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Abstract

An inverse transport modeling approach based on the concepts of sequential importance
resampling and parallel computing is presented to reconstruct altitude-resolved time series
of volcanic emissions, which often can not be obtained directly with current measurement
techniques. A new inverse modeling and simulation system, which implements the inver-5

sion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations
(MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide
(SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations,
i. e., large-scale ensemble unit simulations for the reconstruction of volcanic emissions and
final transport simulations final forward simulations. TheBoth types of transport simulations10

are based on wind fields of the ERA-Interim meteorological reanalysis of the European
Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent
SO2 emission time series is also based on Atmospheric InfrarRed Sounder (AIRS) satellite
observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011,
with complex emission patterns, is considered for method validation. Meteosat Visible and15

InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal
development of the reconstructed emissions. Furthermore, the altitude distributions of the
emission time series are compared with top and bottom altitude measurements of aerosol
layers obtained by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) and the
Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments.20

The final transport simulations final forward simulations provide detailed spatial and tempo-
ral information on the SO2 distributions of the Nabro eruption. The SO2 column densities
from the simulations are in good qualitative agreement with the AIRS observations. By us-
ing the Critical Success Index (CSI), the simulation results are evaluated with the AIRS
observations. Compared to the results with an assumption of a constant flux of SO2 emis-25

sions, our inversion approach leads to an improvement of the mean CSI value from 8.1%
to 21.4% and the maximum CSI value from 32.3% to 52.4%. The simulation results are also
compared with those reported in other studies and good agreement is observed. Our new
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inverse modeling and simulation system is expected to become a useful tool to also study
other volcanic eruption events.

1 Introduction

Observing trace gases and ash released by volcanic eruptions is important for various
reasons. Most notably, sulfate aerosols formed by oxidation of SO2 have significant impact5

on radiative forcing and are a natural cause for climate variations (Lamb, 1970; Robock,
2000; Solomon et al., 2011). Strong volcanic eruptions inject SO2 directly into the lower
stratosphere. However, more complex transport processes such as the Asian Monsoon
circulation have also been investigated (Bourassa et al., 2012; Fromm et al., 2013; Vernier
et al., 2013). Further motivation to monitor the dispersion of volcanic emissions is to prevent10

aircraft from entering potentially dangerous regions, i. e., flight corridors containing high
loads of volcanic ash (Casadevall, 1994; Carn et al., 2009; Prata, 2009; Brenot et al., 2014).
In practice, the presence of volcanic SO2 can often be considered as a good proxy for the
presence of volcanic ash (Sears et al., 2013), although in some cases different transport
directions of SO2 and ash were also observed because of different injection altitudes and15

vertical wind shear (Moxnes et al., 2014).
Satellite instruments are well suited to observe trace gases and aerosols on a global

scale and to provide long-term records. Together, volcanic SO2 and sulfate aerosols pro-
vide excellent tracers to study atmospheric transport processes. In order to further improve
the quality of available satellite data, e. g., to perform more effectual suppression of inter-20

fering background signals, we recently contributed to the development of new detection
algorithms for volcanic emissions for European Space Agency (ESA) and National Aero-
nautics and Space Administration (NASA) satellite experiments (Griessbach et al., 2012,
2014; Hoffmann et al., 2014; Griessbach et al., 2015). In order to further improve the qual-
ity of available satellite data, e. g., to perform more effectual suppression of interfering25

background signals, new detection algorithms for volcanic emissions for European Space
Agency (ESA) and National Aeronautics and Space Administration (NASA) satellite exper-
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iments have been developed and are used in this study (Griessbach et al., 2012, 2014;
Hoffmann et al., 2014; Griessbach et al., 2015). However, satellite observations are of-
ten limited in temporal and spatial resolution due to their measurement principles. There-
fore, atmospheric models are indispensable to study transport processes. In particular, La-
grangian particle dispersion models enable studies of transport and mixing of air masses5

based on the trajectories of individual air parcels. Widely used models are the Flexible
Particle (FLEXPART) model (Stohl et al., 2005), the Hybrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model (Draxler and Hess, 1998), and the Lagrangian Analysis
Tool (LAGRANTO) (Wernli and Davies, 1997), and the Numerical Atmospheric-dispersion
Modeling Environment (NAME) (Jones et al., 2007). Recently, Massive-Parallel Trajectory10

Calculations (MPTRAC), a new Lagrangian transport model that is designed for large-scale
ensemble simulations on state-of-the-art supercomputers, was developed at the Jülich Su-
percomputing Centre. A detailed description of MPTRAC and a comparison of the results
of transport simulations for three volcanic emission events by means of different, freely
available meteorological data products, can be found in Hoffmann et al. (2016).15

Suitable initializations of the trajectory model, namely the altitude- and time-resolved
emission data, are crucial for accurate and reliable simulations of the transport of volcanic
SO2 emissions. However, emissions usually can only be reconstructed indirectly, for in-
stance, by empirical estimates from weather radar measurements (Lacasse et al., 2004),
by estimation techniques based on satellite data (Flemming and Inness, 2013; Hoffmann et20

al., 2015) or by inverse modeling techniques. or by using satellite data (Theys et al., 2013;
Clarisse et al., 2014; Hoffmann et al., 2016). The work of Flemming and Inness (2013)
used satellite retrievals of SO2 total columns to estimate initial conditions for subsequent
SO2 plume forecasts by applying the Monitoring Atmospheric Composition and Climate
(MACC) system (Stein et al. 2012) that is an extension of the 4D-VAR system of the Eu-25

ropean Centre for Medium Range Weather Forecasts (ECMWF). In particular, we We refer
to previous work (Eckhardt et al., 2008; Stohl et al., 2011; Kristiansen et al., 2012, 2015)
on inverse transport modeling techniques in the context of estimating volcanic emissions.
Those studies used an analytical inversion algorithm, based on Seibert (2000), for the re-
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construction of volcanic ash or SO2 emission rates. The inversion approach was applied to
several case studies such as the 2010 Eyjafjallajökull and the 2014 Kelut eruptions. With
respect to the mathematical setting, the estimation task was formulated as a linear inverse
problem. To resolve the ill-posedness of this problem, a Tikhonov-type regularization con-
straint was added. A Tikhonov-type regularization method (Tikhonov and Arsenin, 1977;5

Seibert, 2000) was used to resolve the ill-posedness of the inverse problem. The objective
function of the problem defined for the minimization problem quantifies the misfit between
model values and observations, but also enforces smoothness of the solution. Several pa-
rameters such as the matrix of model sensitivities of observations to source terms and the
regularization parameters that tune the smoothness of the solution needed to be provided10

a priori. Other work such as Flemming and Inness (2013) used satellite retrievals of SO2

total columns to estimate initial conditions for subsequent SO2 plume forecasts by applying
the Monitoring Atmospheric Composition and Climate (MACC) system (Stein et al., 2012),
which is an extension of the 4D-VAR system of the European Centre for Medium Range
Weather Forecasts (ECMWF).15

In this paper, we present a new inverse modeling and simulation system that can be used
to establish reliable transport simulations for volcanic SO2 emissions with available meteoro-
logical data and nadir satellite observations. The core of the system, an inversion approach
based on the concept of sequential importance resampling (Gordon et al., 1993), is used to
reconstruct altitude-dependent time series of volcanic emissions. It assumes that the vol-20

canic SO2 emissions distribute not only vertically above the location of the volcano (typically
from 0 up to 30 km altitude), but also over a period of time (typically for a couple of days).
For the numerical computation, a temporal and spatial initialization domain for the volcanic
emissions is selected and finely discretized. The fine temporal and spatial discretization
of this domain creates a need for large-scale ensemble simulations. However, this setting25

is well suited for massive-parallel supercomputing architectures. For the numerical com-
putation, we discretized the emission domain as finely as technically feasible in order to
reveal local details of the SO2 emissions at high temporal and spatial resolution. This way,
we expect to obtain more reliable simulation results. The fine discretization increases de-
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mands on computing capabilities. Nevertheless, the resulting large computational effort can
be handled by our solution approach that is well suited for massive-parallel supercomput-
ing architectures. The time- and altitude-dependent volcanic emission rates are estimated
efficiently iteratively by performing the ensemble simulations a large number (> 10000) of
unit simulations in parallel with MPTRAC. A distinct advantage is that the proposed inverse5

modeling and simulation system does not require an explicit source–receptor relationship
and that its flexible design is independent of the choice of Lagrangian particle dispersion
model, as long as the forward model can be applied to perform large-scale ensemble sim-
ulations. A distinct advantage of this approach is that the proposed inverse modeling and
simulation system requires no a-priori information on the emissions and does not require10

the calculation of the full source-receptor matrix. We considered a much finer discretization
for the unknown time- and altitude-dependent emission function (250 m in altitude and 1 h
in time in our case, about 2–3 km and more than 6 h in the case of Flemming and Inness
(2013), and 19 vertical layers stacked up to 12.3 km altitude and 3 h time intervals in the
case of Stohl et al. (2011)). We did not find a need to solve the ill-posed inverse problem15

by means of a Tikhonov or smoothing constraint. Furthermore, the Critical Success Index
(CSI) was used here for the first time to evaluate the goodness-of-fit of the forward sim-
ulations and to estimate the importance weights of the time- and altitude-dependent SO2

emission distribution. This way, we were able to provide relative distributions of the emis-
sions in a two-dimensional view (in time and altitude) and its local details at relatively high20

(or even unprecedented) temporal and spatial resolution.
This paper is organized as follows: We first briefly introduce the Lagrangian transport

model MPTRAC, the ERA-Interim meteorological data product, the AIRS satellite observa-
tions, and other validation data sets in Sect. 2. In Sect. 3, we present the concept of our new
inverse modeling and simulation system, which applies uses an efficient parallel strategy to25

perform large-scale ensemble simulations for the reconstruction of volcanic emissions and
to establish reliable SO2 transport simulations. In Sect. 4, we focus on a case study of the
Nabro volcano, Eritrea, whose eruption started on 12 June 2011 and lasted several days.
Firstly, the reconstructed altitude-resolved time series of volcanic emissions are discussed

6
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and validated with MVIRI infrared imagery and CALIOP and MIPAS aerosol measurements.
Secondly, forward simulation results based on these initial conditions are compared evalu-
ated with the AIRS satellite observations. A comparison of the simulations results with those
reported in the studies of Theys et al. (2013) and Clarisse et al. (2014) is also included. Our
conclusions are given in the final section.5

2 Transport model and satellite data products

2.1 MPTRAC

In this study we make use of the Lagrangian transport model MPTRAC (Hoffmann et al.,
2016) for the forward simulations. MPTRAC calculates the trajectories for large num-
bers of air parcels to represent the advection of air. The kinematic equation of motion is10

solved with the explicit midpoint method (Hoffmann et al., 2016). Atmospheric diffusion
is represented by adding random perturbations to the air parcel trajectories. The physi-
cal parameterizations for turbulent diffusion and sub-grid wind fluctuations are based on
a Markov model. Diffusion and subgrid-scale wind fluctuations are simulated following the
approach of the FLEXPART model (Stohl et al., 2005; Hoffmann et al., 2016). A hybrid-15

parallelization scheme based on the Message Passing Interface (MPI) and Open Multi-
Processing (OpenMP) is implemented in MPTRAC. The MPI distributed memory paralleliza-
tion is applied to facilitate ensemble simulations by distributing the ensemble members on
the different compute nodes of a supercomputer. Trajectory calculations of an individual en-
semble member are distributed over the cores of a compute node by means of the OpenMP20

shared memory parallelization. This implementation enables rapid forward simulations for
ensembles with large numbers of air parcels (typically on the order of 102 to 104 members
per ensemble, with 106 to 108 air parcels per ensemble member). Moreover, MPTRAC pro-
vides efficient means for model output and data visualization. For further details we refer to
the work of Hoffmann et al. (2016).25

7
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External meteorological data are a prerequisite for the trajectory calculations with
MPTRAC. We use the latest global atmospheric reanalysis produced by ECMWF, namely
the ERA-Interim data product (Dee et al., 2011). A large variety of 3 hourly surface param-
eters and 6 hourly upper-air parameters that cover the troposphere and stratosphere are
included in the data product. Here, the ERA-Interim standard data on a 1◦× 1◦ longitude-5

latitude grid are applied. The altitude coverage ranges from the surface to 0.1 hPa with
60 model levels. The vertical resolution in the upper troposphere and lower stratosphere
(UT/LS) region varies between 700 and 1200 m. The 6 hourly temporal resolution corre-
sponds to data assimilation cycles at 00:00, 06:00, 12:00, and 18:00 UTC. A discussion of
the analysis increments of the ERA-Interim data, being a figure of merit for the data quality,10

can be found in Dee et al. (2011). Including a case study for the Nabro eruption, Hoffmann
et al. (2016) showed that ERA-Interim data provided the best good performance in the
Lagrangian transport simulations of volcanic SO2 with MPTRAC in comparison with three
other meteorological data products.

2.2 AIRS15

For inversely estimating the volcanic emissions and for validating the simulation results,
we use satellite observations of volcanic SO2 obtained by the AIRS instrument (Aumann
et al., 2003; Chahine et al., 2006) aboard NASA’s Aqua satellite. Aqua is in a nearly po-
lar, sun-synchronous orbit with Equator-crossing at 01:30 a.m. and 01:30 p.m. local time.
Scans in the across-track direction are carried out by means of a rotating mirror. Each scan20

consists of 90 footprints that correspond to 1765 km distance on the ground surface. Two
adjacent scans are separated by 18 km along-track distance. While the AIRS footprint size
is 13.5km× 13.5 km at nadir, it is 41km× 21.4 km at the scan extremes. Thermal infrared
spectra (3.7 to 15.4 µm) for more than 2.9 million footprints are measured by AIRS per day.

Volcanic SO2 can be detected efficiently from infrared radiance spectra based on bright-25

ness temperature differences (BTDs) (e. g., Karagulian et al., 2010; Clarisse et al., 2013).
Here we use the BTD identified by Hoffmann et al. (2014) to detect SO2 from AIRS 7.3 µm
radiance measurements and apply their derived SO2 index (SI) in our study. False detec-

8
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tions related to scenes with low brightness temperatures due to deep convective clouds
are filtered based on the detection scheme of Hoffmann and Alexander (2010). Hoffmann
et al. (2014) demonstrated that their SI is better capable of suppressing background sig-
nals than the NASA operational SI and is well suited to trace even low SO2 concentrations
over long time periods. Note that the AIRS data product that is used here provides only5

horizontally projected values, i. e., no vertical information on the SO2 distributions is directly
available. The AIRS data product provides SO2 indices for atmospheric columns, i.e., no
vertical profile information on the SO2 distributions is directly available. However, radiative
transfer calculations showed (Hoffmann and Alexander, 2009; Hoffmann et al., 2016) that
the SI of Hoffmann et al. (2014) is most sensitive to SO2 layers at about 8 to 13 km altitude.10

Besides, nearly global coverage can only be achieved every 12 hours and there is infor-
mation lacking for uncovered regions between the satellite scans. Note that the AIRS data
product considered here has low noise, i.e., about 0.14 K at 250 K scene temperature.

2.3 Validation data sets

For validation of the temporal development of the reconstructed emissions, we consider15

infrared (IR, 11.5 µm) and water-vapor (WV, 6.4 µm) radiance data products from the Me-
teosat Visible and InfraRed Imager (MVIRI) aboard Eumetsat’s Meteosat-7 (Indian Ocean
Data Coverage, IODC).1 MVIRI provides radiance images in three spectral bands from the
full earth disc at 5km×5km resolution (sub-satellite point) every 30 min. The MVIRI IR band
overlaps with a spectral window region and is used for imaging surface and cloud top tem-20

peratures at day and night. The MVIRI WV absorption band is mainly used for determining
the amount of water vapour in the upper troposphere. This band is opaque if water vapour
is present, but transparent if the air is dry. The WV band can effectively be used to detect
volcanic emissions in the upper troposphere because emissions from lower altitudes are
blocked by water vapor absorption.25

1Browse images from http://oiswww.eumetsat.org/IPPS/html/MTP (last access: 10 July 2015).
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To verify the altitude distribution of the volcanic emissions we consider aerosol measure-
ments from the CALIOP instrument aboard the Cloud–Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) satellite (Winker et al., 2010).2 The spatial resolution of
the CALIOP data is 1.67 km (horizontal)×60 m (vertical) at 8 to 20 km altitude. We also con-
sider aerosol top and bottom altitude measurements from the Michelson Interferometer for5

Passive Atmospheric Sounding (MIPAS) aboard the Environmental Satellite (Envisat) (Fis-
cher et al., 2008; Griessbach et al., 2015). The spatial sampling of MIPAS in the nominal
operation mode during the years 2005 to 2012 was 410 km (horizontal)×1.5 km (vertical) at
6 to 21 km altitude (Raspollini et al., 2013). MIPAS has lower spatial resolution than CALIOP,
but it is more sensitive to low aerosol concentrations due to the limb observation geometry.10

We also consider the work of Theys et al. (2013) and Clarisse et al. (2014) for further
validation of the reconstructed emissions as well as the forward simulation results. Satellite
observations such as the second Global Ozone Monitoring Experiment (GOME-2) and the
Infrared Atmospheric Sounding Interferometer (IASI) data sets were used in case studies,
including the volcanic eruption of the Nabro in 2011. GOME-2, a UV/visible spectrome-15

ter covering the 240–790 nm wavelength interval with a spectral resolution of 0.2–0.5 nm
(Munro et al., 2006), measures the solar radiation backscattered by the atmosphere and
reflected from the surface of the Earth in a nadir viewing geometry. The instrument is in a
sun-synchronous polar orbit on board the Meteorological Operational satellite-A (MetOp-A).
It has an Equator crossing time of 09:30 local time on the descending node. The ground20

spatial resolution is about 80 km × 40 km and the full width of a GOME-2 scanning swath
is 1920 km, which allows nearly daily global coverage. IASI was launched in 2006 on board
MetOp-A (Clerbaux et al., 2009; Hilton et al., 2012). Global nadir measurements are ob-
tained twice a day (at 09:30 and 21:30 mean local equatorial time). Its footprint ranges from
a small to medium size, a 12 km diameter circle at nadir and an ellipse with 20 and 39 km25

axes at the scan extremes. Measurements of many trace gases including SO2 are available
from the IASI instrument (Clarisse et al., 2011).

2Browse images at http://www-calipso.larc.nasa.gov/products/lidar/browse_images/production
(last access: 10 July 2015).

10

http://www-calipso.larc.nasa.gov/products/lidar/browse_images/production


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

3 Inverse modeling and simulation system

3.1 Inversion by means of sequential importance resampling

A flow chart of the inverse modeling and simulation system proposed in this paper is
shown in Fig. 1. Important system inputs consist of a specification of the time- and altitude-
dependent domain for SO2 emissions, the total number of air parcels for the final forward5

simulation, the satellite data, and the meteorological data. The Lagrangian transport model
MPTRAC is used to perform ensemble forward unit simulations in a parallel manner. In
this study, an inversion approach based on the concept of sequential importance sampling
(Gordon et al., 1993) in combination with different resampling strategies is proposed to iter-
atively estimate the volcanic SO2 emission rates the relative distribution of the volcanic SO210

emissions. Sequential importance resampling is a special type of particle filter (Del Moral,
1996) that is used to estimate the posterior density of state variables given indirect obser-
vations. The method approximates the probability density by a weighted set of samples.
Here we infer the probability density of “hidden” variables (i.e., the SO2 emissions at the
volcano) based on indirect observations (AIRS detections of the SO2 plume). The method15

provides the relative distribution of the SO2 emissions. The SO2 emission rates can then
be calculated by assuming that the total SO2 mass is known a-priori. The emission rates
together with the final SO2 transport simulations Together with the final forward simulation
results, the emission rates are the main output of the system.

We assume that the volcanic SO2 emissions occur in a time- and altitude-dependent20

domain E := [t0, tf ]×Ω. Here t0 and tf denote the initial and final time of possible emis-
sions, and Ω := [λc− 0.5∆λ,λc + 0.5∆λ]× [φc− 0.5∆φ,φc + 0.5∆φ]× [hl,hu] corresponds
to a rectangular column oriented vertically and centered over the volcano. The horizontal
coordinates for the volcano are defined by geographic longitude λc and geographic latitude
φc. Note that ∆λ and ∆φ can be varied to control the area of the horizontal cross-section25

of the column for a particular simulation. hl and hu represent the lower and upper boundary
of the altitude range used to constrain the emissions. We discretize the domain E along
the time axis and the altitude axis with nt and nh uniform intervals, respectively. This leads

11
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to N = nt ·nh disjoint subdomains, for which we perform N parallel “unit simulations”, cor-
respondingly. Each unit simulation is conducted with an initialization of a given number of
air parcels emitted in only one of the disjoint subdomains of E. We refer to the set of all
unit simulations at one iteration of the inversion procedure as an “ensemble simulation”. In
the iterative inversion procedure, a number of ensemble simulations are usually required to5

obtain suitable volcanic emission rates.
The N unit simulations at each iteration can be considered as a weighted set of parti-

cles, {(wij , sij), i= 1, . . . ,nt, j = 1, . . . ,nh}, with sij and wij representing the hidden ini-
tialization and the relative posterior probabilities of the occurrence of the air parcels for the
(i, j)th-unit simulation, respectively. The importance weights wij have to satisfy the normal-10

ization condition
∑nt

i=1

∑nh
j=1wij = 1. By rearranging the importance weights in matrix form,

we obtain W = (wij)i=1,...,nt;j=1,...,nh
and use this notation in the subsequent sections. This

way, the task of reconstructing the altitude-resolved time series of the volcanic emissions
from satellite observations mathematically turns into the task of iteratively estimating the
importance weight matrix W. In order to find more realistic importance weights that reflect15

the relative distribution of emissions in the subdomains, unit simulations then have to be
performed to estimate importance weights in an iterative scheme. Changes in the impor-
tance weights indicate how many air parcels should be reassigned to each subdomain and
considered as new initial conditions for the next iteration. In our case, after 1-2 iterations
we can already obtain rather stable importance weights that lead to good simulation re-20

sults. Nevertheless, in order to establish a robust computational procedure, we defined a
stopping criterion for the iterative update process (see Sect. 3.3 for details). Based on the
importance weights obtained in the final iteration, the total number of SO2 air parcels for the
possible emissions are is redistributed in the entire initialization domain. With the recon-
structed emission time series, the final transport simulations final forward simulations are25

performed.
Our inverse modeling approach is summarized in Algorithm 1. We first discretize the time-

and altitude-dependent domain for SO2 emissions and initialize air parcels in all subdomains
with equal probability, i. e., distribute them in time and space uniformly (steps 1–2). Then,

12
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as the core part of the system, an iterative procedure (steps 3–6) is used to update the
importance weights by performing unit simulations and applying different weight-updating
schemes (see details below). The iterative procedure ends when a given termination crite-
rion (step 6) is satisfied. Finally, we use the calculated importance weights to resample the
SO2 air parcels in all subdomains and summarize the information in the entire initialization5

domain (step 7). With the reconstructed initializations, the final transport simulations final
forward simulations are performed (step 8).

3.2 A measure of goodness-of-fit for forward simulations

To evaluate the goodness-of-fit of the forward simulations and to estimate the importance
weights wij , we use the Critical Success Index (CSI) (Donaldson et al., 1975; Schaefer,10

1990), adapting the approach presented by Hoffmann et al. (2016). The CSI is a frequently
used measure to validate simulations of volcanic eruption events (Stunder et al., 2007; We-
bley et al., 2009; Harvey et al., 2016). The CSI measures the agreement between the model
forecasts and the satellite observations by comparing the spatial extent of the modeled and
observed SO2 plumes over time. Model and observation data are analyzed on a 1◦× 1◦15

longitude–latitude grid, accumulated over 12 h time periods. At mid and low latitudes there
are typically two satellite overpasses per day (at 01:30 and 13:30 local time). An accumu-
lation time interval shorter than 12 h may lead to time periods in the CSI analysis during
which the satellite observations do not cover the volcanic plume at all. Therefore 12 h is a
reasonable minimum time period for this analysis. A model forecast is classified as “pos-20

itive” if the SO2 amount in a grid box exceeds a certain threshold (for instance, 0.1 % of
the assumed total SO2 mass of all parcels in this case). Likewise, a satellite observation
is classified as positive if the mean SI of the AIRS footprints within a grid box exceeds
a given threshold. Here we use 2 K, which approximately corresponds to 4 DU (Dobson
Units; 1DU = 2.85× 10−5 kg m−2) in terms of SO2 column density (Hoffmann et al., 2014).25

The CSI is calculated based on event counts of positive and negative model forecasts
and satellite observations, respectively. To calculate the CSI, a 2× 2 contingency table of
the event counts is created first. By denoting the number of positive forecasts with positive

13



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

observations as cx, the number of negative forecasts with positive observations as cy, and
the number of positive forecasts with negative observations as cz, the CSI is defined as

CSI = cx/(cx + cy + cz). (1)

The CSI provides the ratio of successful forecasts (cx) to the total number of forecasts that
were actually made (cx + cz) or should have been (cy). Note that the fourth element of the5

2× 2 contingency table, the number cw of negative forecasts with negative observations,
is not considered in the definition of the CSI. Although cw is neglected to simply avoid
cases of no interest, it should be noted that this causes the CSI to be a biased indicator of
forecast skills (Schaefer, 1990). Alternative ways to evaluate the forward simulations such
as the False Alarm Rate (FAR), namely the ratio of wrong predictions to the total number of10

forecasts,

FAR = cz/(cx + cz), (2)

and the Probability Of Detection (POD), denoting the ratio of observations that are correctly
forecasted to the total number of observations,

POD = cx/(cx + cy), (3)15

can also provide relevant information in addition to the CSI.
Since we compare simulation results with satellite observations on a discrete-time finite

horizon (12 h time intervals), for each unit simulation the CSI values obtained at different
times tk can be summarized as a data vector of length nk. We denote the data vector for
the (i, j)th-unit simulation as (CSIijk ) with k = 1, . . . ,nk for later use in subsequent sections.20

3.3 Iterative update of importance weights and resampling strategies

A straightforward scheme for updating the importance weights wij is given by

wij =mij/

nt∑
a=1

nh∑
b=1

mab, (4)
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where the measure mij is defined as

mij = (

nk∑
k=1

CSIijk )/nk. (5)

Here, nk denotes the total number of the time instants of satellite data (12 h intervals) that
are used for computing the CSI values. This measure considers an equal weighting of
the obtained CSI values of the time series data. As will be shown in Sect. 4, the weight-5

updating scheme defined by Eqs. (4) and (5), referred to as “mean rule” below, leads to
simulations that can capture the basic transport dynamics for the Nabro case study pretty
well. However, by definition any non-zero CSI value over the entire observation time period
will result in a non-zero importance weight and hence it can not fully exclude cases in which
emissions are actually not likely to occur at all. A few representative examples concerning10

this issue will be shown in Sect. 4.2.
In practice, new SO2 emissions and already present SO2 emissions from earlier times

are often hard to be distinguished in an initial time period, but they are often more clearly
separated at later times. Therefore, an improved measure is suggested here as

mij =

n′
k∑

k=1

CSIijk

n′k
·

nk∑
k=n′

k+1

CSIijk

nk−n′k
, 1≤ n′k < nk, (6)15

where n′k is considered as a “split point” for the CSI time series. As will be demonstrated
in Sect. 4, the weight-updating scheme defined by Eqs. (4) and (6), referred to as “product
rule”, can capture not only the basic but also the fine details of the SO2 transport for the
Nabro case study. This is achieved by putting a stronger “and” constraint on the first and
second period of the CSI time series. Successful model forecasts in only one of the two20

time periods will not lead to high importance weights. This way, unlikely local emission
patterns can be detected better and excluded, leading to more accurate simulations both
globally and locally. Note that the length of the initial time period might be different for each

15
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particular volcanic eruption. The split point is chosen at 48 h for the simulations presented
here. Nevertheless, the general setting of Eq. (6) allows to control the trade-off between
both time periods by tuning n′k accordingly.

In each iteration of the inversion procedure the measures and corresponding weight-
updating schemes based on the CSI data vectors of all unit simulations are evaluated.5

Furthermore, the numbers of SO2 air parcels in all subdomains (i.e., the discretized grid
boxes of the initialization domain along the time axis and the altitude axis) are scaled linearly
with the corresponding importance weights. This resampling step redistributes the total
SO2 mass of all air parcels between the subdomains, according to the current importance
weights. The iterative procedure ends when the change of importance weight matrices of10

successive iterations becomes sufficiently small. To quantify the change we use the relative
difference d calculated as

d(Wl+1,Wl) =
||Wl+1−Wl||F

max(||Wl+1||F, ||Wl||F)
, l ≥ 1, (7)

where l denotes the iteration number and || · ||F corresponds to the Frobenius norm,

||Wl||F =

√√√√ nt∑
i=1

nh∑
j=1

|wlij |2. (8)15

We selected a threshold of 1 % for the relative difference d in our simulations. In the Nabro
case study the final importance weights were obtained after 3 iterations.

4 Nabro case study

4.1 Simulation setup

The Nabro is a stratovolcano located at (13◦22′N, 41◦42′ E) in Eritrea, Africa. There were20

no historical eruptions recorded before June 2011. However, at about 20:30 UTC on 12
16
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June 2011, a series of earthquakes resulted in a strong volcanic eruption. Volcanic activity
lasted over 5 days and various plume altitudes occurred. Clarisse et al. (2012) reported
a total SO2 mass of approximately 1.5×109 kg in the UT/LS region based on measurements
by the Infrared Atmospheric Sounding Interferometer (IASI). As a significant amount of
ash was emitted, some regional flights had to be cancelled.3 Due to the complexities of5

its emission patterns and transport processes related to the Asian monsoon circulation,
we consider the Nabro eruption as an excellent example to validate our inverse modeling
approach.

As described in Sect. 3, we here consider different types of simulations, i. e., unit simu-
lations used for the reconstruction of the altitude-dependent time series of the Nabro SO210

emissions and final forward simulations based on the estimated emission data. Regarding
the unit simulations we assume that the SO2 emissions occurred in the vicinity of the Nabro
volcano within a horizontal area of 1◦× 1◦ at 0 to 30 km altitude between 12 June 2011,
12:00 UTC and 18 June 2011, 00:00 UTC. During this time period AIRS detected volcanic
SO2 in nearly 75.000 satellite footprints. Hence, the inversion of SO2 emissions is con-15

strained by a large number of satellite observations. For the numerical discretization of
the emission domain, a time step of 1 h and an altitude step of 250 m are applied. This
discretization leads to 132× 120 = 15840 subdomains. For the reconstruction of the SO2

emission rates we use the AIRS satellite data between 13 June 2011, 00:00 UTC and 23
June 2011 00:00 UTC, which are measured at nearly fixed local times of 01:30 and 13:30.20

In each iteration of the inversion procedure, 15 840 unit simulations for the subdomains
were carried out. These large-scale ensemble simulations were performed in parallel on
the Jülich Research on Petaflop Architectures (JuRoPA) supercomputer4.

For the final forward simulations, starting on 12 June 2011, 12:00 UTC and running for 15
days, a total number of 2 million air parcels is considered. The sum of these parcels then25

hold the total Nabro emission mass, which is estimated as 1.5× 109 kg according to the
work of Clarisse et al. (2012). AIRS satellite data between 13 June 2011, 00:00 UTC and

3See http://www.bbc.com/news/world-africa-13778171 (last access: 22 June 2015).
4See http://www.fz-juelich.de/ias/jsc/juropa (last access: 22 June 2015).
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28 June 2011, 00:00 UTC are considered to validate these simulation results. In Sect. 4.6
we compare final forward simulations obtained with different weight-updating schemes. The
first scheme assumes that the SO2 emissions have equal probability of occurrence in the
initialization domain. Namely, equal importance weights, wij = 1/15840, are considered
for initializations in all 15 840 subdomains, which leads to constant and vertically uniform5

emission rates for the simulation. This type of simulation does not require any measurement
information such as the satellite observations. Although such an assumption is unrealistic
in practice, it serves as a good initial condition for our inversion procedure to estimate the
final importance weights with the other weight-updating schemes. By applying the mean
rule and the product rule, the iterative inversion procedure reconstructs more realistic time-10

and altitude-dependent volcanic SO2 emission rates than the equal-probability scheme.

4.2 Examples of unit simulations

In order to illustrate the basic idea behind the weight-updating schemes in the frame of the
proposed inversion approach we first study individual unit simulations. Figures 2 to 4 show
the results of the CSI analysis for three representative examples. Since the AIRS satellite15

data used here lack vertical information, only horizontally projected simulation results are
used to test the data match in grid boxes. SO2 column densities are not compared directly.
for this analysis. As mentioned earlier, the analysis is performed on a 1◦× 1◦ longitude-
latitude grid.

Based on these examples, the unit simulations can be classified into three categories.20

In the first category, we consider the cases in which the assigned initialization in the spe-
cific subdomain yields SO2 air parcel trajectories that follow match the satellite observations
well. As an example, Fig. 2 shows the unit simulation with an initialization of emissions at
13 June 2011, 00:00 UTC±30 min and at (16.5± 0.125) km altitude. This simulation shows
excellent agreement with parts of the satellite observations over the entire simulation time25

period. This indicates that SO2 emissions most likely occurred in the corresponding tempo-
ral and spatial subdomain.

18



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

In the second category, we consider the cases where model forecasts quickly mismatch
the satellite observations. As an example, Fig. 3 shows a model forecast related to emis-
sions released at the same time as in the first example, but at (29± 0.125) km altitude.
Figure 3 illustrates that the forecasts agree with the satellite observations only shortly after
the volcanic eruption. After 12 h the SO2 air parcels were already transported westwards,5

not agreeing with the satellite observations. Hence, this indicates that SO2 emissions were
not likely to occur in this temporal and spatial subdomain.

In the third category, successful model forecasts can be found for a longer time period
compared with second category. The example presented in Fig. 4, with air parcels released
at the same time but at (20± 0.125) km altitude, shows agreement between the model10

forecast and the satellite observations for about 2 days. However, the SO2 air parcels were
transported westwards and are not agreeing with the satellite observations at later times.
Also in this temporal and spatial subdomain SO2 emissions were not likely to occur.

In summary, a good inverse modeling strategy should our inversion approach is supposed
to be able to identify and separate all cases in the aforementioned three different categories15

and yield suitable importance weights. As will be shown in the subsequent sections, both
the mean rule and the product rule work well for the cases in the first category. They can
therefore capture the basic transport dynamics. However, for less realistic situations in the
second and third category the application of the mean rule still yields small importance
weights. The product rule can be used to exclude these unrealistic cases and yield proper20

importance weights by choosing a suitable split point of the obtained CSI time series. As
will be shown in Sect. 4.6, it is therefore considered as a superior strategy, both qualitatively
and quantitatively.

4.3 Reconstruction of volcanic SO2 emissions

Suitable initializations are necessary in order to perform reliable final forward simulations.25

For this purpose we estimate the time- and altitude-dependent volcanic SO2 emissions
with the iterative inversion approach outlined in Sect. 3. The time- and altitude-resolved
emission rates are estimated based on the different weight-updating schemes. The simple
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equal-probability strategy (first guess) assumes By assuming a total mass of 1.5× 109 kg
for the entire initialization domain, the equal-probability resampling strategy (first guess)
considers an equal weight of wij = 1/15840 that leads to an equal constant and vertically
uniform emission rates of approximately 0.1052 kg m−1 s−1 in the entire initialization do-
main. However, note that such an assumption is in general not very realistic, even by posing5

further time- and altitude-constraints, because volcanic eruptions often change over time
significantly and emissions are also not uniformly distributed with altitude.

Figure 5 shows the temporally and spatially resolved SO2 emission rates reconstructed by
applying the mean rule and the product rule, respectively. The application of the mean rule
results in temporally and spatially broader areas with smaller emission rates (Fig. 5, top) up10

to about 1.5 kg m−1 s−1. As shown in the figure, some unlikely cases of local emissions men-
tioned in Sect. 4.2, e. g., at altitudes above 20 km or below 5 km, are not excluded. Since the
total amount of emitted SO2 is fixed, the emission rates of likely local emissions (e. g., on 13
June 2011, 00:00 UTC at altitude 16.5 km) are underestimated. In contrast, the application
of the product rule emphasizes the more likely cases and excludes unlikely cases (Fig. 5,15

bottom). Its maximum emission rate is about 6 times larger than that of the mean rule. In
particular, the peak emission rates on 13 June 2011, 00:00 UTC, 14 June 2011, 15:00 UTC,
and 16 June 2011, 10:00 UTC are approximately 9.28 kg m−1 s−1, 0.57 kg m−1 s−1, and
0.70 kg m−1 s−1, respectively. The corresponding peak emission rates estimated by the
mean rule are approximately 1.50 kg m−1 s−1, 0.56 kg m−1 s−1, and 0.42 kg m−1 s−1, which20

are likely to be underestimated. Since the total emission considered in this study (1.5×109

kg) is the same for all emission reconstruction schemes, and the mean rule yields some
local emissions for unlikely cases (for instance at altitudes above 20 km), the emissions for
more likely cases (e. g., on 13 June 2011, 00:00 UTC at 16.5 km altitude) are underesti-
mated.25

Our results qualitatively agree with the emission data reconstructed by the backward-
trajectory approach presented by Hoffmann et al. (2016, Figs. 6 and 14) (Hoffmann et al.,
2016). The maximum emission rates obtained by the backward-trajectory approach are in
between the maximum values obtained with the mean rule and the product rule weight-
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updating schemes used here. Even closer agreement with the backward-trajectory ap-
proach might be achieved by tuning the split point of the product rule accordingly. A sensi-
tivity study for this important tuning parameter will be presented in Sect. 4.4.

Finally, Fig. 6 shows the reconstructed emission rates integrated over time and altitude,
respectively. As found earlier, the maximum emission rates for the main eruption on 13 June5

obtained by the product rule are much higher (up to a factor of 2 for the integrated values)
than those obtained by the mean rule. However, this is compensated by lower emission
rates by the product rule from 14 to 17 June. Considering the altitude distribution, Fig. 6
(bottom) reveals, especially for the product rule, that most SO2 emissions occurred at 10 to
12 and 15 to 17 km altitude. We find that the altitude distribution is less constrained for the10

mean rule than for the product rule.

4.4 Sensitivity analysis for the weight-updating schemes

In this section, we first discuss the effect of different choices of the parameter nk for the
mean rule weight-updating scheme. As discussed in Sect. 3.2, nk denotes the total number
of discrete-time intervals used for the CSI analysis. It directly corresponds to the choice15

of the final time step of the satellite data. For the reference simulations we have chosen
23 June 2011, 00:00 UTC as the final time, corresponding to nk = 21. Figure 7 (top) dis-
plays a contour plot of the importance weights for the reference case. Figure 7 (middle and
bottom) shows the absolute differences with respect to other final times. By choosing 22
June 2011, 00:00 UTC (nk = 19) and 24 June 2011, 00:00 UTC (nk = 23) as the final times,20

the relative differences of the importance weights are about 9.5 and 10 %, respectively. The
choice of 22 June 2011, 12:00 UTC (nk = 20) and 23 June 2011, 12:00 UTC (nk = 22) as
final time lead to smaller relative differences, about 7.2 and 6.2 %, respectively (not shown).
Based on a visual inspection, the aforementioned different importance weights all show
rather similar results in the final forward simulations.25

For the product rule, we performed a sensitivity analysis with nk corresponding to the
reference date (23 June 2011, 00:00 UTC), but we choose five different split points n′k,
corresponding to 24 h, 36 h, 48 h, 60 h, and 72 h after the beginning of the simulation (13
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June 2011, 00:00 UTC). Considering 48 h as the reference case, the choice of the other split
points lead to 23.1, 11.3, 8.7, and 13.7 % relative differences of the importance weights.
Except in the case of 24 h, which is too short to constrain the time and altitude distribution
of the SO2 emissions properly, the other three cases lead to weights close to the reference
and similar results in the final forward simulations. Figure 8 illustrates the results of this5

sensitivity test. It shows the importance weights for the reference split point (48 h) and the
absolute differences of the importance weights for split points at 36 and 60 h, respectively.
Note that the choice of the split point might be different for each particular volcanic eruption.
A suitable value for the Nabro case study is 48 h. Nevertheless, our sensitivity analysis
shows that the forward simulation results do not vary much with small perturbation (±12h)10

of the chosen split point.

4.5 Validation of emission time series

In Fig. 7 we show time series information for the Nabro eruption that are obtained from
MVIRI IR and WV measurements aboard Meteosat-7 (IODC). From MVIRI WV and IR mea-
surements aboard Meteosat-7 (IODC) (Fig. 9, top and bottom panel) we derived time series15

information (Fig. 9, middle panel) of the eruption history. The WV channel gives information
on the high altitude eruption phase, because this channel is sensitive for altitudes down to
the middle troposphere (around 6 km) where also the AIRS SO2 channel is optically thick.
In contrast, the IR channel reaches down to the ground and gives also information on low
altitude plumes (e.g., on 17 June 2011). The satellite imagery indicates that the strongest20

eruptions occurred between 13 June 2011, 00:00 and 12:00 UTC. A series of smaller emis-
sion events until 16 June 2011, 15:00 UTC were also observed. In particular, there were
two short-time periods of strong eruptions on 14 and and 16 June 2011, respectively. The
emission time series derived with our inverse modeling approach are in good temporal
agreement with the MVIRI observations.25

Injection altitudes of the Nabro eruption have been discussed recently, mostly based on
different satellite measurements (Bourassa et al., 2012; Fromm et al., 2013; Vernier et al.,
2013; Fromm et al., 2014). We would like to stress that both CALIOP and MIPAS have
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capabilities to distinguish between sulfate aerosols and volcanic ash (Vernier et al., 2013;
Griessbach et al., 2015). For the Nabro case study sulfate aerosols (formed by decompo-
sition of volcanic SO2) have been identified. The comparison with CALIOP and MIPAS is
only indirect (SO2 versus sulfate aerosols). The first CALIOP measurements aerosol obser-
vations found the initial plume at 11–15.5 km over Pakistan and at 15–16.5 km over Iran on5

15 June. Plumes were measured at 18–19 km and 8.5 –11.5 km over Egypt, at 16–17.5 km
over Turkey, at 8.5–11 km over the Arabian Peninsula, at 16–17 km over Iran, and at 14–
16.2 km over China on 16 June. MIPAS detected the aerosol resulting from Nabro eruption
at 12–16.5 km over Israel on 14 June. The aerosol layers nearest to the Nabro were mea-
sured at 11–16.5 km on 15 June. They reached 16–18.5 km on 16 June and 12–15.5 km on10

17 June. The altitudes measured by CALIOP and MIPAS agree within their uncertainties.
The relatively inhomogeneous plume altitudes can also be seen in our reconstructed

emission time series, indicating multiple segregated eruption events. The first eruption on
13 June was the strongest and mainly reached altitudes of 15–17 km. This is confirmed by
CALIOP and MIPAS measurements that even found aerosol up to 19 km (in low concen-15

trations). Clarisse et al. (2014) also reported that the early Nabro plume mostly raised to
altitudes between 15 and 17 km, which agrees well with our reconstructed emission time
series (cf. Fig. 5). On 14 June the second eruption injected the volcanic emissions into alti-
tudes of 9–13 km. At these altitudes aerosols were also measured by CALIOP and MIPAS.
Starting from the afternoon of 15 June to 16 June, the injection altitude increased again20

to about 17 km, although emission rates are lower than for the first and second eruption.
This is confirmed by MIPAS measurements over Egypt on 17 June reaching up to 17.5 km.
Fromm et al. (2013) and Vernier et al. (2013) reported that the initial eruption on 13 June
reached altitudes between 15 and 19 km, which is in good agreement with our reconstructed
plume. Fromm et al. (2014) reported an injection altitude of 17.4 km for the third eruption25

on 16 June, which is less than 1 km above our reconstructed injection altitude. This initial
validation with the different satellite observations indicates that our reconstructed emission
time series are reliable.
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4.6 Final forward simulations

We performed the final forward simulations for the Nabro case study with the initializations
obtained in Sect. 4.3. Figure 10 shows the corresponding CSI, POD, and FAR time series
based on 12 h time intervals, obtained by applying the equal-probability strategy, the mean
rule, and the product rule, respectively. Note that the equal-probability strategy assumes a5

constant emission rate in the entire time- and altitude-dependent initialization domain. In
all cases, the largest CSI values are found at the beginning of the simulations, followed by
an overall decrease towards the end of the simulation. The equal-probability strategy yields
a maximum CSI value of 32.3 % and a mean CSI value of 8.1 %. The inversions that apply
the mean rule and the product rule both lead to higher CSI values. The mean rule yields10

better simulation results than the equal-probability strategy, because it takes into account
the temporal variations and inhomogeneous plume altitudes of the volcanic eruption. Its
maximum and mean CSI values are 41.2 and 16.6 %, respectively. The application of the
product rule provides the best simulation results of all three cases. Its maximum and mean
CSI values are 52.4 and 21.4 %, respectively. Our findings for the CSI are confirmed by the15

FAR and POD time series (Fig. 10, lower panels), which indicates that the use of product
rule yields the best simulation results of the three cases.

Figures 11 to 17 compare the simulation results with AIRS satellite observations for se-
lected time steps. SO2 column densities from the model are presented on a 0.5◦× 0.5◦

longitude-latitude grid. The AIRS SO2 index during corresponding 12 h time periods is pre-20

sented on the measurement grid of the instrument. In the case of the equal-probability
strategy, unrealistic transport of air parcels westward of the Nabro is found. Accordingly, the
estimated SO2 column densities for realistic pathways are significantly lower. In the case
of the mean rule, more realistic forecasts of the basic SO2 transport patterns are obtained.
The simulation results are qualitatively closer to the satellite observations both in time and25

space. However, unrealistic westward transport of SO2 is still recognizable. The product rule
clearly yields the most reliable simulation results of the three cases. It most successfully ex-
cludes unlikely local emission patterns.
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Our simulation by means of the product rule and AIRS satellite observations yields sim-
ilar relative horizontal distributions of SO2 on 15 June 2011 compared with IASI satellite
data and FLEXPART model output as reported by Theys et al. (2013, Fig. 10a). Simulation
results for other days, e.g., for 16, 18 and 20 June 2011 are also similar to the GOME-2
satellite retrievals reported by Theys et al. (2013, Fig. 10b – Fig. 10d). Our simulations (Fig.5

12 and Fig. 14) show more realistic transport patterns on 14 and 16 June 2011 than the
FLEXPART model outputs based on the IASI data (Theys et al., 2013, Fig. 12). Besides,
the SO2 distributions on 16 June 2011 and 18 June 2011 in China are not well captured by
the FLEXPART model outputs based on the GOME-2 data (Theys et al., 2013, Fig. 10b and
Fig. 10c), but by our simulations (Fig. 14 and Fig. 15). Furthermore, the SO2 transport pat-10

terns of our simulations are in good agreement with IASI observations that were extensively
studied in the context of the Nabro eruption (Clarisse et al., 2014, Figs. 6–10).

5 Conclusions and outlook

In this paper, we presented an inversion approach based on the concept of sequential im-
portance resampling for the reconstruction of volcanic emission rates from infrared nadir15

satellite observations. Based on the proposed inversion approach, a new inverse modeling
and simulation system, implemented with the Lagrangian transport model MPTRAC, has
been developed to enable efficient and reliable transport simulations of volcanic SO2 emis-
sions. Our solution is in general independent of the choice of forward transport model and
well suited for massive-parallel supercomputing architectures. The number of air parcels20

and the total mass of SO2 emission are considered as inputs to the simulation system.
Based on the information of the relative distribution of the SO2 total emissions in the time-
and altitude-dependent initialization domain, which is estimated by the proposed inversion
algorithm, the local SO2 emission rates can be obtained.

Together with the equal-probability assumption, two weight-updating schemes, referred to25

as the mean rule and product rule have been proposed for the reconstruction of emission
data. Considering the Nabro eruption in June 2011 as a case study, we qualitatively as-
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sessed the reconstructed emission time series by comparing them with Meteosat-7 (IODC)
imagery to validate the temporal development and with CALIOP and MIPAS satellite ob-
servations to confirm the injection altitudes. Simulation results based on the initializations
reconstructed by different weight-updating schemes have been compared, in particular, to
demonstrate the advantages of the product rule. The mean and maximum CSI values ob-5

tained by using the equal-probability strategy are 8.1% and 32.3%, respectively. The mean
rule yields a mean CSI value of 16.6% and a maximum of 41.2%. The product rule leads to
an improvement of the mean CSI value to 21.4% and of the maximum CSI value to 52.4%.
The simulation results for the Nabro case study show good agreement with the AIRS satel-
lite observations in terms of SO2 horizontal distributions and have been validated through10

other independent data sets such as IASI and GOME-2 satellite observations reported by
other studies. The simulation results show that the inverse modeling system successfully
identified the complex volcanic emission pattern of the Nabro eruption, and helped to further
reveal the complex transport processes through the Asian monsoon circulation.

Some topics were explicitly excluded from this paper, but may be investigated in future15

work, including the extension of the current approach towards near-real-time forecasting
and, the development of an adaptive strategy for discretizing the initialization domain, the
consideration of the SO2 kernel functions, and a detailed treatment of data uncertainties.
An adaptive strategy is expected to reduce the computational effort and to provide better
resolution in areas of the initialization domain where there is large variability. This way, we20

would expect more precise importance weights estimated for the most likely cases of local
emission and hence more accurate simulation results with better local details in a quantita-
tive manner. In particular, the SO2 kernel functions of the AIRS channels used to calculate
the SI depend on atmospheric conditions and altitude (e.g., Hoffmann et al. (2016, Fig. 1)).
However, variations in the UT/LS region where most of the Nabro emissions occurred are25

not too large. Hence, we did not consider this dependency in our analysis. However, the
consideration of the AIRS kernel functions in the CSI analysis will be an important aspect in
future work. Uncertainties in the meteorological data are another important source of error.
The topic is addressed in a recent study by Hoffmann et al. (2016), wherein four different
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meteorological products have been tested for the MPTRAC simulations. This work aims to
introduce an inversion approach for SO2 transport simulations. A more detailed, quantitative
study of the errors resulting from the uncertainties of different meteorological data will be
considered in future work. Furthermore, the version of MPTRAC used in this study did not
consider loss processes of SO2. Hoffmann et al. (2016) used a newer version of MPTRAC,5

which takes into account loss processes of SO2. Although the simulation results by means
of the two different versions of MPTRAC are rather similar, a precise quantitative analysis
considering the SO2 loss will be subject of future efforts. Further research shall also be
devoted to the testing of the proposed MPTRAC-based inverse modeling and simulation
system for other case studies of volcanic eruptions and its capacity for forecasting.10

Code and data availability

The current release of the MPTRAC model can be downloaded from the model web site at
http://www.fz-juelich.de/ias/jsc/mptrac. The code version used in this study can be obtained
by contacting the corresponding author. The time- and altitude-dependent emission time
series obtained with the different weight-updating schemes (Fig. 5) are provided as an15

electronic supplement to this paper. This allows our results to be reproduced and extended
in further work, for instance by performing simulations with other transport models.

The Supplement related to this article is available online at
doi:10.5194/gmdd-0-1-2016-supplement.
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Figure 1. Flow chart of the proposed inverse modeling and simulation system to infer volcanic SO2

emissions rates and to perform transport simulations.
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Figure 2. Unit simulation for the Nabro case study with air parcels initialized around 13 June,
00:00 UTC and 16.5 km altitude. The CSI analysis is performed on a 1◦× 1◦ longitude-latitude grid.
Gray color indicates missing satellite data. Orange color corresponds to positive model forecasts,
but lack of satellite data. Yellow color indicates positive forecasts and positive satellite observations.
Blue color corresponds to negative forecasts with positive observations. Red color corresponds to
positive forecasts with negative observations. The black square shows the location of the Nabro
volcano.
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Figure 3. Same as Fig. 2, but for a unit simulation initialized at 29 km altitude. This simulation almost
immediately disagrees with the satellite observations. Note that the time steps are partly different
from those shown in Fig. 2.
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Figure 4. Same as Fig. 2, but for a unit simulation initialized at 20 km altitude. This simulations
agrees with the satellite observations for about 48 h, but disagrees at later times. Note that the time
steps are partly different from those shown in Figs. 2 and 3.
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Figure 5. Reconstructed SO2 emission rates (kg m−1 s−1) for the Nabro eruption in June 2011.
Emission rates were obtained by applying the mean rule (top) and the product rule (bottom) weight-
updating schemes of the proposed inversion approach (see text for details).
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Figure 6. Comparison of reconstructed emission rates integrated over altitude (top) and time (bot-
tom) for the mean rule and the product rule weight-updating schemes.
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Figure 7. Sensitivity analysis for the mean rule parameter nk: estimated importance weights wij for
choosing 23 June, 00:00 UTC as the final time of used satellite data (top); absolute differences of
estimated importance weights |∆wij | for choosing 23 June, 00:00 UTC as the final time and those
for choosing 22 June, 00:00 UTC (middle) and 24 June, 00:00 UTC (bottom) as final time.
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Figure 8. Sensitivity analysis for the product rule parameter n′k: estimated importance weights wij

for choosing 23 June 00:00 as the final time of used satellite data and 48 h as the split point (top);
absolute differences of estimated importance weights |∆wij | for choosing 48 h as the split point and
those for choosing 36 h (middle) and 60 h (bottom) as split point.
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13 June 14 June 15 June 16 June 17 June

00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18
UTC

WV

IR

Figure 9. Time line of the 2011 Nabro eruption based on MVIRI IR and WV measurements from
Meteosat-7 (IODC). The satellite images were used to roughly estimate the strength of the volcanic
activity (white = none, light blue = low level, blue = medium level, dark blue = high level).
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Figure 10. Comparison of the Critical Success Index (CSI), the False Alarm Rate (FAR) and the
Probability Of Detection (POD) time series during 12 h time intervals obtained by applying the equal-
probability strategy, the mean rule, and the product rule.
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Figure 11. Comparison of AIRS satellite observations (top, left) and MPTRAC simulation results on
13 June 2011, 06:00 UTC based on the equal-probability strategy (top, right), the mean rule (bottom,
left), and the product rule (bottom, right).
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Figure 12. Same as Fig. 11, but for 14 June 2011, 06:00 UTC.
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Figure 13. Same as Fig. 11, but for 15 June 2011, 06:00 UTC.
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Figure 14. Same as Fig. 11, but for 16 June 2011, 06:00 UTC.
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Figure 15. Same as Fig. 11, but for 18 June 2011, 06:00 UTC.
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Figure 16. Same as Fig. 11, but for 20 June 2011, 06:00 UTC.
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Figure 17. Same as Fig. 11, but for 24 June 2011, 06:00 UTC.
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Algorithm 1 Inverse Modeling Approach
Input: time- and altitude-dependent emission domain E = [t0, tf ]×Ω, total number and
mass of SO2 air parcels for the final forward simulation, meteorological data, satellite ob-
servations

1: Discretize the entire domain E, by considering nt equal-sized intervals on the time
axis and nh heights along the altitude axis, respectively.

2: Distribute air parcels in all N = nt ·nh subdomains of E uniformly. Set initial weights
according to the equal-probability strategy, wij = 1/N .

3: Do

4: Perform N unit simulations in parallel and calculate CSI time series.

5: Update importance weights wij based on one of the weight-updating schemes de-
scribed in Sect. 3.3. Resample air parcels distributions according to importance
weights.

6: While relative difference between adjacent importance weight matrices according to
Eq. (7) is larger than a given tolerance.

7: Distribute air parcels in the entire initialization domain based on final importance
weights.

8: Perform final forward simulation based on the reconstructed altitude-dependent time
series of emissions.

Output: horizontal and vertical trace gas distributions (column densities, lists of air parcels)
and diagnostic data (CSI, FAR and POD plots) at different model time steps
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