

#### SCHOOL OF EARTH AND ENVIRONMENT

University of Leeds Woodhouse Lane Leeds, LS2 9JT, UK Tel: +44 (0)113 34 39086

E-mail: r.ivanovic@leeds.ac.uk http://homepages.see.leeds.ac.uk/~earri www.see.leeds.ac.uk/people/r.ivanovic

15 February 2016

Dear Jeremy.

Please find attached our revised paper with changes from the original version tracked. We found both the reviewers' and the interactive discussion comments on the manuscript to be very helpful and have responded in detail below. In particular, we have revised the design of the core experiment to include freshwater forcing from ice sheets in line with the reviewers' and Eric Wolff's comments. We have also emphasised the scientific purpose of the experiment; to understand the sequence of last deglaciation events using 'model-geological data' comparison.

We wish to highlight that the Core experiment has been designed following extensive consultation (since January 2014) across the palaeoclimate modelling and reconstruction community. It has been challenging to reconcile everyone's preferences for such a demanding experiment (more than 12 thousand model years); everyone uses different tools and has different (though complementary) scientific aims to each other. However, we are confident that in its new form, the Core experiment design represents the best compromise between any conflicting views and leaves room to accommodate everyone's priorities and resource limitations. For example, this is one reason why we have to be flexible on the ice sheet meltwater forcing protocol, including allowing groups to run without meltwater if they wish (although we recommend that they run with meltwater and provide scenarios that are consistent with the ice sheet histories). Certainly these efforts will be worthwhile and we are excited to begin the experiment and see the first results.

### Reviewer 1

#### Reviewer's summary:

The paper describes the design of the coordinated Core simulation over 21-9 ka with time varying orbital forcing, greenhouse gases, ice sheets and other geographical changes. The choice of two ice sheet reconstructions is given but no meltwater is prescribed. The paper reviews in detail the past experimental designs by EMICs and

AOGCMs (ex CCSM) and their results but unfortunately mismatches the experimental design presented this time because of no meltwater. I am afraid the readers are lost in understanding what we can learn from the experiment at the present form of the paper. I recommend the paper published after revision by (1) [equivalent to point 1. below] presenting a core experimental series with melt-water given at least in a very simple way and (2) [equivalent to point 2. below] explaining what kind of analysis are useful after collecting the non-meltwater experiments from PMIP community. Also (3) [equivalent to point 3. below] clarify the design related to coastline, bathymetry and salinity change due to ice sheet change.

1. Reviewer's comment: '(1) For the first point, the meltwater that is consistent with the ice sheet provided from two schools should be provided so that additional experiment with meltwater can be performed. Where to release could be an option. As in many studies, the regional difference (South vs. North) during the deglaciation is presented and discussed but without the meltwater there is no way expecting the reproduction in proxy as in Clark et al, 2012 or Shakun et al, 2012. Even if there is uncertainty of the location of the meltwater or an uncertainty of timing of abrupt change of melt water, at least the total amount of meltwater can be provided and given by each modelling group. The change of total amount (~ sea level change) should be consistent with the ice sheets reconstructed and also constrained fairly well (Clark et al, 2009).'

**Authors' response:** We have updated the Core experiment design to include freshwater and have revised the manuscript accordingly. This includes uniformly distributed freshwater to conserve water in the simulation (i.e. the total amount of ice melt is applied uniformly to the ocean) and 'routed' freshwater (i.e. fluxes from particular coastal outlets, which can be used to examine more regional responses); both are consistent with the ice sheet reconstructions provided (GLAC-1D and ICE-6G\_C). Further *focussed* simulations will explore these hypotheses (e.g. north vs. south meltwater injection sites) more thoroughly and systematically.

2. Reviewer's comment: '(2) For the second point, if the PMIP4 Core experiment group asks for the non meltwater experiment, then the reason and what is expected should be described clearly. If there is no melt-water, there is no sense in doing a transient experiment, which is very expensive. It is unclear at the moment why the non-melt water experiment should be done as a Core experiment. PMIP experiments with AOGCMs are expected to do model-data comparision [sic] as well as model-model experiment, but what are the data-model comparison expected? Many studies suggest that the melt water might be important for understanding the "bipolar" ice core signals and various regional signals in proxy. Since the experiment demands substantial computational resource as well as man-power for many groups, the explanation should be convincing. The introduction in the paper is not sufficiently written for the non-melt water transient experiment. Perhaps what is expected scientifically after collecting the results could be written in an independent section in more detail.'

**Authors' response:** As addressed above (point 1), we have taken on board this comment and revised the manuscript and experiment design to recommend including meltwater (consistent with the ice sheet reconstructions) in the Core. We have also emphasised the aim to carry out model-data comparison with the results (e.g. section 1.4), for which including meltwater forcing in the Core simulation is preferable. We have expanded section 2.5 to discuss this in more detail, including the value of running meltwater-free simulations to accompany meltwater-include simulations.

**3. Reviewer's comment:** '(3) On the design related to coastline and bathymetry change due to ice sheet change: In table 2, the design of salinity change is unknown. Define what (and how) the modelers do with the total ocean salinity change, which should be consistent with the ice sheet change and melt water.'

**Authors' response:** We have expanded the row on Freshwater fluxes' in table two to include the addition of freshwater to the Core and to explicitly advise groups to conserve salinity. The freshwater scenarios provided will conserve salinity changes relating to ice sheet evolution (following GLAC-1D and ICE-6G\_C). We cannot be more precise about how this will be implemented (technically) because it is model-specific and therefore up to the user, but the transient data will be provided to make this possible.

**Reviewer's comment continued:** 'There are two options for the "Bathymetry" but what happens when the ice sheet covers the ocean in the model that keeps the "Preindustrial bathymetry"? What is prescribed for ice sheet and what should be done for ocean boundary condition should be carefully designed and described for the participants.'

**Authors' response:** The land-sea mask (or 'coastlines') will need to be consistent with the ice sheet, as outlined in the text and tables. This means that land should underlie the grounded ice sheets, as requested by the reviewer, but does not require other bathymetric changes. We have extended the text and table entry to clarify this in the manuscript. Again, how this is technically implemented is model-specific and best decided by the expert user.

**4. Reviewer's comment:** 'Page 9073 line 9 "many questions and untested hypotheses remain" but the current study should show the perspective, how it answers the questions and the hypotheses are tested.'

**Authors' response:** A large component of section 1 is devoted to showing the context (or perspective) of the working group, outlining the current state of our knowledge, what hypotheses exist and what questions remain. We have extended the text in this section, as well as later sections, to explain how the multi-model approach aims to narrow down uncertainty in the ice sheet reconstruction and meltwater forcing, for example. We have also discussed focussed simulations that will represent rigorous sensitivity- and hypothesis-driven investigations that are of particular interest to participant groups; including, for example, the regional specificity of climate system response to freshwater

inputs, the timing of changes in greenhouse gas records, the influence of the acceleration of northern ice melt on ocean circulation during Heinrich Stadial 1 – these are all discussed in the manuscript and we have extended the text in relevant sections to clarify this. These foci will be further defined on the last deglaciation PMIP Wiki and in subsequent manuscripts as they are investigated.

## **Reviewer 2: Shawn Marshall**

Reviewer's summary: 'Summary This manuscript describes the scientific motivation and technical specifications for a community model experiment simulating the deglaciation (26 or 21 ka until 9 ka BP) in climate models of differing complexities. The experiments are designed so that both fully- coupled Earth system models and a variety of reduced models can take part. There is a nice blend of flexibility in the model design – with specified boundary conditions for the main climate forcings and their temporal variability, but some user discretion on implementation. The balance seems appropriate. This is nicely presented and explained, overall. The summary of deglacial climate dynamics and some of the paleoclimatic enigmas during this period makes for a lovely review, and the experiments that are described will certainly be interesting. Most of what one needs from this manuscript is encapsulated in Tables 1 and 2, so at first it seemed unnecessarily long, but the narrative is nicely written and a pleasure to read, offering some helpful insights about the approach to be adopted in the intercomparison.'

5. Reviewer's comment: 'I am a bit surprised that the 'focussed' experiments are not described or prescribed in detail at this point. I understand that perhaps these need to be reactionary to the results of the core experiment. It seems unfortunate though, as it would be helpful to have this information together in a single document. I am sure lots of ideas are already in place for the spinoff or focussed experiments, and it would not have taken too much extra work to have these set out here. But this is not necessary, and it is probably helpful to keep these flexible and as subsets of the main modelling exercise.'

**Authors' response:** The Core itself is a significant undertaking for modelling groups, it has taken a lot of discussion to agree upon the experiment design within the community. Also, different groups have different preferences and priorities for the *focussed* simulations. Therefore we agree with the reviewer that it is helpful at this stage (and until the Core is published) to keep the *focussed* experiment designs flexible, and for clarity it is preferable to keep their full specification separate from the required Core (described in detail here). As does the reviewer, we also expect some of the *focussed* simulations to be reactionary to working group results, as they emerge.

However because some discussions are already underway and, as the reviewer suggests, we do have some ideas in place, we have extended the text in sections 2.5 and 3 to provide more information on currently planned *focussed* simulations.

6. Reviewer's comment: 'My only substantive feedback or suggestion involves the meltwater treatment. Several thoughts related to this are made below, in the specific comments. Overall, it seems inconsistent to have specified, time-varying ice sheet volume on the continents but not honour this global water conservation when it comes to the ocean freshwater and salinity budget. I appreciate the desire to control for meltwater runoff, but it makes one wonder if the core experiment, as described, is meaningful since it does not do a physically sensible job of representing the basic ocean state through deglaciation. At least as I understand the model design. Things like preconditioning and ocean mixing surely depend on the mean salinity and its structure. I appreciate that this design is intentional, to eliminate some of the complexity and model dispersion associated with when/where to put the meltwater. And models are dealing with meltwater routing and runoff internally, in some cases. But since the specification is to violate water balance and neglect runoff processes, it would not be unreasonable to honour water balance while neglecting runoff processes. That is, the ice sheet i ADV, [sic] as specified through the Peltier or Tarasov reconstructions, can be converted to eustatic water equivalent and restored to the nearest ocean in a specified way for all model experiments. This could be considered for the Core experiment as something a bit more realistic, while saving some of the detailed questions about meltwater runoff and iceberg discharge for the focussed experiments. It would require a bit of extra work to define the timing and location of freshwater runoff, which everyone would follow, but this can be straightforward I think. Just don't inject the water all at once every 1000 years, when the ice geometry changes. Rather than shock the system, one could, for example, take the 1000-year i ADV in each major river catchment and divide by 1000 to give the average runoff in m3/yr (or convert to Sv), in a way that respects water balance. If one wants to avoid some of the detailed questions concerning paleoriver routing, the appropriate amount of water could just be spread over the large-scale basin (e.g. North Atlantic, Southern Ocean, etc.). I would leave it to the authors to consider what is best here, but I do recommend considering a treatment like this within the core experiment design.'

**Reviewer's comment:** 'p.9047, II.12-14, "A choice of two ice sheet reconstructions is given, but no ice sheet or iceberg meltwater should be prescribed in the Core simulation." – this is confusing, are ice sheets to be prescribed or internally modelled? I understood what the authors meant by the end of the manuscript, i.e. don't put any ice sheet meltwater into the oceans, but this seems contradictory to prescribe ice sheets but not put the prescribed change in water volume back into the oceans.'

**Reviewer's comment:** 'p.9067, Section 2.5, freshwater fluxes during the deglaciation. It does seem odd but also sensible to have controlled experiments that examine non-meltwater forced climate change during the deglaciation. Although given the important role that ocean circulation simply had to have played in the Bolling and YD, this seems limiting. i.e., orbital forcing and CO2

clearly cannot explain these features of the deglaciation. A reference experiment is nonetheless important and useful. I wonder if it is the best reference though, given that the ice sheets did melt away and ocean salinity did decrease through this period. Is it possible to have prescribed changes in mean ocean salinity through the deglaciation and/or prescribed runoff as a second core experiment? The latter could be done based on the 1000-yr ice sheet updates to at least have the correct global water cycle (conservation). I appreciate the arguments and intricacies concerning when and where to put the meltwater. Some hypothesis-driven experiments here seem sensible, as additional experiments.'

**Authors' response:** We have taken on board this feedback and have adapted the Core experiment design to include transient (i.e. not stepped/shocked) meltwater fluxes in the Core simulation (also see reply to reviewer comment 1 and 2, and the second paragraph of this letter). This will enable more fruitful model-data comparison and the possibility to narrow down uncertainty in last deglaciation ice sheet meltwater fluxes. Our *focussed* simulations (e.g. as briefly outlined in section 3) will continue to address this more fully.

7. Reviewer's comment: 'p.9048, I. 26, "majority of its ice melting" – not really the majority of the Antarctic Ice Sheet melting; rather, much of the excess LGM ice that was out on the shelf, and the thicker ice that covered WAIS; but overall, it was closer to a 20% loss of the ice in Antarctica through this period'

**Authors' response:** We've changed this sentence in line with this comment to make the meaning clearer.

**8. Reviewer's comment:** 'p.9050, I.4, the idea of mid-latitude N.Atlantic warming during H1. This is not really compatible with the preservation of Hudson Strait icebergs in a swath at 40-55 N across to Portugal. Is it more of a subtropical warming that has been proposed? Else it is perhaps worthwhile to note this incompatibility.'

**Authors' response:** We have removed this last clause in the sentence.

**9. Reviewer's comment:** 'p.9050, I.15, suggest deleting 'older', it conveys a bias against these studies, i.e. a potential lack of objectivity, whereas many of the studies cited below in favour of a northern source are in fact older'

Authors' response: We have removed 'older'.

**10.Reviewer's comment:** 'p.9062, Section 2.1. I wonder about a prescription for oceanic or surface ocean d18O and dD as well, for those that will explore isotopic cycles through the deglaciation.'

**Authors' response:** This is beyond the scope of the Core simulation, which is designed as a basic simulation for all models (and most will not run with water isotopes,  $\delta^{18}O$  and deuterium, due to the computational expense or because they are not implemented), but it would make an appropriate *focussed* experiment. We will discuss this in the group and if it is popular, we will work in close collaboration with the *Isotopes* PMIP working group to design the experiment, including the prescription of water isotopes. It will require careful planning because the isotopes are implemented in the different models in different ways, so we would need to provide the most valuable and important data. For example, many models will get their ocean surface water isotopes through interaction with the atmosphere as the isotopes are implemented throughout the whole hydrological cycle. However, changes in terrestrial ice volume that are not dynamically simulated in the model will complicate this, and that may be where we will need to provide a transient global budget of water isotope data and meltwater signatures.

11.Reviewer's comment: 'p.9062, II.7-9, discussion of the freshwater budget. Just to be clear here, the experiments should prescribe/force all precipitation to return to the oceans annually then, i.e. equilibrium mass balance conditions on the ice sheets? This is fair for present purposes, but I guess that it will not occur naturally in any of the models, so this sounds tricky. I wonder if more explicit directions here would be helpful, as to how the freshwater routing/flux adjustments should be prescribed. For instance, should an LGM catchment map be prescribed, so that everyone is using the same one, based on the ice sheet configuration? Then everyone forces all precipitation within the catchment to return via a prescribed river outlet/coastal grid cell.'

**Authors' response:** This is a technical point specifically relating to the equilibrium-type spinup of the LGM to make sure that during the spinup, there are no large salinity drifts in the model, and that water is conserved. It is difficult to provide more detailed or precise directions because it is so model-specific. However, it has been common PMIP practice for several years (e.g. for the LGM experiment) to have to consider this (in the LGM spinup); we have provided the most recent text from the PMIP Wiki, but similar earlier advise was given (e.g. PMIP3 and CMIP5). This should be sufficient information, but if not, individuals can use the working group mailing list and Wiki to ask for help in generating their spinup; although support from their model developers is likely to be more useful in this instance.

Similarly, LGM catchment maps will be provided as they become available. However, when these have been offered in the past, uptake has been very low due to the technical challenges involved (we are not aware of any groups having implemented it). Furthermore, some models calculate their own river routing based on surface topography. For these reasons, we will provide the data, but leave the choice of what to implement for river routing to the expert model-user. However, it is essential to ensure that rivers reach the coast, and this is explained in the manuscript (section 2.6). These details are provided by the *LGM* PMIP working group.

**12.Reviewer's comment:** 'p.9064, II.23, 27. I think with Tarasov as an author, you don't have to list this as 'personal communication' – also on the next page'

**Authors' response:** We have amended these lines.

## **Interactive Discussion**

13. Comment by A. Carlson: 'Hi all, so just looking through the text, I noticed one incorrect statement on page 9055 lines 18-22. The timing of CIS-LIS separation was around the time of MWP-1A according to Dyke (2004) is not right. Dyke (2004) specifically states: "Unfortunately, the initial opening of the ice-free corridor remains only tenuously dated. The initial opening at the south end probably started about 15 ka BP, based on an AMS date of 15.67 ka on wood, mentioned above (Beierle & Smith, 1998) and exposure dates on the Laurentide terminal moraine in the south-western Alberta Foothills (Jackson et al., 1999). By 13.5 ka BP, the southern half of the corridor seems to have opened, because wood (evidently small wood, probably arctic willow; P. Bobrowsky, personal communication, 2002) from basal sediment of glacial Lake Peace yielded an AMS date of 13.97 ka BP (Catto et al., 1996). It is possible that the corridor was entirely open by 13.5 ka BP, because the dated site is located midway within it. However, in the absence of similarly old dates from the northern part of the corridor, and assuming slower ice ablation further north, initial joining of the southern and northern approaches of the corridor may not have occurred until 12.5 ka BP or possibly even 12 ka BP. It seems exceedingly unlikely, however, that ice coalescence could have continued until 11.5 ka BP, for the Mackenzie Lobe of Laurentide ice had by that time receded halfway up the Mackenzie Valley (Mackay & Mathews, 1973; Smith, 1992). Furthermore, south -eastern Cordilleran ice had by then receded into the alpine zone (Reasoner at al., 1994), and Cordilleran ice distribution in Alaska was close to the present one. In summary, the known history of the ice-free corridor, although imprecise, does not preclude the possibility of pre-Clovis people using this route and its availability to early Clovis people is almost certain." These are all ages in 14C years, meaning the corridor started opening by ~18.8 cal ka and was over half complete by ~17 cal ka, thousands of years before MWP-1A. I think this section needs to be clearly redone to reflect this much slower and earlier separation of the CIS-LIS that Dyke (2004) discussed to stop'

**Authors' response:** As is pointed out in this comment, an adequate discussion of the issues raised would be too lengthy and is only peripheral to this manuscript. We have thus removed this sentence from the manuscript.

**14.Summary by EW Wolff:** 'This is not mainly a review of the paper but is, as requested by the lead author, a set of comments on the proposed experiment design. In general of course this is a usefully comprehensive description of what is planned under PMIP for the deglaciation transient. I have a few rather minor comments and then one that is more significant.

Page 9049, line 11. This paper should be referred to as EPICA Community Members, 2004 rather than Augustin et al 2004.'

**Authors' response:** We have made this change.

**15.Comment by EW Wolff:** 'Page 9050, line 9. It is a little misleading to say that a shift in climate occurred in 1-3 years. A rapid shift occurred in some components (d-xs most notably) but for example the inferred temperature change was slower. I suggest just adding "some components of" climate.'

**Authors' response:** We have made this change.

**16.Comment by EW Wolff:** 'Page 9057. Should you add that an important challenge for PMIP is to assemble suitable datasets for model-data comparison. Probably you say that elsewhere.'

**Authors' response:** Yes, we've added text to this effect at the end of the first paragraph of section 1.3

17.Comment by EW Wolff: 'Page 9062, line 8 [sic – page 9063 line 12?] and numerous other places, including Table 1. I am sure you mean "i.e.", meaning "that is", and not "e.g." meaning "for example". This is important as I assume you are telling participants they must use 1365 W/m<sup>2</sup>, nit that they can use any number they consider represents the preindustrial?'

**Authors' response:** In the case of the solar constant, it is deliberate to use 'e.g.' (for example) because the recommended preindustrial value (1365 W m<sup>-2</sup>) is a widely used and accepted value, it has thus far been the recommended PMIP value, but is not exclusively accepted and others may also be used (see recommendations at <a href="http://solarisheppa.geomar.de/cmip5">http://solarisheppa.geomar.de/cmip5</a>). Some groups already prefer to use other PI values; e.g. 1370 W/m^2 (Zhang et al., 2012) and 1360.9 W/m^2 (Landrum et al., 2013).

**18.Comment by EW Wolff:** 'Page 9063, line 4, and other places including Tables 1 and 2. You suggest using the Luthi et al 2008 data (which for this part of the core is really the Monnin et al 2001 data) translated to AICC2012. This is an option, but you might want to at least discuss using the dataset presented in Bereiter et

al (2015) as supplementary data. Here they have already done the work of translating to AICC2012, and they include a range of datasets in their composite dataset, including the high resolution WAIS Divide data, with a 4 ppm offset (the offset discussed later on page 9063). To me it would seem smarter to use the fully resolved but consistent dataset.'

**Authors' response:** We have updated the experiment design, manuscript text figures and references to use the more recent Bereiter et al. (2015) CO<sub>2</sub> data.

**19.Comment by EW Wolff:** 'Page 9067, last paragraph. "Can abrupt deglacial changes be simulated without icemeltwater?". I think this is a bit disingenuous. We already know that they can't: the north-south phasing of climate is simply wrong if freshwater is excluded as already shown clearly in papers including Shakun et al (2012).'

**Authors' response:** We have added freshwater to the core simulation.

**20.Comment by EW Wolff:** 'Page 9069. Regarding dust, isn't this another parameter that might be varied in extended simulations?'

**Authors' response:** Yes, we have extended the text to include this suggestion.

**21.Comment by EW Wolff:** 'Page 9071, line 13. Do you mean "timing" in comparing Luthi to Marcott. I think we can easily fix any timing mismatches, as done in Bereiter et al (2015); it is really resolution that is the issue.'

**Authors' response:** We have removed the comparison of Luthi et al. (2008) to Marcott et al. (2014) since this can be resolved in the records.

22. Comment by EW Wolff: 'Page 9072. "the ...design for later periods..is updated". I don't really see how this will work. Some groups will quite sensibly run straight through the whole period. It will be very confusing if you then change some aspect of the design halfway through, just because others have now reached a milestone. Are you really suggesting groups should hold their simulation at the end of each phase until everyone reaches the same point?'

**Authors' response:** This would be important to avoid (as is pointed out, 'some groups will quite sensibly run straight through the whole period') so we have clarified

this point in the text (first paragraph of section 4). Mainly, changes will not compromise the Core, although new data may be used to design *focussed* spin-off simulations, and to assess the Core results in light of the changes (and additional simulations).

23. Comment by EW Wolff: 'My major comment comes back to what the purpose of the experiments is, as always with PMIP. I can see two main classes of justification. One is to test different models against data. The other is to compare the performance of different models against each other. If the aim is the former then it makes sense to allow people some freedom to use different boundary conditions, which you do in allowing two different ice models. If it's the latter it makes no sense to have radically different ice models. However it cannot be the former, because you already know that in the core experiment, you won't get anything like the data (because no bipolar seesaw contrast). Given that, the core experiment (but not the extended ones) MUST be aiming mainly at model-model comparisons and these can only be made if most features of the design are common. I realise you probably had groups who would not compromise on use of their favourite ice model, and I sympathise with the dilemma but not the solution. I think you have to be firm and choose a primary ice model, with no suggestion that it is better and with a strong recommendation that as many groups as possible run both. Those who want to use whichever you choose as the secondary ice model can use it as long as they also use the primary one in a parallel experiment. The aim should be to have a situation where the modelmodel comparison an [sic] be made without compromise.'

**Authors' response:** We have carefully considered this point and have (a) adapted the Core to include meltwater, and (b) emphasised the importance of model-data comparison in the working group's aims (some of the *focussed* sensitivity experiments will enable model-model comparisons, but our main priority is model-data comparisons). Also see response to Reviewer comment 1, 2 and 6 above.

24. Comment by A. Schmittner: 'In a recent paper (Schmittner et al. 2015) we have shown that changes in tidal energy dissipation between the LGM and the late Holocene may have a large impact on the Atlantic Meridional Overturning Circulation. I think it may be warranted to think about if this could be included as a prescribed forcing over the deglaciation. Schmittner, A., Green, J. A. M., and Wilmes, S.-B. (2015) Glacial Ocean Overturning Intensified by Tidal Mixing in a Global Circulation Model Geophysical Research Letters, 42 (10), 4014-4022. doi: 10.1002/2015GL063561

http://onlinelibrary.wiley.com/doi/10.1002/2015GL063561/full'

**Authors' response:** This will be difficult to include in the Core design, but is an interesting component to consider. We will propose it as a theme for a *focussed* experiment and have amended the text in section 3 accordingly.

Having carefully and thoroughly addressed all of the reviewers' comments and the interactive discussion, we hope that the revised paper is now acceptable to be published in *GMD*.

Yours sincerely,

Ruža F. Ivanović

#### References cited in response

Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S. and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42(2), 2014GL061957, doi:10.1002/2014GL061957, 2015.

Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N. and Teng, H.: Last Millennium Climate and Its Variability in CCSM4, J. Climate, 26(4), 1085–1111, doi:10.1175/JCLI-D-11-00326.1, 2013.

Zhang, Z. S., Nisancioglu, K., Bentsen, M., Tjiputra, J., Bethke, I., Yan, Q., Risebrobakken, B., Andersson, C. and Jansen, E.: Pre-industrial and mid-Pliocene simulations with NorESM-L, Geosci. Model Dev., 5(2), 523–533, doi:10.5194/gmd-5-523-2012, 2012.

- 1 Transient climate simulations of the deglaciation 21-9
- 2 thousand years before present; PMIP4 Core experiment
- 3 design and boundary conditions.
- 4 Ruza F. Ivanovic<sup>1</sup>, Lauren J. Gregoire<sup>1</sup>, Masa Kageyama<sup>2</sup>, Didier M. Roche<sup>2,3</sup>, Paul
- 5 J. Valdes<sup>4</sup>, Andrea Burke<sup>5</sup>, Rosemarie Drummond<sup>6</sup>, W. Richard Peltier<sup>6</sup>, Lev
- 6 Tarasov<sup>7</sup>
- 7 [1]{School of Earth & Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT,
- 8 United Kingdom}
- 9 [2]{-Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-
- 10 UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France}
- 11 [3]{Earth and Climate Cluster, Faculty of Earth and Life Sciences, Vrije Universiteit
- 12 Amsterdam, Amsterdam, the Netherlands}
- 13 [4]{School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS,
- 14 United Kingdom}
- 15 [5]{Department of Earth and Environmental Sciences, Irvine Building, University of St.
- 16 Andrews, St. Andrews, KY16 9AL, United Kingdom}
- 17 [6]{Department of Physics, University of Toronto, 60 St George Street, Toronto, Ontario,
- 18 Canada M5S 1A7}
- 19 [7]{Department of Physics and Physical Oceanography, Memorial University of
- Newfoundland and Labrador, St. John's, NL, Canada A1B 3X7
- 21 Correspondence to: Ruza F. Ivanovic (r.ivanovic@leeds.ac.uk)

#### 22 Abstract

- 23 The last deglaciation, which marked the transition between the last glacial and present
- 24 interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate
- changes. Numerical climate models are useful for investigating mechanisms that underpin the
- 26 climate change events, especially now that some of the complex models can be run for multiple

millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working 1 2 group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the 3 climate of the last 21 thousand years. Here, we present the design of a coordinated Core 4 simulationexperiment over the period 21-9 thousand years before present (ka) with time varying 5 orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two 6 7 ice sheet reconstructions is given, but no and we make recommendations for prescribing ice 8 sheet or iceberg meltwater should be prescribed (or not) in the Core simulation experiment. 9 Additional focussed simulations will also be coordinated on an ad-hoc basis by the working 10 group, for example to investigate more thoroughly the effect of ice sheet and iceberg meltwater, 11 and on climate system evolution, and to examine the uncertainty in other forcings. Some of 12 these focussed simulations will focus ontarget shorter durations around specific events toin 13 order to understand them in more detail and allow the more computationally expensive models 14 to take part.

### 1 Introduction

15

16

## 1.1 Climate evolution over the last deglaciation

- 17 The last deglaciation is a period of major climate change, when Earth transitioned from its last
- full glacial state, to the current interglacial climate. The Last Glacial Maximum (LGM) marked
- 19 the culmination of the last glacial cycle when vast ice sheets covered large regions of the
- Northern Hemisphere, stretching over North America and Eurasia (e.g. Boulton et al., 2001;
- 21 Dyke et al., 2002; Peltier et al., 2015; Svendsen et al., 2004; Tarasov et al., 2012), and the
- 22 Antarctic Ice Sheet expanded to the edge of the continental shelf (Argus et al., 2014; Briggs et
- 23 al., 2014; Lambeck et al., 2014 and references therein). Changes in the ice sheets resulted in a
- 24 total sea level rise of ~115-130 m between LGM and the late Holocene (Lambeck et al., 2014;
- 25 Peltier and Fairbanks, 2006) depending upon the time assumed to correspond to the LGM-, and
- 26 ~100 m from 21 ka to 9 ka (the period of focus for this manuscript).
- 27 Historically, the EPILOG group defined the LGM as having occurred 23-19 ka (21 ka centre
- point), when climate was generally cool and ice sheets were more or less at their largest, based
- on ice core and sea level records (Mix et al., 2001). It represents the time of maximum terrestrial

ice volume. More recently, the last sea level lowstand has been found to have occurred either 1 2 around 26 ka (Peltier and Fairbanks, 2006) or 21 ka (Lambeck et al., 2014) with relatively stable (low) sea level between those dates. Nearly all ice sheets were at or close to their maximum 3 extent between 26 ka and 19 ka (Clark et al., 2009). 4 5 During the LGM, global annual mean surface temperatures are estimated to have been around 6  $4.0 \pm 0.8$  °C colder than today (Annan and Hargreaves, 2013). The Earth began warming 7 towards its present state from around 19 ka (Fig. 1h; Buizert et al., 2014; Jouzel et al., 2007), 8 as summer insolation at northern high latitudes and global atmospheric greenhouse gas 9 concentrations gradually increased (Fig. 1c-f; Bereiter et al., 2015; Berger, 1978; Loulergue et al., 2008; Marcott et al., 2014). By 9 ka, although the northern ice sheets had not quite retreated 10 11 (or disappeared) to their present day configuration, most of the Northern Hemisphere deglaciation had taken place (Clark et al., 2012; Lambeck et al., 2014; Peltier et al., 2015; 12 13 Tarasov et al., 2012; Figures 1g and 2), with both surface air temperatures (Fig. 1h-i) and 14 atmospheric greenhouse gases (Fig. 1d-f) approaching present day values. However, much of 15 Antarctica remained heavily glaciated well into the Holocene, with the majority of its deglacial ice meltingloss taking place between 12 and 6 ka (Argus et al., 2014; Briggs et al., 2014; 16 17 Mackintosh et al., 2014). Antarctica's total contribution to post-glacial eustatic sea level is poorly constrained, but recent studies have not supported LGM contributions greater than about 18 19 15 m eustatic sea level equivalent (Bentley et al., 2014; Briggs et al., 2014; Golledge et al., 20 2013; Mackintosh et al., 2011; Philippon et al., 2006; Whitehouse et al., 2012), emphasising 21 the dominance of North American and Eurasian Ice Sheet dynamics in the global sea level 22 record during the last deglaciation (Argus et al., 2014; Lambeck et al., 2014; Peltier et al., 2015). 23 It should be noted that there is some controversy over whether deglacial ice sheet reconstructions close the global sea level budget (Clark and Tarasov, 2014), with a potential 24 25 LGM shortfall of 'missing ice'.

The last deglaciation is not only an interesting case study for understanding multi-millennial scale processes of deglaciation, but also provides the opportunity to study shorter and more dramatic climate changes. Superimposed over the gradual warming trend (EPICA Community Members, 2004; Jouzel et al., 2007; Petit et al., 1999; Stenni et al., 2011) are several abrupt climate transitions lasting from a few years to a few centuries (examples of which are given

26

27

28

29

below) and it remains a challenge to reconstruct or understand the chain of events surrounding

2 these instances of rapid cooling and warming.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Heinrich Event 1 (approx. 16.8 ka; Hemming, 2004) occurred during the relatively cool Northern Hemisphere Heinrich Stadial 1 (~18-14.7 ka). It was characterised by the release of a vast number of icebergs from the North American and Eurasian ice sheets into the open North Atlantic, where they melted. The existence of these iceberg 'armadas' is evidenced by a high proportion of ice rafted debris in North Atlantic sediments between 40° N and 55° N, predominantly of Laurentide (Hudson Strait) provenance (Hemming, 2004 and references therein). There are several competing theories for the cause of Heinrich Event 1. There is a substantial body of evidence to suggesting that it occurred during or was precursory to a period of Atlantic Meridional Overturning Circulation (AMOC) slow down (e.g. Hall et al., 2006; Hemming, 2004; McManus et al., 2004) and weak North Atlantic Deep Water (NADW) formation (e.g. Keigwin and Boyle, 2008; Roberts et al., 2010) under a relatively cold, Northern Hemisphere surface climate (Shakun et al., 2012). Even though the interpretation of a cause and effect link between Heinrich Event 1 and the diminished strength of the AMOC remains rather compelling (e.g. Kageyama et al., 2013), it is increasingly being suggested that the melting icebergs might not have caused the recorded AMOC slow down, but may have provided a positive feedback to amplify or prolong AMOC weakening and widespread North Atlantic cooling (e.g. Álvarez-Solas et al., 2011; Barker et al., 2015), whilst also causing mid-latitude Atlantic sea surface warming through northward expansion of the subtropical gyre.

During the subsequent 14.2-14.7 ka interval, Northern Hemisphere temperatures are seen to have risen by as much as  $14.4 \pm 1.9$  °C in just a few decades (Buizert et al., 2014; Goujon et al., 2003; Kindler et al., 2014; Lea et al., 2003; Severinghaus and Brook, 1999), with a dramatic shift in some components of Greenland climate taking place in as little as one to three years (Steffensen et al., 2008). This abrupt event is termed the *Bølling Warming* or *Bølling Transition* (Severinghaus and Brook, 1999). At roughly the same time (~14.6 ka), there was a rapid jump in global sea level of 12-22 metres in around 350 years or less, known as *Meltwater Pulse 1a* (MWP1a; Deschamps et al., 2012). It is not known exactly which ice mass(es) contributed this 40 mm yr<sup>-1</sup> (or greater) flux of water to the oceans (e.g. Lambeck et al., 2014; Peltier, 2005). Some-older studies have mainly attributed it to a southern source (Bassett et al., 2005, 2007; Carlson, 2009; Clark et al., 1996, 2002; Weaver et al., 2003), whereas more recent work has

- suggested that at most, less than 4.3 metres eustatic sea level equivalent of meltwater could
- 2 have come from Antarctica (Argus et al., 2014; Bentley et al., 2010, 2014; Briggs et al., 2014;
- 3 Golledge et al., 2012, 2013, 2014; Licht, 2004; Mackintosh et al., 2011, 2014; Whitehouse et
- 4 al., 2012) and that Northern Hemisphere ice was the primary contributor (Aharon, 2006;
- 5 Gregoire et al., 2012; Keigwin et al., 1991; Marshall and Clarke, 1999; Peltier, 2005; Tarasov
- 6 et al., 2012; Tarasov and Peltier, 2005). Exactly how the Bølling Warming and MWP1a are
- 7 linked, or what triggered either, remains uncertain.
- 8 Ice core records of δD indicate that from around 14.5 ka to 12.8 ka, the general trend of
- 9 increasing Southern Hemisphere warming, temporarily stalled (Jouzel et al., 2007; ice core
- 10 chronology from Veres et al., 2013) for a period known as the Antarctic Cold Reversal (Jouzel
- et al., 1995). Southern Hemisphere cooling is thought to have been relatively widespread,
- extending from the South Pole to the southern mid-latitudes, with glacial readvance (or stall in
- glacial retreat) recorded to have peaked 13.0-14.2 ka in Patagonia (García et al., 2012; Kaplan
- et al., 2011; Strelin et al., 2011) and ~13.0 ka in New Zealand (Putnam et al., 2010; Rother et
- al., 2014). There are several hypotheses for the cause of the Antarctic Cold Reversal. For
- example, some have linked it to a change in ocean circulation induced by the delivery of
- Antarctic ice melt to the Southern Ocean (Menviel et al., 2010, 2011), or possibly as a bipolar
- 18 response to AMOC recovery and Northern Hemisphere warming during the Bølling Warming
- 19 (Menviel et al., 2011; Stocker, 1998). Using a CMIP5 level coupled atmosphere-ocean model,
- 20 Peltier and Vettoretti (2014) and Vettoretti and Peltier (2015) have recently shown that ice core
- 21 inferred southern hemisphere cooling and northern hemisphere warming could have been
- caused by a nonlinear salt oscillator mechanism. Others have argued that a change in Southern
- Hemisphere winds and ocean circulation is the explanation; for example, a simultaneous
- 24 northward migration of the southern Subtropical Front and northward expansion of cold water
- originating in the Southern Ocean (Putnam et al., 2010). The ongoing disagreement over the
- 26 timing, duration and extent of the Antarctic Cold Reversal means that its cause is difficult to
- 27 pin down.
- 28 The next event of particular interest is the *Younger Dryas cooling*, when Northern Hemisphere
- 29 temperatures are thought to have dropped by several degrees at 12.8-11.7 ka and most
- prominently in high latitudes (Buizert et al., 2014; Heiri et al., 2007; Lea et al., 2003; Liu et al.,
- 31 2012; Simonsen et al., 2011; Steffensen et al., 2008). The event presents a conceptual paradox;

the magnitude of the cooling is difficult to reconcile with rising atmospheric CO<sub>2</sub> 1 2 (approximately +10 ppm compared to the earlier Bølling period ~ 14.5 ka; Bereiter et al., 2015) and increasing boreal summer insolation (Berger and Loutre, 1991). It is possible that changes 3 4 in the atmospheric hydrological cycle, such as a shift in source moisture region, could be partly responsible for the  $\delta^{18}$ O signal, requiring a smaller temperature anomaly to match the records 5 (Liu et al., 2012). For the climate cooling itself, a rerouting of North American freshwater 6 7 discharge to the Arctic and/or Atlantic Oceans might have caused a reduction in NADW formation (Broecker et al., 1989; Condron and Winsor, 2012; Tarasov and Peltier, 2005). 8 9 Simulating this period within the context of the preceding climate evolution, could be key to 10 understanding exactly what the surface climate and deep ocean changes were during the 11 Younger Dryas, and how these relate to contemporaneous proxy records (e.g. Buizert et al., 12 2014). 13 In this description, we have sought to capture some of the last deglaciation's main climatic 14 events, but there are others that could shape the focus of further study in the working group. 15 For example, early on in the period there is evidence of around 10 m sea level rise taking place in 500-800 years around 20-19 ka (Clark et al., 2004; Clark and Mix, 2002; De Deckker and 16 17 Yokoyama, 2009; Yokoyama et al., 2001a, 2001b). Whilst the event itself remains somewhat controversial (Cabioch et al., 2003; Hanebuth et al., 2000, 2009; Peltier and Fairbanks, 2006; 18 19 Shennan and Milne, 2003), it could be the expression of accelerating deglacial ice melt 20 following the Last Glacial Maximum. More recently, the Barbados record of relative sea level 21 history indicates that following the Younger Dryas cooling episode, there may have been 22 another meltwater pulse (Fairbanks, 1989; Peltier and Fairbanks, 2006), referred to as 23 Meltwater Pulse 1b. Significant debate surrounds the magnitude and timing of Meltwater Pulse 1b (Bard et al., 1996; Cabioch et al., 2003; Cutler et al., 2003; Edwards et al., 1993; Shennan, 24 25 1999; Stanford et al., 2011) and even its existence, because similar to the 19 ka event, it is not 26 seen in all sea level records spanning the interval (e.g. Bard et al., 1996, 2010; Hanebuth et al., 27 2000). However, evidence of rapid Antarctic retreat around the time of the event could provide a possible cause for this late deglacial rapid sea level rise (Argus et al., 2014). 28

### 1.2 Transient modelling of the last deglaciation

behaviours (Braconnot et al., 2012) endemic to the Earth's non-stationary climate system, 3 4 especially ice-ocean-atmosphere interactions. It is the best tool for reaching a comprehensive 5 understanding of complex and interrelating climate processes with specific regard to chains of 6 events. 7 Such simulations are useful for examining the effect of temporally varying climate forcings 8 across the globe and in different environmental systems: what geographical patterns arise and 9 how are they connected, how do these vary through time from seasonal to millennial time 10 scales, and how long does it take before a change in forcing is manifested in a climate response? The spatial coherency of specific events can be investigated to identify processes for 11 12 simultaneous change as well as lead/lag mechanisms. For example, Roche et al. (2011) investigated patterns of spatial variability in the deglaciation as caused by long-term changes 13 14 in orbital parameters, atmospheric greenhouse gas concentrations, and ice sheet extent/topography. The results indicated a simultaneous onset of hemispheric warming in the 15 16 North and South, showing that obliquity forcing was the main driver of the early deglacial warming. In the same investigation, it was found that sea-ice covered regions were the first 17 18 parts of the world to exhibit significant rises in temperature, implying that a better knowledge 19 of sea-ice evolution could be key to fully understanding the trigger for widespread deglaciation 20 and warming feedbacks. A further example of the insights available into lead-lag relationships provided by long, transient climate simulations under glacial boundary conditions is provided 21 22 by the previously referenced Dansgaard-Oeschger oscillation-related analyses of Peltier and 23 Vettoretti (2014) and Vettoretti and Peltier (2015), which appear to mimic the Heinrich Stadial 24 1 to Bølling transition. 25 Through comparison to geological timeseries data, transient simulations enable the 'fingerprinting' of specific climate processes to find out what mechanisms [in the model] can 26 27 cause recorded climate signals. Comparing complex, global-scale models to combined 28 geological records can provide multiple 'fingerprints' in different variables from different 29 archives and in different locations to help narrow down plausible scenarios. For example, 30 Menviel et al. (2011) ran a suite of simulations, varying oceanic meltwater fluxes through the last deglaciation in order to identify which freshwater-forcing scenarios reproduce the Atlantic 31

Transient modelling of the last deglaciation is valuable for examining dynamic and threshold

1

- 1 Ocean circulation state implied by sedimentary records of AMOC strength/depth and
- 2 ventilation age (Gherardi et al., 2005; McManus et al., 2004 with ages shifted as per Alley,
- 3 2000; Thornalley et al., 2011) as well as the Northern Hemisphere surface climate (Alley, 2000;
- 4 Bard, 2002; Bard et al., 2000; Heiri et al., 2007; Lea et al., 2003; Martrat et al., 2004, 2007). It
- 5 was argued that such climate simulations could be used to improve constraints on the timing,
- 6 duration, magnitude, and location of meltwater inputs to the global ocean.
- 7 Liu et al. (e.g. 2009) used climate 'fingerprinting' to identify possible mechanisms for the
- 8 abrupt Bølling Warming Event, finding that in their model, a forced cessation of freshwater
- 9 inputs to the North Atlantic (representing ice sheet melt) superimposed on a steady increase in
- atmospheric CO<sub>2</sub> caused an abrupt resumption in the strength of the AMOC (almost matching
- a record produced by McManus et al., 2004). This in turn induced a rapid warming in Northern
- Hemisphere surface climate (close to records from Bard et al., 2000; Cuffey and Clow, 1997;
- and Waelbroeck et al., 1998) and an increase in tropical rainfall over the Cariaco Basin
- 14 (comparable to Lea et al., 2003), whilst Antarctic surface temperatures remained relatively
- stable (similar to Jouzel et al., 2007). Using a suite of simulations from the same model, Otto-
- Bliesner et al. (2014) went on to suggest that a combination of rapid strengthening of NADW
- seen by Liu et al. (e.g. 2009) and rising greenhouse gas concentrations was responsible for
- increased African humidity around 14.7 ka, matching the model output to a range of regional
- 19 climate proxies (including deMenocal et al., 2000; Tierney et al., 2008; Tjallingii et al., 2008;
- 20 Verschuren et al., 2009; Weijers et al., 2007).
- 21 Thus, climate proxy fingerprinting can be useful for understanding the spatial coherency of
- 22 climatic changes and their underlying mechanisms. However, correlation between model and
- 23 geological data does not guarantee that the correct processes have been simulated; there is
- 24 always the problem of *equifinality*, whereby the same end state can be reached by multiple
- 25 means. In a process sense, this may be particularly uncertain when a model does not reproduce
- 26 the full chain of events that led to a distinguishable climatic signal. For example, mechanisms
- for many of the major changes in oceanic freshwater inputs proposed by Liu et al. (2009) and
- Menviel et al. (2011) have not yet been directly simulated (e.g. by dynamic ice sheet models).
- 29 In both studies, they are imposed as model boundary conditions. Further simulations with
- different forcing scenarios and from a range of models would help to address such uncertainties.

Transient simulations of the last deglaciation also provide necessary boundary conditions for 1 2 modelling a variety of Earth System components that may not be interactively coupled to the 3 climate model being used. For example, Gregoire et al. (2015) drove a dynamic ice sheet model 4 with climate data produced by a similar set of simulations to Roche et al. (2011). Using a low 5 resolution GCM, individual climate forcings – including orbit, greenhouse gases, and meltwater fluxes – were isolated so that their relative contribution to melting the modelled North American 6 7 ice sheets could be examined. The work concluded that the last deglaciation was primarily 8 driven by changes in Northern Hemisphere insolation, causing around 60% of the North 9 American Ice Sheet melt, whilst increasing CO2 levels were responsible for most of the 10 remaining changes (Gregoire et al., 2015). The sufficiency of these two forcings for North 11 American glaciation/deglaciation had previously also been identified with fully coupled 12 glaciological and energy balance climate models (Tarasov and Peltier, 1997). Gregoire et al 13 (2012) were also able to highlight a possible 'saddle-collapse' mechanism, whereby gradual 14 warming trends could result in abrupt ice sheet melting events, such as MWP1a and the 8.2 kyr 15 *Event*, when a threshold in ice mass balance was crossed. The opening of the ice-free corridor between the Cordilleran and Laurentide ice sheets has long been built into the ICE-NG, Tarasov 16 17 and Peltier and Tarasov et al. sequence of models as geological inferences indicate that it, 18 which could have occurred around the same time asduring MWP1a- and the 8.2 kyr event... 19 A further example is given by Liu et al. (2012), who carried out an asynchronous (or 'offline') 20 coupling between simulated sea surface temperatures and an isotope-enabled atmospheric 21 model to investigate the Younger Dryas cooling event (~12 ka). The results revised the 22 presupposed Greenland temperatures at this time by 5 °C, demonstrating that changes in 23 moisture source must be an important consideration for the robust interpretation of Greenland ice core  $\delta^{18}$ O records and our understanding of high-latitude climate sensitivity. More recently, 24 25 the same methodology was applied to understanding Chinese cave records of the East Asian Summer Monsoon 21-0 ka (Liu et al., 2014), not only to better interpret what the speleothem 26 27  $\delta^{18}$ O tells us about regional hydroclimate variability, but also to understand the wider

In addition, there are now transient simulations of the last deglaciation from climate models that have been interactively coupled with dynamic ice sheet models (Bonelli et al., 2009; Heinemann et al., 2014) and isotope systems (Caley et al., 2014). Furthermore, a fast Earth

teleconnections controlling those patterns.

28

29

30

- 1 System Model of Intermediate Complexity (EMIC) that includes an interactive ice sheet model
- 2 has been used to look at Earth System dynamics (the role of orbital cycles, aeolian dust,
- 3 subglacial regolith properties, the carbon cycle, and atmospheric trace gases) on much longer,
- 4 glacial-interglacial timescales >120 ka and encompassing the last deglaciation (Bauer and
- 5 Ganopolski, 2014; Brovkin et al., 2012; Ganopolski et al., 2010; Ganopolski and Calov, 2011).
- 6 However, the older, uncoupled climate-ice sheet model approach discussed above remains
- 7 useful because it enables a wider suite of models to be employed than would otherwise be
- 8 feasible due to limited computational efficiency (e.g. of state-of-the-art, high
- 9 resolution/complexity models) or software engineering capability. It may also allow for the
- same Earth System component model (e.g. of ice sheets or  $\delta^{18}$ O) to be driven by multiple
- 11 climate models, in order to examine the range of responses and assess [climate] model
- 12 performance.

17

- 13 With sufficient computational power to make long simulations of the last deglaciation a feasible
- undertaking, it is timely to coordinate new efforts to ensure that a framework exists to (i) utilise
- 15 the cutting edge science in climate modelling and palaeoclimate reconstruction, and (ii) robustly
- intercompare simulations run with different models by different groups and palaeoclimatic data.

## 1.3 Establishing a new PMIP working group

- 18 For more than twenty years, the Paleoclimate Modeling Intercomparison Project (PMIP) has
- been internationally coordinating multi-model simulations with complex climate models in
- order to evaluate model performance and better understand [past] climate changes (Braconnot
- et al., 2007, 2012; PMIP website, 2007). Currently entering its fourth phase, PMIP is a growing
- 22 organisation that continues to contribute towards other coordinated efforts to understand present
- 23 day climate change; including the Coupled Model Intercomparison Project (Taylor et al., 2011a,
- 24 CMIP; e.g. 2011b) and the Intergovernmental Panel on Climate Change's (IPCC) Assessment
- Reports (e.g. the Fifth Assessment Report; Flato et al., 2013; Masson-Delmotte et al., 2013). It
- 26 encompasses a broad range of models, from very fast, lower resolution EMICS, through a range
- of coupled GCMs to the latest generation of higher resolution and complexity Earth System
- Models. Thus, the main challenges for the fourth Phase of PMIP include: designing experiments
- 29 that are suitable for all of its participants; addressing sufficiently fundamental questions to be
- 30 of interest to the EMIC community; defining adequately focused scope for the feasible

- 1 participation of the latest generation of ESMs; and prescribing flexible model setups that can
- 2 be implemented in this range of models, whilst maintaining the ability to robustly compare
- 3 results. In addition, a continuing challenge for PMIP is to assemble suitable palaeoclimatic
- 4 datasets for comparison to model results.
- 5 One of the most recent working groups to be established in PMIP is the Last Deglaciation
- 6 Working Group. With the aim of coordinating transient simulations of the last deglaciation, the
- 7 challenge of including the full range of PMIP models is at the forefront of our experiment
- 8 design. The experiment will be partitioned into three phases (Fig. 1b and Sect. 4), which will
- 9 form milestones for managing its long duration (12 thousand years) as well as for scheduling
- any shorter, alternative simulations to the Core.
- 11 The aim of this paper is to outline the model setup for the transient Core simulation
- 12 of experiment for the last deglaciation, specifically for the sub-period of 21-9 ka. Prescribed
- boundary conditions include orbital parameters, atmospheric trace gases and ice sheets. In
- association with the ice sheet reconstructions, we also provide bathymetric, orographic and
- land-sea mask evolution, as well as make recommendations for freshwater forcing (or global
- ocean salinity changes) through the period.

### 1.4 Approach

- One of the roles of PMIP has been to systematically study the ability of climate models to
- 19 retrodict different past climates for which there are 'observational' data from geological
- 20 archives (e.g. Braconnot et al., 2000, 2007, 2012; Haywood et al., 2010; Joussaume et al., 1999;
- 21 Kageyama et al., 2006; Kohfeld and Harrison, 2000; Masson-Delmotte et al., 2006; Otto-
- Bliesner et al., 2009; Weber et al., 2007). In this vein, many palaeoclimate model
- 23 intercomparison projects have been designed to facilitate the robust comparison of results from
- 24 the same 'experiment' (i.e. simulation set) across a range of different models, usually taking a
- 25 prescriptive approach to model setup to ensure that any differences observed in the results are
- 26 attributable to differences in model structure and not to differences in chosen 'boundary
- 27 conditions' and climate forcings. However, as Schmidt et al. (2011) point out, the choice of one
- 28 particular configuration from a range of plausible boundary conditions and forcings is often
- 29 arbitrary and does not account for uncertainties in the data used for developing the
- 30 forcings/boundary conditions. Moreover, in designing the PMIP last deglaciation experiment,

- we have attempted to strike a balance between establishing a framework within which to assess
- 2 model differences and performance, and taking the opportunity to utilise the full range of PMIP
- 3 climate models (Earth System, General Circulation and Intermediate Complexity) to examine
- 4 uncertainties in deglacial forcings, trigger-mechanisms and dynamic feedbacks. <u>In short, when</u>
- 5 we do not precisely know the climate forcing for an event, or the temporal evolution of model
- 6 boundary conditions, it is more efficient to compare the results from models that use different
- 7 forcings with geological and palaeoclimatic data than to run one scenario with all models and
- 8 all scenarios with all models. The aim is to use the results of the comparison to narrow down
- 9 the range of uncertainty in the forcings/boundary conditions and reach a better understanding
- of underlying climate mechanisms.
- 11 Consequently, forcings/boundary conditions that are relatively well established (atmospheric
- trace gases and orbital parameters) are tightly constrained in the Core experiment design. Others
- are given with multiple precisely described possibilities to choose from (ice sheet
- reconstructions) and the remainder (e.g. freshwater/salinity, aerosols and vegetation) are left to
- 15 the discretion of individual participants, although we recommend. Recommendations will be
- made for the latter grouping of forcings/boundary conditions; for example, freshwater/global
- 17 salinity fluxes that are consistent with the provided ice sheet evolutions, and the use of
- preindustrial aerosol and/or vegetation values when they are not model prognostics-; but a
- 19 flexible approach is advantageous not only scientifically (i.e. for examining the climatic
- 20 response to uncertain forcings, see above), but also practically (for accommodating the wide
- 21 <u>range of participating models</u>). Further to this, it will be left to the expert user to decide how
- often to make manual updates to those boundary conditions that cannot evolve automatically in
- 23 the model, such as bathymetry, orography and land sea mask. This is also necessary because of
- 24 the specific technical and resource requirements associated with setting up and running each
- 25 participant model.
- In addition to the Core, we will also coordinate additional a series of experiments that are
- 27 designed to:
- 28 (i) explore uncertainties in the boundary conditions and climate forcings.
- 29 (ii) test specific hypotheses for mechanisms of climate change and to explain individual
- 30 events,

- 1 (iii) focus on shorter time periods (for example, abrupt events) and thus include
- 2 computationally expensive models for which a twelve thousand year simulation is
- 3 unfeasible.
- 4 These optional simulations will be referred to as focussed experiments, and participants are
- 5 encouraged to contribute towards the design and coordination of these simulations within the
- 6 working group ((dedicated Wiki page to coordinate these here:
- 7 https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:index).
- 8 The start date for the experiment has been chosen to be in line with PMIP's historical definition
- 9 of the LGM; 21 ka (Abe-Ouchi et al., 2015; e.g. Braconnot et al., 2000; Kohfeld and Harrison,
- 10 2000). However, we are aware that some groups may prefer to begin their simulations from the
- earlier date of 26 ka (around the last sea level lowstand; Clark et al., 2009; Lambeck et al.,
- 12 2014; Peltier and Fairbanks, 2006) and both orbital and atmospheric trace gas parameters will
- be provided from this earlier date. Although the working group's focus will at least initially be
- 14 21-9 ka, boundary conditions for the Core <u>simulations</u> will be provided from 21 ka
- 15 to the preindustrial (26 ka to the preindustrial for orbital insolation and trace gases).
- 16 The following is not meant to be an exhaustive review of climate forcing reconstructions
- 17 through the last deglaciation. Instead, our intention is to consolidate the current knowledge in
- a practical experiment design for a range of climate models. Within this coordinated context,
- 19 the aim is to explore the forcings and underlying feedback mechanisms for the rapid climate
- 20 events that punctuated the gradual warming and deglaciation of the Earth.
- 21 The paper is structured so that Sect. 2 outlines the model boundary conditions and climate
- forcings for the Core simulation experiment. Section 3 presents how we will ensure the feasible
- 23 participation of a range of climate models with different complexity and computational
- 24 efficiency, as well as the plan to run additional, targeted, hypothesis- and sensitivity-led
- simulations. Section 4 discusses the three phases of the long Core experiment.

## 2 Core <u>simulationexperiment</u> (21 ka to 9 ka)

- 27 The Core simulation for simulations of the last deglaciation will focus on the period from 21 ka
- 28 to 9 ka, although there will also be the option to spin up the simulation with time-evolving
- orbital and trace gas parameters from 26 ka and all boundary conditions will be available from
- 30 21 ka to the preindustrial. Recommendations for the initialisation state at 21 ka are summarised

- 1 in Table 1 and described below (Sect. 2.1). Prescribed boundary conditions include insolation
- 2 via the Earth's astronomical parameters (Sect. 2.2), atmospheric trace gases (Sect. 2.3), ice
- 3 sheets (Sect. 2.4), meltwater fluxes (Sect. 2.5), and orography/bathymetry (Sect. 2.6), as
- 4 summarised in Table 2. Boundary condition data for the Core simulation experiment are
- 5 provided on the PMIP wiki; https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:bc:core
- 6 (PMIP Last Deglaciation Working Group, 2015).

### 2.1 Last Glacial Maximum spinup

7

- 8 There is a choice of two possibilities for starting the last deglaciation Core
- 9 <u>simulationsimulations</u>. Either the simulation should be initialised from the end of a spun-up,
- 10 PMIP-compliant LGM (21 ka) simulation, or a simulation with transient orbital and trace gas
- forcing should be run from an earlier time period (orbital and trace gas parameters will be
- 12 provided from 26 ka onwards). Whichever method is applied, we require that it is
- comprehensively documented along with information on the model's state of spinup at 21 ka
- 14 (e.g. timeseries of surface climates, maximum strength of the North Atlantic Meridional
- Overturning Circulation stream function, net radiation at the top of the atmosphere etc.).).

# 16 2.1.1 Equilibrium-type spinup (21 ka)

- 17 For setting up an equilibrium-type spinup, please make sure to use the following constraints,
- which may differ from other PMIP 21 ka simulation protocols:
- Insolation should be set so that eccentricity is 0.018994, obliquity is 22.949°,
- perihelion–180° is 114.42°, the date of the vernal equinox is 21st March at noon,
- and the solar constant is the same as for the preindustrial (e.g. 1365 W m<sup>-2</sup>, as in the
- 22 PMIP3-CMIP5 preindustrial experiment). These are consistent with previous PMIP
- LGM boundary conditions (PMIP LGM Working Group, 2010).
- Prescribed atmospheric trace gases should be as follows: CO<sub>2</sub> at 188190 ppm, CH<sub>4</sub>
- at 375 ppb, N<sub>2</sub>O at 200 ppb (Fig. 3), with CFCs at 0 and O<sub>3</sub> at the PMIP3-CMIP5
- preindustrial value (e.g. 10 DU). This is to be compatible with the time-evolving
- boundary conditions for the Core <u>simulation</u>simulations (Sect. 2.3). Note that the
- 28 LGM atmospheric CO<sub>2</sub> and CH<sub>4</sub> concentrations have changed slightly from earlier
- LGM experiments (e.g. PMIP3, which used 185 ppm and 350 ppb, respectively;

PMIP LGM Working Group, 2010). However, N<sub>2</sub>O remains at 200ppb, which is more representative of the longer glacial period than the 187 ppb concentration recorded at 21 ka (Fig. 3c). These updates are in line with the latest ice core age model, (AICC2012; Veres et al., 2013) and records (Bereiter et al., 2015; Schilt et al., 2010), which is, which are also used for the transient forcings described below (Sect. 2.3).

- Prescribed ice sheets should use either the GLAC-1D or ICE-6G\_C reconstruction at 21 ka (see Sect. 2.4). The associated topography and coastlines should be used as per the chosen ice sheet reconstruction. Beyond maintaining consistency with the coastlines, it is optional whether or not to implement the associated bathymetry. and participants should adapt the bathymetry according to their model's capabilities (for example, depending on whether the spatial resolution allows for it or makes this a useful adaptation). These data will be provided with the ice sheet reconstructions. Whichever ice sheet reconstruction is chosen for the LGM spinup should be carried through to the Core transient simulation.
- Global ocean salinity should be +1 psu, compared to preindustrial, to account for the increased terrestrial ice mass at the LGM (PMIP LGM Working Group, 2015).
- Any other boundary conditions should be set to be consistent with the Core transient simulation to follow (Sect. 2.2-2.7).
- On the freshwater budget, PMIP advises groups to 'carefully check the fresh water budget in their LGM experiments in order to avoid unnecessary drifts of the ocean salinity. It can be necessary to route the snow which has fallen in excess on the ice sheets to the ocean. Given the change in coastlines, it is also sometimes necessary to relocate the large river estuaries on the coast' (PMIP LGM Working Group, 2015). Tarasov and Peltier (2006) providesprovide a glaciological example of the possible re-routings for North America. As they become available, routing maps for the Last Glacial Maximum continents will be provided on the last deglaciation PMIP Wiki (address above).
- The integration time required for spinning up the LGM climate state should be decided on a case-by-case basis by the user. Groups may choose to initialise their equilibrium-type simulation from other PMIP LGM runs. However, please be careful caution is advised. Some

- of the boundary conditions for the PMIP4 CMIP6 (not finalised at the time of writing) and
- 2 previous PMIP LGM simulations are different to the setup outlined here, specifically in terms
- 3 of ice sheets and trace gases concentrations, and therefore need to be adapted to match these
- 4 requirements. Please also The protocol for the PMIP4-CMIP6 (being finalised at the time of
- 5 writing) is currently compatible with the LGM spin-up described here. Therefore, provided that
- 6 either the ICE-6G\_C or GLAC-1D ice sheet reconstruction is used for both the LGM spin-up
- 7 and transient run, the PMIP4-CMIP6 LGM simulation can be used to initialise transient
- 8 <u>simulations of the last deglaciation without alteration. Please</u> provide timeseries data for the
- 9 diagnosis of model [dis]equilibrium at 21 ka (introduction to Sect. 2.1).

### 10 2.1.2 Transient orbital and trace gas parameters (26-21 ka)

- 11 If this is the preferred option to initialise the Core, it is recommended that the simulation is
- setup as per Sect. 2.1.1, but with time-evolving orbital and trace gas parameters instead of fixed
- ones. Specifically for orbit, the eccentricity, obliquity, perihelion–180° and date of the vernal
- equinox values listed above should be replaced with their transient equivalents, as per Berger
- 15 (1978). For the atmospheric trace gases, carbon dioxide, methane and nitrous oxide values
- 16 should be replaced with the transient equivalents provided on the PMIP Wiki
- 17 (https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:bc:core) and according to
- 18 LüthiBereiter et al. (2015), Loulergue et al. (2008) and Schilt et al. (2010), respectively, on the
- 19 AICC2012 chronology (Veres et al., 2013); Fig. 3.
- 20 In this case, all other boundary conditions should remain fixed in line with the LGM
- 21 equilibrium-type experiment design until 21 ka, when the fully transient Core simulation
- 22 begins.simulations begin. This transient spin-up can be initialised from a spun-up previous
- 23 LGM, cold ocean, preindustrial, or observed present day ocean simulation.

### 2.2 Insolation (21-9 ka)

- As per Sect. 2.1, the solar constant should be fixed to the established preindustrial conditions
- 26 (e.g. 1365 W m<sup>-2</sup>) throughout the run, which is the PMIP preindustrial experiment setup (PMIP
- 27 LGM Working Group, 2015). However, the orbital parameters should be time-evolving through
- the deglaciation to follow Berger (1978); e.g. Fig. 1c.

### 2.3 Atmospheric trace gases (21-9 ka)

- For the deglaciation, CFCs should be fixed at 0, and O<sub>3</sub> should be set to PMIP3-CMIP5 preindustrial values (e.g. 10 DU), as used for the LGM. When a model is not running with
- 4 dynamic atmospheric chemistry, the remaining trace gases should be time-evolving, with CO<sub>2</sub>
- 5 following <u>LüthiBereiter</u> et al. (2015), CH<sub>4</sub> following Loulergue et al. (2008) and N<sub>2</sub>O following
- 6 Schilt et al. (2010), all adjusted to the AICC2012 chronology (Veres et al., 2013); Fig. 1d-f.
- 7 The atmospheric CO<sub>2</sub> concentrations provided by Bereiter et al. (2015) is a composite dataset,
- 8 <u>combining previous Antarctic ice core records and composites (for the period 26-0 ka: Ahn and </u>
- 9 Brook, 2014; Lüthi et al., 2008; MacFarling Meure et al., 2006; Marcott et al., 2014; Rubino et
- 10 al., 2013; Siegenthaler et al., 2005) on the AICC2012 timescale of Veres et al.
- 11 (2013) Temporally higher resolution CO<sub>2</sub> data from the West Antarctic Ice Sheet Divide has
- been provided by Marcott et al., spanning 23-9 ka ('WDC' on Fig. 3a). However, the newer
- data are consistently offset from other Antarctic ice core data by ~4 ppm and the cause for this
- 14 remains unresolved. Furthermore, although the data encompasses the last deglaciation (and the
- period we are focussing on; 21-9 ka), it would not be easily spliced into a longer record (e.g.
- 16 for groups wishing to run their simulations through to the present day). This is why the higher
- 17 resolution data will not be used for the Core, reverting to the older record from Lüthi et al...
- 18 However, it to produce a high resolution record that is consistent with the other, lower
- resolution trace gas records used in this experiment (CH<sub>4</sub> and N<sub>2</sub>O as discussed above). Groups
- are free to decide on the temporal resolution of trace gas model inputs based on these records
- 21 and if lower resolution is employed, the method used to smooth or create a spline through the
- 22 data should be fully documented. Exploring the influence of CO<sub>2</sub> resolution on the climate
- 23 <u>system</u> may form the basis of a coordinated additional simulation, which will be optional for
- 24 participant groups. Other sensitivity-type simulations could also be coordinated to assess the
- 25 influence of timing in the CO<sub>2</sub> records on climate and ice sheet evolution, addressing age model
- 26 <u>uncertainty.</u> The details of the setup for such *focussed* simulations (also discussed in Sect. 3)
- will be discussed and determined at a later date.
- 28 It is noted that the N<sub>2</sub>O value from Schilt et al. (2010) and Veres et al. (2013) does not match
- 29 the previously defined LGM N<sub>2</sub>O concentration (Sect. 2.1.1); 187 ppb compared to 200 ppb
- 30 (Fig. 3c). This is because the N<sub>2</sub>O record is highly variable during the last glacial lowstand (26-
- 21 ka), with a range of ~33 ppb (183-216 ppb) and a mean of 201 ppb. Thus 200 ppb seems a

- 1 reasonably representative N<sub>2</sub>O concentration for the spinup phase of the simulation, although
- 2 the Core <u>simulations</u> will start with the more chronologically accurate value of 187
- 3 ppb.

4

### 2.4 Ice sheet reconstructions (21-9 ka)

- 5 For the Core experiment, ice sheet extent and topography should be prescribed from one of two
- 6 possible reconstructions: ICE-6G\_C (Fig. 2a and Fig. 4a) and GLAC-1D (Fig. 2b and Fig. 4b).
- 7 The ICE-6G\_C reconstruction is fully published (Argus et al., 2014; Peltier et al., 2015), and
- 8 the reader is directed to this literature for further information. The GLAC-1D reconstruction is
- 9 combined from different sources (Briggs et al., 2014; Tarasov et al., 2012; Tarasov and Peltier,
- 10 2002) and whilst it is mostly published, there are some new components; therefore, a short
- 11 description follows. The Eurasian and North American components are from Bayesian
- calibrations of a glaciological model (Tarasov et al., 2012; this study), the Antarctic component
- is from a scored ensemble of 3344 glaciological model runs (Briggs et al., 2014) and the
- 14 Greenland component is the hand-tuned glaciological model of Tarasov and Peltier (2002)
- 15 updated to the GICC05 age chronology (Rasmussen et al., 2006). All four of the GLAC-1D
- ice sheet components employ dynamical ice sheet models that have been constrained with
- 17 relative sea level data. Where available, they have also been constrained by geologically-
- 18 inferred deglacial ice margin chronologies, pro-glacial lake levels, ice core temperature
- profiles, present-day vertical velocities, past ice thickness, and present day ice configuration.
- 20 Details of exactly how these constraints were derived and applied are given in the relevant
- 21 references above. The four components (North American, Eurasia, Antarctica and Greenland)
- 22 were combined under Glacial Isostatic Adjustment (GIA) post-processing for a near-
- 23 gravitationally self-consistent solution (Tarasov and Peltier, 2004), which was tested against
- complete Glacial Isostatic Adjustment solutions (Tarasov, pers. comm. 2014). The topography
- 25 in the global combined solution was adjusted in Patagonia and Iceland following ICE-5G
- 26 (Peltier, 2004), but the changes in these ice caps are not reflected in the ice mask.
- Both datasets include ice extent and topography at intervals of 1,000 years or less through the
- deglaciation. <del>Ice</del> Specifically, the ICE-6G\_C reconstruction is provided at 1,000-year intervals
- 29 for the period spanning 26-21 ka and 500-year intervals for 21-0 ka. For GLAC-1D, the data

- 1 are at 100-year intervals 21-0 ka. In both reconstructions, ice extent is provided as a fractional
- 2 ice mask for ICE-6G\_C and a binary ice mask in GLAC-1D.
- 3 The two reconstructions incorporate similar constraints for North American ice sheet extent
- 4 (i.e. Dyke, 2004). For Eurasia, ICE-6G\_C follows the ice extent provided by Gyllencreutz et
- 5 al. (2007), whereas GLAC-1D uses data from Hughes et al. (2015). The reconstructions only
- 6 differ slightly in their ice extent evolution (Figures 2 and 4), for example the Barents Sea
- 7 deglaciates earlier in GLAC-1D than in ICE-6G C (Fig. 2). The main differences between the
- 8 reconstructions are in the shape and volume of individual ice sheets. In particular, the North
- 9 American Ice Sheet reaches an elevation of 4000 m in ICE-6G\_C, but is only 3500 m high in
- 10 GLAC-1D. Similarly, the shape and thickness of the Barents Sea Ice Sheet are not the same in
- the two reconstructions. The ICE-6G\_C dataset is been-provided at both 1 degree horizontal
- 12 <u>resolution</u> and 10 minute horizontal resolution, GLAC-1D is provided at 1 degree (longitude)
- $\times$  0.5 degree (latitude) horizontal resolution.
- 14 Ice surface elevation (topography) should be implemented as an anomaly from present day
- topography and added to the model's present day topography after regridding onto the model
- 16 resolution, following the <u>previous LGM</u> experimental protocol (PMIP LGM Working Group,
- 17 2010, 2015). Land surface properties will need to be adjusted for changes in ice extent. Where
- ice retreats, land surface should be initialised as bare soil if a dynamic vegetation model is used,
- otherwise use prescribed vegetation (see Sect. 2.7) with appropriate consideration of soil
- 20 characteristics. Where ice is replaced by ocean, it is advised to follow the procedure for
- changing coastlines described in Sect. 2.7. Inland lakes can be prescribed based on the ice sheet
- and topography reconstructions, but this is not compulsory. It is also optional whether to include
- changes in river routing basins (i.e. catchments) and outlets, which can either be calculated
- 24 from the provided topography and land-sea mask data (see Sect. 2.6), or can be manually
- 25 set to follow routing maps, which will be provided on the last deglaciation PMIP Wiki.
- 26 Groups are free to choose how often to update ice extent and elevation. This could be done at
- 27 regular intervals (e.g. the sub-1000 year time slices provided) or at specific times during the
- deglaciation, as was done in the TraCE-21 ka experiment (Liu et al., 2009). Changes in ice
- 29 extent can have a large impact on climate through ice albedo changes and feedbacks. We thus
- recommend that when possible, ice sheets are not updated at times of abrupt regional or global
- 31 climate change, particularly the events that the working group will focus on, as this could

- 1 artificially introduce stepped shifts in climate. Groups are also advised to consider that ice sheet
- 2 <u>associated boundary conditions (ice extent and elevation, land-sea mask, bathymetry)</u> may need
- 3 to be updated more often at times of rapid ice retreat. The timing and way in which land ice
- 4 changes are implemented must be documented.
- 5 Alternative ice sheet reconstructions or simulations can be used to test the sensitivity of climate
- 6 to this boundary condition. Simulations with coupled ice sheet-climate models are also
- 7 welcomed. Although these will not form part of the Core, for which ICE-6G C or GLAC-1D
- 8 should be used, they will be coordinated as important supplementary *focussed* simulations.

#### 2.5 Ice meltwater

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

The Core simulation will experiment protocol is flexible on whether or not to include any prescribed ice melt (i.e. freshwater fluxes) delivered from the ice sheets to the ocean. This may seem controversial given the levels and how to do it. It is recommended to run at least one version of terrestrial the Core experiment with ice-sheet melt and included, since around 110 m of ice-volume equivalent sea--level rise known is thought to have taken place during this periodmelted 26-9 ka (e.g. Lambeck et al., 2014) and considering the historical importance attached to the influence of [de]glacial freshwater fluxes on climate (e.g. Broecker et al., 1989; Condron and Winsor, 2012; Ganopolski and Rahmstorf, 2001; Liu et al., 2009; Rahmstorf, 1995, 1996; Teller et al., 2002; Thornalley et al., 2010; Weaver et al., 2003). However, considering the current uncertainty on exactly when and where ice melt entered the ocean during the last deglaciation (e.g. discussion of MWP1a in Sect. 1.1), this it is the best way also important to ensure that the Core experiment is based on robust geological data. Furthermore, there is an note the ongoing debate over the role of extent to which catastrophic freshwater fluxes in bringing brought about abrupt deglacial climate change and; several alternative or complementary mechanisms have been proposed (e.g. Adkins et al., 2005; Álvarez-Solas et al., 2011; Barker et al., 2010, 2015; Broecker, 2003; Hall et al., 2006; Knorr and Lohmann, 2003, 2007; Roche et al., 2007; Rogerson et al., 2010; Thiagarajan et al., 2014). In light of this, and because we are keen to see what the climate response to non-freshwater forced scenarios will be in the PMIP models, the decision has been made to have no prescribed freshwater fluxes in the Core simulation. This experiment is thus designed to constitute a reference for experiments in which fresh water fluxes will be introduced.

| 1  | Moreover, a thorough investigation of the extent to which non-freshwater-forced climate        |                                                                                     |
|----|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 2  | evolution matches the geological records has merit in its own right; can abrupt deglacial      |                                                                                     |
| 3  | changes be simulated without ice-meltwater, as has been proposed (e.g. discussion above)?? To  |                                                                                     |
| 4  | what extent can 'observed' patterns be attributed to better constrained forcings, such as      |                                                                                     |
| 5  | atmospheric $CO_2$ and Earth's orbit? To complete the investigation, freshwater flux scenarios |                                                                                     |
| 6  | will be targete                                                                                | ed by opt-in focussed simulations that test specific ice-melt hypotheses as well as |
| 7  | instances who                                                                                  | ere/when the Core falls short of the 'observed' patterns. For example, routing of   |
| 8  | ice melt comp                                                                                  | outed from GLAC-1D (Sect. 2.4) will be provided as a possible transient boundary    |
| 9  | condition It is                                                                                | for all of these reasons that a flexible protocol is required.                      |
| 10 | Freshwater for                                                                                 | orcing scenarios consistent with the ice sheet reconstructions and which hence      |
| 11 | conserve salin                                                                                 | nity throughout the deglacial experiment are provided in two formats (the 'melt-'   |
| 12 | scenarios des                                                                                  | cribed below). In addition, there is the option to run without any ice meltwater    |
| 13 | ('no-melt') to                                                                                 | provide a robust reference for simulations that include uncertain meltwater fluxes. |
| 14 | Thus, at least                                                                                 | one Core simulation should be run using one of the following ice sheet meltwater    |
| 15 | scenarios:                                                                                     |                                                                                     |
| 16 | melt-uniform:                                                                                  | a globally uniform freshwater flux (or salinity target) through time, designed to   |
| 17 |                                                                                                | conserve ocean salinity based on changing terrestrial ice mass. Fluxes consistent   |
| 18 |                                                                                                | with the ice sheet reconstructions are provided.                                    |
| 19 | melt-routed:                                                                                   | a distributed routing that is consistent with the geographic evolution of the ice   |
| 20 |                                                                                                | sheet reconstructions (GLAC-1D and ICE-6G_C; Sect. 2.4) and gives the flux          |
| 21 |                                                                                                | through time at individual meltwater river outlets along the coast. Again,          |
| 22 |                                                                                                | versions of this scenario are provided.                                             |
| 23 | no-melt:                                                                                       | no ice meltwater is included in the core; neither a globally integrated ocean       |
| 24 |                                                                                                | salinity target (melt-uniform) nor a distributed routing at the coastlines (melt-   |
| 25 |                                                                                                | routed) is implemented. This is best implemented as a sensitivity-type              |
| 26 |                                                                                                | experiment to account for model-specificness and meltwater flux uncertainty         |
| 27 |                                                                                                | when also implementing melt- scenarios in accompanying versions of the Core         |
| 28 |                                                                                                | simulation.                                                                         |
| 29 | Multiple Core                                                                                  | e simulations exploring more than one of these scenarios are welcomed.              |

- 1 Data for the *melt* scenarios will be available from the PMIP last deglaciation Wiki. The data
- 2 for *melt-uniform* are available at the time of writing (following the respective ice volume
- 3 changes from ICE-6G\_C and GLAC1-D; Fig. 1g), data for *melt-routed* will be made available
- 4 as they are produced (anticipated by April/May 2016). These *melt* scenarios represent a 'best-
- 5 estimate' approach to resolving the yet unknown geographically- and temporally-precise
- 6 freshwater fluxes of the last deglaciation, and they are also consistent with the ice sheet
- 7 reconstructions employed in the core. As such, they provide robust and justifiable boundary
- 8 conditions for simulations that will be assessed against palaeoclimate reconstructions.
- 9 However, participants do not have to use the [recommended] versions of *melt-uniform* or *melt-*
- 10 routed that are consistent with ICE-6G\_C and GLAC-1D, and can instead use their own
- scenarios to explore uncertainty in the ice sheet meltwater flux forcing. This is because the
- working group aims to use the full suite of PMIP climate models to examine forcing/boundary
- condition uncertainty (see discussion of model intercomparison project approaches in Sect.
- 14 1.4). Please note that in some ice melt (including *no-melt*) scenarios, global water budget may
- not be balanced through time (as is also true for *no-melt*). Therefore, it is advised to also use at
- least one scenario that falls within geological constraints (such as the ICE-6G\_C or GLAC-1D
- consistent scenarios for *melt-uniform* and *melt-routed*).
- 18 Regardless of which scenario is employed, it is important that meltwater fluxes are prescribed
- as time-evolving model boundary conditions; rather than as step-wise adjustments at the same
- 20 <u>time as the ice sheets are updated, for example. Unless they are intentional conditions of the</u>
- scenario, there should be no sudden jumps in the freshwater being applied. Furthermore, we
- 22 invite participants to upload the boundary condition data for other freshwater flux scenarios
- 23 along with appropriate documentation as/when they become available, and to contribute
- 24 towards the coordination of *focussed* experiments (see Sect. 3) that will test specific hypotheses
- 25 associated with model and climate sensitivity to the location, duration and magnitude of
- freshwater fluxes.

### 2.6 Topography, bathymetry, coastlines and rivers

- 28 Changes in the ice sheets and their glacial eustatic and isostatic influence affected continental
- 29 topography and ocean bathymetry, which in turn shifted the coordinates of river mouths and
- 30 the coastal outline throughout the deglaciation. Hence time-varying topographic, bathymetric

- and land-sea mask fields that match the chosen ice sheet from Sect. 2.4 (i.e. ICE-6G C or
- 2 GLAC-1D) should be used; these are provided within the ice sheet reconstruction datasets.
- 3 Topography should be updated at the same time as the model's ice sheet is updated; this is
- 4 mainly implicit to implementing the ice sheet reconstruction because the major orographic
- 5 changes through the deglaciation relate directly to ice sheet evolution. This said, due to glacial
- 6 isostatic adjustment components in the ice sheet reconstructions, there is evolution in
- 7 continental topography that is not directly the lowering/heightening of the ice surface, and it is
- 8 up to individuals whether they incorporate this or mask only the changes in ice sheet orography.
- 9 Ocean bathymetry will be provided, but is an optional. When deemed possible, this boundary
- 10 condition to varyshould be varied through time. Coastlines, Where differences in the land-sea
- mask require extra land to fill up coastal regions, or land to be cut away into ocean as sea level
- rises (see next paragraph on the other hand, coastlines), the model must be changed accordingly,
- because it is important to adequately represent the changing land-sea mask; for example, in
- order to include overlying grounded ice.
- 15 Following on from this, coastlines will need to be varied according to changes in global sea
- level (and each model's horizontal grid resolution). It will be left to the discretion of participants
- 17 to decide how often to update either boundary condition, and when deciding on their frequency
- it is recommended that groups consider the implications for opening/closing seaways and their
- 19 effect on ocean circulation and climate. Furthermore, the frequency need not be regular and
- 20 may instead focus on key 'events' in the marine [gateway] realm. However, whenever possible
- and foreseeable, groups are encouraged to avoid making stepwise changes to model boundary
- 22 conditions that would interfere with signals of abrupt climate change; particularly those events
- that the working group aims to focus on (e.g. Heinrich Event 1, the Bølling Warming, MWP1a,
- 24 the Younger Dryas etc.) unless the forcing (e.g. opening of a gateway) is assumed to be linked
- with the event.
- 26 If groups wish, model river networks can be remapped to be consistent with this and updated
- on the same timestep as the ice sheet reconstruction, either manually or by the model. However,
- 28 it is appreciated that the technical challenges associated with such a methodology would be
- 29 impractical for many. Therefore, following the recommendation of the PMIP3 LGM Working
- Group (2010) and Kageyama et al. (in prep.)<sub>51</sub> 'river pathways and basins should be at least
- 31 adjusted so that fresh water is conserved at the Earth's surface and care should be taken that

- rivers reach the ocean' at every timestep that the bathymetry is adjusted; for example, when sea
- 2 levels were lower, some river mouths may need to be displaced towards the [new] coastline to
- 3 make sure they reach the ocean.

4

#### 2.7 Vegetation, land surface and other forcings

- 5 In this section, recommendations are made for last deglaciation vegetation, land surface and
- 6 aerosol (dust) parameters in the model.
- 7 There are three recommended options for setting up the Core simulation's experiment's
- 8 vegetation and land surface parameters, they can either be: (i) computed using a dynamical
- 9 vegetation model (e.g. coupled to the atmospheric component of the model); (ii) prescribed to
- match the CMIP5 preindustrial setup (Taylor et al., 2011a, 2011b) with fixed vegetation types
- and fixed plant physiology (including leaf area index); or (iii) prescribed to match the CMIP5
- preindustrial setup (Taylor et al., 2011a, 2011b) with fixed vegetation types and interactive
- plant physiology if running with an enabled carbon cycle. If prescribing vegetation and land
- surface, i.e. using option (ii) and (iii), groups should be aware that coastal land will be emerged
- 15 compared to preindustrial because of the increased terrestrial ice volume and associated lower
- 16 eustatic sea level (with the maximum during the early stages of the Core). Therefore,
- vegetation/land surface will need to be interpolated onto the emerged land from preindustrial
- grid cells, for example using nearest neighbour methods.
- 19 For models with prognostic aerosols, the parameters for dust [forcing] can be computed
- 20 dynamically. Alternatively, it is recommended that Core simulations fix the associated
- 21 parameters according to the CMIP5 preindustrial simulation (Taylor et al., 2011a, 2011b), with
- 22 no temporal variation, with no temporal variation. Examining the influence of different
- transient aerosol scenarios (for those models that do not include prognostic dust, for example)
- could constitute a further suite of sensitivity simulations for comparison with the Core
- 25 It has already been described that for the LGM (i.e. the very start of the Core simulation), groups
- 26 are recommended to adjust the global freshwater budget by +1 psu to account for the increased
- 27 [terrestrial] ice volume (Sect. 2.1.1). If salinity is reset at any subsequent point (e.g. to correct
- 28 for model drifts or to account for ice volume changes), this must be documented.

- 1 There is no last deglaciation protocol for setting up other forcings, transient or fixed in time.
- 2 For all simulations, groups are required to fully document their methods, including experiment
- 3 design and especially when different or with additional components to the setup described here.

### 3 Coordinating further simulations

4

18

19

20

21

22

23

24

25

26

27

28

29

30

5 As already alluded to discussed, we are faced with the challenge of designing an experiment that is suitable to be run with a wide range of models, from the more computationally efficient class 6 7 of intermediate complexity models, to state-of-the-art Earth System Models. One particular 8 difficulty is enabling the most complex and highest resolution climate models to participate in 9 this 12 thousand year long experiment when for some, even the integration to reach the LGM 10 spinup state demands a huge amount of computational resource. There is no easy solution and 11 our approach will be to augment the Core simulations with shorter focussed 12 simulations that target specific questions, mechanisms and time periods. Whilst the most 13 computationally expensive models (e.g. the latest generation of Earth System Models) may not 14 feasibly be able to participate in the Core, they will be included in the shorter subset of focussed 15 simulations. Similarly, alternative full-deglaciation simulations can be coordinated for the less computationally expensive models in the working group (e.g. low resolution General 16 17 Circulation Models, and Earth System Models of Intermediate Complexity).

One line of investigation relating to meltwater inputs from ice sheets and icebergs is to carry out a suite of sensitivity simulations examining different injection sites. These simulations would help to address some of the uncertainty that led to the exclusion of in freshwater fluxes from the Coreflux scenarios. For example, geochemical evidence suggests that smaller and more localised discharges of freshwater than have traditionally been considered in climate models may have an important influence on ocean circulation (e.g. Hall et al., 2006), implying that precise freshwater fluxes are needed in the models to examine their effect. Certainly, others have shown that the location of injection is a controlling factor on the impact of freshwater delivery to the ocean, not just laterally (e.g. Condron and Winsor, 2012; Smith and Gregory, 2009), but also in terms of depth (e.g. Roche et al., 2007).

A set of coordinated simulations exploring a range of uncertainty in the freshwater forcing (location, depth, duration, magnitude, and physical characteristics such as temperature and density) would be well suited for the *focussed* experiments, thus building on the meltwater free

- 1 Core. Core simulations, which may themselves indicate interesting avenues for investigation;
- 2 partly the purpose of a flexible meltwater approach.
- 3 However, freshwater is not the only issue and other *focussed* experiments could include the
- 4 influence of timing in greenhouse gas records, record, differences in ice sheet reconstructions
- 5 (e.g. the PMIP3 merged ice sheet from Abe-Ouchi et al., 2015; ICE-6G\_C; GLAC-1D) or
- 6 simulations with [coupled] ice-sheet models, the relative importance of different forcings (e.g.
- 7 insolation vs. trace gases vs. ice sheet evolution), sensitivity to dust-forcing scenarios, the
- 8 <u>influence of changes in tidal energy dissipation</u> (Schmittner et al., 2015), event-specific
- 9 hypothesis testing, and shorter-term variability within the climate system.
- Based on on-going discussions, it is likely that the first <u>setsets</u> of *focussed* simulations will be:
- Sensitivity and hypothesis-driven, investigating simulations that compare results from uniformly distributed meltwater fluxes to results from river-routed meltwater fluxes to examine the impact of the regional specificity of freshwater forcing upon climate system evolution.
  - Sensitivity simulations that are free from ice meltwater fluxes to provide information
    on what climate evolution was caused by processes other than freshwater fluxes to the
    ocean.
    - A hypothesis-driven investigation of the possible mechanisms for preconditioning the glacial ocean for the relatively cool Heinrich Stadial 1 and ensuing catastrophic iceberg discharge (Barker et al., 2015).
- Sensitivity experiments examining the role of trace gas forcing resolution on climate
   evolution; for example, smoothing the record provided by Bereiter et al. (2015).
- We have described the plans for *focussed* simulations to highlight the depth of the working
- 24 group's aims and to properly contextualise the Core simulations, but the purpose of
- 25 this manuscript is to outline the model setup for the Core simulation. The experiment. The
- design for subsequent *focussed* simulations will be described at a later date on the PMIP Last
- 27 Deglaciation Working Group Wiki
- 28 (https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:index) and we welcome
- 29 contributions to the discussion of what further simulations to coordinate there.

15

16

17

18

19

### 4 Working group phases

- 2 The experiment will be split into three phases that are designed to run seamlessly into each
- 3 other (Fig. 1a). Phase one begins at the LGM (21 ka) and will finish at the abrupt Bølling
- 4 Warming event, which is where Phase 2 picks up, encompassing the Bølling Warming. Phase
- 5 3 begins at the start of the Younger Dryas cooling and is currently planned to continue through
- 6 to the end of the Core <u>simulation</u>experiment at 9 ka.
- 7 Perhaps most importantly, this affords near-future milestones for managing the ultimate
- 8 completion of the long full deglacial simulation across all participant groups. It will provide a
- 9 timetabled framework for beginning and continuing the longer simulations; for scheduling
- shorter, event- or challenge-specific transient simulations by more computationally expensive
- 11 models (see discussion in Sect. 3); and for the analysis and publication of results as the
- milestones are reached. Another motivation is to ensure that the experiment design for later
- periods of the last deglaciation is updated according to knowledge gained from simulations of
- 14 the preceding time period; for example, changes in ocean and climate states, which have
- previously been shown to have a strong influence on climate trajectories (e.g. Kageyama et al.,
- 16 2010; Timm and Timmermann, 2007). This is particularly important for setting up shorter,
- event-specific focussed simulations, but it is not planned to be explicitly used to influence the
- 18 Core. Splitting the period into phases also provides the opportunity to update model boundary
- 19 conditions and climate forcing data with cutting edge palaeoclimate reconstructions, as they
- 20 emerge during the lifespan of the multi-model experiment. However, care will be taken to
- 21 ensure that these are physically consistent between phases, and these updates will not
- compromise the Core simulations described in this manuscript. This is so as not to disadvantage
- 23 more computationally efficient models that may have already completed simulating the full 21-
- 9 ka (or beyond) period. Instead, the information will be incorporated into focussed versions of
- 25 the last deglaciation simulations; possibly spun-off sub-periods that do not have to start again
- at the LGM.
- Each phase will encompass at least one distinguishable climate event; Heinrich Stadial 1 and
- Heinrich Event 1 in Phase 1 following on from the LGM; MWP1a, the Bølling Warming and
- 29 the Antarctic Cold Reversal in Phase 2; and the Younger Dryas cooling in Phase 3 (Fig. 1b).
- 30 As outlined in Sect. 3, simulations of these shorter events can be coordinated in the *focussed*
- 31 simulations. This is to engage the higher complexity/resolution models, which are unable to run

- longer simulations, but can use the wider framework of the working group to provide valuable 1
- 2 knowledge on rapid climate changes known to have taken place in the last 21 ka.

#### Summary 5

3

6

7

8

9

10

11

12

13

14

18

19

20

21

22

23

24

26

27

28

29

30

4 The last deglaciation presents a host of exciting opportunities to study the Earth System and in particular, to try to understand a range of abrupt climate changes that occurred over just a few 5

years to centuries within the context of more gradual trends. Numerical climate models provide

useful tools to investigate the mechanisms that underpin the events of this well-studied time

period, especially now that technological and scientific advances make it possible to run multi-

millennium simulations with some of the most complex models. Several recent modelling

studies have begun this task, but many questions and untested hypotheses remain. Therefore,

under the auspices of the Paleoclimate Modelling Intercomparison Project (PMIP), we have set

up an initiative to coordinate efforts to run transient simulations of the last deglaciation, and to

facilitate the dissemination of expertise between modellers and those engaged with

reconstructing the climate of the last 21 thousand years.

15 The first step has been to design a single, Core simulation experiment suitable for a range of 16 PMIP models; from relatively fast and coarse resolution Earth System Models of Intermediate 17

Complexity, to new generations of the more complex and higher resolution General Circulation

and Earth System Models. The setup for this Core simulation experiment, is based on an

approach that tries to combine a traditional Model Intercomparison Project method of strictly

prescribing boundary conditions across all models, and the philosophy of utilising the breadth

of participants to address outstanding uncertainty in the climate forcings, model structure and

palaeoclimate reconstructions. Accordingly, we have made recommendations for the

initialisation conditions for the simulation and have stated our minimum requirements for the

transient experiment design, as summarised in Table 1 and 2, respectively.

25 However, there are some uncertainties that the Core is not designed to deal with directly or

exhaustively; two examples discussed in this manuscript being the effect of trace gas record

resolution and the influence of ice melt on the oceans and climate, and the effect of timing in

the trace gas records.respectively. We know that the Core simulations will not tackle

all of our questions, and is are likely to give rise to others. Therefore, additional focussed

simulations will also be coordinated on an ad-hoc basis by the working group. Many of these

- will build on and be centred around the Core; often taking shorter snapshots in time, thus
- 2 including the most computationally expensive models in the experiment, or presenting twelve-
- 3 thousand year alternatives to the Core for faster models to contribute. Not all simulations will
- 4 be suitable for all models, but the aim is that taken as a whole, the experiment can utilise the
- 5 wide range of PMIP model strengths and hence minimise individual weaknesses.
- 6 Essentially, the Core simulation experiment has been designed to be inclusive, taking into
- 7 account the best compromise between uncertainties in the geological data and model
- 8 limitations. The hypothesis-driven *focussed* experiments will go further than the Core to target
- 9 the questions that remain. It is hoped that this exciting initiative will improve our individual
- 10 efforts, providing new opportunities to drive the science forwards towards understanding this
- fascinating time period, specific mechanisms of rapid climate warming, cooling and sea level
- change, and Earth's climate system more broadly.

#### **Author Contributions**

13

21

- 14 RFI and LJG lead the PMIP Last Deglaciation Working Group, for which AB, MK, DMR and
- 15 PJV act as the advisory group. RFI, LJG, MK, DMR, PJV and AB collaboratively designed the
- working group's aims, structure, Core simulation experiment and additional experiments in
- 17 consultation with the wider community. RD, WRP and LT provided the ice sheet
- 18 reconstructions, plus associated boundary conditions. RFI and LJG collated these and all other
- boundary condition data for the simulations. RFI and LJG wrote the manuscript and produced
- 20 the figures with contributions from all authors.

#### Acknowledgments

- 22 RFI is funded by a NERC Independent Research Fellowship [#NE/K008536/1]. Data
- 23 processing for boundary condition preparation was carried out using the computational facilities
- of the Palaeo@Leeds modelling group, University of Leeds, UK. All authors would like to
- 25 thank everyone who has taken the time to discuss the Working Group's aims and experiments
- with us. We are especially grateful to Jean-Yves Peterschmitt (LSCE, France) for archiving the
- boundary conditions, Emilie Capron (BAS, UK) for help with the ice core data and Bette Otto-
- 28 Bliesner (NCAR, USA) for useful comments on an earlier version of this manuscript. Specific
- 29 thanks also go to Anders Carlson, Eric Wolff, Andreas Schmittner, Shawn Marshall and an

- 1 anonymous reviewer for valuable comments on the manuscript, and to Jeremy Fyke for editorial
- 2 <u>handling</u>.

#### 3 References

- 4 Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-
- 5 Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J.-Y. and Takahashi, K.: Ice-sheet
- 6 configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci Model Dev
- 7 Discuss, 8(6), 4293–4336, doi:10.5194/gmdd-8-4293-2015, 2015.
- 8 Adkins, J. F., Ingersoll, A. P. and Pasquero, C.: Rapid climate change and conditional instability
- 9 of the glacial deep ocean from the thermobaric effect and geothermal heating, Quat. Sci. Rev.,
- 10 24(5–6), 581–594, doi:10.1016/j.quascirev.2004.11.005, 2005.
- Aharon, P.: Entrainment of meltwaters in hyperpycnal flows during deglaciation superfloods in
- 12 the Gulf of Mexico, Earth Planet. Sci. Lett., 241(1-2), 260-270,
- 13 doi:10.1016/j.epsl.2005.10.034, 2006.
- 14 Ahn, J. and Brook, E. J.: Siple Dome ice reveals two modes of millennial CO2 change during
- the last ice age, Nat. Commun., 5, 3723, doi:10.1038/ncomms4723, 2014.
- Alley, R. B.: The Younger Dryas cold interval as viewed from central Greenland, Quat. Sci.
- 17 Rev., 19(1–5), 213–226, doi:10.1016/S0277-3791(99)00062-1, 2000.
- Alvarez-Solas, J., Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu,
- 19 K., Dokken, T. and Ganopolski, A.: Heinrich event 1: an example of dynamical ice-sheet
- 20 reaction to oceanic changes, Clim Past, 7(4), 1297–1306, doi:10.5194/cp-7-1297-2011, 2011.
- Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the
- 22 Last Glacial Maximum, Clim Past, 9(1), 367–376, doi:10.5194/cp-9-367-2013, 2013.
- 23 Argus, D. F., Peltier, W. R., Drummond, R. and Moore, A. W.: The Antarctica component of
- postglacial rebound model ICE-6G\_C (VM5a) based on GPS positioning, exposure age dating
- 25 of ice thicknesses, and relative sea level histories, Geophys. J. Int., ggu140,
- 26 doi:10.1093/gji/ggu140, 2014.
- Bard, E.: Climate shock- Abrupt changes over millenial time scales, Phys. Today, 55, 32–38,
- 28 2002.

- 1 Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G. and Rougerie, F.:
- 2 Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge,
- 3 Nature, 382(6588), 241–244, doi:10.1038/382241a0, 1996.
- 4 Bard, E., Rostek, F., Turon, J.-L. and Gendreau, S.: Hydrological Impact of Heinrich Events in
- 5 the Subtropical Northeast Atlantic, Science, 289(5483), 1321–1324,
- 6 doi:10.1126/science.289.5483.1321, 2000.
- 7 Bard, E., Hamelin, B. and Delanghe-Sabatier, D.: Deglacial Meltwater Pulse 1B and Younger
- 8 Dryas Sea Levels Revisited with Boreholes at Tahiti, Science, 327(5970), 1235–1237,
- 9 doi:10.1126/science.1180557, 2010.
- Barker, S., Knorr, G., Vautravers, M. J., Diz, P. and Skinner, L. C.: Extreme deepening of the
- 11 Atlantic overturning circulation during deglaciation, Nat. Geosci., 3(8), 567–571,
- doi:10.1038/ngeo921, 2010.
- Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G. and Thornalley, D.: Icebergs not the
- trigger for North Atlantic cold events, Nature, 520(7547), 333–336, doi:10.1038/nature14330,
- 15 2015.
- Bassett, S. E., Milne, G. A., Mitrovica, J. X. and Clark, P. U.: Ice Sheet and Solid Earth
- 17 Influences on Far-Field Sea-Level Histories, Science, 309(5736), 925–928,
- 18 doi:10.1126/science.1111575, 2005.
- Bassett, S. E., Milne, G. A., Bentley, M. J. and Huybrechts, P.: Modelling Antarctic sea-level
- 20 data to explore the possibility of a dominant Antarctic contribution to meltwater pulse IA, Quat.
- 21 Sci. Rev., 26(17–18), 2113–2127, doi:10.1016/j.quascirev.2007.06.011, 2007.
- Bauer, E. and Ganopolski, A.: Sensitivity simulations with direct shortwave radiative forcing
- 23 by aeolian dust during glacial cycles, Clim Past, 10(4), 1333–1348, doi:10.5194/cp-10-1333-
- 24 2014, 2014.
- Bentley, M. J., Fogwill, C. J., Brocq, A. M. L., Hubbard, A. L., Sugden, D. E., Dunai, T. J. and
- Freeman, S. P. H. T.: Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea
- 27 embayment: Constraints on past ice volume change, Geology, 38(5), 411-414,
- 28 doi:10.1130/G30754.1, 2010.

- Bentley, M. J., Ó Cofaigh, C., Anderson, J. B., Conway, H., Davies, B., Graham, A. G. C.,
- 2 Hillenbrand, C.-D., Hodgson, D. A., Jamieson, S. S. R., Larter, R. D., Mackintosh, A., Smith,
- 3 J. A., Verleyen, E., Ackert, R. P., Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E.
- 4 A., Crosta, X., Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W.,
- 5 Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K., Golledge, N. R.,
- 6 Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L., Hall, K., Hedding, D. W., Hein, A. S.,
- 7 Hocking, E. P., Jakobsson, M., Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P.,
- 8 Kristoffersen, Y., Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J.,
- 9 Massé, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney, R., Nel, W.,
- 10 Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J., Saunders, K. M., Selkirk, P. M.,
- Simms, A. R., Spiegel, C., Stolldorf, T. D., Sugden, D. E., van der Putten, N., van Ommen, T.,
- 12 Verfaillie, D., Vyverman, W., Wagner, B., White, D. A., Witus, A. E. and Zwartz, D.: A
- 13 community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last
- 14 Glacial Maximum, Quat. Sci. Rev., 100, 1–9, doi:10.1016/j.quascirev.2014.06.025, 2014.
- Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H.,
- 16 Kipfstuhl, S. and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to
- 17 600 kyr before present, Geophys. Res. Lett., 42(2), 2014GL061957,
- 18 doi:10.1002/2014GL061957, 2015.
- 19 Berger, A.: Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, J.
- 20 Atmospheric Sci., 35(12), 2362–2367, doi:10.1175/1520-
- 21 0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
- 22 Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quat.
- 23 Sci. Rev., 10(4), 297–317, doi:10.1016/0277-3791(91)90033-Q, 1991.
- Bonelli, S., Charbit, S., Kageyama, M., Woillez, M.-N., Ramstein, G., Dumas, C. and Quiquet,
- 25 A.: Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-
- 26 interglacial cycle, Clim Past, 5(3), 329–345, doi:10.5194/cp-5-329-2009, 2009.
- Boulton, G. S., Dongelmans, P., Punkari, M. and Broadgate, M.: Palaeoglaciology of an ice
- sheet through a glacial cycle:: the European ice sheet through the Weichselian, Quat. Sci. Rev.,
- 29 20(4), 591–625, doi:10.1016/S0277-3791(00)00160-8, 2001.

- 1 Braconnot, P., Joussaume, S., de Noblet, N. and Ramstein, G.: Mid-Holocene and Last Glacial
- 2 Maximum African monsoon changes as simulated within the Paleoclimate Modelling
- 3 Intercomparison Project, Glob. Planet. Change, 26(1-3), 51-66, doi:10.1016/S0921-
- 4 8181(00)00033-3, 2000.
- 5 Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi,
- 6 A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné,
- A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y. and
- 8 Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial
- 9 Maximum Part 1: experiments and large-scale features, Clim Past, 3(2), 261–277,
- 10 doi:10.5194/cp-3-261-2007, 2007.
- Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi,
- 12 A., Otto-Bliesner, B. and Zhao, Y.: Evaluation of climate models using palaeoclimatic data,
- 13 Nat. Clim. Change, 2(6), 417–424, doi:10.1038/nclimate1456, 2012.
- Briggs, R. D., Pollard, D. and Tarasov, L.: A data-constrained large ensemble analysis of
- 15 Antarctic evolution since the Eemian, Quat. Sci. Rev., 103, 91–115,
- 16 doi:10.1016/j.quascirev.2014.09.003, 2014.
- 17 Broecker, W. S.: Does the Trigger for Abrupt Climate Change Reside in the Ocean or in the
- 18 Atmosphere?, Science, 300(5625), 1519–1522, doi:10.1126/science.1083797, 2003.
- 19 Broecker, W. S., Kennett, J. P., Flower, B. P., Teller, J. T., Trumbore, S., Bonani, G. and Wolfli,
- 20 W.: Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold
- 21 episode, Nature, 341(6240), 318–321, doi:10.1038/341318a0, 1989.
- Brovkin, V., Ganopolski, A., Archer, D. and Munhoven, G.: Glacial CO2 cycle as a succession
- of key physical and biogeochemical processes, Clim Past, 8(1), 251–264, doi:10.5194/cp-8-
- 24 251-2012, 2012.
- Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S., Kindler, P., Leuenberger,
- 26 M., Carlson, A. E., Vinther, B., Masson-Delmotte, V., White, J. W. C., Liu, Z., Otto-Bliesner,
- 27 B. and Brook, E. J.: Greenland temperature response to climate forcing during the last
- 28 deglaciation, Science, 345(6201), 1177–1180, doi:10.1126/science.1254961, 2014.

- 1 Cabioch, G., Banks-Cutler, K. A., Beck, W. J., Burr, G. S., Corrège, T., Lawrence Edwards, R.
- and Taylor, F. W.: Continuous reef growth during the last 23 cal kyr BP in a tectonically active
- 3 zone (Vanuatu, SouthWest Pacific), Quat. Sci. Rev., 22(15-17), 1771-1786,
- 4 doi:10.1016/S0277-3791(03)00170-7, 2003.
- 5 Caley, T., Roche, D. M. and Renssen, H.: Orbital Asian summer monsoon dynamics revealed
- 6 using an isotope-enabled global climate model, Nat. Commun., 5, doi:10.1038/ncomms6371,
- 7 2014.
- 8 Carlson, A. E.: Geochemical constraints on the Laurentide Ice Sheet contribution to Meltwater
- 9 Pulse 1A, Quat. Sci. Rev., 28(17–18), 1625–1630, doi:10.1016/j.quascirev.2009.02.011, 2009.
- 10 Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial Maximum, Quat. Sci.
- 11 Rev., 21(1–3), 1–7, doi:10.1016/S0277-3791(01)00118-4, 2002.
- 12 Clark, P. U. and Tarasov, L.: Closing the sea level budget at the Last Glacial Maximum, Proc.
- Natl. Acad. Sci., 111(45), 15861–15862, doi:10.1073/pnas.1418970111, 2014.
- 14 Clark, P. U., Alley, R. B., Keigwin, L. D., Licciardi, J. M., Johnsen, S. J. and Wang, H.: Origin
- of the first global meltwater pulse following the Last Glacial Maximum, Paleoceanography,
- 16 11(5), 563–577, doi:10.1029/96PA01419, 1996.
- 17 Clark, P. U., Mitrovica, J. X., Milne, G. A. and Tamisiea, M. E.: Sea-Level Fingerprinting as a
- Direct Test for the Source of Global Meltwater Pulse IA, Science, 295(5564), 2438–2441,
- 19 doi:10.1126/science.1068797, 2002.
- Clark, P. U., McCabe, A. M., Mix, A. C. and Weaver, A. J.: Rapid Rise of Sea Level 19,000
- 21 Years Ago and Its Global Implications, Science, 304(5674), 1141–1144,
- 22 doi:10.1126/science.1094449, 2004.
- Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J.
- 24 X., Hostetler, S. W. and McCabe, A. M.: The Last Glacial Maximum, Science, 325(5941), 710–
- 25 714, doi:10.1126/science.1172873, 2009.
- Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E.,
- Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix, A. C., Morrill, C., Otto-Bliesner,
- 28 B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S.
- 29 M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V.,

- 1 McManus, J., Mitrovica, J. X., Moreno, P. I. and Williams, J. W.: Global climate evolution
- 2 during the last deglaciation, Proc. Natl. Acad. Sci., 109(19), E1134–E1142,
- 3 doi:10.1073/pnas.1116619109, 2012.
- 4 Condron, A. and Winsor, P.: Meltwater routing and the Younger Dryas, Proc. Natl. Acad. Sci.,
- 5 109(49), 19928–19933, doi:10.1073/pnas.1207381109, 2012.
- 6 Cuffey, K. M. and Clow, G. D.: Temperature, accumulation, and ice sheet elevation in central
- 7 Greenland through the last deglacial transition, J. Geophys. Res., 102(C12), 26383–26,396,
- 8 doi:10.1029/96JC03981, 1997.
- 9 Cutler, K. B., Edwards, R. L., Taylor, F. W., Cheng, H., Adkins, J., Gallup, C. D., Cutler, P.
- 10 M., Burr, G. S. and Bloom, A. L.: Rapid sea-level fall and deep-ocean temperature change since
- the last interglacial period, Earth Planet. Sci. Lett., 206(3-4), 253-271, doi:10.1016/S0012-
- 12 821X(02)01107-X, 2003.
- De Deckker, P. and Yokoyama, Y.: Micropalaeontological evidence for Late Quaternary sea-
- level changes in Bonaparte Gulf, Australia, Glob. Planet. Change, 66(1-2), 85-92,
- 15 doi:10.1016/j.gloplacha.2008.03.012, 2009.
- deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L. and Yarusinsky,
- 17 M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to
- 18 gradual insolation forcing, Quat. Sci. Rev., 19(1-5), 347-361, doi:10.1016/S0277-
- 19 3791(99)00081-5, 2000.
- Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G.
- 21 M., Okuno, J. 'ichi and Yokoyama, Y.: Ice-sheet collapse and sea-level rise at the Bolling
- warming 14,600 years ago, Nature, 483(7391), 559–564, doi:10.1038/nature10902, 2012.
- 23 Dyke, A. S.: An outline of North American deglaciation with emphasis on central and northern
- 24 Canada, in Quaternary Glaciations-Extent and Chronology Part II: North America, vol.
- 25 Volume 2, Part 2, pp. 373–424, Elsevier. [online] Available from:
- 26 https://www.lakeheadu.ca/sites/default/files/uploads/53/outlines/2014-
- 27 15/NECU5311/Dyke\_2004\_DeglaciationOutline.pdf (Accessed 20 October 2015), 2004.

- Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J. and Veillette,
- 2 J. J.: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum, Quat. Sci. Rev.,
- 3 21(1-3), 9-31, doi:10.1016/S0277-3791(01)00095-6, 2002.
- 4 Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L.,
- 5 Druffel, E. R. M. and Taylor, F. W.: A Large Drop in Atmospheric 14C/12C and Reduced
- 6 Melting in the Younger Dryas, Documented with 230Th Ages of Corals, Science, 260(5110),
- 7 962–968, doi:10.1126/science.260.5110.962, 1993.
- 8 EPICA Community Members: Eight glacial cycles from an Antarctic ice core, Nature,
- 9 429(6992), 623–628, doi:10.1038/nature02599, 2004.
- Fairbanks, R. G.: A 17,000-year glacio-eustatic sea level record: influence of glacial melting
- 11 rates on the Younger Dryas event and deep-ocean circulation, Nature, 342(6250), 637–642,
- 12 doi:10.1038/342637a0, 1989.
- 13 Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech,
- 14 F., Emori, S., Eyring, V., Forest, C., Glecker, P., Guilyardi, E., Jackob, C., Kattsov, V., Reason,
- 15 C. and Rummukainen, M.: Evaluation of Climate Models, in Climate Change 2013: The
- 16 Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
- the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G. K. Plattner,
- 18 M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, pp. 741–
- 19 866, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- 20 [online] Available from: http://www.ipcc.ch/pdf/assessment-
- 21 report/ar5/wg1/WG1AR5\_Chapter09\_FINAL.pdf (Accessed 20 October 2015), 2013.
- Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100
- 23 kyr glacial cycles, Clim Past, 7(4), 1415–1425, doi:10.5194/cp-7-1415-2011, 2011.
- 24 Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled
- 25 climate model, Nature, 409(6817), 153–158, doi:10.1038/35051500, 2001.
- Ganopolski, A., Calov, R. and Claussen, M.: Simulation of the last glacial cycle with a coupled
- climate ice-sheet model of intermediate complexity, Clim Past, 6(2), 229–244, doi:10.5194/cp-
- 28 6-229-2010, 2010.

- García, J. L., Kaplan, M. R., Hall, B. L., Schaefer, J. M., Vega, R. M., Schwartz, R. and Finkel,
- 2 R.: Glacier expansion in southern Patagonia throughout the Antarctic cold reversal, Geology,
- 3 40(9), 859–862, doi:10.1130/G33164.1, 2012.
- 4 Gherardi, J.-M., Labeyrie, L., McManus, J. F., Francois, R., Skinner, L. C. and Cortijo, E.:
- 5 Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional
- 6 overturning circulation through the last deglaciation, Earth Planet. Sci. Lett., 240(3–4), 710–
- 7 723, doi:10.1016/j.epsl.2005.09.061, 2005.
- 8 Golledge, N. R., Fogwill, C. J., Mackintosh, A. N. and Buckley, K. M.: Dynamics of the last
- 9 glacial maximum Antarctic ice-sheet and its response to ocean forcing, Proc. Natl. Acad. Sci.,
- 10 109(40), 16052–16056, doi:10.1073/pnas.1205385109, 2012.
- Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A., Graham, A. G. C.,
- 12 Smith, J. A., Hillenbrand, C.-D., Licht, K. J., Denton, G. H., Ackert Jr., R. P., Maas, S. M. and
- Hall, B. L.: Glaciology and geological signature of the Last Glacial Maximum Antarctic ice
- sheet, Quat. Sci. Rev., 78, 225–247, doi:10.1016/j.quascirev.2013.08.011, 2013.
- Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H., Cortese, G. and Levy,
- 16 R. H.: Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning,
- 17 Nat. Commun., 5, doi:10.1038/ncomms6107, 2014.
- 18 Goujon, C., Barnola, J.-M. and Ritz, C.: Modeling the densification of polar firn including heat
- 19 diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica
- 20 and Greenland sites, J. Geophys. Res. Atmospheres, 108(D24), 4792,
- 21 doi:10.1029/2002JD003319, 2003.
- 22 Gregoire, L. J., Payne, A. J. and Valdes, P. J.: Deglacial rapid sea level rises caused by ice-
- 23 sheet saddle collapses, Nature, 487(7406), 219–222, doi:10.1038/nature11257, 2012.
- Gregoire, L. J., Valdes, P. J. and Payne, A. J.: The relative contribution of orbital forcing and
- 25 greenhouse gases to the North American deglaciation, Geophys. Res. Lett., 42(22),
- 26 2015GL066005, doi:10.1002/2015GL066005, 2015.
- 27 Gyllencreutz, R., Mangerud, J., Svendsen, J.-I. and Lohne, Ø.: DATED-a GIS-based
- 28 reconstruction and dating database of the Eurasian deglaciation, Appl. Quat. Res. Cent. Part
- 29 Glaciat. Terrain Geol. Surv. Finl. Spec. Pap., 46, 113–120, 2007.

- 1 Hall, I. R., Moran, S. B., Zahn, R., Knutz, P. C., Shen, C.-C. and Edwards, R. L.: Accelerated
- 2 drawdown of meridional overturning in the late-glacial Atlantic triggered by transient pre-H
- 3 event freshwater perturbation, Geophys. Res. Lett., 33(16), L16616,
- 4 doi:10.1029/2006GL026239, 2006.
- 5 Hanebuth, T., Stattegger, K. and Grootes, P. M.: Rapid Flooding of the Sunda Shelf: A Late-
- 6 Glacial Sea-Level Record, Science, 288(5468), 1033-1035,
- 7 doi:10.1126/science.288.5468.1033, 2000.
- 8 Hanebuth, T. J. J., Stattegger, K. and Bojanowski, A.: Termination of the Last Glacial
- 9 Maximum sea-level lowstand: The Sunda-Shelf data revisited, Glob. Planet. Change, 66(1–2),
- 10 76–84, doi:10.1016/j.gloplacha.2008.03.011, 2009.
- Haywood, A. M., Dowsett, H. J., Otto-Bliesner, B., Chandler, M. A., Dolan, A. M., Hill, D. J.,
- Lunt, D. J., Robinson, M. M., Rosenbloom, N., Salzmann, U. and Sohl, L. E.: Pliocene Model
- 13 Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment
- 14 1), Geosci. Model Dev., 3(1), 227–242, doi:10.5194/gmd-3-227-2010, 2010.
- 15 Heinemann, M., Timmermann, A., Elison Timm, O., Saito, F. and Abe-Ouchi, A.: Deglacial
- ice sheet meltdown: orbital pacemaking and CO2 effects, Clim Past, 10(4), 1567–1579,
- 17 doi:10.5194/cp-10-1567-2014, 2014.
- Heiri, O., Cremer, H., Engels, S., Hoek, W. Z., Peeters, W. and Lotter, A. F.: Lateglacial
- 19 summer temperatures in the Northwest European lowlands: a chironomid record from
- 20 Hijkermeer, the Netherlands, Quat. Sci. Rev., 26(19–21), 2420–2437,
- 21 doi:10.1016/j.quascirev.2007.06.017, 2007.
- Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic
- 23 and their global climate imprint, Rev. Geophys., 42(1), RG1005, doi:10.1029/2003RG000128,
- 24 2004.
- Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. and Svendsen, J. I.: The last
- 26 Eurasian ice sheets a chronological database and time-slice reconstruction, DATED-1,
- 27 Boreas, doi:10.1111/bor.12142, 2015.
- Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, J. F. B., Kutzbach, J. E., Harrison, S. P.,
- 29 Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J.,

- 1 Herterich, K., Hewitt, C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson,
- 2 V., McAvaney, B., McFarlane, N., de Noblet, N., Peltier, W. R., Peterschmitt, J. Y., Pollard,
- 3 D., Rind, D., Royer, J. F., Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti,
- 4 G., Webb, R. S. and Wyputta, U.: Monsoon changes for 6000 years ago: Results of 18
- 5 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP), Geophys. Res.
- 6 Lett., 26(7), 859–862, doi:10.1029/1999GL900126, 1999.
- Jouzel, J., Vaikmae, R., Petit, J. R., Martin, M., Duclos, Y., Stievenard, M., Lorius, C., Toots,
- 8 M., Mélières, M. A., Burckle, L. H., Barkov, N. I. and Kotlyakov, V. M.: The two-step shape
- 9 and timing of the last deglaciation in Antarctica, Clim. Dyn., 11(3), 151-161,
- 10 doi:10.1007/BF00223498, 1995.
- Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster,
- B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger,
- 13 M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
- 14 Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B.,
- 15 Stocker, T. F., Tison, J. L., Werner, M. and Wolff, E. W.: Orbital and Millennial Antarctic
- 16 Climate Variability over the Past 800,000 Years, Science, 317(5839), 793-796,
- 17 doi:10.1126/science.1141038, 2007.
- 18 Kageyama, M., Braconnot, P., Peterchmitt, J.-Y., Harrison, S. P., Jungclaus, J. H., Otto-
- 19 Bliesner, B., Brierley, C., Crucifix, M., Haywood, A. M., Ivanovic, R. F., Lunt, D. J., Phipps,
- 20 S. J., Roche, D. M., Schmidt, G. A., Zhang, Q. and Zhou, Y.: Overview of the PMIP4-CMIP6
- 21 experiments, Geosci. Model Dev., in prep.
- Kageyama, M., Laîné, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal,
- A., Guiot, J., Hewitt, C. D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B.,
- Peltier, W. R., Rosell-Melé, A., Vettoretti, G., Weber, S. L. and Yu, Y.: Last Glacial Maximum
- 25 temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP
- 26 models, MARGO sea-surface temperatures and pollen-based reconstructions, Quat. Sci. Rev.,
- 27 25(17–18), 2082–2102, doi:10.1016/j.quascirev.2006.02.010, 2006.
- 28 Kageyama, M., Paul, A., Roche, D. M. and Van Meerbeeck, C. J.: Modelling glacial climatic
- 29 millennial-scale variability related to changes in the Atlantic meridional overturning

- 1 circulation: a review, Quat. Sci. Rev., 29(21–22), 2931–2956,
- doi:10.1016/j.quascirev.2010.05.029, 2010.
- 3 Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G.,
- 4 Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D. and X Zhang: Climatic impacts of
- 5 fresh water hosing under Last Glacial Maximum conditions: a multi-model study, Clim Past,
- 6 9(2), 935–953, doi:10.5194/cp-9-935-2013, 2013.
- 7 Kaplan, M. R., Strelin, J. A., Schaefer, J. M., Denton, G. H., Finkel, R. C., Schwartz, R.,
- 8 Putnam, A. E., Vandergoes, M. J., Goehring, B. M. and Travis, S. G.: In-situ cosmogenic 10Be
- 9 production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology,
- 10 Earth Planet. Sci. Lett., 309(1–2), 21–32, doi:10.1016/j.epsl.2011.06.018, 2011.
- 11 Keigwin, L. D. and Boyle, E. A.: Did North Atlantic overturning halt 17,000 years ago?,
- 12 Paleoceanography, 23(1), PA1101, doi:10.1029/2007PA001500, 2008.
- 13 Keigwin, L. D., Jones, G. A., Lehman, S. J. and Boyle, E. A.: Deglacial meltwater discharge,
- North Atlantic Deep Circulation, and abrupt climate change, J. Geophys. Res. Oceans, 96(C9),
- 15 16811–16826, doi:10.1029/91JC01624, 1991.
- 16 Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A. and Leuenberger, M.:
- 17 Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim Past, 10(2),
- 18 887–902, doi:10.5194/cp-10-887-2014, 2014.
- 19 Knorr, G. and Lohmann, G.: Southern Ocean origin for the resumption of Atlantic thermohaline
- 20 circulation during deglaciation, Nature, 424(6948), 532–536, doi:10.1038/nature01855, 2003.
- 21 Knorr, G. and Lohmann, G.: Rapid transitions in the Atlantic thermohaline circulation triggered
- 22 by global warming and meltwater during the last deglaciation, Geochem. Geophys.
- 23 Geosystems, 8(12), Q12006, doi:10.1029/2007GC001604, 2007.
- 24 Kohfeld, K. and Harrison, S. :: How well can we simulate past climates? Evaluating the models
- using global palaeoenvironmental datasets, Quat. Sci. Rev., 19(1-5), 321-346.
- 26 doi:10.1016/S0277-3791(99)00068-2, 2000.
- 27 Lambeck, K., Rouby, H., Purcell, A., Sun, Y. and Sambridge, M.: Sea level and global ice
- 28 volumes from the Last Glacial Maximum to the Holocene, Proc. Natl. Acad. Sci.,
- 29 doi:10.1073/pnas.1411762111, 2014.

- Lea, D. W., Pak, D. K., Peterson, L. C. and Hughen, K. A.: Synchroneity of Tropical and High-
- 2 Latitude Atlantic Temperatures over the Last Glacial Termination, Science, 301(5638), 1361–
- 3 1364, doi:10.1126/science.1088470, 2003.
- 4 Licht, K. J.: The Ross Sea's contribution to eustatic sea level during meltwater pulse 1A,
- 5 Sediment. Geol., 165(3–4), 343–353, doi:10.1016/j.sedgeo.2003.11.020, 2004.
- 6 Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E.,
- 7 Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J. and Cheng, J.:
- 8 Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød
- 9 Warming, Science, 325(5938), 310–314, doi:10.1126/science.1171041, 2009.
- Liu, Z., Carlson, A. E., He, F., Brady, E. C., Otto-Bliesner, B. L., Briegleb, B. P., Wehrenberg,
- 11 M., Clark, P. U., Wu, S., Cheng, J., Zhang, J., Noone, D. and Zhu, J.: Younger Dryas cooling
- 12 and the Greenland climate response to CO2, Proc. Natl. Acad. Sci.,
- 13 doi:10.1073/pnas.1202183109, 2012.
- Liu, Z., Wen, X., Brady, E. C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y., Zheng,
- W., Ding, Y., Edwards, R. L., Cheng, J., Liu, W. and Yang, H.: Chinese cave records and the
- 16 East Asia Summer Monsoon, Quat. Sci. Rev., 83, 115–128,
- 17 doi:10.1016/j.quascirev.2013.10.021, 2014.
- Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola,
- 19 J.-M., Raynaud, D., Stocker, T. F. and Chappellaz, J.: Orbital and millennial-scale features of
- 20 atmospheric CH4 over the past 800,000 years, Nature, 453(7193), 383–386,
- 21 doi:10.1038/nature06950, 2008.
- Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud,
- D., Jouzel, J., Fischer, H., Kawamura, K. and Stocker, T. F.: High-resolution carbon dioxide
- 24 concentration record 650,000–800,000 years before present, Nature, 453(7193), 379–382,
- 25 doi:10.1038/nature06949, 2008.
- 26 MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen,
- 27 T., Smith, A. and Elkins, J.: Law Dome CO2, CH4 and N2O ice core records extended to 2000
- 28 years BP, Geophys. Res. Lett., 33(14), L14810, doi:10.1029/2006GL026152, 2006.

- 1 Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D.,
- 2 DeConto, R., Fink, D., Zwartz, D., Gore, D. and Lavoie, C.: Retreat of the East Antarctic ice
- 3 sheet during the last glacial termination, Nat. Geosci., 4(3), 195–202, doi:10.1038/ngeo1061,
- 4 2011.
- 5 Mackintosh, A. N., Verleyen, E., O'Brien, P. E., White, D. A., Jones, R. S., McKay, R., Dunbar,
- 6 R., Gore, D. B., Fink, D., Post, A. L., Miura, H., Leventer, A., Goodwin, I., Hodgson, D. A.,
- 7 Lilly, K., Crosta, X., Golledge, N. R., Wagner, B., Berg, S., van Ommen, T., Zwartz, D.,
- 8 Roberts, S. J., Vyverman, W. and Masse, G.: Retreat history of the East Antarctic Ice Sheet
- 9 since the Last Glacial Maximum, Quat. Sci. Rev., 100, 10-30,
- 10 doi:10.1016/j.quascirev.2013.07.024, 2014.
- 11 Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., Fudge, T.
- 12 J., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell, J. R., Sowers, T., Taylor, K. C., White,
- 13 J. W. C. and Brook, E. J.: Centennial-scale changes in the global carbon cycle during the last
- deglaciation, Nature, 514(7524), 616–619, doi:10.1038/nature13799, 2014.
- 15 Marshall, S. J. and Clarke, G. K. C.: Modeling North American Freshwater Runoff through the
- 16 Last Glacial Cycle, Quat. Res., 52(3), 300–315, doi:10.1006/qres.1999.2079, 1999.
- 17 Martrat, B., Grimalt, J. O., Lopez-Martinez, C., Cacho, I., Sierro, F. J., Flores, J. A., Zahn, R.,
- 18 Canals, M., Curtis, J. H. and Hodell, D. A.: Abrupt Temperature Changes in the Western
- 19 Mediterranean over the Past 250,000 Years, Science, 306(5702), 1762–1765,
- 20 doi:10.1126/science.1101706, 2004.
- 21 Martrat, B., Grimalt, J. O., Shackleton, N. J., Abreu, L. de, Hutterli, M. A. and Stocker, T. F.:
- 22 Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian
- 23 Margin, Science, 317(5837), 502–507, doi:10.1126/science.1139994, 2007.
- 24 Masson-Delmotte, V., Kageyama, M., Braconnot, P., Charbit, S., Krinner, G., Ritz, C.,
- Guilyardi, E., Jouzel, J., Abe-Ouchi, A., Crucifix, M., Gladstone, R. M., Hewitt, C. D., Kitoh,
- A., LeGrande, A. N., Marti, O., Merkel, U., Motoi, T., Ohgaito, R., Otto-Bliesner, B., Peltier,
- W. R., Ross, I., Valdes, P. J., Vettoretti, G., Weber, S. L., Wolk, F. and Yu, Y.: Past and future
- 28 polar amplification of climate change: climate model intercomparisons and ice-core constraints,
- 29 Clim. Dyn., 26(5), 513–529, doi:10.1007/s00382-005-0081-9, 2006.

- 1 Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolsk, A., González Rouco, J.
- 2 F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn,
- 3 T., Ramesh, R., Rojas, M., Shao, X. and Timmermann, A.: Information from Paleoclimate
- 4 Archives, in Climate Change 2013: The Physical Science Basis. Contribution of Working
- 5 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
- 6 edited by T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels,
- 7 Y. Xia, V. Bex, and P. M. Midgley, pp. 383–464, Cambridge University Press, Cambridge,
- 8 United Kingdom and New York, NY, USA. [online] Available from:
- 9 http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5\_Chapter05\_FINAL.pdf
- 10 (Accessed 20 October 2015), 2013.
- 11 McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. and Brown-Leger, S.: Collapse
- 12 and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes,
- Nature, 428(6985), 834–837, doi:10.1038/nature02494, 2004.
- 14 Menviel, L., Timmermann, A., Timm, O. E. and Mouchet, A.: Climate and biogeochemical
- response to a rapid melting of the West Antarctic Ice Sheet during interglacials and implications
- 16 for future climate, Paleoceanography, 25(4), PA4231, doi:10.1029/2009PA001892, 2010.
- 17 Menviel, L., Timmermann, A., Timm, O. E. and Mouchet, A.: Deconstructing the Last Glacial
- termination: the role of millennial and orbital-scale forcings, Quat. Sci. Rev., 30(9–10), 1155–
- 19 1172, doi:10.1016/j.quascirev.2011.02.005, 2011.
- 20 Mix, A. C., Bard, E. and Schneider, R.: Environmental processes of the ice age: land, oceans,
- 21 glaciers (EPILOG), Quat. Sci. Rev., 20(4), 627–657, doi:10.1016/S0277-3791(00)00145-1,
- 22 2001.
- 23 Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker,
- 24 T. F., Morse, D. L., Barnola, J.-M., Bellier, B., Raynaud, D. and Fischer, H.: Evidence for
- 25 substantial accumulation rate variability in Antarctica during the Holocene, through
- synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci.
- 27 Lett., 224(1–2), 45–54, doi:10.1016/j.epsl.2004.05.007, 2004.
- Otto-Bliesner, B. L., Schneider, R., Brady, E. C., Kucera, M., Abe-Ouchi, A., Bard, E.,
- 29 Braconnot, P., Crucifix, M., Hewitt, C. D., Kageyama, M., Marti, O., Paul, A., Rosell-Melé,
- 30 A., Waelbroeck, C., Weber, S. L., Weinelt, M. and Yu, Y.: A comparison of PMIP2 model

- simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last
- 2 glacial maximum, Clim. Dyn., 32(6), 799–815, doi:10.1007/s00382-008-0509-0, 2009.
- 3 Otto-Bliesner, B. L., Russell, J. M., Clark, P. U., Liu, Z., Overpeck, J. T., Konecky, B.,
- 4 deMenocal, P., Nicholson, S. E., He, F. and Lu, Z.: Coherent changes of southeastern equatorial
- 5 and northern African rainfall during the last deglaciation, Science, 346(6214), 1223–1227,
- 6 doi:10.1126/science.1259531, 2014.
- 7 Peltier, W. R.: Global glacial isostasy and the surface of the Ice-Age Earth: The ICE-5G (VM2)
- 8 model and GRACE, Annu. Rev. Earth Planet. Sci., 32(1), 111–149,
- 9 doi:10.1146/annurev.earth.32.082503.144359, 2004.
- Peltier, W. R.: On the hemispheric origins of meltwater pulse 1a, Quat. Sci. Rev., 24(14–15),
- 11 1655–1671, doi:10.1016/j.quascirev.2004.06.023, 2005.
- 12 Peltier, W. R. and Fairbanks, R. G.: Global glacial ice volume and Last Glacial Maximum
- duration from an extended Barbados sea level record, Quat. Sci. Rev., 25(23–24), 3322–3337,
- 14 doi:10.1016/j.quascirev.2006.04.010, 2006.
- Peltier, W. R. and Vettoretti, G.: Dansgaard-Oeschger oscillations predicted in a comprehensive
- model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res. Lett., 41(20),
- 17 2014GL061413, doi:10.1002/2014GL061413, 2014.
- Peltier, W. R., Argus, D. F. and Drummond, R.: Space geodesy constrains ice age terminal
- 19 deglaciation: The global ICE-6G\_C (VM5a) model, J. Geophys. Res. Solid Earth,
- 20 2014JB011176, doi:10.1002/2014JB011176, 2015.
- Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M.,
- Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M.,
- Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E. and Stievenard, M.: Climate and
- 24 atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature,
- 25 399(6735), 429–436, doi:10.1038/20859, 1999.
- Philippon, G., Ramstein, G., Charbit, S., Kageyama, M., Ritz, C. and Dumas, C.: Evolution of
- 27 the Antarctic ice sheet throughout the last deglaciation: A study with a new coupled climate—
- 28 north and south hemisphere ice sheet model, Earth Planet. Sci. Lett., 248(3–4), 750–758,
- 29 doi:10.1016/j.epsl.2006.06.017, 2006.

- 1 PMIP Last Deglaciation Working Group: PMIP3 Last Deglaciation experiment design, [online]
- 2 Available from: https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:index (Accessed 9
- 3 April 2015), 2015.
- 4 PMIP LGM Working Group: PMIP3-CMIP5 Last Glacial Maximum experiment design,
- 5 [online] Available from: https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:design:21k:final
- 6 (Accessed 9 April 2015), 2010.
- 7 PMIP LGM Working Group: PMIP-CMIP6 Last Glacial Maximum experiment design, [online]
- 8 Available from: https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:cmip6:design:21k:index
- 9 (Accessed 9 April 2015), 2015.
- 10 PMIP website: Paleoclimate Model Intercomparison Project, [online] Available from:
- 11 http://pmip.lsce.ipsl.fr/ (Accessed 13 November 2014), 2007.
- Putnam, A. E., Denton, G. H., Schaefer, J. M., Barrell, D. J. A., Andersen, B. G., Finkel, R. C.,
- 13 Schwartz, R., Doughty, A. M., Kaplan, M. R. and Schlüchter, C.: Glacier advance in southern
- 14 middle-latitudes during the Antarctic Cold Reversal, Nat. Geosci., 3(10), 700-704,
- 15 doi:10.1038/ngeo962, 2010.
- Rahmstorf, S.: Bifurcations of the Atlantic thermohaline circulation in response to changes in
- the hydrological cycle, Nature, 378(6553), 145–149, doi:10.1038/378145a0, 1995.
- 18 Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic thermohaline circulation,
- 19 Clim. Dyn., 12(12), 799–811, doi:10.1007/s003820050144, 1996.
- Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen,
- 21 H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M.,
- Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E. and Ruth, U.: A new Greenland
- 23 ice core chronology for the last glacial termination, J. Geophys. Res. Atmospheres, 111(D6),
- 24 D06102, doi:10.1029/2005JD006079, 2006.
- Roberts, N. L., Piotrowski, A. M., McManus, J. F. and Keigwin, L. D.: Synchronous Deglacial
- 26 Overturning and Water Mass Source Changes, Science, 327(5961), 75–78,
- 27 doi:10.1126/science.1178068, 2010.

- 1 Roche, D. M., Renssen, H., Weber, S. L. and Goosse, H.: Could meltwater pulses have been
- 2 sneaked unnoticed into the deep ocean during the last glacial?, Geophys. Res. Lett., 34(24),
- 3 n/a-n/a, doi:10.1029/2007GL032064, 2007.
- 4 Roche, D. M., Renssen, H., Paillard, D. and Levavasseur, G.: Deciphering the spatio-temporal
- 5 complexity of climate change of the last deglaciation: a model analysis, Clim Past, 7(2), 591–
- 6 602, doi:10.5194/cp-7-591-2011, 2011.
- 7 Rogerson, M., Colmenero-Hidalgo, E., Levine, R. C., Rohling, E. J., Voelker, A. H. L., Bigg,
- 8 G. R., Schönfeld, J., Cacho, I., Sierro, F. J., Löwemark, L., Reguera, M. I., Abreu, L. de and
- 9 Garrick, K.: Enhanced Mediterranean-Atlantic exchange during Atlantic freshening phases,
- 10 Geochem. Geophys. Geosystems, 11, 22 PP., doi:201010.1029/2009GC002931, 2010.
- Rother, H., Fink, D., Shulmeister, J., Mifsud, C., Evans, M. and Pugh, J.: The early rise and late
- demise of New Zealand's last glacial maximum, Proc. Natl. Acad. Sci., 111(32), 11630–11635,
- 13 doi:10.1073/pnas.1401547111, 2014.
- Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M. O., Langenfelds, R.
- L., Steele, L. P., Curran, M., Bender, M., White, J. W. C., Jenk, T. M., Blunier, T. and Francey,
- 16 R. J.: A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole,
- 17 Antarctica, J. Geophys. Res. Atmospheres, 118(15), 8482–8499, doi:10.1002/jgrd.50668, 2013.
- 18 Schilt, A., Baumgartner, M., Schwander, J., Buiron, D., Capron, E., Chappellaz, J., Loulergue,
- 19 L., Schüpbach, S., Spahni, R., Fischer, H. and Stocker, T. F.: Atmospheric nitrous oxide during
- 20 the last 140,000 years, Earth Planet. Sci. Lett., 300(1–2), 33–43,
- 21 doi:10.1016/j.epsl.2010.09.027, 2010.
- Schmidt, G. A., Jungelaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J.,
- Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J.,
- 24 Shindell, D. T., Solanki, S. K., Steinhilber, F. and Vieira, L. E. A.: Climate forcing
- 25 reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci Model Dev,
- 26 4(1), 33–45, doi:10.5194/gmd-4-33-2011, 2011.
- 27 Schmittner, A., Green, J. a. M. and Wilmes, S.-B.: Glacial ocean overturning intensified by
- 28 tidal mixing in a global circulation model, Geophys. Res. Lett., 42(10), 2015GL063561,
- 29 doi:10.1002/2015GL063561, 2015.

- 1 Severinghaus, J. P. and Brook, E. J.: Abrupt Climate Change at the End of the Last Glacial
- 2 Period Inferred from Trapped Air in Polar Ice, Science, 286(5441), 930-934.
- 3 doi:10.1126/science.286.5441.930, 1999.
- 4 Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Otto-Bliesner, B.,
- 5 Schmittner, A. and Bard, E.: Global warming preceded by increasing carbon dioxide
- 6 concentrations during the last deglaciation, Nature, 484(7392), 49-54,
- 7 doi:10.1038/nature10915, 2012.
- 8 Shennan, I.: Global meltwater discharge and the deglacial sea-level record from northwest
- 9 Scotland, J. Quat. Sci., 14(7), 715–719, doi:10.1002/(SICI)1099-
- 10 1417(199912)14:7<715::AID-JQS511>3.0.CO;2-G, 1999.
- 11 Shennan, I. and Milne, G.: Sea-level observations around the Last Glacial Maximum from the
- 12 Bonaparte Gulf, NW Australia, Quat. Sci. Rev., 22(14), 1543-1547, doi:10.1016/S0277-
- 13 3791(03)00088-X, 2003.
- 14 Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud,
- D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V. and Jouzel, J.: Stable Carbon
- 16 Cycle–Climate Relationship During the Late Pleistocene, Science, 310(5752), 1313–
- 17 1317, doi:10.1126/science.1120130, 2005.
- 18 Simonsen, S. B., Johnsen, S. J., Popp, T. J., Vinther, B. M., Gkinis, V. and Steen-Larsen, H. C.:
- 19 Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of
- 20 water isotopes, Clim Past, 7(4), 1327–1335, doi:10.5194/cp-7-1327-2011, 2011.
- 21 Smith, R. S. and Gregory, J. M.: A study of the sensitivity of ocean overturning circulation and
- 22 climate to freshwater input in different regions of the North Atlantic, Geophys. Res. Lett.,
- 23 36(15), L15701, doi:10.1029/2009GL038607, 2009.
- Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K.,
- 25 Flückiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V. and Jouzel, J.: Atmospheric
- 26 Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores, Science,
- 27 310(5752), 1317–1321, doi:10.1126/science.1120132, 2005.

- Stanford, J. D., Hemingway, R., Rohling, E. J., Challenor, P. G., Medina-Elizalde, M. and
- 2 Lester, A. J.: Sea-level probability for the last deglaciation: A statistical analysis of far-field
- 3 records, Glob. Planet. Change, 79(3–4), 193–203, doi:10.1016/j.gloplacha.2010.11.002, 2011.
- 4 Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Fischer, H.,
- 5 Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J., Masson-Delmotte, V., Popp, T.,
- 6 Rasmussen, S. O., Röthlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.-L.,
- 7 Sveinbjörnsdóttir, Á. E., Svensson, A. and White, J. W. C.: High-Resolution Greenland Ice
- 8 Core Data Show Abrupt Climate Change Happens in Few Years, Science, 321(5889), 680–684,
- 9 doi:10.1126/science.1157707, 2008.
- 10 Stenni, B., Buiron, D., Frezzotti, M., Albani, S., Barbante, C., Bard, E., Barnola, J. M., Baroni,
- 11 M., Baumgartner, M., Bonazza, M., Capron, E., Castellano, E., Chappellaz, J., Delmonte, B.,
- Falourd, S., Genoni, L., Iacumin, P., Jouzel, J., Kipfstuhl, S., Landais, A., Lemieux-Dudon, B.,
- 13 Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M., Mulvaney, R.,
- Narcisi, B., Oerter, H., Parrenin, F., Petit, J. R., Ritz, C., Scarchilli, C., Schilt, A., Schüpbach,
- 15 S., Schwander, J., Selmo, E., Severi, M., Stocker, T. F. and Udisti, R.: Expression of the bipolar
- see-saw in Antarctic climate records during the last deglaciation, Nat. Geosci., 4(1), 46–49,
- 17 doi:10.1038/ngeo1026, 2011.
- 18 Stocker, T. F.: The Seesaw Effect, Science, 282(5386), 61–62,
- 19 doi:10.1126/science.282.5386.61, 1998.
- 20 Strelin, J. A., Denton, G. H., Vandergoes, M. J., Ninnemann, U. S. and Putnam, A. E.:
- 21 Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian
- 22 Icefield, Argentina, Quat. Sci. Rev., 30(19–20), 2551–2569,
- 23 doi:10.1016/j.quascirev.2011.05.004, 2011.
- Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S.,
- Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson,
- 26 Ó., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud,
- J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto,
- 28 M., Siegert, C., Siegert, M. J., Spielhagen, R. F. and Stein, R.: Late Quaternary ice sheet history
- 29 of northern Eurasia, Quat. Sci. Rev., 23(11–13), 1229–1271,
- 30 doi:10.1016/j.quascirev.2003.12.008, 2004.

- 1 Tarasov, L. and Peltier, W. R.: Terminating the 100 kyr ice age cycle, J. Geophys. Res.
- 2 Atmospheres, 102(D18), 21665–21693, doi:10.1029/97JD01766, 1997.
- 3 Tarasov, L. and Peltier, W. R.: Greenland glacial history and local geodynamic consequences,
- 4 Geophys. J. Int., 150(1), 198–229, doi:10.1046/j.1365-246X.2002.01702.x, 2002.
- 5 Tarasov, L. and Peltier, W. R.: A geophysically constrained large ensemble analysis of the
- 6 deglacial history of the North American ice-sheet complex, Quat. Sci. Rev., 23(3–4), 359–388,
- 7 doi:10.1016/j.quascirev.2003.08.004, 2004.
- 8 Tarasov, L. and Peltier, W. R.: Arctic freshwater forcing of the Younger Dryas cold reversal,
- 9 Nature, 435(7042), 662–665, doi:10.1038/nature03617, 2005.
- 10 Tarasov, L. and Peltier, W. R.: A calibrated deglacial drainage chronology for the North
- American continent: evidence of an Arctic trigger for the Younger Dryas, Quat. Sci. Rev., 25(7–
- 12 8), 659–688, doi:10.1016/j.quascirev.2005.12.006, 2006.
- 13 Tarasov, L., Dyke, A. S., Neal, R. M. and Peltier, W. R.: A data-calibrated distribution of
- deglacial chronologies for the North American ice complex from glaciological modeling, Earth
- 15 Planet. Sci. Lett., 315–316, 30–40, doi:10.1016/j.epsl.2011.09.010, 2012.
- 16 Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An Overview of CMIP5 and the Experiment
- 17 Design, Bull. Am. Meteorol. Soc., 93(4), 485–498, doi:10.1175/BAMS-D-11-00094.1, 2011a.
- 18 Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: A Summary of the CMIP5 Experiment Design,
- 19 [online] Available from: http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor CMIP5 design.pdf
- 20 (Accessed 13 November 2014b), 2011.
- 21 Teller, J. T., Leverington, D. W. and Mann, J. D.: Freshwater outbursts to the oceans from
- 22 glacial Lake Agassiz and their role in climate change during the last deglaciation, Quat. Sci.
- 23 Rev., 21(8–9), 879–887, doi:10.1016/S0277-3791(01)00145-7, 2002.
- 24 Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M. and Adkins, J. F.: Abrupt pre-
- Bolling-Allerod warming and circulation changes in the deep ocean, Nature, 511(7507), 75–
- 26 78, doi:10.1038/nature13472, 2014.
- 27 Thornalley, D. J. R., McCave, I. N. and Elderfield, H.: Freshwater input and abrupt deglacial
- 28 climate change in the North Atlantic, Paleoceanography, 25(1), PA1201,
- 29 doi:10.1029/2009PA001772, 2010.

- 1 Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H. and McCave, I. N.: The
- 2 Deglacial Evolution of North Atlantic Deep Convection, Science, 331(6014), 202-205,
- 3 doi:10.1126/science.1196812, 2011.
- 4 Tierney, J. E., Russell, J. M., Huang, Y., Damsté, J. S. S., Hopmans, E. C. and Cohen, A. S.:
- 5 Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000
- 6 Years, Science, 322(5899), 252–255, doi:10.1126/science.1160485, 2008.
- 7 Timm, O. and Timmermann, A.: Simulation of the Last 21 000 Years Using Accelerated
- 8 Transient Boundary Conditions\*, J. Clim., 20(17), 4377–4401, doi:10.1175/JCLI4237.1, 2007.
- 9 Tjallingii, R., Claussen, M., Stuut, J.-B. W., Fohlmeister, J., Jahn, A., Bickert, T., Lamy, F. and
- 10 Röhl, U.: Coherent high- and low-latitude control of the northwest African hydrological
- balance, Nat. Geosci., 1(10), 670–675, doi:10.1038/ngeo289, 2008.
- 12 Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin,
- 13 F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi,
- 14 M., Svensson, A., Vinther, B. and Wolff, E. W.: The Antarctic ice core chronology
- 15 (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120
- 16 thousand years, Clim Past, 9(4), 1733–1748, doi:10.5194/cp-9-1733-2013, 2013.
- 17 Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M.,
- Haug, G. H., Geel, B. van, Batist, M. D., Barker, P., Vuille, M., Conley, D. J., Olago, D. O.,
- 19 Milne, I., Plessen, B., Eggermont, H., Wolff, C., Hurrell, E., Ossebaar, J., Lyaruu, A., Plicht, J.
- van der, Cumming, B. F., Brauer, A., Rucina, S. M., Russell, J. M., Keppens, E., Hus, J.,
- 21 Bradley, R. S., Leng, M., Mingram, J. and Nowaczyk, N. R.: Half-precessional dynamics of
- 22 monsoon rainfall near the East African Equator, Nature, 462(7273), 637-641,
- 23 doi:10.1038/nature08520, 2009.
- Vettoretti, G. and Peltier, W. R.: Interhemispheric air temperature phase relationships in the
- 25 nonlinear Dansgaard-Oeschger oscillation, Geophys. Res. Lett., 42(4), 2014GL062898,
- 26 doi:10.1002/2014GL062898, 2015.
- Waelbroeck, C., Labeyrie, L., Duplessy, J. C., Guiot, J., Labracherie, M., Leclaire, H. and
- 28 Duprat, J.: Improving past sea surface temperature estimates based on planktonic fossil faunas,
- 29 Paleoceanography, 13(3), 272–283, doi:10.1029/98PA00071, 1998.

- 1 Weaver, A. J., Saenko, O. A., Clark, P. U. and Mitrovica, J. X.: Meltwater Pulse 1A from
- 2 Antarctica as a Trigger of the Bølling-Allerød Warm Interval, Science, 299(5613), 1709–1713,
- 3 doi:10.1126/science.1081002, 2003.
- 4 Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A.,
- 5 Murakami, S., Otto-Bliesner, B. and Peltier, W. R.: The modern and glacial overturning
- 6 circulation in the Atlantic ocean in PMIP coupled model simulations, Clim Past, 3(1), 51–64,
- 7 doi:10.5194/cp-3-51-2007, 2007.
- 8 Weijers, J. W. H., Schefuß, E., Schouten, S. and Damsté, J. S. S.: Coupled Thermal and
- 9 Hydrological Evolution of Tropical Africa over the Last Deglaciation, Science, 315(5819),
- 10 1701–1704, doi:10.1126/science.1138131, 2007.
- Whitehouse, P. L., Bentley, M. J. and Le Brocq, A. M.: A deglacial model for Antarctica:
- 12 geological constraints and glaciological modelling as a basis for a new model of Antarctic
- glacial isostatic adjustment, Quat. Sci. Rev., 32, 1–24, doi:10.1016/j.quascirev.2011.11.016,
- 14 2012.

- 15 Yokoyama, Y., Esat, T. M. and Lambeck, K.: Last glacial sea-level change deduced from
- uplifted coral terraces of Huon Peninsula, Papua New Guinea, Quat. Int., 83–85, 275–283,
- 17 doi:10.1016/S1040-6182(01)00045-3, 2001a.
- 18 Yokoyama, Y., De Deckker, P., Lambeck, K., Johnston, P. and Fifield, L. K.: Sea-level at the
- 19 Last Glacial Maximum: evidence from northwestern Australia to constrain ice volumes for
- 20 oxygen isotope stage 2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 165(3-4), 281-297,
- 21 doi:10.1016/S0031-0182(00)00164-4, 2001b.

# **Tables**

- 2 Table 1. Summary of recommended model boundary conditions to spin up the last deglaciation
- 3 Core simulation experiment (pre 21 ka); see text for details. Participants are not required to
- 4 follow the recommendation for these boundary conditions, but must document the method used,
- 5 including information on the simulation's state of spinup at the point when the Core is started.
- 6 Data are available from PMIP Last Deglaciation Working Group Wiki:
- 7 <a href="https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:index">https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:index</a>. Boundary condition group
- 8 headings are in bold.

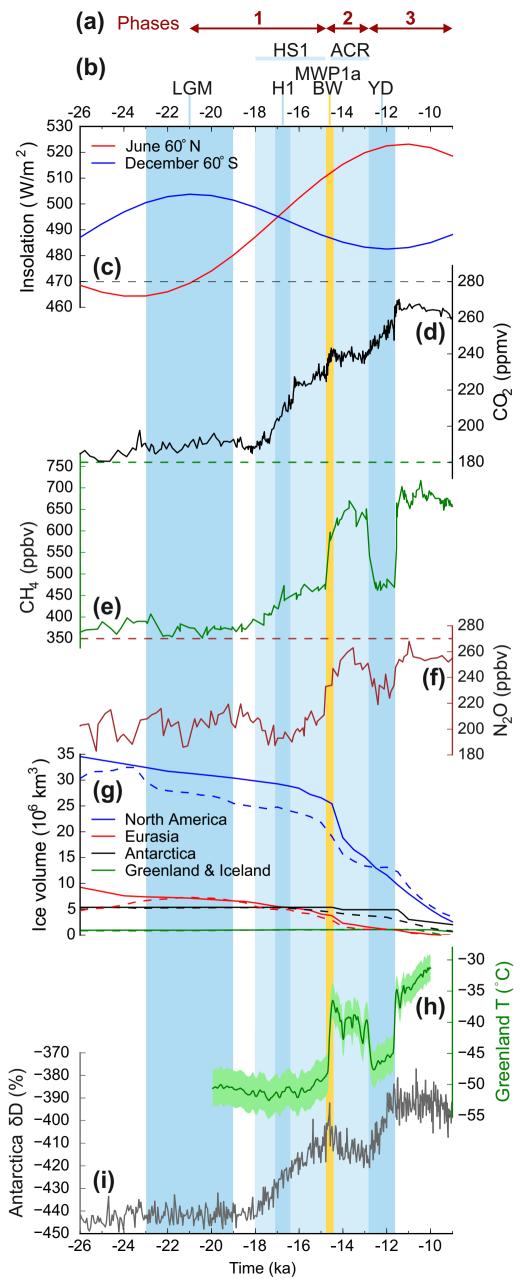
| Spinup type                                      | <b>Boundary condition</b>                                                                                 | Description                                                                                                                                                                             |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Last Glacial                                     | Insolation                                                                                                |                                                                                                                                                                                         |  |
| Maximum<br>(LGM; 21 ka)                          | Solar constant                                                                                            | Preindustrial (e.g. 1365 W m <sup>-2</sup> )                                                                                                                                            |  |
|                                                  | Eccentricity                                                                                              | 0.018994                                                                                                                                                                                |  |
|                                                  | Obliquity                                                                                                 | 22.949°                                                                                                                                                                                 |  |
|                                                  | Perihelion–180°                                                                                           | 114.42°                                                                                                                                                                                 |  |
|                                                  | Vernal equinox                                                                                            | Noon, 21st March                                                                                                                                                                        |  |
|                                                  | Trace gases                                                                                               |                                                                                                                                                                                         |  |
|                                                  | Carbon dioxide (CO <sub>2</sub> )                                                                         | <del>188</del> 190 ppm                                                                                                                                                                  |  |
|                                                  | Methane (CH <sub>4</sub> )                                                                                | 375 ppb                                                                                                                                                                                 |  |
|                                                  | Nitrous oxide (N <sub>2</sub> O)                                                                          | 200 ppb                                                                                                                                                                                 |  |
|                                                  | Chlorofluorocarbon (CFC)                                                                                  | 0                                                                                                                                                                                       |  |
|                                                  | Ozone $(O_3)$                                                                                             | Preindustrial (e.g. 10 DU)                                                                                                                                                              |  |
|                                                  | Ice sheets, orography and coastlines                                                                      | <ul><li>21 ka data from either:</li><li>ICE-6G_C (references in text)</li><li>GLAC-1D (references in text)</li></ul>                                                                    |  |
|                                                  | Bathymetry                                                                                                | <ul><li>Keep consistent with the coastlines, using either:</li><li>Data associated with the ice sheet</li><li>Preindustrial bathymetry</li></ul>                                        |  |
|                                                  | Global ocean salinity                                                                                     | + 1 psu, relative to preindustrial                                                                                                                                                      |  |
| Transient orbit<br>and trace gases<br>(26-21 ka) | Orbital parameters                                                                                        | All orbital parameters should be transient, as per Berger (1978) 26-21 ka                                                                                                               |  |
|                                                  | Trace gases Carbon dioxide (CO <sub>2</sub> ) Methane (CH <sub>4</sub> ) Nitrous oxide (N <sub>2</sub> O) | Adjusted to the AICC2012 (Veres et al., 2013) Transient, as per <u>LüthiBereiter</u> et al. (20082015) Transient, as per Loulergue et al. (2008) Transient, as per Schilt et al. (2010) |  |
|                                                  | All others                                                                                                | As per LGM (21 ka) spinup type.                                                                                                                                                         |  |
|                                                  |                                                                                                           |                                                                                                                                                                                         |  |

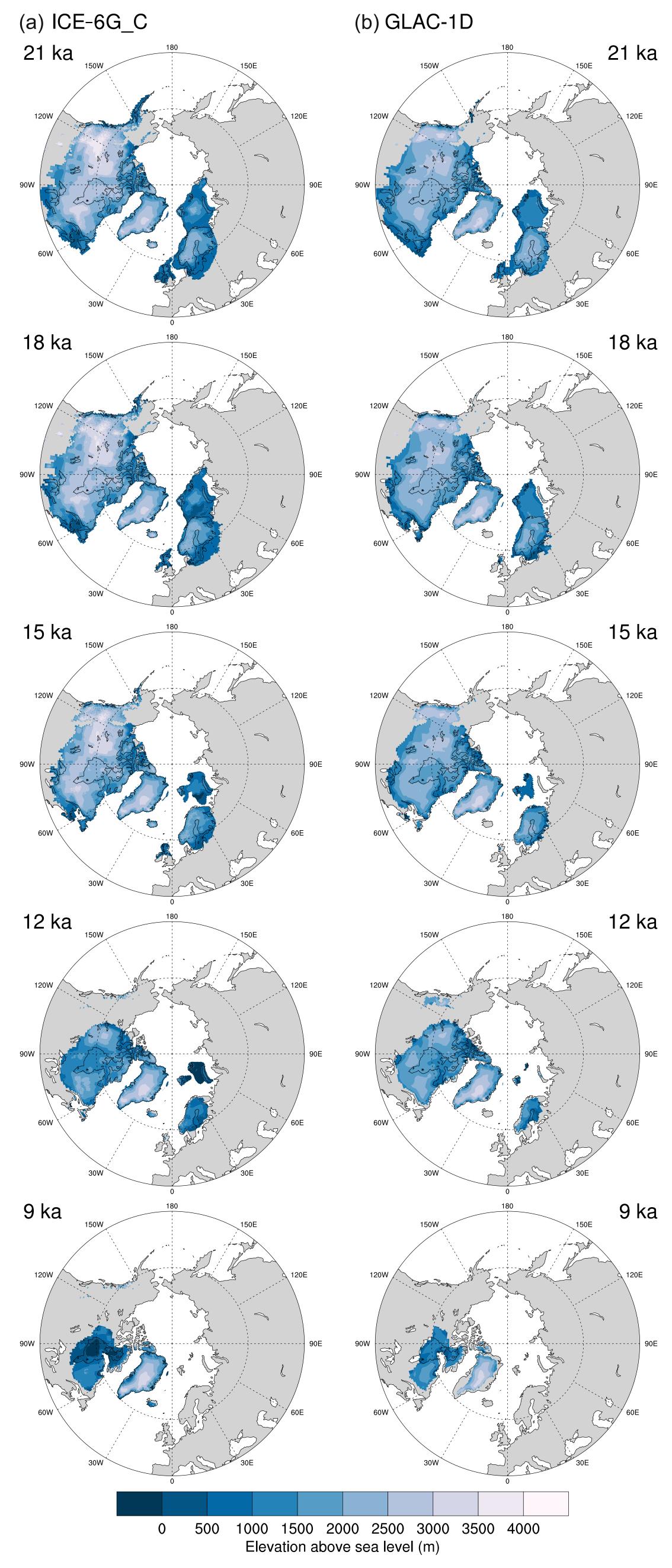
- 1 Table 2. Summary of required model boundary conditions for the last deglaciation Core
- 2 <u>simulationexperiment</u> 21-9 ka; optional boundary conditions are labelled as such. Data are
- 3 available from PMIP Last Deglaciation Working Group Wiki:
- 4 <u>https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:degla:index</u>. See text for details. Boundary
- 5 condition group headings are in bold.

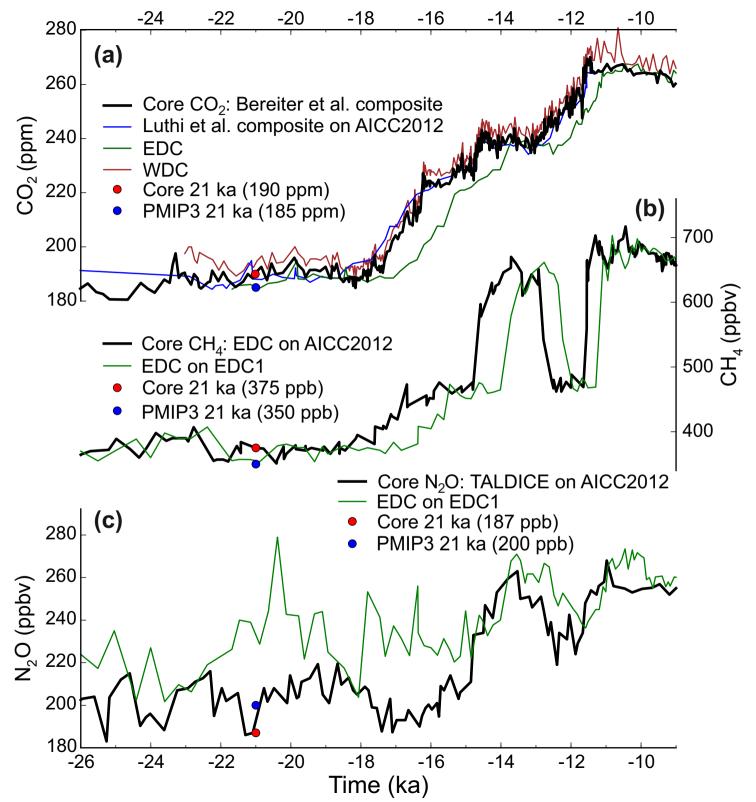
| <b>Boundary condition</b>                                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial conditions<br>(pre 21 ka)                                                                                                                          | Recommended (optional) to use either:  - Last Glacial Maximum (LGM; 21 ka) equilibrium simulation, including +1 psu global ocean salinity  - Transient orbit and trace gases (26-21 ka) and all other boundary conditions fixed as per equilibrium LGM  See Table 1 for details. The method must be documented, including information on the state of spinup                                   |
| Insolation Solar constant Orbital parameters                                                                                                               | Preindustrial (e.g. 1365 W m <sup>-2</sup> )<br>Transient, as per Berger (1978)                                                                                                                                                                                                                                                                                                                |
| Trace gases Carbon dioxide (CO <sub>2</sub> ) Methane (CH <sub>4</sub> ) Nitrous oxide (N <sub>2</sub> O) Chlorofluorocarbon (CFC) Ozone (O <sub>3</sub> ) | Adjusted to the AICC2012 age model (Veres et al., 2013): Transient, as per LüthiBereiter et al. (2015) Transient, as per Loulergue et al. (2008) Transient, as per Schilt et al. (2010) 0 Preindustrial (e.g. 10 DU)                                                                                                                                                                           |
| Ice sheet                                                                                                                                                  | Transient, with a choice of either:  - ICE-6G_C reconstruction (references in text)  - GLAC-1D reconstruction (references in text)  How often to update the ice sheet is optional                                                                                                                                                                                                              |
| Orography and coastlines                                                                                                                                   | Transient. To be consistent with the choice of ice sheet.  Orography is updated on the same timestep as the ice sheet. It is optional how often the land-sea mask is updated, but ensure consistency with the ice sheet reconstruction is maintained                                                                                                                                           |
| Bathymetry                                                                                                                                                 | <ul> <li>Keep consistent with the coastlines and <u>otherwise</u> use either:</li> <li>Transient data associated with the chosen ice sheet; it is optional how often the bathymetry is updated.</li> <li>Preindustrial bathymetry</li> </ul>                                                                                                                                                   |
| River routing                                                                                                                                              | Ensure that rivers reach the coastline It is recommended (optional) to use one of the following:  - Preindustrial configuration for the model  - Transient routing provided with the GLAC-1D-ice sheet reconstructions  - Manual/model calculation of river network to match topography                                                                                                        |
| Freshwater fluxes                                                                                                                                          | No land ice or iceberg meltwater fluxes to the ocean At participant discretion. Three options are: <i>melt-uniform</i> , <i>melt-routed</i> and <i>no-melt</i> (see text). It is recommended (optional) to run at least one Core simulation with a scenario consistent with the chosen ice sheet reconstruction to conserve salinity (e.g. as provided). See text for full details (Sect. 2.5) |
| Other (optional) Vegetation and land cover Aerosols (dust)                                                                                                 | Prescribed preindustrial cover or dynamic vegetation model<br>Prescribed preindustrial distribution or prognostic aerosols                                                                                                                                                                                                                                                                     |

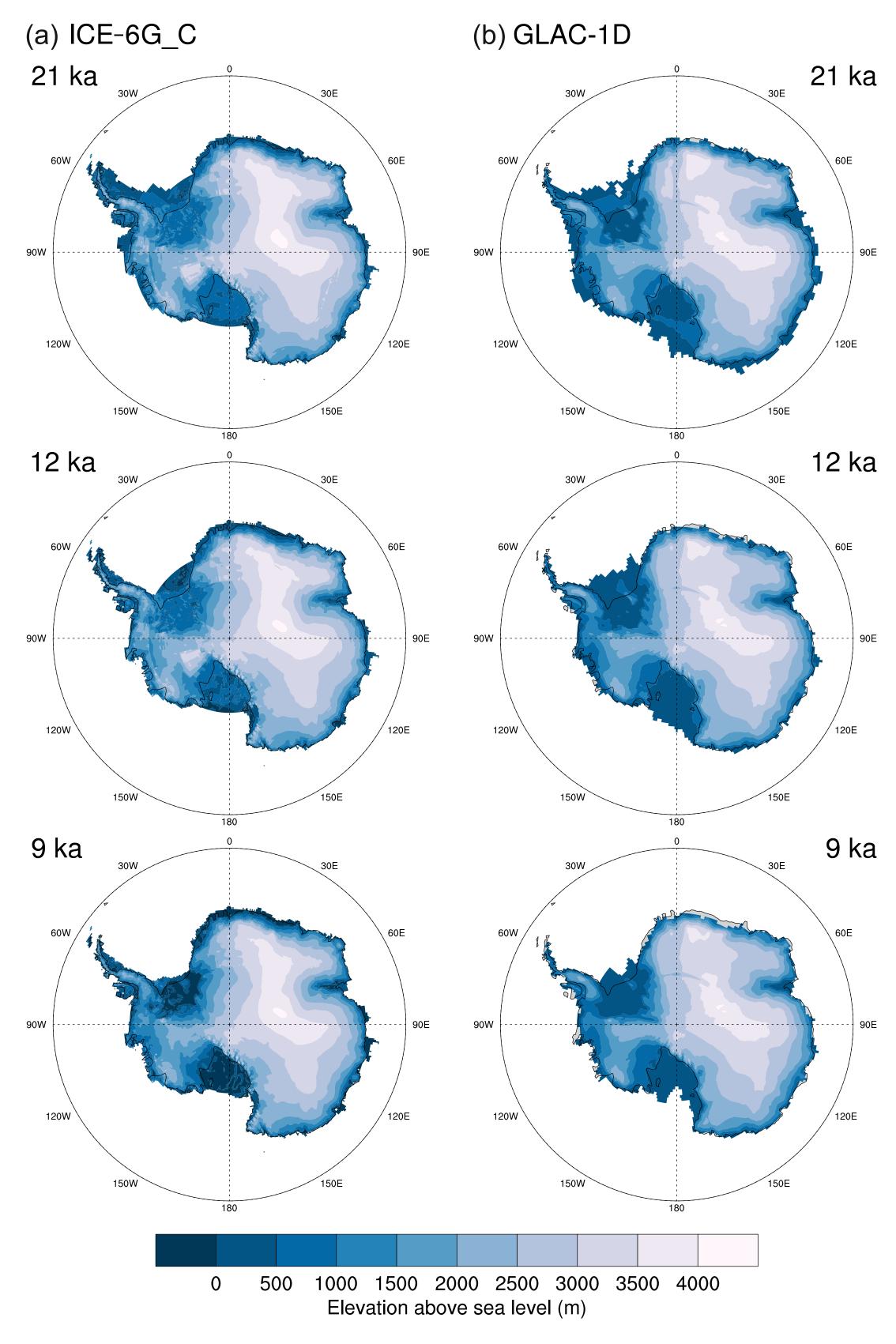
## **Figures**

- 2 Figure 1. The last deglaciation; forcings and events. (a) The three phases of the Core 3 simulation experiment (Sect. 4). (b) Climate events/periods discussed in the text; Last Glacial 4 Maximum (LGM; 23-19 ka as according to the EPILOG definition; Mix et al., 2001), Heinrich 5 Stadial 1 (HS1), Heinrich Event 1 (H1), Bølling Warming (BW) and Meltwater Pulse 1a 6 (MWP1a), Antarctic Cold Reversal (ACR) and the Younger Dryas cooling (YD). (c) June insolation at 60° N and December insolation at 60° S (Berger, 1978). (d) Atmospheric carbon 7 8 dioxide concentration (recent composite of EPICA Dome C, Vostok, Taylor Dome, Siple Dome 9 and West Antarctic Ice Sheet Divide records, Antarctica; Bereiter et al., 2015); black dashed 10 line shows preindustrial concentration. (e) Atmospheric methane concentration (EPICA Dome 11 C, Antarctica; Loulergue et al., 2008); green dashed line shows preindustrial concentration. (f) 12 Atmospheric nitrous oxide concentration (Talos Dome, Antarctica; Schilt et al., 2010); brown 13 dashed line shows preindustrial concentration. (g) Volume of the ice sheets according to the 14 ICE-6G\_C reconstruction (solid lines; Argus et al., 2014; Peltier et al., 2015) and the GLAC-1D reconstruction (dashed lines; Briggs et al., 2014; Tarasov et al., 2012; Tarasov and Peltier, 15 16 2002). Associated meltwater scenarios melt-uniform and melt-routed (see Sect. 2.5) are 17 consistent with these; all ice mass loss shown is supplied as freshwater to the ocean. (h) 18 Greenland temperature reconstruction with  $\pm 1 \sigma$  shaded (averaged GISP2, NEEM and NGRIP 19 records; Buizert et al., 2014). (i) Antarctic δD (EPICA Dome C; Jouzel et al., 2007). (d)-(f) and 20 (h)-(i) are given on the AICC2012 timescale (Veres et al., 2013). 21 **Figure 2.** Northern Hemisphere ice sheet elevation at 21, 18, 15, 12 and 9 ka; (a) ICE-6G\_C 22 reconstruction at 10 arcminute horizontal resolution, elevation is plotted where the fractional ice mask is more than 0.5 (Peltier et al., 2015); (b) GLAC-1D reconstruction at 1° (longitude) 23 24  $\times 0.5^{\circ}$  (latitude) horizontal resolution, elevation is plotted where the binary fractional ice mask is onemore than 0.5 (Briggs et al., 2014; Tarasov et al., 2012; Tarasov and Peltier, 2002; 25 26 Tarasov et al., 2012this study). Figure 3. Atmospheric trace gases through the last deglaciation from Antarctic ice cores. (a) 27
- 28 CarbonCore experiment carbon dioxide according to a recent composite record from EPICA Dome C (EDC), West Antarctic Ice Sheet Divide (WDC), Vostok-and, Taylor Dome and Siple 29 Dome (thick black line; Bereiter et al., 2015), adjusted to, which was produced on the 30 AICC2012 chronology (Veres et al., 2013). Also shown for comparison is an older composite 31


record from EDC, Vostok and Taylor Dome (thin blue line; Lüthi et al., 2008, adjusted to the 1 2 AICC2012 chronology). The, as well as the original EDC CO<sub>2</sub> record (green line; Monnin et 3 al., 2004) and more the recent, higher resolution West Antarctic Ice Sheet Divide (WDC) CO2 4 record (dark red line; Marcott et al., 2014); which were incorporated into the newer composite 5 by Bereiter et al. (2015) are shown for comparison. (b) Methane according to the EPICA Dome C (EDC) record (Loulergue et al., 2008), shown both on the original EDC1 chronology (green 6 7 line; Spahni et al., 2005) and adjusted to the more recent AICC2012 chronology for the Core 8 experiment (thick black line; Veres et al., 2013). (c) Nitrous oxide according to the Talos Dome 9 (TALDICE) record (Schilt et al., 2010), adjusted to the AICC2012 chronology for the Core 10 experiment (thick black line; Veres et al., 2013). For comparison, the earlier EPICA Dome C 11 (EDC) record on the EDC1 chronology is also shown (green line; Spahni et al., 2005). The 12 nearest measured N<sub>2</sub>O concentration to 21 ka is from 21.089 ka; hence the small offset between 13 the slightly earlier concentration (187 ppb) used for the Core and the interpolated value plotted 14 at 21 ka. For (a)-(c) 21 ka concentrations according to the AICC2012 age model (red dots) are shown in contrast to previous PMIP3 LGM concentrations (blue dots; PMIP LGM Working 15 Group, 2010). If using an equilibrium-type spinup for the start of thea transient Core simulation 16 at 21 ka (Sect. 2.1.1), use 188190 ppm CO<sub>2</sub>, 375 ppb CH<sub>4</sub> and 200 ppb N<sub>2</sub>O. 17 18 Figure 4. Southern Hemisphere ice sheet elevation at 21, 12 and 9 ka; (a) ICE-6G\_C 19 reconstruction at 10 arcminute horizontal resolution, ice elevation is plotted where the fractional 20 ice mask is more than 0.5 (Argus et al., 2014; Peltier et al., 2015); (b) GLAC-1D reconstruction at  $1^{\circ}$  (longitude)  $\times 0.5^{\circ}$  (latitude) horizontal resolution, ice elevation is plotted where the 21


binary fractional ice mask is 4more than 0.5 (Briggs et al., 2014; Tarasov et al., 2012; Tarasov


22


23

and Peltier, 2002).







