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It would be nice if you would make one addition. I did not find what you mean
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different means and variances for the variates, and the PDF is a mixture (i.e.,
weighted sum) of the components.”
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Abstract

Numerical models of weather and climate need to compute grid-box-averaged rates of phys-
ical processes such as microphysics. These averages are computed by integrating subgrid
variability over a grid box. For this reason, an important aspect of atmospheric modeling is
spatial integration over subgrid scales.

The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integra-
tion is simple and general but requires many evaluations of the physical process rate. To
reduce the number of function evaluations, this paper describes a new, flexible method of
importance sampling. It divides the domain of integration into eight categories, such as the
portion that contains both precipitation and cloud, or the portion that contains precipitation
but no cloud. It then allows the modeler to prescribe the density of sample points within
each of the eight categories.

The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler
(SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In
the cumulus case, the sampling error can be considerably reduced by drawing more sample
points from the region of rain evaporation.

1 Introduction

Coarse-resolution atmospheric models of weather and climate do not solve differential
equations; they solve integro-differential equations, that is, equations containing both
derivatives and integrals. Although a derivation of an atmospheric model starts with differen-
tial equations, such as the Navier—Stokes or advection-diffusion equations, those equations
are coarse-grained or filtered before being discretized (e.g., Leonard, 1974} Pope, [2000).
Typically, a spatial running-mean filter is used, producing equations similar to Reynolds-
averaged equations (e.g., (Germano) [1992). Each term in the filtered equations is spatially
averaged over a grid box. For instance, in a prognostic equation for grid-averaged rain mix-
ing ratio, the grid-averaged rain is updated by grid-averaged microphysical process rates.
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Schematically, we may give an example of such a filtered equation:

or -

5 h+..., (1)
where 7 denotes grid-averaged rain mixing ratio, ¢ denotes time, and h denotes the grid-
averaged microphysical time tendency of rain mass mixing ratio. Because a grid-box av-
erage is an integral (divided by the grid-box volume), the resulting filtered equations are
integro-differential equations. Therefore, a central problem in atmospheric modeling is
(subgrid-scale, spatial) integration.

Mathematically, the problem is to evaluate integrals of the form

hz/h(az)P(m)dm, )

where « is a vector containing the relevant model fields, h(x) is the time tendency of a phys-
ical process, such as autoconversion of cloud droplets to form rain drops, and P(x) is the
model-predicted subgrid-scale probability density function (PDF) (i.e. “filtered density func-
tion”, Colucci et al., [1998) of the variables. Here, h(x) could be a simple analytic function or
a complex numerical subroutine. An integral such as Eq. (2) ought to be computed for each
of the many nonlinear process rates in the model. (However, when the grid box is assumed
to be uniform, then the integral is not performed.) The integrals also need to be computed
for each grid column in the horizontal and each grid level in the vertical.

To carry out this integration (i.e. “quadrature”), researchers have proposed several meth-
ods. First, the integral (Eq.[2) may be evaluated analytically (e.g., Zhang et al.,2002}; Larson
and Griffin, |2006|; [Morrison and Gettelmanl, 2008;|Cheng and Xu, 2009; |Griffin and Larson,
2013|;, Larson and Giriffin, 2013; [Lebsock et al., 2013]; Boutle et al., [2014). Analytic inte-
gration has the advantage of accuracy, but it can be carried out only if both the process
rate h(x) and the subgrid-scale PDF P(x) are sufficiently simple. Furthermore, analytic
integration is carried out grid level by grid level, and does not compute the vertical overlap
of cloud properties. Vertical overlap is related to the correlation between quantities at two
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points in space, one located directly above the other. The degree of vertical overlap has
a strong influence on, e.g., radiative transfer. Second, the integrals may be computed by
deterministic quadrature (Xiul [2009; |Golaz et al.| 2011} [Chowdhary et al., 2015). Deter-
ministic quadrature solves an integral by computing a weighted sum of integrand values
evaluated at specially chosen quadrature points. Deterministic quadrature has a couple of
advantages: unlike analytic integration, deterministic quadrature is applicable to a broad
range of processes, and like analytic integration, deterministic quadrature is still accurate.
Deterministic quadrature also has a disadvantage: it does not compute vertical overlap.
Third, the integrals can be evaluated by Monte Carlo integration (e.g., (Gentle, |2003; [Kalos
and Whitlock|, 2008). In Monte Carlo integration, random samples are drawn from the sub-
grid PDF P(x), the integrand is evaluated at each sample point, and the resulting values
are suitably averaged. Monte Carlo integration is broadly applicable and can be configured
to model vertical overlap (Barker et al., 2002, 2008; Pincus et al., 2003} 2006} Raisanen
et al., 2004/, 2005, 2007, 2008; [Raisanen and Barker, 2004; [Larson et al., 2005} |Larson,
2007}, [Hill et al., 2011} |Larson and Schanen, [2013; Tonttila et al., 2013, 2015). However,
Monte Carlo integration converges slowly. Obtaining an accurate integration requires many
costly evaluations of a microphysics parameterization.

To improve the convergence of Monte Carlo integration, many methods have been pro-
posed. Two broad strategies are stratified sampling and importance sampling (Press et al.,
2007; Lemieux, [2009). Stratified sampling spreads out the sample points in sample space
in order to avoid clumping, which leads to poor sampling. One popular stratified sampling
method is Latin hypercube sampling, which stratifies along each dimension of the integral
(e.g., McKay et al., 11979} |Owen, 2003). Another strategy, importance sampling, preferen-
tially places sample points in important regions of the integration domain (Press et al., 2007},
Lemieux, 2009). For instance, extra sample points may be placed within cloud because that
is where important processes occur, such as the formation and growth of cloud droplets.

Some sampling methods combine stratified and importance sampling. For instance,
a prior version of the Subgrid Importance Latin Hypercube Sampler (SILHS) placed sam-
ple points preferentially in cloud, and also stratified the within-cloud sample points using
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Latin hypercube sampling (Larson et al., [2005; lLarson and Schanen, 2013|; [Storer et al.,
2015|, 'Thayer-Calder et al., 2015). SILHS similarly stratified the points out of cloud. Al-
though SILHS’ importance sampling improved the integration of within-cloud microphysical
processes, the importance sampling did not improve the integration of out-of-cloud pro-
cesses, such as evaporation of rain. This is a drawback in cases where evaporation is an
important process. What is needed is a more flexible importance sampling method, one
that allows the modeler to sample important processes in a more targeted way.

This paper proposes a new importance sampling method that is highly flexible. It divides
the domain of integration into N¢g: non-overlapping “categories”, such as the region that
contains precipitation and cloud, or the region that contains precipitation but no cloud. This
“nCat” method allows the modeler to prescribe the density of sample points within each
category. This flexibility allows a modeler to allocate more sample points to a particular
process, such as evaporation of rain drops, if evaporation is especially important to the
problem of interest. Furthermore, two or more categories can be combined into a single
“cluster” if none of the categories in the cluster should be treated preferentially over the
others.

This paper will introduce nCat sampling and evaluate it in an idealized, single-column
setting. Section [2| specifies the subgrid probability density function (PDF) that our method
will sample. Section [3| describes how SILHS sampled the subgrid PDF before the nCat
method was introduced. Section [4] details the new nCat method that has been introduced
into SILHS. Section[5lexplains the criteria and methodology used to evaluate the new SILHS
sampling scheme, including configuration of the model. Section [f] shows tests using a pre-
cipitating shallow cumulus case and a precipitating stratocumulus case. Section [7| con-
cludes the paper.

2 The functional form of the PDF from which SILHS draws sample points

SILHS does not generate sample points according to a stochastic rule; rather, SILHS merely
draws sample points from a pre-existing subgrid PDF. In this paper, the PDF is calculated
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by the Cloud Layers Unified By Binormals (CLUBB) parameterization (Larson et al., 2002;
Golaz et al.l 2002; [Larson and Golaz, 2005; |Larson et al. 2012). At each time step in
a simulation, CLUBB diagnoses the subgrid PDF by means of the assumed PDF method.
That is, CLUBB prognoses various subgrid higher-order moments, assumes a functional
form for the PDF, and diagnoses a particular PDF for each time step and grid level that is
consistent with both the moments and the functional form.

CLUBB’s PDF is multivariate. It includes several variates (i.e., variables) that are use-
ful inputs to thermodynamical and microphysical calculations. One of the PDF’s variates is
the extended cloud (liquid) water mass mixing ratio () (Mellor, (1977} lLarson et al., 2005).
When x > 0, then x equals the cloud water mass mixing ratio; when x < 0, then cloud
water is assumed to be zero, and y represents the deviation from saturation. The variate
x does not include ice. Another of the PDF’s variates, related to y, is the corresponding
orthogonal variable (n) (Mellor, [1977; Larson et al., 2005). Together, x and 7 are a rotation
and rescaling of temperature and total water variables. CLUBB’s PDF also includes the ver-
tical velocity w, an extended cloud droplet number mixing ratio (N¢,), and the precipitating
hydrometeor mass mixing ratios and number mixing ratios (hm). The cloud droplet number
equals the extended cloud droplet number mixing ratio when cloud is present (that is, when
x > 0); when no cloud is present, the cloud droplet number is assumed to be zero.

The functional form of CLUBB’s PDF is a compromise between realism and mathematical
simplicity. CLUBB’s PDF may be written as

Ncomp

P(x) = &umy [Fom)Pom) (1w, Nen,hm) + (1= fo))8(hm) Py (7w, Nen)| . (3)

m=1
The PDF has-is split into Neomp frixttre-components; currently, in CLUBB, Negomp = 2. Each
component m has a weight §,,), where Z%j{” §m) = 1, and for each m, §,,) > 0. Each
component has different means and variances for the variates, and the PDF is a mixture
i.e., weighted sum) of the components. The vector hm contains precipitating hydrome-
teor species that are prognosed by the microphysics scheme. The exact type and num-
ber of hydrometeors depends on the microphysics scheme used. In this paper, the micro-
6
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physics scheme used is that of |Khairoutdinov and Kogan| (2000), in which the prognosed
hydrometeor species are rain mass mixing ratio and rain number mixing ratio. The fraction
fo(m) represents the portion of mixture component m that contains at least one precipi-
tating hydrometeor species, where 0 < f,(,,) < 1. The fraction (1 — f,(,,)) represents por-
tions of mixture component m that are precipitation-free (and are denoted by é(hm)) but
may or may not contain cloud waterE] In the portions of the PDF that contain precipitation,
Py (X1, w, Nen, hm) is a joint normal-lognormal distribution, where x, 7, and w are nor-
mally distributed, and N, and all the variables in hm are lognormally distributed (Larson
and Griffin, [2013). (See also B. M. Griffin and V. E. Larson (2016), “A new subgrid-scale
representation of hydrometeor fields using a multivariate PDF," in preparation.) In the parts
of the PDF that do not contain precipitation, P,)(x,7,w, Nen) is @ joint normal-lognormal
distribution, as before, but all the precipitating hydrometeors are zero, rather than lognor-
mally distributed. A simplifying feature of the functional form is that we insist that

P(m)(X7n7w7Ncn) = /P(m)(X7777waNcn7hm)dhm (4)

That is, the marginal distribution of cloud and turbulence within a mixture component, m,
is the same both within and outside of the precipitating region. Therefore, integrating over
precipitation in (3) collapses the two terms per component m into one term.

3 Prior formulation of SILHS

In both the new and prior versions of SILHS, sample points are drawn from CLUBB’s PDF
and fed into subroutines that compute microphysical process rates. To reduce the noise
associated with the random sampling of processes, both versions of SILHS incorporate
stratified sampling (specifically, Latin hypercube sampling) and importance sampling.

'In the notation used above, §(hm) is a Dirac delta function and is short for
d(hmy)d(hmy)---6(hm,,).
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The Latin hypercube algorithm is described in many sources (e.g., McKay et al., [1979;
Owen, 2003}; |Larson et al., [2005). Intuitively, the algorithm stratifies the sample points
across each variate such that for each variate, exactly one sample point falls into each
of Ng intervals of equal size, where Ng is the number of sample points. For instance, if
N = 3, the Latin hypercube sampling chooses low, medium, and high values of, e.g., rain
mass mixing ratio.

Importance sampling is useful when a process rate is particularly large and variable within
a small portion of the sample space. For instance, autoconversion of cloud droplets occurs
only within cloud, which in cumulus cases often occupies a small fraction of the domain.
Without importance sampling, the density of sample points in the sample space is given by
the PDF P(x). For example, if, according to the PDF, 10 % of the domain is occupied by
cloud, then on average only 10 % of sample points will be placed within cloud. Importance
sampling is used to change the sampling density so that areas of interest are sampled more
frequently than less important regions, regardless of the densities given by the PDF.

The prior version of SILHS (Larson et al.,|2005; Larson and Schanen,|2013) used a sim-
ple importance sampling scheme that placed half the sample points in cloud and the other
half out of cloud. This importance sampling was only performed when, according to the PDF,
the amount of the grid box occupied by cloud (the “cloud fraction”) was between 0.5 % and
50 %. When cloud fraction was in this range, SILHS preferentially sampled cloud, thereby
improving the representation of cloud processes such as autoconversion. In doing so, of
course, SILHS’ importance sampling degraded the representation of processes that occur
out of cloud, such as evaporation of rain.

In both the new and prior versions of SILHS, a sample is first drawn from a starting grid
level. This grid level is the only grid level where SILHS explicitly performs importance sam-
pling; it is called the “importance sampling level” in this paper. The importance sampling
level is chosen at each timestep to be the height level with the maximum within-cloud cloud
water mass mixing ratio. To represent vertical overlap, sample points at other height lev-
els are drawn such that they are correlated with adjacent levels according to a correlation
coefficient that decreases exponentially with increasing height (see [Larson and Schanen,
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2013). This process continues to the top and bottom of the domain. The resulting verti-
cal profile of sample points is a “subcolumn” that statistically represents a fraction of the
grid column and models vertical overlap. Thus, SILHS does sample at all grid levels, but it
explicitly performs importance sampling only at the importance sampling level.

4 The nCat importance sampling method

The nCat flexible importance sampling method is a generalization of the original SILHS
importance sampling method described above. It is designed to give the modeler finer con-
trol over which parts of the subgrid PDF are preferentially sampled, that is, regarded as
“important”.

First, the domain of the PDF is split into a set of disjoint categories, C;, that span the
entire PDF domain. Here, j = 1...Ncat, Where Neg; is the number of categories.

In this paper, eight categories are used. The definitions of the categories are based on the
following three criteria: in/out of cloud, in mixture component 1/2, and in/out of precipitation.
A sample point lies in cloud if and only if x > 0; if x <0, the sample point lies outside
cloud. To determine whether a sample point lies within mixture component 1, we generate
a random number, uq41, that is uniformly distributed between (0,1). If ugy1 < &1, then the
sample is in mixture component 1; otherwise, the sample is in mixture component 2. To
determine whether a sample point lies within precipitation, we generate another uniformly
distributed random number, w442, and check whether ug2 < fy(n), where m is the mixture
component number. The eight possible combinations of cloud, mixture component, and
precipitation form the eight categories used for importance sampling. The categories are
shown in Table [l

Each category C) is associated with a certain amount of PDF mass, called the category’s
“original probability” and denoted as:

pj= | P(z)dw. (5)
/
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Since the categories C'; span the entire PDF, we have:

Neat

Y opi=1, (6)
j=1

where Ncat is the number of categories (currently Ncat = 8). Each category has p; > 0; but
naturally, categories with p; = 0 need not be included in the corresponding integral (Eq. [2).

In general, the p; values must be found by performing an integral over the PDF. For ex-
ample, the amount of PDF mass in the first category (the category with cloud, precipitation,
and in component 1) may be found by integrating the PDF in Eq. (3) over this portion of the
PDF:

21 :/P(a:)da:

Ch

=&(1) / / [ oy Pay 06 1, w, Nen, hm) 4 (1 — fo1))8(hm) Py (x, 1, w, Nen) | dhmdy
x>0hm>0

25(1)fp(1)/P(l)(X,n,w,Ncn,hm)dX

x>0
= &) o) fe)- (7)

In CLUBB’s PDF (see Eq.[3), because cloud and precipitation are independent within a com-
ponent (that is, the marginal distribution of x, which determines cloud, is the same both in
and out of precipitation), the integrals to find the category original probabilities p; involve
only simple quantities, such as f.(1) (cloud fraction in mixture component 1), that are al-
ready computed elsewhere in CLUBB. In general, computing these constants may involve
evaluating complicated numerical functions, such as the error function, which involves com-
putational expense. However, the constants need to be computed only at the importance
sampling level (not at each height level) and only once per timestep (not for each sample
point), and so the additional expense is tolerable.
10
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The notation introduced so far in this section relates to the PDF itself, rather than im-
portance sampling per se. In order to implement importance sampling, we sample what we
regard as the “important” categories preferentially. To do so, we introduce for each category,
C, a user-defined probability, S;, called the category’s “modified probability”. The modified
probability .S; of a given category is the desired probability that any sample will fall in that
category. In other words, it is the expected fraction of sample points in the category when
importance sampling is used. Therefore, intuitively, it is advantageous to set the modified
probabilities such that the categories that are important for a process of interest are sam-
pled more often than the unimportant categories. These modified probabilities must be set
such that

Neat

dosi=1. (8)
j=1

The sampling process is modified such that each category C; is sampled with probability S;
rather than p;. In order to give a mathematical form for the new PDF that points are drawn
from, we introduce some notation. We define a new function, L(x), called the “likelihood
ratio”:

Neat Neat
D
L@);Z(S{) Li(x) =D wily(@). (9)
j=1 "1 j=1
Here, 1;(x) is the indicator function of category C;, defined as
1 ze(j
1j(x) = 7 (10)
0 x §é Cj
and
wj =g (11)

11
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is the weight of each sample point in category C;. Then, the new sampling PDF, denoted
Q(x), is defined as
P(z)
= : 12
Q(z) (z) (12)
The new PDF, Q(x), is normalized because Zj\f;a{ S; = 1. The integral in Eq. H is written
as
P(x)

h(x)P(x)dx = [ h(x)L(x) ie) de = [ h(z)L(x)Q(x)dx. (13)
Then, the new integral in Eq. is approximated by drawing N sample points from the
Q(x) distribution and evaluating

[H@L@)Q@) e~ 1> hwi) L), (14)

where x; is the ¢ sample point drawn from the @Q(x) distribution. For a sample point x; in
category C;, L(z;) = g—; = wj.

To draw sample points from the Q(x) distribution, a uniform variate, 0 < u. < 1, is picked
for each sample point. The value of this uniform variate determines a sample point’s cate-
gory. For example, if 0 < u. < S1, then the sample point will be associated with category Cj.
If 51 <wue < 51+ 5>, the sample will be associated with category C,, and so on. Once the
category has been determined, the sample point is drawn from the portion of the marginal
distribution of P() that is within the category. For example, a sample point that is to be in
cloud is drawn from the distribution P(x|x > 0).

4.1 The weight limiter

Importance sampling allows the modeler to concentrate sample points in areas of the sam-
ple space that are considered important. But sample points given to important areas are
12
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taken from unimportant areas. Therefore, if importance sampling is applied overzealously,
the less important processes can become excessively noisy.

In SILHS, we wish to employ an importance sampling scheme that improves results for
important processes (e.g., certain microphysical processes) while still producing reasonably
accurate estimates of other “less important” or perhaps less variable processes. One rea-
son that we wish to avoid overdoing the importance sampling is that a favorable sampling
distribution at one grid level (altitude) may be unfavorable at another.

The change in accuracy for a given category due to importance sampling can be as-
sessed by noting the weight of sample points in that category. The inverse weight of a sam-
ple point in category C; is given by

where p; is the category’s original probability and S; is the category’s modified probability
due to importance sampling. The weight, w;, is closely related to L(x) (see Eq. @) The
inverse weight, 1/w;, may be interpreted as the density of sample points per unit probability
mass. When 1/w; < 1, the category is sampled less often with importance sampling, and
when 1/w; > 1, the category is sampled more often with importance sampling. We are
particularly concerned about large values of w;, because large weights are associated with
undersampling and hence degradations in accuracy.

In order to mitigate the negative impact of importance sampling, we now propose a sim-
ple method to impose a maximum weight, wmax, in each category. Intuitively, the algorithm
works as follows. For each category C';, we compute the minimum modified sampling prob-
ability:

bj

Wmax

Sj,min — (1 6)

To ensure that the weight of a category, w;, does not exceed wmax, the category must be
sampled at least as often as S; min; thatis, S; > S; min. If any categories are undersampled,
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then S; must be increased in those categories, and probability mass must be taken from
other categories (where S; > S;min) in order to ensure that the S; probabilities sum to 1.
The algorithm takes probability mass from another category in proportion to how much
“extra” probability mass the category has.

Formally, the algorithm is constructed as follows. We compute the difference between the
category’s modified probability, S;, and its minimum modified probability, S’ min:

S dift = Sj — S min- (17)

Let N be the set of all categories where S; 4t < O (the categories where S; needs to be
increased) and M be the set of all categories where S; 4ir > 0 (the categories where S; can
potentially be reduced). If N is the empty set (that is, if no categories have Sy < 0), then
all categories already satisfy the weight limit, and nothing needs to be done. Otherwise, if
S} is the new distribution of modified probabilities, then for all C; € N we set

S; = Sj7min7 (1 8)
and for all C; € M we set
> |Sidit]

CiEN

!/

S5 =55 — |Sjdit | —~—=a—
> Sidiff
CieM

J (19)

This method will take sampling probability away from the categories with extra probability
proportionally to how much extra probability they have (i.e., how large S 4t is). It can readily
be shown that the fractions S are bound to the range [0,1] and sum to 1.

In SILHS, we currently set wmax = 2, which means that on average, a category will be
sampled no less than half as often with importance sampling than without importance sam-
pling. Consequently, the variance of the estimate of a quantity is increased (degraded) by
no more than a factor of two due to importance sampling. (The standard deviation is in-
creased by no more than a factor of /2 ~ 1.4. For this estimate of variance, we assume the
usual Monte Carlo convergence rate.)

14
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4.2 Optimal allocation of sample points

The success of the nCat method depends on knowing how to allocate sample points to
the categories. In some cases, it is easy to see how to allocate points. For example, if
it is known that the process(es) of interest are active in only one of the N, categories,
then we can simply put all sample points in that one category, and use the weight limiter
to ensure that other categories are still adequately sampled. However, in the case that
processes of interest are active in two or more categories, one needs to know how to
distribute (i.e. “allocate”) sample points among these categories.

For a given process rate, h(x), and a given estimator of the variance, it is possible to
derive the optimal allocation of sample points (Lemieux, |2009). The optimal allocation pro-
vides guidance on how to determine the S; values. In Appendix [A} it is shown that the
optimal modified probabilities are:

g — _ PivU
J Neat ’
Zi:l Di/ Ui
This expression shows that the optimal fraction of samples in category C, i.e. S}, depends

on both the original probability p; of category C;, and on the category-averaged standard
deviation, . /v;.

(20)

4.3 A simple method of allocating sample points

One could prescribe the modified probabilities .S; directly. However, a key problem with
directly prescribing the S; is that prescribed values cannot scale with the original probabili-
ties p;. For instance, consider the case in which, for some category C';, we have prescribed
S; > 0, but it turns out that for a particular cloud case, p; = 0. Then some sample points will
be placed in category C; even though they contribute nothing to the overall sum. (These
sample points have a weight of zero.) This is a needless computational expense. Instead,
the sample points should be placed in other categories with non-zero p;.
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More generally, prescribing each \S; directly is akin to assuming that the contribution of
each category to the total sum is constant regardless of what fraction of the PDF is occupied
by each category. Instead, a more realistic assumption is that each category contributes to
the total sum a constant amount per unit original probability, p;. These prescribed amounts
are then scaled by the original probabilities p; to obtain the modified probabilities S;.

Specifically, we prescribe the following normalized standard deviation of the process rate
for each category Cj:

SR &
> i1 Vi

To make the ~; easier to interpret and prescribe, we insist that 0 < ~; < 1; then the denom-

inator is simply the sum of the numerator in all categories, so that each ; is a fraction with

Z;V;al‘ v; = 1. Specifically, ; is the fraction of , /v; in category C;. Prescribing ; is accurate

and general when each ~; varies little in space or time, or from case to case. Note that the

numerator of Eq. is the same as the numerator of Eq. (20), but without the p; term.

Given the ~; fractions, it is easy to determine the S; values by dividing the numerator and
denominator of Eq. by Zf\f’l“ V/Vi- This yields

S;=—bili 22

S SHCT T @
It is clear from this equation that the .S; values are still in the range [0, 1] and still sum to 1.

The prescription (Eq. leads to more robust importance sampling than does prescrib-
ing S; values as constants. With Eq. , the optimal v; in a particular category (say, in
cloud and precipitation and mixture component 1) is relatively insensitive to the area oc-
cupied by that category (e.g., to the cloud fraction or precipitation fraction). The reason
is that in Eq. , each S; value weights ~; by the original probability p; of category Cj.
This means that, for instance, when C; occupies a small fraction of the domain, and ~; is
moderate, then the total fraction of sample points .S; in category C'; scales naturally to small
values. Prescribing the +; values is akin to prescribing the inverse weights 1/w;, rather than
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the sample fractions S;. To see resemblance of ~; and 1/w;, note from Egs. and
that

— - (23)
Wi Pi P

Both 1/w; and ~; are related to the density of sample points per unit probability mass, p;.

4.4 Advantages of the new method

As compared to the previous version of SILHS, the chief advantage of the new nCat method
is its flexibility. In particular, the user can individually prescribe the sampling density per
unit probability (v;) in each of eight categories, C';. This flexibility is useful when important
processes, such as evaporation of rain, occur in particular categories, such as the region of
rain but no cloud.

This flexibility is made possible in part by the fact that the nCat method imposes no re-
striction on the number of sample points used per timestep. The previous version of SILHS
required an even number of sample points per timestep, because one point was placed in
cloud and the other was placed outside cloud. Generalizing this method to eight categories
would have required a multiple of at least eight sample points per timestep, and would not
allow much flexibility in prescribing the relative importance of categories. Instead, the nCat
method uses a probabilistic approach to picking a category for each sample point. This al-
lows any number of sample points to be used at each timestep, including the use of fewer
than N+ samples, without causing a biased result.

4.5 Summary of steps to implement method

In summary, to implement the new importance sampling method, the following steps should
be taken:

1. Pick a set of categories, C;, that span the PDF domain. We have proposed eight
categories for use, as given in Table
17
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2. Pick a set of sampling fractions, ~,. A good set of values to use can be obtained
by using a simulation to estimate the optimal values, given by the right-hand side
of Eq. (21), as we do in Sect. [6.] below.

3. Compute, from the fractions -;, the modified probabilities S; using Eq. (22). Pick sam-
ple points from the Q(x) distribution, defined in Eq. (12).

4. Compute the weight in each category, w;, using Eq. (T11). Sample points are given
a weight corresponding to the category the sample point is in. Limit the weights ac-
cording to the algorithm in Sect. if so desired.

5. Feed the (unweighted) sample points one by one into a physical parameterization
(e.g., a microphysics scheme).

6. Compute a weighted average of the function of interest using Eq. (14).

5 Methodology of evaluation of the sampling methods

In order to evaluate how well the new importance sampling scheme simulates multiple cloud
types, we have simulated two cloud cases. The first is a drizzling shallow cumulus case:
Rain in shallow Cumulus over the Ocean (RICO), configured as in the intercomparison of
vanZanten et al.| (2011). RICO was a drizzling trade-wind cumulus case observed off the
Caribbean islands of Antigua and Barbuda (Rauber et al., 2007). The second is a drizzling
stratocumulus case: Research Flight 2 (RF02) of the DYnamics and Chemistry Of Marine
Stratocumulus (DYCOMS-II), configured as in |Wyant et al.| (2007). DYCOMS-II RF02 was
a nocturnal drizzling stratocumulus layer observed off the coast of California (Stevens et al.,
2003). A key difference in the sampling of these two cases is that the stratocumulus case
has a much larger cloud fraction (> 0.95) than the cumulus case (< 0.05). Therefore, without
importance sampling, nearly all sample points fall in cloud in the stratocumulus case, while
almost none fall in cloud in the cumulus case. Finding a single, effective sampling strategy
for both the stratocumulus and cumulus cases is challenging.
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The following four configurations of SILHS were used for comparison:

1. “LH-only”: This configuration uses only Latin hypercube sampling. No importance

sampling is performed. The nCat method is not used.

. “2Cat-Cld”: This configuration is functionally equivalent to the old version of SILHS

that placed one point in cloud and one point out of cloud. This configuration uses
two categories: in cloud, and out of cloud. The categories (c,p,1), (c,p,2), (c,np,1), and
(c,np,2) are all lumped together into the “cloud” category, and the other four categories
are analogously lumped into the “clear” category. That is, a point that is in cloud be-
longs to the cloud category regardless of whether it is in precipitation or which mixture
component it is in, and similarly for points in clear air. When cloud fraction is between
0.5% and 50%, it places 50% of sample points in each of the two categories. (That is,
S1 =5, =0.5.) Otherwise, no importance sampling is performed.

. “2Cat-CldPcp”: This configuration also uses two categories. The first consists of points

that are either in cloud or in precipitation, and the second consists of the comple-
ment, namely, points that are neither in cloud nor in precipitation. That is, (nc,np,1)
and (nc,np,2) are lumped into the no-cloud-or-precipitation category, and the others
are lumped into the cloud-or-precipitation category. Since no microphysical processes
act in the area of the domain outside of cloud and precipitation, the sample points
are initially prescribed such that all points fall in the cloud-or-precipitation category
(i.e. the first category). (That is, v; = 51 = 1,7 = 5% = 0). After the initial prescrip-

tion, the weight limiter ensures that S, = ﬁ =

. “8Cat”: This configuration uses all eight categories listed in Table [1l To determine

the sampling fractions v; to use, a simulation was run in which SILHS was used to
estimate the quantity in Eq. at each timestep. One set of sampling fractions, v;,
was used for both RICO and DYCOMS-II RF02. This is discussed in Sect.

The simulations were non-interactive, so that errors in the SILHS simulations did not feed
back into the simulated fields. This made it possible to evaluate multiple SILHS simulations
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against a common analytic solution. Some notable aspects of the simulation configurations
are shown in Table 2

The microphysics scheme used in the simulations is that of |Khairoutdinov and Kogan
(2000). As a reference solution, an analytically upscaled version of the Khairoutdinov-Kogan
microphysics scheme was used, as described in |Larson and Giriffin| (2013). Comparison
with the analytic solution indicates whether SILHS draws sample points from the correct
PDF at each grid level. However, the comparison with the analytic solution does not test
whether the PDFs at each level are overlapped accurately. Although the overlap assump-
tions do not affect these test cases, overlap does influence processes such as radiative
transfer. Testing the PDF overlap assumptions is left for future research. Nevertheless, the
ability to test convergence at each grid level is an advantage. For instance, early conver-
gence tests revealed several bugs in SILHS. Many microphysics schemes in operational
use do not permit analytic solution. For these microphysics schemes, a non-analytic inte-
gration method, such as SILHS, is necessary.

Each SILHS configuration was evaluated on its ability to estimate the following three
microphysical processes:

1. Autoconversion: the conversion of cloud water to rain water. This process occurs within
cloud, both inside and outside of precipitation (rain).

2. Accretion: the growth of rain droplets by collection of cloud water. This process occurs
when both cloud and precipitation are present.

3. Evaporation: the conversion of rain water to water vapor. This process occurs in areas
outside cloud but within precipitation.

6 Simulations of drizzling cumulus and stratocumulus clouds

In this section, we present results obtained using the new importance sampling method.
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6.1 Estimation of optimal sampling fractions

Prescribing the ; is a useful general approach only if the +; vary relatively little from case
to case. We test this by estimating the optimal sampling fractions, ;, for both the RICO
and DYCOMS-II RFO2 cases. The optimal ; values are calculated by estimating the right-
hand side of Eq. at each timestep at the importance sampling level. The process used,
h(x), is the sum of the autoconversion, accretion, and evaporation tendencies from the
microphysics scheme. The importance sampling level is chosen at each timestep to be the
level with the maximum within-cloud cloud water mass mixing ratio. The integral defining v,
given in Eq. , was estimated using 256 SILHS sample points. The v; values, averaged
over all timesteps (864 total timesteps for RICO and 360 for DYCOMS-1I RF02), are shown
in Table[3l

We see that in both cases, the optimal ~; values are largest in category 1 (in cloud, in
precipitation, and in mixture component 1) and in category 3 (out of cloud, in precipitation,
and in mixture component 1). As expected, the optimal sampling fractions for the last two
categories are zero, since microphysical processes do not act in the region where neither
cloud nor rain exists. The other categories show differences, which may or may not be
important. To test this, the optimal fractions for DYCOMS-II RF02 shown in Table [3| are
used for both RICO and DYCOMS-II RF02 simulations to be presented. Thereby, the RICO
case is used to test the robustness of the DYCOMS-II RF02 sampling fractions.

6.2 Results for RICO case

Figure[f]shows a plot of the root-mean-square error (RMSE) of the SILHS RICO simulations
as a function of the number of sample points used. The 8Cat method has the smallest
RMSE of all three methods when estimating the sum of autoconversion, accretion, and
evaporation.

The largest improvement of the 8Cat and 2Cat-CldPcp methods over the (old) 2Cat-
Cld method is in sampling evaporation. In fact, even the LH-only method (no importance
sampling at all) results in a better estimate of evaporation than the 2Cat-Cld method. The
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reason that evaporation is so poorly sampled in the 2Cat-Cld method is that the 2Cat-Cld
method performs importance sampling only within cloud. Indeed, for in-cloud processes,
such as autoconversion and accretion, the 2Cat-Cld method equals or improves upon both
the 2Cat-CldPcp method and the 8Cat method in the RICO cumulus case. However, the
2Cat-Cld method reduces the number of sample points outside of cloud, degrading the
simulation of rain evaporation. In contrast, both the 2Cat-CldPcp and 8Cat methods prefer-
entially sample within the region of the sample space containing evaporation (out of cloud
but within precipitation), leading to large improvements.

Table [4] compares how each of the four sampling methods allocates sample points. The
table shows the percentage of sample points allocated to each category, averaged over
the simulation. Comparing the allocation between the methods can give insight into the
strengths and weaknesses of each method. For example, evaporation is best sampled by
the 8Cat and 2Cat-CldPcp methods because they are the only methods that place a sizable
number of points in the two categories that are in precipitation and outside cloud. The 2Cat-
Cld and 8Cat methods give the best estimate of accretion because they place the largest
number of points in the categories that are within cloud and precipitation.

Figure [2| shows, for the RICO case, timeseries plots of the four tendencies at the im-
portance sampling level. Again, the largest improvement can be seen in the sampling of
evaporation. Looking at the 2Cat-Cld timeseries for evaporation, it can be seen that at many
timesteps, no points are found in the evaporating region of the sample space (out of cloud
and within precipitation), and the estimated evaporation tendency is zero. At the timesteps
where one or more sample points are found in the evaporating region, the tendency esti-
mate is very large because the evaporation rate within the evaporating region is much larger
than the overall mean evaporation rate. In the 2Cat-CldPcp and 8Cat simulations, the evap-
orating region of the sample space is well sampled, and sample points in this region have
small weights, leading to an estimate that is much more comparable to the overall mean.

To assess the performance of the sampling methods at levels away from the importance
sampling level, profile plots (over height levels) were generated for simulations with 32 sam-
ple points. To reduce the role of a “lucky” random seed in the comparison and thereby
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better distinguish the methods, an ensemble of 12 simulations was used. Figure [3 shows
profile plots of the four tendencies over height levels. These plots are averaged over all
864 timesteps and over the 12 ensemble members, and serve to indicate that SILHS con-
verges to the analytic solution at all height levels and not only the importance sampling
level. Figure [4] shows the RMSE of the SILHS solutions at each height level compared to
the analytic solution, for all timesteps and ensemble members. It can be seen that the 8Cat
and 2Cat-CldPcp methods show improved results compared to the 2Cat-Cld method at
height levels between 1000 m and 2500 m. These height levels are where the improvement
in the evaporation term is strongest. At levels below 1000 m (which are far below the impor-
tance sampling level of about 2000 m), all methods start to show considerable noise. It is
interesting that this noise remains even after time- and ensemble-averaging. This highlights
the large degree of variability in cumulus clouds and the need for careful parameterization
of this variability.

We note that, in this paper, only the profile plots display an ensemble average. The time
series plots display a single simulation so that individual sample values can be seen. The
plots displaying RMSE vs. the number of sample points are not strongly influenced by the
choice of random seed.

6.3 Results for DYCOMS-Il RF02 case

The other simulated case is DYCOMS-II RF02, a drizzling stratocumulus case. Figure
shows a plot of the RMS error of the SILHS simulations as a function of the number of
sample points. The LH-only, 2Cat-Cld, and 2Cat-CldPcp simulations all show approximately
the same amount of noise. However, the 8Cat method reduces noise in autoconversion and
accretion, thereby also decreasing noise in the sum of the three tendencies.

The similarity between the LH-only, 2Cat-Cld, and 2Cat-CldPcp methods is expected.
The 2Cat-Cld method, like the previous version of SILHS, includes a condition that reverts
to straight Latin hypercube sampling in the event that cloud fraction exceeds 50 %. The
DYCOMS-II RF02 case is a stratocumulus case, and the cloud fraction is close to 100 % for
much of the simulation. Therefore, the 2Cat-Cld method behaves identically to the LH-only
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method for much of the simulation. The 2Cat-CldPcp reduces the number of sample points
in the second category (the category without cloud or precipitation) by only a factor of two.
Since the second category is so small to begin with (that is, p» is very small), this reduction
hardly improves the result at all.

The reason for the improvement using the 8Cat method can be inferred from Table[5 The
table shows the percentage of sample points allocated to each category at the importance
sampling level, averaged over the entire simulation. The 2Cat-CldPcp, 2Cat-Cld, and LH-
only allocations are all similar, but the 8Cat allocation places more points in (c,p,1) than
(c,p,2). That is, unlike the other three methods, the 8Cat method is able to preferentially
sample from mixture component 1. Component 1, in turn, contains larger cloud (liquid)
water mixing ratios. The other three methods necessarily place more points in component
2 than component 1, because component 2 occupies more of the (original) PDF. However,
it was shown in Table [3] that optimally, component 1 has a much higher per-probability
sampling density than does component 2. This increased sampling of component 1 is the
source of the improvement of the 8Cat method.

Figure [6] shows timeseries plots of the four tendencies at the importance sampling level.
The estimate of evaporation is noisy in the three plotted configurations, because evapora-
tion occurs outside of cloud, and the region of the sample space outside cloud is poorly
sampled by all three methods. However, evaporation contributes little to the overall sum
because the original probability p; outside of cloud is so small.

Figure [/| shows the mean profile plots of the four tendencies. Once again, an ensemble
of 12 simulations was used, and each sampling method overplotted is averaged over all
timesteps and 12 ensemble members. All of the lines look similar, which indicates that all
three methods do a good job of sampling the three processes with 32 sample points per
timestep, perhaps because the DYCOMS-II RF02 stratocumulus case is not highly variable.
Figure [8]shows profile RMSE plots averaged over all timesteps and ensemble members. All
sampling methods show the largest RMSE at around 800 m. At this level, the 8Cat method
shows smaller error in autoconversion and accretion, but all methods show about the same
error in evaporation.
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Table 6] shows a quantitative comparison of the four configurations for both the RICO and
DYCOMS-II RF02 cases. For each sampling method, Table [g] lists the approximate number
of sample points needed to obtain the given time-averaged RMSE at the importance sam-
pling level. These values are estimated visually from Figs. [T]and 5] This table shows that in
RICO, the 8Cat method requires approximately a factor of 8 fewer points to achieve a de-
sired RMSE than the 2Cat-Cld method. The 2Cat-CldPcp method requires approximately
a factor of 4 fewer sample points than the 2Cat-Cld method. In DYCOMS-II RF02, the re-
duction of necessary sample points for the given RMSE for the 8Cat method as compared
to the others is a factor of approximately 1.6.

6.4 Computational Cost of the nCat Method

An important consideration among Monte Carlo integration methods is their computational
cost. The cost of the new nCat method was tested against both the prior SILHS impor-
tance sampling method and the cost of CLUBB. Eight SILHS sample points were used in
each simulation. Five RICO simulations were performed, and Table[7]shows the means and
standard deviations of the five simulations. Each time is a cumulative total of the respective
component of the model over the entire simulation. The two nCat methods (2Cat-CldPcp
and 8Cat) show no significant increase in computation time as compared to the original
SILHS importance sampling method. All SILHS methods are about twice as expensive as
CLUBB when eight sample points are used.

These costs may be compared with other costs in global climate simulations. To this end,
Thayer-Calder et al.| (2015)) tested the cost of SILHS in the Community Atmosphere Model
(Neale et al., 2012). They show that an adequate cloud climatology can be obtained with
as few as 4 sample points (see Figs. 12 and 13 of [Thayer-Calder et al.| (2015)). The extra
cost of computing 4 samples is (1.89-1.69)/1.69 = 16% (see Table 2 of Thayer-Calder et al.
(2015)).
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7 Conclusions

We have developed a new (“nCat”) method to sample subgrid variability in atmospheric
models. The method divides the grid box sample space into N¢,; categories and allows the
modeler to prescribe the sampling probability in each category.

The most flexible variant of the nCat method that we consider here breaks the grid box
into eight categories, depending on whether a parcel contains cloud droplets, rain droplets,
or is within the first mixture component of the PDF. This “8Cat” variant allows a fine degree
of control over where the samples are placed.

Another variant has been created by lumping the eight separate categories into two: one
that contains either cloud or precipitation, and one that contains neither cloud nor precipita-
tion. This (“2Cat-CldPcp”) variant is useful when the user does not have an estimate of the
optimal sampling fraction for each of the eight categories.

We have tested the 8Cat and 2Cat-CldPcp methods on a drizzling cumulus case (RICO)
and a drizzling stratocumulus case (DYCOMS-II RF02). The improvement we find relies on
two aspects of the method. One aspect is an algorithm that limits the weight of samples and
thereby increases the number of samples in “unimportant” but large-probability categories.
This helps prevent a user from becoming overzealous with importance sampling, thereby
leaving excessive noise in “unimportant” categories. Another aspect is the choice of sam-
pling variable to prescribe. We prescribe ; (see Eq.[21), which is related to the density of
sample points in a category. This prescription allows the sampling to behave well as the
cloud fraction and precipitation fraction vary widely between stratocumulus and cumulus
cases.

The finer degree of control over the sampling in the nCat method allows us to improve
sampling in evaporating (i.e., precipitating but non-cloudy) regions. This turns out to be a key
to the improvement in the results. Evaporation of precipitation is an important process in the
RICO case, but precipitation evaporates within only a small portion of a grid box, a portion
that the nCat method can preferentially sample. Such fine-scale control of the sampling is
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not possible in less flexible methods, such as the former method in SILHS, 2Cat-Cld, which
does not allow importance sampling on precipitation.

Quantitative improvements are realized by the 2Cat-CldPcp and especially the 8Cat allo-
cations. As compared to the 2Cat-Cld method, the 8Cat allocation allows a reduction in the
number of sample points, given equal accuracy in the tendency of autoconversion plus ac-
cretion plus rain evaporation. The reduction is approximately a factor of 1.6 in DYCOMS-I|
RFO02 and a factor of 8 in RICO (see Figs.[f]and[5). This permits a factor of 1.6 to 8 fewer
calls to the microphysics code. If a computationally expensive microphysical parameteriza-
tion were used, this would result in a considerable reduction in computational cost.

Appendix A: Derivation of Optimal Allocation

The modified integral that is estimated by using importance sampling is given in Eq. (13).
The goal is to minimize the centered variance of the integrand, h(x)L(x), over the new
sampling PDF Q(x) (see Eq. . The variance of the integrand is given by:

var={ [ @)@ Qe)ie | - 2 (A1)
where (. is the value of the integral in Eq. (13). The integral in curly brackets (call it ) needs
to be minimized. The integral I can be split up over the N categories:

Neat
=3 [ @) ). (12)

1
J C]‘
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Then substituting for L (Eq.[9) and Q = P/L (Eq.[12), we find
Neat \ 2 S.

I= Z/[h(w)]2 (pf) (J) P(a)d
1 Sj Dbj
J= C;

Neat

:Z@) [ @) P(e)de. (A3)
j=1 > c;

For convenience of notation, we make a substitution:

_l $2 T )ax
= C/ [h(2)]? P()dz. (A4)

Here, v; is normalized by the probability p; of category C;. The quantity v; represents
the non-centered variance of the process rate h(x), averaged over category C;. Substitut-

ing Eq. into Eq. (A3), we find
Neat p2
J

Because v; is a within-category average, rather than a domain average, v; may be large
even when category C; represents a small fraction of the domain. Because v; depends on
the process rate h(x), v; varies by grid box and time step.

We would like to find values of S; that minimize Eq. . Since the modified probabilities
S; must sum to one, we can use a Lagrange multiplier, which we will denote A, and express
the problem as a minimization of the following function I):

Neat p2 Neat
I = Z(sﬂj)uj +A[{ DS -1 (A6)
j=1

j=1
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Next we set the Nca partial derivatives of I, with respect to each S; to zero:

I
oI =0. (A7)
95; Sii#£]
This yields
2
p i
_<S§>vj+x_o (A8)
J
Rearranging, we find
Pi\/Yi
S;= . A9
J \A ( )

Here, ,/v; may be interpreted as a sort of non-centered standard deviation of the process
rate h(x), averaged over category C;. The S; must sum to one, and so X is determined to
be

Neat
A= piver | (A10)
j=1
Hence
Piv/Yi (A11)

S; = —t——.
DTN
Code availability

The CLUBB-SILHS code is freely available for non-commerical use after register-

ing for an account on the website http:/clubb.larson-group.com. The specific ver-

sion of CLUBB-SILHS used in this paper is available in the SVN repository
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located at http://carson.math.uwm.edu/repos/clubb_repos/tags/SILHS_flex_importance_
sampling_paper _v2. In the repository is a file named README_flexiblesampling
which gives instructions for reproducing the plots in this paper.
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Table 1. For each of the eight categories, this table lists (1) the category number; (2) whether
the category is cloudy, in mixture component 1 or 2, or precipitating; (3) what inequalities must be
satisfied for a sample point to lie within the category; and (4) the original probability mass associated
with the category, p;.

Category Category description

Category selection criteria

Category probability p;

number

1 In cloud x>0 fe) X &y X foq)
In mixt. comp. 1 ug+1 < &)
In precip ug2 < fo(1)

2 In cloud x>0 fe) X &2) % fo2)
In mixt. comp. 2 ug1 2 &)
In precip ug+2 < fo(2)

3 Out of cloud x<0 (1= feqry) x &y X forn)
In mixt. comp. 1 ug+1 < &)
In precip Ugt2 < fo(1)

4 Out of cloud x <0 (1= fe2)) X &2 X for2)
In mixt. comp. 2 ug+1 2 &)
In precip ugy2 < fo(2)

5 In cloud x>0 fewy x €y x (1= fo)
In mixt. comp. 1 ug+1 < §q)
Out of precip Udt2 2 fo(1)

6 In cloud x>0 fe2) X&) x (1= fo)
In mixt. comp. 2 ug+1 > &)
Out of precip Ud2 > fo(2)

7 Out of cloud x<0 (1= fey) x §uy x (1= o)
In mixt. comp. 1 ugy1 < &)
Out of precip Ud+2 2 fo()

8 Out of cloud x<0 (1= fe@)) X &2y x (1= fo)
In mixt. comp. 2 ug1 > &)
Out of precip Udt2 2 fo(2)
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Table 2. Notable configuration settings for the RICO and DYCOMS-II RF02 simulations performed

in this paper.
RICO DYCOMS-II RF02
Timestep (s) 300 60
Vertical levels 128 160
Vertical grid spacing (m) 25-250 10
Radiation None Analytic longwave (Larson et al.,|2007)
Cloud droplet concentration (m—3) 70 x 10 55 x 10°
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Table 3. Estimated optimal sampling fractions (;) for each importance category, averaged over the
entire simulation, for the RICO and DYCOMS-II RF02 cases. These estimates were obtained by
using SILHS to estimate the right-hand side of Eq. for each category. Here “c” denotes “in-

cloud”, “nc” denotes “out of cloud”, “p” denotes “in-precipitation”, “np” denotes “out of precipitation”,
“1” denotes “in mixture component 1”7, and “2” denotes “in mixture component 2”.

Category 1 2 3 4 5 6 7 8
(ep1) (cp2) (nepd) (nep2) (cnpd) (cnp,2) (ncnpd1) (nc,np,2)
RICO 0.539 0.004 0.223 0.203 0.033 0.004 0.000 0.000

DYCOMS-II RF02 0.351 0.143 0.238 0.061 0.140 0.070 0.000 0.000
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Table 4. RICO: Percentage of sample points allocated to each category by each sampling method
at the importance sampling level, time-averaged over the entire simulation. The more sample points
placed in a particular category, the better the estimate of processes active in that category.

Category 8Cat 2Cat-CldPcp 2Cat-Cld LH-only

(c,p,1) 12.1 5.7 13.6 0.3
(c,p,2) 0.03 0.03 0.04 0.02
(nc,p,1) 16.1 11.0 0.3 0.5
(nc,p,2) 7.9 18.8 0.4 0.7
(c,np,1) 14.8 15.4 36.0 0.7
(c,np,2) 0.2 0.3 0.4 0.2
(nc,np,1) 0.7 0.7 0.7 1.3
(nc,np,2) 48.2 48.2 48.7 96.3
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Table 5. DYCOMS-II RF02: Percentage of sample points allocated to each category by each sam-
pling method at the importance sampling level, time-averaged over the entire simulation. The more
sample points placed in a particular category, the better the estimate of processes active in that
category.

IodeJ UOISSNoSI(]

Category 8Cat 2Cat-CldPcp 2Cat-Cld LH-only

(c,p,1) 57.3 35.0 35.1 35.1 o
(c,p,2) 41.2 63.0 63.0 63.1 -
(nc,p,1) 0.5 0.5 0.5 0.5 z
(nc,p,2) 0.2 0.3 0.3 0.3 z
(c,np,1) 0.6 0.7 0.7 0.7 )
(c,np,2) 0.2 0.4 0.4 0.4 -
(nc,np,1) 0 0 0.01 0.02 =
(nc,np,2)  0.03 0.04 0.07 0.07 &
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Table 6. Number of sample points needed by each configuration of SILHS to achieve a given RMSE
in estimating the sum of the three processes, for the RICO and DYCOMS-II RF02 cases. These
numbers are estimated visually from Figs. 1| and [5| In RICO, the 2Cat-CldPcp method requires
approximately a factor of 4 fewer sample points than the 2Cat-Cld method to achieve an RMSE
of 1078 kg kg~!, and 8Cat method requires approximately a factor of 8 fewer sample points. In
DYCOMS-II RF02, the 8Cat method requires approximately a factor of 1.6 fewer sample points than
the 2Cat-CldPcp, 2Cat-Cld, and LH-only methods to achieve an RMSE of 4 x 107° kg kg .

Method Samples for Samples for 4 x 10~°
108 RMSE (RICO) RMSE (DYCOMS-II RF02)

LH-only ~ 700 13

2Cat-Cld 65 13

2Cat-CldPcp 15 13

8Cat 8 8
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Table 7. Cumulative run time of CLUBB and the different SILHS configurations over an 864-timestep
RICO simulation. Each SILHS configuration uses 8 sample points. The means and standard devi-
ations of five simulations are shown in the table. All times are in seconds. The two nCat methods
(2Cat-CldPcp and 8Cat) show no significant increase in computation time as compared to the orig-
inal SILHS importance sampling method. All SILHS methods, with eight sample points, are more
expensive than CLUBB.

Average Time [s] Std. Dev [s]

CLUBB 0.311 0.007
SILHS (old) 0.691 0.013
SILHS (2Cat-CldPcp)  0.701 0.013
SILHS (8Cat) 0.698 0.007
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Figure 1. RICO: the root-mean-square error (RMSE) at the importance sampling level of SILHS
simulations as a function of the number sample points, for the RICO cumulus case. The error is time-
averaged over the entire simulation. The 2Cat-CldPcp and 8Cat methods show a large improvement
over the 2Cat-Cld and LH-only methods in the estimate of evaporation, but not for autoconvesion
and accretion, which are in-cloud processes. Nevertheless, the 8Cat and 2Cat-CldPcp methods both
impove the estimate of the sum of the three processes.
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Figure 2. RICO: timeseries plots of the four tendencies at the importance sampling level. The sim-
ulations in these plots use 32 sample points, and the plots show minutes 3321 to 4320 of the sim-
ulations. To improve readibility, the LH-only method is not plotted. The evaporation tendencies are
much more noisy in the 2Cat-Cld method than in the 2Cat-CldPcp or 8Cat methods.
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Figure 3. RICO: mean profile plots of the four tendencies. The simulations in these plots use 32
sample points. For each configuration, an ensemble of 12 simulations is used, each with a different
seed. Profiles are averaged over all 864 timesteps of the simulation and all 12 ensemble members.
It is seen that all SILHS sampling methods are clearly convergent at all height levels.
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Figure 4. RICO: profile RMSE plots of the four tendencies. The simulations in these plots use 32
sample points. For each configuration, an ensemble of 12 simulations is used, each with a different
seed. RMSE values are averaged over all 864 timesteps of the simulation and all 12 ensemble
members. The 8Cat and 2Cat-CldPcp methods show improvement between 1000 m and 2500 m,
where the improvement in sampling of the evaporation term is largest. All three methods suffer from
extra noise below 1000 m, which is far away from the importance sampling level. The importance
sampling level is just under 2000 m for most timesteps in the simulation.
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Figure 5. DYCOMS-II RF02: the root-mean-square error (RMSE) of SILHS simulations as a function
of sample points for the DYCOMS-1I RF02 stratocumulus case. The error is calculated at the impor-
tance sampling level and is averaged over all timesteps of the simulation. The LH-only, 2Cat-Cld, and
2Cat-CldPcp methods are expected to have roughly the same behavior in a case like DYCOMS-II
RFO02 that has cloud fraction near 100 %. The 8Cat method still improves the estimates of autocon-
version and accretion because it is able to flexibly allocate points within the cloudy region of the
sample space.
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Figure 6. DYCOMS-II RF02: timeseries plots of the four tendencies at the importance sampling level.
The simulations in these plots use 32 sample points. The time range plotted includes minutes 161 to
360 of the simulation. The evaporation process is poorly sampled in all three sampling methods, but
it is a relatively small term and makes a much smaller contribution to the sum of the three processes

than autoconversion and accretion.
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Figure 7. DYCOMS-II RF02: mean profile plots of the four tendencies. The simulations in these plots
use 32 sample points. For each configuration, an ensemble of 12 simulations is used, each with
a different seed. Profiles are averaged over all 360 timesteps of the simulation and all 12 ensemble
members. It is seen that all SILHS sampling methods are clearly convergent at all height levels. All
of the lines overlap well, indicating that all three processes are sampled well by all three sampling
methods.
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Figure 8. DYCOMS-II RF02: profile RMSE plots of the four tendencies. The simulations in these
plots use 32 sample points. For each configuration, an ensemble of 12 simulations is used, each
with a different seed. RMSE values are averaged over all 360 timesteps of the simulation and all 12
ensemble members. All sampling methods show the largest RMSE at around 800 m. At this level,
the 8Cat method shows smaller error in autoconversion and accretion, but all methods show about
the same error in evaporation.
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