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Abstract	13	

Priming of soil carbon decomposition encompasses different processes through which 14	

the decomposition of native (already present) soil organic matter is amplified through the 15	

addition of new organic matter, with new inputs typically being more labile than the native 16	

soil organic matter. Evidence for priming comes from laboratory and field experiments, but to 17	

date there is no estimate of its impact at global scale and under the current anthropogenic 18	

perturbation of the carbon cycle. Current soil carbon decomposition models do not include 19	

priming mechanisms, thereby introducing uncertainty when extrapolating short-term local 20	

observations to ecosystem and regional to global scale. In this study we present a simple 21	

conceptual model of decomposition priming, called PRIM, able to reproduce laboratory 22	

(incubation) and field (litter manipulation) priming experiments. Parameters for this model 23	

were first optimized against data from 20 soil incubation experiments using a Bayesian 24	

framework. The optimized parameter values were evaluated against another set of soil 25	

incubation data independent from the ones used for calibration and the PRIM model 26	

reproduced the soil incubations data better than the original, CENTURY-type soil 27	

decomposition model, whose decomposition equations are based only on first order kinetics. 28	

We then compared the PRIM model and the standard first order decay model incorporated 29	

into the global land biosphere model ORCHIDEE. A test of both models was performed at 30	

ecosystem scale using litter manipulation experiments from 5 sites. Although both versions 31	

were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could 32	

simulate the observed priming (R2=0.54) in cases where litter was added or removed. This 33	

result suggests that a conceptually simple and numerically tractable representation of priming 34	

adapted to global models is able to capture the sign and magnitude of the priming of litter and 35	

soil organic matter.  36	
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1. Introduction 40	

Soils are the largest reservoir of organic carbon (C) on land, holding three times as 41	

much as plant biomass globally (MEA, 2005). The dynamics of long-term soil organic matter 42	

formation (Schmidt et al., 2011) and its decomposition on time scales of future climate 43	

change (Jones et al. 2003) both remain poorly understood. The lack of a mechanistic 44	

understanding of soil carbon dynamics on time scales going from years to centuries induces 45	

important differences in the future projections of the global land carbon storage among global 46	

land biosphere models (Todd-Brown et al., 2013).  	47	

Different conceptual models have been proposed to explain empirical data on soil 48	

carbon decomposition, mainly incubation experiments (Wutzler and Reichstein, 2008; 49	

Manzoni and Porporato, 2009). Those conceptual models are usually calibrated to fit data (i.e. 50	

measurements of stock evolution or fluxes) from experiments on soil incubation, and on time 51	

scales going from hours to days (Panikov and Sizova, 1996; Blagodatsky and Richter 1998). 52	

It was shown by Wutzler and Reichstein (2008) that conceptual decomposition models 53	

accounting for interactions between labile and more recalcitrant microbial-related carbon, 54	

often called “priming effects”, could better fit data from incubation experiments acquired over 55	

periods of about 100 days. 56	

The conceptual models of soil carbon decomposition encapsulated in global land 57	

biosphere models usually ignore interactions between labile and recalcitrant carbon. All 58	

global land biosphere models part of the Earth System Models used for IPCC climate 59	

projections are based on donor-pool dominant transfer and first order decay (Luo et al. 2015). 60	

Many of those global land biosphere models have soil carbon modules derived from the 61	

CENTURY (Parton et al., 1988) and RothC (Coleman and Jenkinson, 1999) models, in which 62	

the first order decay rates of different pools are modulated by soil temperature and moisture, 63	

as well as by soil texture (Friedlingstein et al., 2006). 64	
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Although the conceptual models with priming showed a more realistic behavior than 65	

first order decay models when applied to short term incubation data, one may still wonder if 66	

priming significantly influences the dynamics of soil carbon on time scales ranging from 67	

years to decades, and at large spatial scales. On the one hand, incorporating priming in a 68	

global land biosphere  model has the disadvantage of introducing new parameters that are 69	

difficult to constrain and of generating a more complex - but unproven - dynamical behavior 70	

than the first order decay models. On the other hand, if the performances of first order decay 71	

models are not satisfactory at the large scale, structural changes of soil carbon models are 72	

needed and must be carefully tested. 73	

The current situation with first-order decay dynamics in global land biosphere is that 74	

out of the 11 Earth System models used for the IPCC-AR5 CMIP5 simulations and 75	

benchmarked by Todd-Brown et al., (2013) against a global soil organic carbon (SOC) map, 76	

only six succeeded in representing the total mean C stocks at the global scale, but all failed to 77	

reproduce the spatial heterogeneity of SOC stocks as well as the SOC distribution under 78	

different vegetation cover (Todd-Brown et al., 2013). Possible causes of model failure include 79	

both errors in model structure but also errors in the different parameters controlling soil 80	

carbon dynamics. The optimization of the parameters of a first order decay model against a 81	

global SOC map could only partly reduce regional discrepancies with observations, with the 82	

optimized model explaining only 41% of the global variability of SOC (Hararuk et al., 2014). 83	

On the other hand, the use of a structurally different model that accounted for microbial 84	

biomass was shown to produce a rather realistic large-scale SOC variability, but very different 85	

soil carbon dynamics in response to future climate change (Wieder et al., 2013). This 86	

illustrates that model structure matters a lot for the simulation of the current distribution of 87	

soil carbon and its future evolution in response to climate and CO2 changes. 88	

Discrepancies between global land biosphere model predictions and observations are 89	

partially due to models lacking key mechanisms controlling SOC dynamics (Schmidt et al., 90	
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2011). One example is the interactions with the N cycle. The majority of the ESMs used for 91	

the IPCC-AR5 CMIP5 Earth System simulations did not represent explicitly the nitrogen 92	

cycle, but the two ESMs with an explicit nitrogen cycle did not result either in a better 93	

simulations of current SOC (Todd-Brown et al., 2013). Another example is the role of 94	

microorganisms. The first order kinetics used in most models obviates the role that microbial 95	

decomposers are known to play in controlling SOC mineralization (Cleveland et al., 2007; 96	

Garcia-Pausas and Paterson 2011), but their activities is controlled by physical and chemical 97	

drivers (Kemmit et al., 2008). Therefore, ESMs have significant gaps in reproducing the 98	

mechanisms related to microbial dynamics such as priming (see definition below), the object 99	

of this study.  100	

Soil C priming is defined as a modification of SOC decomposition rates when fresh 101	

organic C (FOC) is added (Kuzyakov et al., 2000). Priming is almost ubiquitously observed in 102	

ecosystem studies where organic matter inputs are altered in laboratory incubations (reviewed 103	

by Blagodatskaya and Kuzyakov 2008) or directly on the field (Boone et al., 1998; Borken et 104	

al., 2002; Chemidlin-Prévost-Bouré et al., 2010; Subke et al., 2004; Sulzman et al., 2005; 105	

Xiao et al., 2015). Priming can occasionally be negative but most commonly has a stimulative 106	

effect on the decomposition of organic matter that decomposes. Several mechanisms may be 107	

involved in controlling priming (Fontaine et al., 2003; Blagodatskaya and Kuzyakov 2008, 108	

Guenet et al., 2010b), and conceptual models of priming can have substantial number of 109	

parameters making their parameterization quite complex at large scales (Wutzler and 110	

Reichstein, 2013). Wutzler and Reichstein (2008) proposed conceptual models summarized 111	

into different equations to introduce priming without using too many parameters, but in all 112	

cases an explicit representation of microbial biomass was required. Recently, Guenet et al., 113	

(2013a) modified the equation proposed by Wutzler and Reichstein (2008) to represent 114	

priming without an explicit representation of microbial biomass, assuming that microbial 115	

biomass is always at equilibrium with FOC. This assumption is suitable for being 116	
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incorporated into ESMs since it adds only one more free parameter compared to the first order 117	

kinetic models. This priming scheme was incorporated into the global land biosphere model 118	

ORCHIDEE, with the priming parameters statistically calibrated to reproduce the same 119	

equilibrium state (in terms of C stocks, after spin up of the model) than the standard version 120	

based on CENTURY (Guenet et al., 2013b). Despite its calibration ensuring the same initial 121	

state of SOC for England and Wales, the version of ORCHIDEE with priming resulted in a 122	

loss of SOC during the late 20th Century, in better agreement with inventory data (Bellamy et 123	

al., 2005) than the standard version which produced a continuous SOC gain. In that study, 124	

however, the parameters of the priming model were not based on observations but tuned 125	

instead to equilibrium SOC values. The objectives of this study are therefore: 126	

• To derive optimal parameter values of a priming model (PRIM) with C inputs 127	

forced by data by using a Bayesian method (Tarantola, 1987) with priors and 128	

data from 20 different soil incubations. 129	

• To introduce the calibrated PRIM model into the ORCHIDEE ecosystem 130	

model version AR5 and evaluate the new version ORCHIDEE-PRIM against 131	

independent in situ litter manipulation experiments at ecosystem scale. 132	

• To assess if the priming model significantly improves the simulation of SOC 133	

mineralization compared to the standard first order decay model used in 134	

ORCHIDEE, on time scales of months to years. 135	

136	
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 136	
2. Materials and Methods 137	

The material and methods section is summarized in Fig. 1. 138	

2.1 Models presentation 139	

2.1.1 Soil carbon priming model PRIM 140	

To represent priming, we used the ORCHIDEE soil decomposition module, which is 141	

similar to CENTURY (Parton et al., 1988). It has three carbon pools (active, slow and 142	

passive) and two litter pools (metabolic and structural). SOC decomposition is modulated by 143	

soil temperature and moisture functions.  Active SOC decomposition is further modulated by 144	

a clay function.  These functions are the same as in CENTURY but they are driven by soil 145	

physical variables calculated at a daily time step by the soil physics of ORCHIDEE (Krinner 146	

et al., 2005). In the PRIM model, we replaced the CENTURY decomposition equations by 147	

those developed by Guenet et al. (2013a) to simulate a priming effect: 	148	

(1) 

€ 

dSOCActive

dt
= I − kSOCActive

× SOC × (1− e−c×(Litter _C ))×θ × τ × γ 	149	

(2) 

€ 

dSOCSlow

dt
= I − kSOCSlow

× SOC × (1− e−c×(Litter _C +SOCActive ))×θ × τ 	150	

(3) 

€ 

dSOCPassive

dt
= I − kSOCPassive

× SOC × (1− e−c×(Litter _C +SOCActive +SOCSlow ))×θ × τ 	151	

with I being the input of C into the pool considered, kSOC the SOC decomposition rate for the 152	

active, the slow and the passive pool, Litter_C, the sum of all the litter pools of the model.  θ, 153	

τ, and γ are the soil moisture function, the temperature function and the clay function 154	

modulating decomposition, respectively. c is a parameter controlling the impact of the fresh 155	

organic carbon (FOC) pool on the SOC mineralization rate. Here, we considered that FOC 156	

represents all the carbon from pools more labile than the pool being affected as shown in 157	

equation (1) to (3). Therefore, FOC is only litter for the active SOC pool, but for the slow 158	

SOC pool, FOC is the sum of the litter and the active SOC pool. Finally, for the passive SOC 159	
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pool, FOC is the litter and the active and slow carbon pools. The decomposition of the first 160	

donor litter pool is described using first order kinetics (4):	161	

	162	

(4) 

€ 

dLitter_C
dt

= I − kLitter _C × Litter_C×θ × τ 	163	

	164	

In the Wutzler and Reichstein (2008) equation, the SOC mineralization was described by:	165	

(5) 

€ 

dSOC
dt

= I − kSOC × SOC × (1− e−c×MB )	166	

with MB being the microbial biomass. Unlike Wutzler and Reichstein (2008), our 167	

model does not explicitly simulate MB but assumes that MB equilibrates with FOC thus the 168	

relationship between MB and FOC is linear. Consequently, we represent priming using a 169	

direct relationship between FOC and SOC mineralization. Finally, the moisture, temperature 170	

and clay functions are described by equation (6), (7) and (8), respectively with soil_moisture 171	

in m3 H2O m-3 of soil, soil_temperature in Kelvin and clay in %wt : 172	

(6) 

€ 

θ =max(0.25,min(1,−1.1× soil_moisture2 + 2.4 × soil_moisture + 0.29)) 173	

(7) 

€ 

τ = exp(0.69 × (soil_ temperature − 303) /10) 174	

(8) 

€ 

γ =1− 0.75 × clay  175	

 176	

2.1.2 ORCHIDEE and ORCHIDEE-PRIM 177	

ORCHIDEE is a process‐based global land biosphere model that calculates the fluxes 178	

of CO2, H2O, and heat between the terrestrial land and the atmosphere. The time step of the 179	

model is 1/2‐hour, and the variations of H2O and C pools are calculated on a daily basis. The 180	

model has been evaluated at different scales (sites, regions, globes) and under different 181	

climates from the tropics to northern boreal zones (Krinner et al., 2005; Ciais et al., 2005; 182	
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Santaren et al., 2007; Piao et al., 2006). ORCHIDEE results from the coupling of three 183	

different sub-models. The first one is called SVAT SECHIBA and describes soil water budget 184	

and turbulent fluxes of energy and water between the atmosphere and the biosphere 185	

(Ducoudré et al., 1993; de Rosnay and Polcher, 1998). The second one is derived from the 186	

dynamic global vegetation model LPJ (Sitch et al., 2003) and deals with vegetation dynamics 187	

(fire, sapling establishment, light competition, tree mortality, and climatic criteria for the 188	

introduction or elimination of plant functional types). The last, called STOMATE (Saclay 189	

Toulouse Orsay Model for the Analysis of Terrestrial Ecosystems) deals with phenology and 190	

carbon dynamics of the terrestrial biosphere. Twelve plant functional types (PFT) are used to 191	

classify the vegetation. Each PFT dynamic is controlled by similar set of governing equations 192	

but using different parameter values. Only the leafy season onset and offset, are PFT‐specific 193	

(Krinner et al., 2005).  194	

The simulation of SOC in ORCHIDEE version is based on CENTURY (Parton et al., 195	

1988) as described above. No vertical description of the SOC is included in the ORCHIDEE 196	

version used here. In ORCHIDEE-PRIM we replaced CENTURY by the PRIM model 197	

described in section 2.1.1. 198	

 199	

2.2 Data description 200	

2.2.1  Incubation experiments to calibrate the priming model 201	

We optimized the PRIM parameters and the ORCHIDEE soil module parameters 202	

using data from soil incubation experiments where FOC was added and the priming effect 203	

was measured by comparing a control study without FOC with a perturbation study with FOC 204	

(table 1). The data come from 20 incubations (from nine studies) of duration going from one 205	

week to 10 months. The incubated soil samples have very different characteristics (table 1) 206	

and came from different ecosystems (grassland, cropland, broadleaf forest, needleleaf forest, 207	
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savannah). However, the great majority of the data used to optimize the model were obtained 208	

from temperate soils. In the incubation experiments, added FOC was labeled with 13C or 14C 209	

and therefore the respired CO2 fluxes coming from either SOC already present before the 210	

FOC amendments or from the FOC induced priming of SOC pools was estimated separately. 211	

We used only incubations performed during at least 7 days to eliminate all studies that 212	

potentially observed apparent priming effects. Apparent priming is a replacement of the 12C in 213	

microbial biomass with labeled carbon isotopes, a short- term artifact due to the amendment 214	

of labeled material to an unlabelled soil (Blagodatskaya and Kuzyakov, 2008). Moreover, we 215	

used only studies that reported cumulative respired CO2 fluxes in order to optimize the 216	

priming parameters against the extra CO2 fluxes obtained at the end of the experiment and not 217	

those resulting from short-term priming dynamics, since cumulative mineralization integrates 218	

the different processes occurring during incubation. Finally, several treatments might be 219	

performed in the studies used to optimize the model (different soils, different types and 220	

amount of FOC). When the treatments performed differed on aspects reproducible by the 221	

model (amounts of FOC added, different clay content in the soils used, etc.) we considered all 222	

the treatments. In the opposite case we averaged the results of the different treatments to 223	

perform the optimization except in case where the treatments clearly impact the results 224	

without the possibility to reproduce the experimental design with the model (addition of 225	

mineral N for instance). 226	

We also use the control incubations without FOC amendments to evaluate both 227	

models. We extracted data from the figures of original publications (Table 1) using 228	

GraphClick version 3.0 . Several input variables are needed to run the soil model, as described 229	

in section 2.1.1. When data were not available from the surveyed publications,  we obtained 230	

them from the databases normally used for running ORCHIDEE, except for the C:N ratio of 231	

FOC and for clay content where data came from Rodal et al., (1960) and from USDA 232	

(http://soils.usda.gov/technical/classification/osd/index.html.),	respectively. The three 233	



	

12	

carbon pools of CENTURY are not measurable (Six et al., 2002), so we cannot estimate how 234	

much C of in each pool is present in the incubated samples. To calculate the distribution of C 235	

among the three pools of the model we ran ORCHIDEE until equilibrium was reached at the 236	

sites where soil samples were taken and calculated the percentage of each pool. 	237	

2.2.2 Incubation data used for evaluation of the priming model 238	

A first evaluation of the soil carbon model with and without priming is performed at 239	

the scale of soil samples against independent data from the large database of soil incubations 240	

(300 in total) published by Moyano et al., (2012). Within this database we selected the 241	

experiments where all the inputs necessary to run the two soil carbon models were available 242	

(clay, content, moisture, temperature, SOC content at the beginning of the incubation) and 243	

where cumulative mineralization or mineralization rates associated to the time step between 244	

two measurements were reported. We removed all the studies without information on the 245	

location since geographical coordinates are necessary to run ORCHIDEE and thus estimate 246	

the initial fraction of each pool. We selected only data coming from experiments without 247	

important soil manipulation (e.g. compaction, litter amendments). The model evaluation was 248	

performed against a set of 164 independent incubation experiments. 249	

2.2.3 Ecosystem-level data used for evaluation of the priming model  250	

A second evaluation of the ORCHIDEE-PRIM model was performed at ecosystem scale 251	

against observations of four litter manipulation experiments (Boone et al., 1998; Chemidlin-252	

Prévost-Bouré et al., 2010; Subke et al., 2004; Sulzman et al., 2005) and one compost 253	

amendment experiment (Borken et al., 2002). In the litter experiments, two treatments and a 254	

control are generally performed. The treatments are total exclusion of above ground litter 255	

using nets to prevent fresh litter from falling onto the soil, often transplanting the collected 256	

fresh litter to create a second treatment with doubled aboveground litter inputs (Boone et al., 257	

1998; Chemidlin-Prévost-Bouré et al., 2010; Sulzman et al., 2005). For the compost 258	
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amendment experiment by Borken et al. (2002), 1.4 kg C m-2
 (and a zero-addition control) of 259	

compost was added to the soil. These studies are presented in table 3. When information 260	

about soil clay content was not available in the original study, we extracted it from Zobler 261	

(1986). The data measured at field scale are the soil CO2 efflux including the heterotrophic 262	

respiration but also root respiration in the same flux without clear separation of the two 263	

components. 	264	

2.3 Optimization procedure 265	

For PRIM, the 6 parameters optimized are turnover rate (kSOC) and priming parameters 266	

c for each of the three pools (table 2). For the ORCHIDEE soil module, only the three kSOC  267	

values are optimized. The same parameters are optimized against the priming incubations 268	

dataset described in 2.2.1. Since optimizations were performed using soil incubations data 269	

obtained at optimal temperature and soil moisture, we did not optimize the parameters related 270	

to the eq. (6) and (7) because the range of observations was quite limited. Optimization was 271	

performed in the framework of the Bayesian inversion method with priors (Tarantola, 1987) 272	

as described by Santaren et al., (2007) using assimilating all data streams in the same cost 273	

function. Assuming that all uncertainties follow Gaussian distributions (parameter error, 274	

measurement error, model error), the optimized parameters correspond to a set minimizing the 275	

following quadratic cost function:	276	

	277	

(9) 

€ 

J(x) =
1
2
y −H(x)( )tR−1 y −H(x)( ) + x − xb( )tPb−1 x − xb( )[ ] 	278	

The cost function defined by equation (9) contains both the mismatch between model 279	

outputs and observed data, and the mismatch between optimized parameters and the prior 280	

values. The mismatch is weighted by errors of each quantity. x is the of unknown parameters 281	

vector, xb the prior values, y the observations vector and H(x) the model outputs. Pb is the 282	
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prior parameter error variances/covariances, and R contains the observational error 283	

variances/covariances which represents both measurement uncertainty and model uncertainty.  284	

To minimize the cost function, we used a gradient-based iterative algorithm, called L-285	

BFGS-B (Zhu et al., 1995). A range of values for all the parameters is prescribed by called L-286	

BFGS-B. At each iteration, the cost function J(x) gradient is calculated, with respect to the six 287	

parameters. When J(x) is minimized, using a classic finite difference method, we further 288	

calculated the posterior error covariance matrix on the parameters Pa from the prior error 289	

covariance matrices and the Jacobian of the model at the minimum of the cost function, using 290	

the linearity assumption (Tarantola, 1987). When error correlations are close to 1 it suggests 291	

that the observations do not permit to clearly separate the effect of two parameters.	292	

The model H(x) is non linear and therefore the approach to minimize the cost function 293	

is sensitive to potential local minima. We get around by performing 30 optimizations with 294	

different sets of prior parameter randomly distributed within their variation range. We then 295	

used the case providing the lowest cost function. This approach reduces drastically the 296	

sensitivity to potential local minima as illustrated in Santaren et al. (2014). 	297	

We defined the prior ranges of decomposition rates using literature data (Parton et al., 298	

1988; Gignoux et al., 2001). However, only two studies already estimated the c parameter 299	

before (Guenet et al, 2013a, Guenet et al., 2013b), its prior value is therefore considered as 300	

non-informative and we set a large error on the prior (50%). As for the variance of the model-301	

data mismatch term in the cost function of equation (9), note that with our formalism this 302	

error should include both the model error (for instance the model capability to represent the 303	

measurement) and the measurement error. Given that the error on the measurements was 304	

difficult to estimate precisely for each study, we fixed it to 5% of the mean observed CO2 flux 305	

assuming that all incubation data were independent. At its minimum, J(x) should be close to 306	
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half the number of observations (reduced χ2 of one).  We assumed that all errors (the 307	

observations and on the a priori parameters) are uncorrelated. 	308	

 309	

2.4 Simulations protocol 310	

2.4.1 Simulation protocol for the soil priming model PRIM  311	

Simulations were performed for each incubation experiment presented in 2.2.1 (table 312	

1) as well as for the evaluation sites in 2.2.2. The simulations of the stand-alone PRIM carbon 313	

model (i.e. unplugged from the ORCHIDEE full ecosystem model) were run at a daily time 314	

step using FOC inputs from table 1 or from the Moyano et al., (2012) database. No spin-up 315	

was performed. We started the simulation by prescribing to the soil carbon models with and 316	

without priming an initial amount of SOC equal to that measured in the study considered, 317	

distributed among active, slow and passive pools as explained in section 2.2.1 At each time 318	

step we increment the cumulative heterotrophic respiration coming from SOC mineralization, 319	

so that this cumulative simulated CO2 flux can be compared to data from the end of the 320	

incubation experiment. Simulations were performed using R 3.0.2. 321	

	322	

2.4.2 Simulation protocol for ORCHIDEE-PRIM and ORCHIDEE 323	

We ran ORCHIDEE and ORCHIDEE-PRIM at each litter manipulation site presented 324	

in table 3 using. 6 hourly climate data obtained from the combination of two existing datasets: 325	

the Climate Research Unit (CRU) (Mitchell et al. 2004) and the National Centers for 326	

Environmental Prediction (NCEP) (Kalnay et al., 1996). Both models were run using the first 327	

ten years of the climate forcing (1901-1909) repeated in a loop, and an atmospheric CO2 value 328	

corresponding to the year 1901. When the simulated relative yearly change of the SOC stock 329	

was less than 0.01%, we considered that SOC equilibrium was reached. Once pre-industrial 330	

equilibrium was reached in each grid point, we run transient simulations from 1901 until the 331	
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beginning of the manipulation experiment assuming no land use change driven by 332	

reconstructed climate and observed CO2. Then when the simulation reached the year at which 333	

the litter manipulation experiment began, we modified the input of above-ground litter in the 334	

same proportion than in the actual manipulation experiments, Finally, we ran the model for 335	

each treatment during a period corresponding to duration of each experiment. 336	

 337	

2.5 Model evaluation 338	

The model evaluation was performed in two steps. First, we evaluated separately 339	

PRIM and the standard first order decay model with their optimized parameters, as stand 340	

alone decomposition models, i.e. unplugged from the ORCHIDEE ecosystem model. To 341	

evaluate the stand-alone soil models, we used incubation data coming from Moyano et al., 342	

(2012) as described in  2.2.2. Secondly, we evaluated ORCHIDEE and ORCHIDEE-PRIM, 343	

against litter manipulation experiments (see 2.2.3). 	344	

To compare model outputs with data we used different metrics. First a linear mixed 345	

effect model with intercept value forced to zero using model outputs as the variable to 346	

explain, and data as the fixed effect and the study where data came from as random effect. 347	

This approach aimed to take into account the fact that incubations performed within the same 348	

study are not independent because they were performed and analyzed by the same team. The 349	

linear-mixed effect model gives the slope of the relationship as output. A slope close to one 350	

indicates that the model reproduces the data well. Then, we used the Normalized Standard 351	

Deviation (NSD) or ratio of model to observed standard deviations ; NSD = 1 means that the 352	

model perfectly reproduces the observed standard deviations across experiments:	353	

(10) 	354	

€ 

NSD =

1
n
× (xi − x )2

i=1

n

∑

1
n
× (oi − o )2

i=1

n

∑



	

17	

where x refers to the model value, o to the observed value and n the number of 355	

samples. Finally, we compared model performance using the Bayesian Information Criterion 356	

(BIC) to take into account that the PRIM soil model has three more priming parameters (one 357	

per pool) than the standard model:	358	

(11) 	359	

with MSD being the mean squared deviation derived from equation (12), n the number 360	

of data used to evaluate the model, and p the number of parameters of the soil model.	361	

(12) 	362	

with o the observed values, m the values calculated by the model and n the number of 363	

observations. The lowest is the BIC the better the model is. 364	

3. Results 365	

3.1 Optimized parameters of the priming model 366	

The parameters obtained after optimization using incubation data described in section 367	

2.2.1 are given in Table 2. The turnover times ranged from a few months (0.30 ± 0.15 year) 368	

for the active pool to 462.0 ± 233.8 years for the passive pool, the slow pool being 369	

intermediate with 1.12 ± 0.01 years. The priming parameters indicated a decreasing 370	

sensitivity with increasing turnover time. The parameter c values were 493.7 ± 246.8, 194.0± 371	

97.0 and 136.5 ± 68.3 for the active, slow and passive pools, respectively. Errors correspond 372	

to the estimates from the linear assumption at the minimum of J(x). For both, the correlation 373	

between parameters was low (data not shown). 374	

After optimization, both models with and without priming parameterization were able 375	

to reproduce the cumulative mineralization measured in the different incubations where FOC 376	

was added well (Fig. 2, top panel). The slope of the linear regression between optimized 377	

model output and incubation measurements was 1.13 for PRIM and 0.93 for the ORCHIDEE 378	

€ 

BIC = log(MSD) × n + log(n) × p

€ 

MSD =
(m − o)2∑
n
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soil module. The NSD value (1.80 and 1.52 for PRIM and the standard soil module, 379	

respectively) showed that the models overestimated the variance after optimization. When 380	

both models were evaluated against the same incubation experiments but without FOM 381	

addition, the PRIM model slightly over-estimated accumulated mineralization (Fig. 2 middle 382	

panel), as indicated by the value of the slope (1.05). Nevertheless, it performed better than the 383	

standard soil module, which underestimated the soil mineralization as indicated by the value 384	

of the slope (0.72). The PRIM soil model reproduced quite well the observed priming effect 385	

(section 2.2.1) as shown in Fig. 2 (lower panel) with  a slope value (1.07). PRIM largely 386	

overestimated however the variance of data as indicated by the NSD value (3.14). As 387	

expected, the standard soil module was totally unable to reproduce priming (Fig. 2, lower 388	

panel).	389	

3.2 Standard soil module vs. PRIM against incubations data 390	

To evaluate the performance of PRIM we tested it against data from soil incubation 391	

experiments independent from those used for optimization (see section 2.2.2). We did the 392	

same with the standard soil module (Fig. 3). The standard soil module tended to overestimate 393	

accumulated mineralization as indicated by a slope value of 1.32 and to underestimate the 394	

cross-experiments variance by more than 50% (NSD=0.44). PRIM performed slightly better, 395	

but underestimated accumulated mineralization (slope 0.80). The optimized PRIM 396	

underestimated the variance by 29%, but the NSD value (0.71) was closer to 1 compared to 397	

the standard model. Using the BIC index, which takes into account the higher number of 398	

parameters of PRIM, this model still performed better (BIC values of 546.2 vs. 347.4 for 399	

standard and PRIM, respectively).	400	

	401	

3.3 ORCHIDEE vs. ORCHIDEE-PRIM comparison using in situ datasets 402	
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When tested at ecosystem-level against litter manipulation experiments, 4 studies x 3 403	

treatments and 1 study with 2 treatments. Both ORCHIDEE and ORCHIDEE-PRIM 404	

performed generally well to reproduce the soil CO2 efflux (Fig. 4). Generally, both versions 405	

showed similar performance as indicated by the values of slopes and NSD presented in table 406	

4. The mean slopes are 0.98 for ORCHIDEE-PRIM against 0.97 for ORCHIDEE, and the 407	

mean NSD are 1.26 and 1.27, respectively. It must be noted that slope values were generally 408	

lower for the treatments excluding litter compared to control and double litter inputs (Table 409	

4). No particular differences of the NSD values were observed between the different litter 410	

input regimes. Nevertheless, the BIC index was always higher for ORCHIDEE-PRIM 411	

because three more parameters were used by this version compared to ORCHIDEE. 	412	

ORCHIDEE-PRIM was able to reproduce the priming observed defined as the 413	

difference of CO2 efflux coming from SOC only with or without litter (Fig. 5), but tended to 414	

underestimate its intensity as indicated by the slope value lower than one (0.55). The variance 415	

between experiments calculated for priming was overestimated as shown by the NSD value of 416	

1.29. It must be noted that priming was not calculated for ORCHIDEE since the structure of 417	

its soil decomposition model does not include a priming mechanisms.	418	

4. Discussion 419	

4.1 PRIM in the context of other soil priming conceptual models 420	

Priming is a complex phenomenon controlled by several mechanisms, such as N 421	

mining by microbial communities with different growth strategies, competition between 422	

microbial groups for substrate, energy limitations, etc. (Kuzyakov et al., 200; Fontaine et al., 423	

2003; Guenet et al., 2010b). Priming may have important consequences on the feedbacks 424	

between climate and C cycle (Schmidt et al., 2011) and it is therefore crucial to better 425	

quantify the C fluxes due to priming, especially at large scale (i.e, continental to global). 426	

Several models have been developed to describe soil C mineralization with a representation of 427	

priming (Gignoux et al., 2001; Fontaine and Barot, 2005; Neill and Gignoux, 2006; Moorhead 428	
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and Sinsabaugh, 2006; Wutzler and Reichstein, 2008; Neill and Guenet, 2010; Blagodatsky et 429	

al., 2010) and such models generally succeeded at reproducing short-term data, mainly 430	

incubation. However, to our knowledge, they have never been tested in a range of contrasted 431	

situations (different soil types, different FOC amount and chemical composition, different 432	

temperature and soil moisture, etc.). Here, we used most of the available incubation data 433	

respecting the criteria described in the material and method section. Moreover, previous 434	

priming models all needed a high number of parameters compared to PRIM. For these two 435	

reasons, the conceptual soil models accounting for soil priming were thus far not included in 436	

global land biosphere models (Wutzler and Reichstein, 2008) and very few studies of soil 437	

priming at global scale have been performed (Foereid et al., 2014). Here, using a simple 438	

scheme with only three additional parameters than the standard soil module of ORCHIDEE, 439	

we were able to reproduce priming but also soil mineralization data coming from very 440	

different incubation studies performed with different soils at different temperature and 441	

moisture, with different time length, etc. The PRIM soil model, which is a microbial steady-442	

state model, might not be able to reproduce short-term response to abrupt change of FOC 443	

inputs but with negligible bias over the long term (Wutzler and Reichstein 2013). However, it 444	

might have similar performances than more complex models to reproduce long-term trends of 445	

FOC inputs (Wutzler and Reichstein 2013). PRIM performed better than the standard soil 446	

module to reproduce soil incubation data used to optimize, but it must be noted that the BIC 447	

values indicate that the improvement observed with PRIM may be simply due to a higher 448	

number of parameters. Nevertheless, when using independent soil incubations data from the 449	

one used to optimize the model the improvement is quite clear with BIC values much lower 450	

with PRIM than with the standard soil module (347.4 and 546.2, respectively). Furthermore, 451	

PRIM was not able to fully catch the observed variability of priming. As discussed above, 452	

priming is a complex phenomenon resulting from the interactions of different mechanisms 453	

that we summarized in a very simple equation. Therefore, PRIM is probably good in 454	

representing a general trends but not all the complexity of the phenomenon. Nevertheless, the 455	
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use of the PRIM soil model seems justified since it increases only slightly the number of 456	

parameter of a global land biosphere model and since the parameter values were obtained 457	

after optimization on data coming from incubations performed in a range of soils and 458	

conditions (different soil types, different ecosystems, different temperatures, different 459	

moistures, different amount and type of FOC amended, etc.). 460	

 461	

4.2 ORCHIDEE vs. ORCHIDEE-PRIM 462	

4.2.1 Cross sites evaluation 463	

ORCHIDEE-PRIM exhibited similar performance than ORCHIDEE when simulating 464	

litter manipulation experiments. It must be noted that both versions share the same scheme for 465	

primary production (controlling soil C input by litter), soil temperature and moisture function. 466	

The similar performance obtained by the two versions may be due to a model bias for these 467	

quantities as well as poorly constrained site histories and climate forcing errors. Since primary 468	

production is the main driver of the C input into the soil, the soil CO2 efflux calculated by the 469	

models was largely driven by the capacity of the model to reproduce the observed primary 470	

production. In particular, both models largely underestimated the soil CO2 efflux when litter 471	

was removed (Table 4), but obtained good results when litter was kept or when litter was 472	

added. This suggests that both models performed quite well when reproducing soil CO2 473	

efflux, but this was due to bias compensation, meaning that the fraction of CO2 coming from 474	

soil mineralization and root respiration was underestimated and the fraction of CO2 coming 475	

from litter mineralization was overestimated. Moreover, the modification of the litter cover 476	

may change the soil humidity and temperature and these effects were not represented in the 477	

models. 478	

Finally, the use of microbial steady state model like ORCHIDEE-PRIM present 479	

several advantages compared to explicit microbial models. Wieder et al., (2015) identified 480	

several challenges related to the incorporation of explicit microbial models in ESMs. In 481	

particular, it may induce unrealistic temporal oscillations in response to small perturbations 482	
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and it needs much more parameter than the classical approach. With ORCHIDEE-PRIM these 483	

two difficulties are resolved since we only add three more parameters and because the model 484	

is not subject to short-term oscillations. 485	

	486	

5. Conclusion 487	

 488	

Regarding the several processes that may lead to priming, the satisfactory performance 489	

of ORCHIDEE-PRIM compared to observations from both laboratory incubation and field 490	

litter manipulation experiments suggests that the simple PRIM conceptual model simulates 491	

well the magnitude of observed priming. Consequently, ORCHIDEE-PRIM has the potential 492	

to quantify the impact of priming on the soil C cycle at large scales. Nevertheless, 493	

ORCHIDEE-PRIM underestimates the priming intensity as shown by the slope value (0.55), 494	

indicating that the model still misses important mechanisms explaining the observations. In 495	

particular, N availability is an important driver of priming, inducing higher priming when N 496	

availability is reduced (Fontaine et al., 2004; Blagodatskaya et al., 2007). The role of N in the 497	

priming intensity as well as the extra N mineralization induced by priming and its effect on 498	

primary production may represent the next addition to the soil representation in a land surface 499	

model by adding a control on the c parameter depending on the mineral N availability and on 500	

the C:N ratio of the considered pool. Nevertheless, some detailed information on the N 501	

dynamic in priming effect experiments would be necessary to do so and very few authors 502	

reported the impact of priming effect on N dynamic after FOC additions. 503	

 504	

 505	

Code availability 506	

	 For ORCHIDEE, the main part of the code was written by Krinner et al., (2005). The 507	

version used here is the 1.9.5.2 version. In this version, compared to the one presented in 508	
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Krinner et al., (2005), the albedo representation was improved (Hourdin et al., pers. com.), a 509	

routing scheme controlling the flux of water from land surface to the ocean was added (Ngo-510	

Duc et al., 2007) and the dynamic of vegetation was modified (Viovy et al., pers. com.). 511	

Furthermore, since 2005 the code has been parallelized. A detailed documentation and the 512	

code can be provided upon request to the corresponding author. 	513	

ORCHIDEE-PRIM is derived from ORCHIDEE with the modifications presented in 514	

the section 2.1.2. A detailed description can be found in Guenet et al., (2013). The code is 515	

available upon request to the corresponding author. 516	

 517	
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Figure	legends	713	

Figure 1: Summarizing scheme of the methods 714	

Figure 2: Scatter plot between data and the PRIM model outputs for the incubations with FOC 715	

amendment (a), without FOC amendment (b) and for priming effect (c). The dataset used here 716	

are the similar to those used for optimization (a) or are the control incubations (b) and are 717	

described in section (2.2.1). Red lines indicate the 1:1 line. Different symbol indicate different 718	

studies.	719	

Figure 3: Scatter plot between independent data from optimization (dataset describes in 720	

section 2.2.2) and the soil module of ORCHIDEE outputs (a) or between data and the PRIM 721	

model outputs (b). Red lines indicate the 1:1 line.	722	

Figure 4: Soil CO2 efflux calculated by ORCHIDEE on the left side and by ORCHIDEE-723	

PRIM on the right side for the data coming from Boone et al., (1998) (a), from Borken et al., 724	

(2002) (b), from Chemidlin-Prévost-Bourré et al., (2010) (c), from Subke et al., (2004) (d) 725	

and from Sulzman et al., (2005) (e). Red lines indicate the 1:1 line, black, dashed and dotted 726	

lines correspond to control, litter exclusion and litter amendment situations respectively.	727	

Figure 5: Scatter plot between the priming effect measured and the priming effect calculated 728	

by ORCHIDEE-PRIM. Red line indicate the 1:1 line and different symbol indicate different 729	

studies.	730	
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Table 1: Description of the studies used to optimize the model parameters 710!

Study Incubations Study site FOC 
types 

Amount of 
FOC 

amended 

(g C kg-1 
dry soil) 

Lignin:C 
ratio of 

FOC 

C:N 
ratio 

of 
FOC 

Soil clay 
content 

(%) 

Temperature 
(K) 

Moisture 

(% of Field 
Capacity) 

Incubation 
length 

(days) 

SOC 
content 

(g C kg-1 
dry soil) 

Bell et al., 
(2003) 

Experience 1 
averaged over 

the 4 soils 
tested 

Ralston, 
Washington 
State, USA 

Wheat 
straw 1.54 0.22* 128* 0.08 298.15 0.2 31 10.1 

Blagodatskaya 
et al., (2007) GL treatment 

Ramon, 
Voronezh 

region, Russia 
Glucose 0.0487 0 0 0.2* 295.15 0.6 14 50 

Soil A+ 
Maize 

Former lake 
Texcoco in the 

valley of 
Mexico City 

(Mexico) 

Maize 1 0.575 39.8 0.22 295.15 0.55 28 53 

Soil A + 
Glucose 

former lake 
Texcoco in the 

valley of 
Mexico City 

(Mexico) 

Glucose 1 0 0 0.22 295.15 0.55 28 53 

Soil B + 
Maize 

former lake 
Texcoco in the 

valley of 
Mexico City 

(Mexico) 

Maize 1 0.575 39.8 0.054 295.15 0.55 28 38.8 

Conde et al., 
(2005) 

Soil B + 
Glucose 

former lake 
Texcoco in the 

valley of 

Glucose 1 0 0 0.054 295.15 0.55 28 38.8 
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 Mexico City 
(Mexico) 

De Nobili et 
al., (2001) 

Experiment 1 
with Soil 2 

Rothamsted 
experimental 
station, UK 

Cellulose 1 0 0 0.24 298.15 0.5 11 14.8 

Falchini et al., 
(2003) 

Average over 
the tree 

treatments 

Grassland in 
Tuscany, Italy 

Oxalix 
acid/ 

Glutamic 
acid/ 

Glucose 

0.1815 0 0 0.14 298.15 0.5 7 16.6 

Fontaine et 
al., (2004) 

Only one 
incubation 

Lamto 
experimental 
station, Ivory 

Coast 

Cellulose 0.495 0 0 0.1 231.15 0.032 70 10.5 

S1 without N 
amendment 

La cage 
experimental 

station, France 

Wheat 
Straw 1.5 0.22* 44 0.167 293.15 0.17 80 10.4 

S2 without N 
amendment 

La cage 
experimental 

station, France 

Wheat 
Straw 2.2 0.22* 44 0.167 293.15 0.17 80 10.4 Guenet et al., 

(2010) 

S3 without N 
amendment 

La cage 
experimental 

station, France 

Wheat 
Straw 3.2 0.22* 44 0.167 293.15 0.17 80 10.4 

Arable soil 
with high 
cellulose 

input 

Closeaux 
experimental 

station, France 
Cellulose 5 0 0 0.167 293.15 0.19 209 19.9 Guenet et al., 

(2012) 

Arable soil 
with high 

wheat straw 
input 

Closeaux 
experimental 

station, France 

Wheat 
Straw 5 0.22* 98 0.167 293.15 0.19 209 19.9 
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Arable soil 
with low 
cellulose 

input 

Closeaux 
experimental 

station, France 
Cellulose 0.5 0 0 0.167 293.15 0.19 209 19.9 

 

Arable soil 
with low 

wheat straw 
input 

Closeaux 
experimental 

station, France 

Wheat 
Straw 0.5 0.22* 98 0.167 293.15 0.19 209 19.9 

Dystric 
cambisol (A 
horizon) + 

Alanine 

Steigerwald, 
Baviaria, 
Germany 

Alanine 13.3 0 3 0.14 293.15 0.6 26 44 

Dystric 
cambisol (A 
horizon)+ 
Fructose 

Steigerwald, 
Baviaria, 
Germany 

Fructose 13.3 0 0 0.14 293.15 0.6 26 44 

Haplic podzol 
(EA horizon) 

+ Alanine 

Fichtelgebirge, 
Baviaria, 
Germany 

Alanine 13.3 0 3 0.104 293.15 0.6 26 32 

Harmer & 
Marschner 

(2005) 

Haplic podzol 
(EA horizon) 

+ Fructose 

Fichtelgebirge, 
Baviaria, 
Germany 

Fructose 13.3 0 0 0.104 293.15 0.6 26 32 

*estimated values 711!
 712!
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Table 2: Model parameters summary for PRIM and the ORCHIDEE soil module 713!

Model 
parameter Meaning SOC 

pools 
Prior 
range 

Posterior 
modes ± s.d. 
(prior modes) 

for PRIM 

Posterior 
modes ± s.d. 
(prior modes) 

for the 
ORCHIDEE 
soil module 

Active 10-3-0.5 0.30 ±0.15 
(0.31) 

0.43 ±0.22 
(0.43) 

Slow 0.5-5 1.12 ±0.01 
(4.51) 

0.50 ±0.09 
(2.39) kSOC Turnover rate 

of SOM (d) 

Passive 5-500 462.0 ± 233.8 
(467.55) 

40.17 ± 22.19 
(44.39) 

Active 2.10-4-500 493.7 ± 246.8 
(493.7) NA 

Slow 2.10-4-500 194.0 ± 97.0 
(194.0) NA c 

Influence of 
the FOM 

carbon pool in 
the SOM 

mineralization 
(priming 

parameter) 
Passive 2.10-4-500 136.5 ± 68.3 

(136.5) NA 

!714!
!715!
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Table 3: Description of the studies used to evaluate the model 716!

Study Treatments 
performed Ecosystems Sites Names 

(Coordinates) 

Treatment 
performed 

in: 

CO2 
monitored 
between: 

Soil clay 
content 

(%) 

Soil silt 
content 

(%) 

Soil sand 
content 

(%) 

Boone et al., (1998) No litter/Double 
litter/ Control 

Deciduous 
forest 

Harvard forest, 
Petersham, 

Massachusetts, USA  

(42°30’ N,72°12’ W) 

January 1990 June 1994- 
June 1995 25* 30* 45* 

Borken et al. 
(2002) 

Compost 
amendment/ 

Control 

Needleleaf 
forest 

Solling, Norway 
(51°46’N, 9°34’E) August 1997 

September 
1997-

December 
1999 

3 23 74 

Chemidlin-Prévost-
Bouré et al., (2010) 

 

No litter/Double 
litter/ Control 

Deciduous 
forest 

Barbeau National 
Forest, France 

(48°29’N,02°47’E) 
March 2006 May 2006- 

March 2007 19.3 38.8 41.9 

Subke et al., (2004) Double litter/ 
Control 

Needleleaf 
forest 

Wetzstein, 
Thüringisches 

Schiefergebirge, 
Germany 

(50°30′N 11°10′E) 

April 2002 

April 
2002(three 
weeks after 
treatment) -

October 
2002 

70* 18* 12* 

Sulzman et al., 
(2005) 

No litter/Double 
litter/ Control 

Needleleaf 
forest 

H.J. Andrews 
Experimental Forest, 

Oregon, USA 

(44°15’N, 122°10’W) 

January 1997 
July 2001- 
December 

2003 
25* 30* 45* 

*estimated values 717!
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 718!
Table 4: Model performances for each evaluation sites 719!

!720!
 721!
!722!
!723!

Boone et al., (1998) Borken et al., (2002) Chemidlin-Prévost-Bouré et al., 
(2010) Subke et al., (2004) Sulzman et al., (2005) 

 
All 
data 

No 
litter Control Double 

litter 
All 
data Compost Control All 

data 
No 

litter Control Double 
litter 

All 
data 

No 
litter Control All 

data 
No 

litter Control Doubl
e litter 

slope 0.56 0.45 0.65 0.66 0.65 1.68 1.33 0.55 1.65 1.23 1.11 0.48 0.72 1.07 0.60 0.77 0.80 0.51 

NSD 1.43 1.86 1.37 1.48 0.77 0.79 0.87 1.03 0.70 0.97 1.56 1.85 1.65 1.41 1.53 1.10 1.08 1.68 ORCHIDEE 

BIC 103.
4 57.9 49.3 53.8 116.8 84.0 74.9 73.1 39.4 29.1 52.2 45.9 38.3 24.3 109.9 39.9 42.4 78.3 

slope 0.55 0.45 0.65 0.61 0.67 1.71 1.33 0.54 1.64 1.23 1.26 0.48 0.71 1.07 0.58 0.76 0.80 0.50 

NSD 1.53 1.85 1.37 1.59 0.77 0.79 0.86 0.86 0.70 0.97 1.30 1.86 1.66 1.41 1.55 1.10 1.09 1.76 ORCHIDEE-
PRIM 

BIC 116.
3 64.9 56.5 63.46 131.1 95.9 85. 0 96.1 46.2 36.3 65.1 54.3 44.6 30.5 124.1 48.2 51.3 88.1 


