use the year 2007 from the Global Fire Emissions Database version 3 (GFED) (Rander-

son et al., 2013). For biogenic emissions of CO, NOx, and NMVOCs, as well as aircraft emissions145

of CO, NOx, and SO2, we use the Precursors of Ozone and their Effect on the Troposphere version 1

(POET) emissions inventory (Granier et al., 2005). Dust and sea salt emissions are calculated online

using the dust transport model (Shaw et al., 2008) and sea salt (Gong, 2003) schemes, respectively.

To study the influence of anthropogenic emissions inventories on air quality simulation, we con-

ducted a sensitivity simulation using the EDGAR (European Commission Joint Research Centre,150

2010) inventory, as described in Section 3. EDGAR does not provide BC, OC, and PM2.5 emis-

sions, and thus, this study only compares simulated O3 and PM10. NMVOCs in EDGAR are also

not speciated, so we divided them into 17 chemical species, using weighting factors calculated from

REAS. The total anthropogenic emissions of each air pollutant within the model domain as estimated

in REAS and EDGAR for July 2007 are listed in Table 1. We apply the same diurnal variation to155

both REAS and EDGAR. REAS emissions inventory provides monthly emissions for each pollutant,

while the EDGAR emissions inventory provides only yearly emissions estimates.

2.3 Observations

The surface concentrations of PM10 in China are derived from the Air Pollution Index (API) from the

website of the Ministry of Environmental Protection of the People’s Republic of China (http://datacenter.mep.gov.cn/).160

When PM10 is reported as the primary pollutant with a maximum pollutant index, daily PM10 con-
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centrations are calculated from the API, using the following equation:

C = [(I − Ilow)/(Ihigh − Ilow)]× (Chigh −Clow)+Clow (1)

where C is the daily concentration of PM10, I is the API reported, Ilow and Ihigh are the lower and

upper API breakpoints that I falls within, Clow and Chigh are the PM10 concentrations correspond-165

ing to Ilow and Ihigh. Values of Ilow, Ihigh, Clow and Chigh are described for different API levels, as

shown in Table S1. Qu et al. (2010) have shown that API-derived PM10 concentrations are generally

comparable to those from filter sampling, although the latter tends to be approximately 10% higher

than API-derived PM10. As mentioned earlier, the derived concentrations from API have been used

for the evaluation of a different chemical transport model in previous studies (Wang et al., 2009; Liu170

et al., 2010).

The observed PM10 concentrations in Nepal are obtained from the Godavari station, located at the

southern edge of the Kathmandu Valley (Ramanathan et al., 2007; Stone et al., 2010). We are unable

to evaluate PM2.5 against measurements for 2007 since PM2.5 measurements in China started in

late 2012. The observed PM10, O3, and SO2 in Japan and SO2 and NO2 in China are taken from175

the Acid Deposition Monitoring Network in East Asia (EANET). The surface mixing ratios of O3

in Mt. Lulin are taken from the Lulin Atmospheric Background Station (LABS, 2,862m above mean

sea leave) in central Taiwan (Ou Yang et al., 2012). The description of each site is listed in Tables

S2a-b; the locations of these sites are shown in Fig. 1.

2.4 Data analysis method180

We assess the model performance using the correlation coefficient (r), the normalized mean bias

(NMB), the mean fractional bias (MFB), the mean fractional error (MFE), and the normalized mean

square error (NMSE) between the observed (Obs) and modeled (Model) concentrations. The perfor-

mance evaluation is based on monthly and yearly statistics using the daily mean values at each site,

each region, and all sites. Following Boylan and Russell (2006), we set the performance goals of185

PM10 as: MFB less than or equal to ±30 % and MFE less than or equal to 50 %. The performance

criteria of PM10 are MFB 6± 60 % and MFE 6 75 %. For O3, we use the performance benchmark:

MFB 6 ±15 % and MFE 6 35 %, as recommended by Morris et al. (2005).

3 Sensitivity to emissions

To better understand the effect that anthropogenic emissions have on regional air quality simulations,190

we conduct two simulations in which REAS and EDGAR are used as separate inputs. In the follow-

ing sections, we compare the major pollutant emissions estimated in REAS and EDGAR, followed

by comparisons of resulting air quality simulations.
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3.1 Emission comparisons

Table 1 summarizes the total emissions of major air pollutants over the model domain in July 2007195

for air pollutant precursors. Both REAS and EGAR estimate similar total SO2 emissions of 4.62 Tg

month−1. We note that this similarity is purely coincidental and depends on the domain. In certain

parts of the domain REAS estimate is higher than EDGAR, while the opposite is true for other parts

of the domain. When averaged over the whole domain, both inventories produce similar estimates

(Fig. 2). We, however, find large discrepancies between REAS and EDGAR estimated emissions for200

total NH3 (53 %) and NOx (27 %). For CO, NH3, and NOx, REAS estimates are higher than those of

EDGAR, while for PM10 and NMVOCs, the opposite is the case. Figure 2 illustrates the difference

in the spatial distribution and magnitude of emissions between REAS and EDGAR for PM10, CO,

SO2, and NOx in our model domain. Although the total emissions within the domain for many of the

species are comparable between the two inventories, the national and regional differences are large.205

REAS estimates are uniformly higher than those of EDGAR in North, East, and South China for

all four species and in most parts of India for NOx and CO. For PM10 and CO, EDGAR estimates

are higher in most areas of South and Southeast Asia, as well as in Japan and South Korea. Table

S3 compares the differences in provincial emissions between REAS and EDGAR in China. For

example, we find that REAS estimates 150 % higher PM10 and 548 % higher CO emissions than210

EDGAR in Hebei province.

3.2 Simulation comparisons

For the convenience of discussion, we refer to the simulation with REAS emissions as WRF-Chem-

REAS and the simulation using EDGAR emissions as WRF-Chem-EDGAR. Figure 3 illustrates the

differences in the 14-day mean PM10, O3, SO2, and NO2 simulated from July 1 to July 14, 2007.215

The difference is presented as the percentage difference in concentrations or mixing ratios relative

to those simulated in WRF-Chem-EDGAR. The pattern of the difference for these species is similar

to that of emissions difference. WRF-Chem-REAS simulates 40–70 % higher surface PM10 in most

areas of the North China Plain (Beijing, Tianjin, Hebei, Henan, Shandong province). This difference,

around 35 µg m−3 or higher, is comparable to the PM10 levels in many sites in Japan (Table 3). The220

highest difference (70 %) occurs in Shandong province and the lowest difference (less than ±5 %) is

found in western China (Table S3). WRF-Chem-EDGAR simulates higher PM10 than WRF-Chem-

REAS around Cambodia, Vietnam, and Thailand. For surface O3, a moderate difference of 16–20 %

(approximately 12–16 ppbv) is found over the North China Plain, the Yangtze River Delta, Central

China, and eastern Pakistan. WRF-Chem-REAS also results in higher SO2 and NO2 (more than225

10 ppbv) in these areas than WRF-Chem-EDGAR. The largest discrepancies, over 100 %, occur in

Guizhou (220 %) and Yunnan (175 %) provinces for SO2, and in Shanghai (258 %) and Shandong

(118 %) provinces for NO2.
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Table 2 summarizes the statistical measures of model simulations using these two anthropogenic

emissions inventories against observations. Both simulations reproduce the temporal variation of230

O3, SO2, and NO2 well, with the value of r between 0.64 and 0.83. The temporal correlation of

PM10 for WRF-Chem-REAS (r = 0.38) is higher than that calculated for WRF-Chem-EDGAR (r

= 0.2). In terms of bias, both simulations produce similar NMB and MFB for O3. For PM10, NO2,

and SO2, WRF-Chem-REAS has a smaller MFB than WRF-Chem-EDGAR. In terms of error, MFE

and NMSE from the two simulations are comparable for O3 but WRF-Chem-REAS results in less235

MFE and NMSE for PM10 and NO2. According to the model performance goals and criteria of

PM10 suggested by Boylan and Russell (2006), WRF-Chem-EDGAR meets the performance crite-

ria, while WRF-Chem-REAS achieves the stricter performance goals. We have conducted additional

sensitivity simulations using REAS and EDGAR in January and July and compared the simulated

air pollutants and observation. The results of these two-month simulations (not shown here) agree240

with what we find here.

Based on the above performance analyses, we choose REAS as the anthropogenic emissions in-

ventory to conduct further simulations for four months to explore the seasonality of air pollutant

concentrations. In this paper, we focus on validating the WRF-Chem model with REAS.

4 Spatiotemporal variations of pollutants and model evaluation245

In this section, we analyze the spatial variability of simulated and observed monthly mean PM10 con-

centrations, as well as O3, SO2, and NOx mixing ratios (Figs. 4, 7, 9, and 10). A color-filled circle

overlaid on a model-simulated monthly average surface concentration map represents the observed

monthly-average value at each site. Tables 3–6 describe yearly statistics for PM10 concentrations,

as well as O3, SO2, and NO2 mixing ratios at individual stations, respectively. Table S6 summarizes250

seasonal statistics for the same pollutants at all available stations. The comparisons between daily

modeled and observed concentrations of each pollutant are given in Figs. 5, 6, 8, and 11 for indi-

vidual sites. Detailed analyses of model biases and errors for each of the species are provided in the

following subsections.

Before evaluating the model performance in simulating air pollutants, we evaluate the simulated255

meteorological fields, including daily mean 2 m temperature, 2 m relative humidity, and 10 m wind

speed against observations from National Climate Data Center of China Meteorological Adminis-

tration for year 2007 (Table S4). The model reproduces 2 m temperature with a correlation of 0.97

and a negative NMB of -14.57 %. Relative humidity is simulated with a correlation of 0.71 and a

positive NMB of 7.02 %. Compared to temperature and relative humidity, the 10 m wind speed has260

a relatively lower correlation of 0.52 and a higher positive NMB of 59.35 %. Overall, the model per-

formance in simulating these meteorological data is similar to that reported for regional air quality

models (Tuccella et al., 2012; Tessum et al., 2015; Zhang et al., 2015).
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4.1 PM10

We obtain ground-level measurements from one site in Nepal, seven sites in Japan, and 71 sites in265

China. China is divided into seven geographical regions and measurements are analyzed, based on

these regions (Table 3). The coverage of each geographical region in China is shown in Figure S1.

In China, the highest 4-month average PM10 is observed in the Northwest (126 ± 94 µg m−3),

followed by the Northeast (119 ± 65 µg m−3) and Central China (117 ± 48 µg m−3), while the

lowest observed PM10 is in South China (82 ± 28 µg m−3). In Japan, the observed four-month270

average PM10 concentration is 27 ± 33 µg m−3, which is more than three times lower than those

observed in China.

The model simulates high PM10 concentrations (over 200 µg m−3) near the Gobi Desert in North-

west China and in the border area near Iran, Afghanistan, and Pakistan (Fig. 4). In these areas, dust

emissions are the predominant source of PM10 and the anthropogenic primary PM10 is negligible as275

shown in Fig. S2. Besides these areas, the model simulates high PM10 concentrations (up to 100 µg

m−3) over the North China Plain, the Yangtze River Delta region, and the Sichuan Basin. The model

simulates relatively low PM10 concentrations (lower than 60 µg m−3) in most of South, Southwest,

and Northeast China, most of India, and other countries in the model domain. Unlike Northwest

China, where the maximum PM10 concentrations are simulated in spring, other regions of China280

are simulated to have high concentrations in January and October with low concentrations in April

and July. This is because in winter, reduced precipitation leads to higher PM10 concentrations, while

the monsoon circulation brings in clean marine air and dilutes the PM10 surface concentrations in

eastern China in summer. Moreover, aerosols in summer are removed by wet scavenging due to

more frequent precipitation (Zhao et al., 2010). High concentrations are also simulated in an area285

surrounding Lhasa in Tibet in January. Since primary anthropogenic emissions in Tibet are low,

dust emissions from local soils on the Plateau are the main reason for high PM10 concentrations.

The previous study of tracer element analyses has shown that local dust is the major source of total

particulate matter (PM) over Tibet (Zhang et al., 2001).

For 4-month averaged PM10, the model meets the performance criteria at 84 % of observation290

sites in China. The model tends to underestimate observations at the rest of the sites, which are

mainly located in Northeast and Southwest China. Analyzing model-observation comparison by re-

gion, we find better model performance at Central, East, North, and South China (Table 3). However,

Northeast and Southwest China have a higher correlation (r > 0.35) than others. For sites outside of

China, the model underestimates observations in both Japan (MFB = –32 %) and Nepal (MFB = –48295

%).

The seasonal statistics (Table S5) and Figures 5-6 indicate that the model meets the performance

criteria in all fourth months (January, April, July, and October) in Central, East, North and South

China. In the remaining regions in China and Japan, model meets or is close to the criteria in April,

July and October, but has more difficulty reproducing PM10 concentrations in January. Previous300
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research has suggested that poor model performance in winter is common among air quality models

and may be caused by difficulty in simulating stagnant weather conditions that lead to high winter

PM concentrations (Tessum et al., 2015). In Nepal, model performance in both January and April is

poor when the observed PM10 is high. The time series comparison plots (Fig. S3) reveal distinct air

pollution episodes occurring in middle January and early April at the Godavari site, which the model305

fails to simulate. One of the possible reasons for this is that the model is unable to reproduce the local

meteorology due to the complicated topography that is not well-resolved at the current horizontal

resolution. The temporal correlations of all sites in each month are similar (0.37–0.39) as shown in

Table S6 and we do not observe obvious trends of temporal correlations change with seasons.

4.2 O3310

Similar to PM10, the simulated O3 over the model domain also exhibits a seasonal variability that

varies by region. Figure 7 illustrates that the highest O3 mixing ratio (over 70 ppbv) occurs in

North and East China in July. This is because biogenic NMVOC emissions are relatively high and

active photochemical reactions constitute favorable conditions for the build-up of O3 mixing ratios

in summer. On the other hand, a low monthly mean mixing ratio (below 40 ppbv) is found in the315

same region in January. In the Tibetan Plateau, the surface O3 mixing ratio reaches a maximum (over

70 ppbv) in April due to high elevations and downward transport of O3 from the stratosphere, while

the minimum O3 (40 ppbv) is found in July because the upward transport of air to the stratosphere in

the summer suppresses the downward transport of O3 (Gettelman et al., 2004; Randel et al., 2010).

This simulated seasonal variability of O3 in our model over the Tibetan Plateau is consistent with320

the findings of Ma et al. (2014).

The model performs well for simulating O3 at all sites in Japan, and both MFB and MFE of these

sites are within or close to the model benchmark (MFB < ± 15 % and MFE < 35 %). The model

overestimates O3 at Lulin in Taiwan. MFB at Lulin (41 %) is more than two times higher than that of

any sites in Japan. Statistical analysis of O3 in different seasons at the Lulin site (Table S7) reveals325

that such high bias is mainly caused by overestimation in October (MFB = 63 %). A previous study

by Ou Yang et al. (2012) suggested that Lulin has more pronounced mountain valley circulation in

fall, which leads to low observed O3 mixing ratios in October. Our model with a horizontal resolution

of 20 km × 20 km may not be able to capture such local meteorology. The model reproduces the

overall daily temporal variation of O3 well (r = 0.57) and the value of temporal correlation is also330

high for each site (0.47–0.93) except at Rishiri. This is partly due to the lateral boundary conditions,

since this site is located close to the northeast boundary of the model domain. The model predicts

the seasonal variability well, as shown in Fig. 8 and Table S6. The modeled and observed monthly

mean O3 has a maximum in April and a minimum in July. The same seasonal characteristics of

O3 level were reported before (Yamaji et al., 2006). The MFB and MFE of all sites in each month335
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are in the acceptable range. Among the four months, the model tends to underestimate the highest

observations in April, while it overestimates observations in the other three months.

4.3 SO2 and NO2

Figure 9 illustrates that the model simulates high monthly mean SO2 mixing ratio (higher than 20

ppbv) over urban areas in North China (including Beijing, Tianjin, Hebei, and Shanxi), and some340

provinces in East China (including Shandong and Henan), where emissions are also the highest. In

these areas, the mixing ratios are the highest in January, followed by October, April, and July (Fig. 9).

The lowest mixing ratios in our model simulation are found in July due to more active oxidation of

SO2 by hydroxyl radical (OH) and O3 in the gas phase, as well as frequent precipitation that favors

aqueous-phase oxidation of SO2 (Feichter et al., 1996). Overall, the model predicts SO2 well with345

MFB of 9 % and r of 0.64. The model performs better in predicting observed SO2 mixing ratios at

sites in Japan (MFB = -12–29 %, r = 0.52–0.82) than in China (MFB = -70–63 %, r = 0.14–0.5). The

lowest overall MFB value of all sites occurs in April (8 %), while the highest happens in July (31 %).

Although MFB values are acceptable, both MFE and NMSE in July and October are high. The site

that contributes most to high errors is Beijing, with MFE of more than 115 % in these two months.350

The model largely overestimates SO2 in Beijing (Fig. 11) probably because the REAS emissions

inventory did not take into account the local emissions control policies for the Beijing Olympics. In

2007, the Chinese government reduced anthropogenic emissions by shutting down many polluting

industries, banning high-emission vehicles, and restricting the number of on-road vehicles in Beijing

(Zhang et al., 2012). It is likely that our emissions were overestimated in Beijing, which caused a355

large discrepancy between modeled and observed SO2 mixing ratios.

The spatial and seasonal distribution of NO2 is similar to SO2 as shown in Fig. 10. High NO2

mixing ratio is found over Northeast, North, and East China due to high emissions from power plant,

industry and transportation sectors in these regions. Outside China, several hot spots are identified,

such as Seoul (South Korea) and New Delhi (India). The modeled NO2 mixing ratios have a summer360

minimum and a winter maximum. The lifetime of NO2 in winter is relatively longer (18–24 hours)

than that in summer (6 hours) because the concentration of hydroxyl radical (OH) in atmosphere

is low (Beirle et al., 2003). Consequently, the removal reaction of NO2 with OH radical to form

HNO3 is less active in winter than in summer. Among the four sites in China, the model performs

well in predicting observed NO2 mixing ratios at the Shanghai site (MFB = -9 %); however, it365

underestimates at the other three sites (MFB > -53 %). WRF-Chem captures the seasonal variability

of NO2, but underestimates the monthly average of NO2 with MFB between -41 % and -68 % for

all four months. Underestimation of NO2 has also been reported in the South Asian region using

WRF-Chem (Kumar et al., 2012) and a possible reason was proposed as the underestimation of

NOx emissions from biomass burning or anthropogenic sources. Another possible reason is that the370
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removal of NOx was overestimated through the heterogeneous reaction of N2O5 to form nitric acid

in the WRF-Chem chemical mechanism RADM2 (Yegorova et al., 2011), used in this study.

5 Conclusions

We performed WRF-Chem simulation of air quality over East and South Asia using two different

anthropogenic emissions inventories and evaluated the model performance for PM10 concentrations,375

as well as O3, SO2, and NO2 mixing ratios, using ground-level observations for the year 2007.

We find that large discrepancies exist between the extensively-used EDGAR global anthropogenic

emissions and the REAS regional inventory at national and provincial scales. The discrepancies

between these inventories can lead to large differences in simulated surface PM10 concentrations

(40–70 %), and moderate differences in O3 mixing ratios (16–20 %) in most areas of North China380

Plain, as well as more than 100 % differences in SO2 and NO2 mixing ratios, found in several

provinces in China. Our study demonstrates that WRF-Chem is sensitive to emissions inventories and

improvements in emissions inventories are important for accurately simulating regional air quality.

Further studies are needed to assess model performance differences due to different emission inputs.

On the basis of lower bias and error values versus observations we found for our WRF-Chem-385

REAS simulations, we chose the REAS inventory to conduct four one-month simulations for the

purpose of model evaluation. The model results indicate clear regional variations in the seasonal

cycle of surface PM10 and O3 over East and South Asia. In Northwest China, maximum PM10

occurs in April, while in Nepal and other regions of China, the highest PM10 mainly occurs in

January. For surface O3 mixing ratios, the peak values are simulated in July for North and East390

China, and in April for Tibet and Japan. Comparisons between model simulations and observations

show that the model performs well in simulating surface PM10 and O3, meeting air quality model

performance criteria for both PM10 and O3 at most sites, although the model underestimates PM10

at some sites in China in January. The model predicts SO2 better at sites in Japan than in China,

where overestimation is large at the Beijing site in July and October. The model underestimates395

most observed NO2 in all four months.

Quantifying uncertainties of simulated air quality at the provincial level due to emission inputs

reveals that the uncertainty in emissions inventories leads to significant differences in simulated lev-

els of air pollutants, especially PM10, SO2 and NO2. For O3, on the contrary, different emissions

inventories lead to only a moderate variability, showing agreement with the findings of previous400

studies (Ma and van Aardenne, 2004; Amnuaylojaroen et al., 2014). Our study highlights the impor-

tance of better constraining emissions at the provincial level for regional air quality modeling over

East Asia, where anthropogenic emissions are high and air pollution is a major environmental and

public health challenge. Model evaluation results also indicate that emissions inventories that do not

consider local emissions control policies could cause large discrepancies. Our results suggest that405
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future work should focus on better constraining the provincial-level emissions especially estimating

the primary PM, SO2 and NOx.

Code availability

The WRF-Chem model is an open-source, publicly available, and continually improved soft-

ware. The version 3.5 used in this study can be downloaded at http://www2.mmm.ucar.edu/wrf/410

users/download/get_source.html. Known problems of the WRF-Chem version 3.5 have been fixed,

using solutions provided online at http://ruc.noaa.gov/wrf/WG11/known-prob_v3.5.htm. We have

optimized dust parameterizations in the code, using observed ground-level PM10 concentrations.

The modified code can be obtained from the corresponding authors.
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Figure 1. WRF-Chem model domain and observation sites. Blue shading indicates locations where the REAS

emissions inventory is used. Gray shading indicates where the RCP8.5 emissions are used. For the entire model

domain, biomass burning emissions from GFED v3 and biogenic emissions from POET v1 are used. Red-filled

circles denote the observational sites with PM10; orange triangles for sites with O3; purple crosses for sites

with SO2; and green squares for sites with NO2.
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Figure 2. Monthly emissions difference of PM10, CO, SO2, and NOx between REAS and EDGAR in July

2007 in our model domain.

21



Figure 3. Percentage difference of 14-day mean PM10, O3, SO2, and NO2, between WRF-Chem simulations

with REAS emissions (WRF-Chem-REAS) and EDGAR emissions (WRF-Chem-EDGAR).
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Figure 4. Simulated and observed monthly average surface PM10 in 2007 using WRF-Chem-REAS. The filled

circles indicate the observed monthly average values.
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Figure 5. Comparisons of simulated and observed daily mean PM10 (µg m−3) at Northeast, North, Northwest,

and Central China in each month. The model to observation ratios of 2:1, 1:1, and 1:2 are represented in orange

lines. Monthly average performance statistics (r, MFB, and MFE) are listed.
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Figure 6. Comparisons of simulated and observed daily mean PM10 (µg m−3) at East, Southwest, South region

in China, and Japan in each month. The model to observation ratios of 2:1, 1:1, and 1:2 are represented in orange

lines. Monthly average performance statistics (r, MFB, and MFE) are listed.
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Figure 7. Simulated and observed monthly average surface O3 in 2007 using WRF-Chem-REAS. The filled

circles indicate the observed monthly average values.
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Figure 8. Comparisons of observed (blue dots) and modeled (red lines) daily mean O3 (ppbv) at seven sites in

Japan and one site in Taiwan.
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Figure 9. Simulated and observed monthly average surface SO2 in 2007 using WRF-Chem-REAS. The filled

circles indicate the observed monthly average values.
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Figure 10. Simulated and observed monthly average surface NO2 in 2007 using WRF-Chem-REAS. The filled

circles indicate the observed monthly average values.
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Figure 11. Comparisons of observed (blue dots) and modeled (red lines) daily mean SO2 (ppbv) at six sites at

six sites in China and Japan and NO2 (ppbv) at three sites in China.
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Table 1. List of total emissions for major pollutants from REAS and EDGAR over the model domain in July

2007. Unit is Tg month−1.

Emissions Inventory PM10 CO SO2 NOx NMVOCs NH3

REAS 2.73 25.05 4.62 4.61 3.67 2.607

EDGAR 3.07 21.25 4.62 3.33 4.56 1.694
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Table 2. Statistical measures calculated for model simulations using REAS and EDGAR as emissions inputs for

PM10, O3, SO2, and NO2. r is correlation coefficient between observations and model simulations; NMB (%)

is the normalized mean bias between observations and model simulations; MFB (%) and MFE (%) are the mean

fractional bias and mean fractional error; NMSE is the normalized mean square error between observations and

model.

Pollutant
REAS EDGAR

r NMB MFB MFE NMSE r NMB MFB MFE NMSE

PM10 0.38 -2.04 -11.49 46.42 0.36 0.20 -27.28 -37.34 56.70 0.58

O3 0.83 19.11 24.50 30.95 0.10 0.82 19.20 25.24 32.33 0.10

SO2 0.72 138.64 51.60 84.93 3.58 0.64 98.42 70.38 94.09 2.03

NO2 0.68 -18.32 -22.50 50.98 0.41 0.66 -59.88 -71.52 83.05 1.57
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Table 3. Statistical performance of WRF-Chem-REAS simulations for PM10 in 2007. Count is the total number

of observations for calculation; Obs (µg m−3) and Model (µg m−3) are 4-month mean daily average value of

observations and model simulations, respectively. Other indicators and associated units are described in Table

2.

Region Count Obs Model r NMB MFB MFE NMSE

Central China 726 117.45 114.21 0.32 -2.75 -5.23 40.47 0.25

East China 1908 103.05 102.41 0.28 -0.63 -3.85 38.05 0.31

North China 1068 116.35 105.35 0.30 -9.45 -11.52 43.65 0.39

Northeast China 826 119.07 87.83 0.39 -26.24 -41.15 61.26 0.59

Northwest China 462 126.86 105.80 0.13 -16.60 -16.54 53.39 0.95

South China 452 82.74 68.97 0.18 -16.64 -22.27 44.68 0.31

Japan 409 25.44 20.83 0.27 -18.10 -32.34 65.24 2.00

Nepal 89 49.63 21.15 0.29 -57.38 -47.89 75.07 2.10

All sites 6874 102.46 89.15 0.39 -12.99 -19.95 48.40 0.46
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Table 4. Statistical performance of WRF-Chem-REAS simulations for O3 in 2007. The unit of Obs and Model

is ppbv. Other statistical indicators and associated units are described in Table 2.

Location Sites Count Obs Model r NMB MFB MFE NMSE

Japan

Happo 81 61.04 55.57 0.55 -8.95 -7.30 20.57 0.06

Hedo 90 39.59 45.79 0.93 15.68 20.60 22.42 0.04

Oki 99 43.72 50.19 0.60 14.81 16.01 20.18 0.06

Rishiri 54 47.14 46.12 0.03 -2.16 -0.92 15.41 0.03

Sado-seki 82 46.24 47.85 0.61 3.48 4.59 12.13 0.02

Tappi 101 51.75 45.95 0.56 -11.21 -9.84 17.65 0.05

Yusuhara 102 42.80 47.68 0.75 11.40 12.75 17.31 0.04

Taiwan Lulin 94 30.89 44.89 0.62 45.34 41.31 44.05 0.23

All sites 703 45.05 47.98 0.67 6.51 10.48 21.62 0.06
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Table 5. Statistical performance of WRF-Chem-REAS simulations for SO2 in 2007. The unit of Obs and Model

is ppbv. Other statistical indicators and associated units are described in Table 2.

Location Sites Count Obs Model r NMB MFB MFE NMSE

Japan

Happo 65 0.60 0.72 0.53 19.27 20.96 77.56 1.23

Hedo 86 0.51 0.37 0.66 -27.57 -12.17 69.44 1.70

Oki 89 0.85 0.82 0.52 -3.60 29.31 69.73 1.77

Rishiri 50 0.23 0.22 0.71 -2.90 17.84 55.33 0.46

Tappi 97 0.43 0.37 0.65 -13.66 -1.71 51.61 0.78

Yusuhara 99 1.27 1.26 0.82 -0.59 26.55 63.58 0.72

China

Xiamen 122 11.79 4.90 0.14 -58.42 -70.79 81.26 1.62

Jinyunshan 123 10.10 17.81 0.50 76.34 62.19 75.48 0.85

Zhuhai 123 6.88 8.16 0.29 18.74 5.27 52.50 0.67

Beijing 123 15.65 21.74 0.32 38.92 63.38 91.86 1.05

Shanghai 123 22.71 30.57 0.38 34.57 20.10 51.59 0.56

All sites 1100 7.80 8.82 0.64 13.06 8.89 65.80 1.52
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Table 6. Statistical performance of WRF-Chem-REAS simulations for NO2 in 2007. The unit of Obs and Model

is ppbv. Other statistical indicators and associated units are described in Table 2.

Location Sites Count Obs Model r NMB MFB MFE NMSE

China

Beijing 123 32.17 18.63 0.47 -42.09 -53.69 58.67 0.48

Shanghai 123 29.45 30.57 0.21 3.81 -9.26 46.65 0.41

Jinyunshan 123 7.04 2.82 0.34 -59.89 -74.42 87.77 2.16

Zhuhai 123 19.42 7.97 0.11 -58.95 -82.08 86.11 1.34

All sites 492 36.78 15.00 0.56 -31.88 -54.86 69.80 0.69
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