
1 Response to Editor Review of Dr. Klaus

Gierens (21 Mar 2016)

Thank you very much for your time. All your corrections are greatly ap-
preciated and surely improved the clarity and readability of the manuscript.
Also, please find a differential version of the manuscript at the end of response
section.

1.1 General remarks

• I have one major comment, similar to the major comment of referee
#1, but potentially in another direction. This is the following point:
Lines 290 to 319: As I see it, the choice of the RT solver or spectral
integration scheme has only a minor impact on simulated cloud proper-
ties. A better way to compare the differences would be to run the same
simulation with a slightly different realization of the initial temperature
field (superposed with some noise). This would lead to variations rel-
ative to the original simulation as well and would provide a basis to
judge whether a difference caused by different RT methods in within or
without the noise. How is the effect on radiation quantities like div F?

Good point, we repeated a calculation with full spectral integration
and a random temperature perturbation. The temperature pertur-
bation introduces differences comparable in magnitude to the ones
from Monte-Carlo-Spectral-Integration. Under the assumption that
with div F you mean the flux divergence i.e. the heating rates — we
find it difficult to interpret radiation quantities advantageously due to
the tremendous noise that is introduced by the Monte-Carlo-Spectral-
Integration (uniform and original). However, to point out one par-
ticular reassuring fact: integrated over the period of the simulations,
the uniform as well as the original Monte-Carlo-Spectral-Integration
remain unbiased with respect to heating rates.

1.2 Specific comments

• Line 38/39: Explain “atmospheric aggregation”

Done.

• Lines 44–47: how can model errors affect cloud formation? Please
rewrite.

We added two sentences to further illustrate cloud-radiative feedbacks.
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• Lines 50–53: Please rewrite this as well. As it stands, it is the coupling
that is expensive. But it is the execution of an LES coupled to 3D
radiative transfer that is expensive.

Yes, done.

• Line 62: The logic of your argumentation would be clearer with “even
more expensive LBL calculations”.

Done.

• Line 78: The error is uncorrelated to what? And what does “The error
is statistical” mean?

Fixed, thanks.

• Line 85: please rewrite “. . . not meaningful to calculate a spectral band
in one column and a different band in a neighbouring column.”

Done.

• Lines 166–169: please rewrite. As it stands, the coupling is solved
instead of the equation system.

Done.

• Line 171: The expansion of PETSc should be moved from ll 189/90 to
here where it appears first.

Done.

• Lines 183–185: An equation system can not be written as one matrix.
A matrix is not an equation. Please rewrite.

Done.

• Line 197: More efficient than what? Line 198: easier than what?

Indeed, we removed the sentence altogether as it is not relevant for
our work. We are after all not writing novel iterative solvers.

• Line 227: What is a sparsity pattern? Please reformulate.

Done.

• Lines 239/240: There is a break of logic between the last sentence and
the discussion before. The last sentence should be moved to a more
appropriate place.

Moved to the end of the section.
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• Line 244: the notion “high frequency error” needs some explanation.
The corresponding “low frequency error” should then be a clear notion
as well. About which errors are you talking here?

Rewrote the two sentences to clarify. Changed the wording from error
to residual to clarify that we are talking about intermediate residuals
during the matrix solver iterations.

• Line 277: Again, “the error is uncorrelated”. To what?

We added “. . . uncorrelated in space and time.”

• Lines 283–289: Try to rewrite these sentences. For instance: “It is not
clear whether the assumptions . . . when we reduce the sampling noise.
We repeated . . . in order to test this.”

Done.

• Caption of figure 2, last sentence: Is it possible to describe the meaning
of the grey bar without “alpha channel”. Probably many users don’t
know what this is, and to my opinion it is not really needed.

Indeed, we just removed the “alpha channel” keyword.

Many thanks,

Fabian Jakub
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Abstract. The recently developed three dimensional Ten-
Stream radiative transfer solver was integrated into the
UCLA–LES cloud resolving model. This work documents
the overall performance of the TenStream solver as well as
the technical challenges migrating from 1D schemes to 3D5

schemes. In particular the employed Monte-Carlo-Spectral-
Integration needed to be re-examined in conjunction with
3D radiative transfer. Despite the fact that the spectral sam-
pling has to be performed uniformly over the whole do-
main, we find that the Monte-Carlo-Spectral-Integration re-10

mains valid. To understand the performance characteristics
of the coupled TenStream solver, we conducted weak- as
well as strong-scaling experiments. In this context, we inves-
tigate two matrix-preconditioner (GAMG and block-jacobi
ILU) and find that algebraic multigrid preconditioning per-15

forms well for complex scenes and highly parallelized simu-
lations. The TenStream solver is tested for up to 4096 cores
and shows a parallel scaling efficiency of 80 % to 90 % on
various supercomputers. Compared to the widely employed
1D δ-Eddington two-stream solver, the computational costs20

for the radiative transfer solver alone increases by a factor of
five to ten.

1 Introduction

To improve climate predictions and weather forecasts we
need to understand the delicate linkage between clouds and25

radiation. A trusted tool to further our understanding in atmo-
spheric science is the class of models known as large-eddy-
simulations (LES). These models are capable of resolving the
most energetic eddies and were successfully used to study
boundary layer structure as well as shallow and deep convec-30

tive systems.
Radiative heating and cooling drives convective mo-

tion and influences cloud droplet growth and micro-

physics (Harrington et al., 2000; Marquis and Harrington,
2005). Recent work suggests that cloud radiative feed-35

backs may also play an important role in atmospheric
aggregation

:::::::::
convective

::::::::::::::
self-aggregation,

:::
i.e.

::::
how

::::::
clouds

:::
are

::::::::
organized

::
in

:::
the

::::::::::
atmosphere (Muller and Bony, 2015). One

aspect that has, until now, been studied only briefly is the
role of three dimensional radiative transfer. One dimen-40

sional radiative transfer by definition ignores effects such as
cloud side illumination, displaced cloud shadows and hor-
izontal energy transport in general. While it is clear that
the neglect of these three dimensional effects lead to big
errors in heating rates, the question if and how much this45

has
::::
these

:::::
have

:
an effect on cloud formation is not yet set-

tled (Schumann et al., 2002; Di Giuseppe and Tompkins,
2003; O’Hirok and Gautier, 2005; Frame et al., 2009; Petters,
2009).

:::::::
Particular

:::::::::::::
cloud-radiative

:::::::::
feedbacks

:::
are

:::
for

:::::::
example,

::
an

::::::::
increased

::::::::
sensible

::::
and

:::::
latent

:::::
heat

::::
flux

::
in

::::
the

::::::
updraft50

:::::
region

::::::
caused

:::
by

::::::::
displaced

:::::
cloud

:::::::
shadows

::
or

:::
the

:::::::::
immediate

::::::
change

::
of

:::
the

::::
flow

::::::
through

::::::::::::
non-adiabatic

:::::::
radiative

::::::
heating

::
or

:::::::
cooling.

:

While radiative transfer is probably the best understood
physical process in atmospheric models it is extraordinarily55

expensive (computationally) to couple
:::
use fully three dimen-

sional radiative transfer solvers to
::
in

:
LES models.

One reason for the computational complexity involved in
radiative transfer calculations is the fact that solvers are not
only called once per time step but the radiative transfer has60

to be integrated over the solar and thermal spectral ranges. A
canonical approach for the spectral integration are so called
“correlated-k” approximations (Fu and Liou, 1992; Mlawer
et al., 1997) where instead of

::::
even

:::::
more

:
expensive line-by-

line calculations, the spectral integration is done with typi-65

cally one to two hundred spectral bands.
However, even when using simplistic 1D radiative transfer

solvers and correlated-k methods for the spectral integration
the computation of radiative heating rates is very demanding.
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As a consequence, radiation is usually not calculated at each70

time step but rather updated infrequently. This is problem-
atic, in particular in the presence of rapidly changing clouds.
Further strategies are needed to render the radiative transfer
calculations computationally feasible.

One such strategy was proposed by Pincus and Stevens75

(2009) who state that thinning out the calling frequency tem-
porally is equivalent to a sparse sampling of spectral inter-
vals. They proposed not to calculate all spectral bands at each
and every time step but rather to pick one spectral band ran-
domly. The error that is introduced by the random sampling80

is assumed to be statistical and uncorrelated and
:::::::
unbiased

:::
and

::::::::::
uncorrelated

::
in

:::::
space

:::
and

::::
time

::::
and should not change the

overall course of the simulation. Their algorithm is known as
Monte-Carlo-Spectral-Integration and is implemented in the
UCLA–LES. For each time step and for each vertical col-85

umn, a spectral band is chosen randomly. This has important
consequences for the application of a 3D solver where every
column is coupled to its neighborsand it is not meaningful to
calculate a different .

::::::::::
Calculating

::
a

::::::::
particular

:
spectral-band

in one column and another at
:
a

:::::::
different

:::
one

::
in

:
the neighbor-90

ing column .
:::::
would

::::::::::
erroneously

:::::
imply

:::
that

:::
the

::::
light

:::::::
changes

::
its

::::::::
frequency

::::::
going

::::
from

:::::::
column

::
to

:::::::
column.

:::::::
Instead,

::
in

:::
the

:::
case

:::
of

:
a
::::

3D
::::::
solver,

:::
we

::::
need

:::
to

:::
use

::::
one

:::::::
spectral

::::
band

:::
for

::
the

::::::
entire

:::::::
domain. Hence, in order to couple the TenStream

solver to the UCLA–LES we need to revisit the Monte-Carlo-95

Spectral-Integration and check if it is still valid if used with
three dimensional solvers.

Another reason for the computational burden is the
complexity of the radiation solver alone. Fully three-
dimensional solvers such as MonteCarlo (Mayer, 2009) or100

SHDOM (Evans, 1998) are several orders of magnitude
slower than usually employed 1D solvers (e.g. δ-Eddington
two-stream (Joseph et al., 1976)).

To that end, there is still considerable effort being put
into the development of fast parameterizations to account105

for 3D effects. Recent works incorporate 3D effects in low
resolution sub-grid-cloud aware models (GCM’s) by means
of overlap assumptions or additional horizontal exchange
coefficients (Tompkins and Di Giuseppe, 2007; Hogan and
Shonk, 2013). Other parameterizations target high resolution110

models and propagate radiation on the grid-scale, e.g. Frame
et al. (2009) or Wissmeier et al. (2013) for the solar spectral
range or Klinger and Mayer (2015) for the thermal.

The TenStream solver (Jakub and Mayer, 2015) is a rig-
orous, fully coupled, three-dimensional, parallel and, com-115

parably fast radiative transfer approximation. In brief, given
the optical properties in a box (absorption and scattering co-
efficient as well as the asymmetry parameter), the TenStream
solver computes the propagation of radiation for each model
box using MonteCarlo techniques and stores the respective120

transport coefficients in a look-up table. The resulting ra-
diative fluxes of one box are then coupled in the vertical (2
streams) as well as in the horizontal directions (8 streams)
with their respective neighboring boxes. In this paper we doc-

ument the steps which were taken to couple the TenStream125

solver to the UCLA–LES which permits us to drive atmo-
spheric simulations with realistic 3D radiative heating rates.

Section 2 briefly introduces the TenStream solver and the
UCLA–LES model. In section 2.2.1 follows a description of
two choices of matrix solvers and preconditioners which pri-130

marily determine the performance of the TenStream solver.
In section 3 we repeated simulations according to the

“Second Dynamics and Chemistry of Marine Stratocumulus
field study” (DYCOMS II) to check the validity of

::
the Monte-

Carlo-Spectral-Integration. Section 4 presents an analysis135

of the weak- and strong-scaling behavior of the TenStream
solver and section 5 discusses the applicability of the model
setup for extended cloud-radiation interaction studies.

2 Description of models and core components

2.1 LES model140

The LES that we coupled the TenStream solver to is the
UCLA–LES model. A description and details of the LES
model can be found in Stevens et al. (2005). The model al-
ready supports a 1D δ-scaled four-stream solver to compute
radiative heating rates. The spectral integration is performed145

following the correlated-k method of Fu and Liou (1992). We
should briefly mention the changes to the model code which
were necessary to support a three-dimensional solver.

In the case of three dimensional radiative transfer we need
to solve the entire domain for one spectral band at once. This
is in contrast to one dimensional radiative transfer solvers
where the heating rate H(x,y,λ,z) is a function of the
pixel (x,y), integrated over spectral bands (λ) and solved for
one vertical column (z) at a time. We therefore need to rear-
range the loop structures from

H(x,y,λ,z)→H(λ,x,y,z)

so that the spectral integration over λ is the outermost loop.
The fact that we couple the entire domain, and hence need to150

select the same spectral band for all columns is different from
what Pincus and Stevens (2009) did and may weaken the va-
lidity of the Monte-Carlo-Spectral-Integration. We will dis-
cuss this in section 3. The rearrangement also changes some
vectors from 1D to 3D and may thereby introduce copies155

or caching issues. We find that the change roughly adds a
6 % speed penalty compared to the original single column
code (no code optimizations considered). In this paper, cal-
culations are exclusively done using the modified loop struc-
tures.160

2.2 TenStream RT model

The TenStream radiative transfer model is a parallel approxi-
mate solver for the full 3D radiative transfer equation (Jakub
and Mayer, 2015). In analogy to a two-stream solver, the
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TenStream solver computes the radiative transfer coefficients165

for up- and downward fluxes and additionally for sideward
streams. These transfer coefficients determine the propaga-
tion of energy through one box. The coupling of individ-
ual boxes is done in

::::
leads

::
to a linear equation system which

may be written as sparse matrix and
:
a
:::::
sparse

::::::
matrix

:::::::
equation170

:::::
which

:
is solved using parallel iterative methods. It is diffi-

cult to predict the performance of a specific choice of itera-
tive solver or preconditioner beforehand. For that reason, we
chose to use the

::::::::
“Portable,

:::::::::
Extensible

::::::
Toolkit

:::
for

::::::::
Scientific

::::::::::::
Computation”, PETSc (Balay et al., 2014) framework which175

offers a wide range of pluggable iterative solvers and matrix
preconditioners. Jakub and Mayer (2015) found that the aver-
age increase in runtime compared to 1D two-stream solvers is
about a factor of 15. One specifically interesting detail about
the use of iterative solvers in the context of fluid dynamics180

simulations is the fact that we can use the solution at the last
time step as an initial guess and thereby speed up the con-
vergence of the solver. Section 4 presents detailed runtime
comparisons on various computer architectures and simula-
tion scenarios.185

2.2.1 Matrix solver

The resulting equation system of
:::::::
coupling

::
of

:::::::
radiative

:::::
fluxes

::
in the TenStream solver can be written as a huge but sparse
matrix (i.e. most entries are zero). The TenStream matrix is
positive definite (strictly diagonal dominant) and asymmet-190

ric. Sparse
:::::::
Equation

:::::::
systems

::::
with

:::::
sparse

:
matrices are usually

solved using iterative methods because direct methods such
as Gaussian-elimination or LU-factorization usually exceed
memory limitations. The “Portable, Extensible Toolkit for
Scientific Computation” (PETSc Balay et al. (2014))

:::::
library195

includes several solvers and preconditioners to choose from.

Iterative solvers

For three dimensional systems of partial differential equa-
tions with many degrees of freedom, iterative methods
are often more efficient computationally and memory-200

wise. It is also easier to implement them efficiently on
todays compute hardware. The three biggest classes in
use today are Conjugate Gradient (CG), Generalized Mini-
mal Residual Method (GMRES) and BiConjugate-Gradient
methods (Saad, 2003). Given that CG is only suitable for205

symmetric matrices we will focus on the latter two. In the
following we will use the flexible version of GMRES (Saad,
1993) and the “stabilized version of BiConjugate-Gradient-
Squared” (Van der Vorst, 1992).

Preconditioner210

Perhaps even more important than the selection of a suitable
solver is the choice of matrix preconditioning. In order to
improve the rate of convergence, we try to find a transforma-
tion for the matrix that increases the efficiency of the main

iterative solver. We can use a preconditioner P on the initial
matrix equation so that it writes:

PA ·x= Pb
We can easily see that if P is close to the inverse ofA the left
hand side operator reduces to unity and the effort to solve the
system is zero. Of course we cannot cheaply find the inverse
of A but we might find something that resembles A−1 to a
certain degree. Obviously for a good cost/efficiency tradeoff215

the preconditioner should be computationally cheap to apply
and considerably reduce the number of iterations the solver
needs to converge.

This study suggests two preconditioners for the TenStream
solver. We are fully aware that our choices are probably not220

an optimal solution but they give reasonable results.
The first setup uses a so called stabilized BiConjugate-

Gradient solver with incomplete LU factorization (ILU). Di-
rect LU factorizations tend to fill up the sparsity pattern

:::::::::::::::::
zero-entries (sparsity

:::::::
pattern) of the matrix and quickly be-225

come exceedingly expensive
:::::::::::
memory-wise. A workaround

is to only fill the preconditioner matrix until a certain thresh-
old of filled entries are reached. A fill level factor of zero
prescribes that the preconditioner matrix has the same num-
ber of non-zeros as the original matrix. The ILU precon-230

ditioner is only available sequentially and in the case of
parallelized simulations, each processor applies the pre-
conditioner independently (called “block-jacobi”). Conse-
quently, the preconditioner can not propagate information
beyond its local part and we will see in section 4 that this235

weakens the preconditioner for highly parallel simulations.
The solvers are commonly configured via command-line
parameters (see listing 1 for ILU-preconditioning).

The second setup uses a flexible GMRES with geo-
metric algebraic multigrid preconditioning (GAMG). Tradi-240

tional iterative solvers like Gauss-Seidel or Block-Jacobi
are very efficient in reducing the high frequency error

::::
local

:::::::
residuals

::
at
::::::::

adjacent
:::::::::::

entries (often
:::::::

termed
::::
high

:::::::::
frequency

:::::
errors). This is why they are called “smoothers”. How-
ever, the low frequencyerrors, i.e.

:::
long

:::::::::
range (low

:::::::::
frequency)245

::::::::
residuals,

::::
e.g. long range errors

:
a
:::::::::

reflection
::
at

::
a
::::::

distant

:::::::
location,

:
are dampened only slowly. The general idea of

multigrid is to solve the problem on several, coarser grids
simultaneously. This way, the smoother is used optimally in
the sense that on each grid representation the error

::::::
residual250

which is targeted is rather high frequency error. This coarsen-
ing is done until ultimately the problem size is small enough
to solve it with direct methods. Considerable effort has been
put into the development of black-box multigrid precondi-
tioners. Black-box means in this context that the user, in255

this case the TenStream solver, does not have to supply the
coarse grid representation. Rather, the coarse grids are con-
structed directly from the matrix representation. The PETSc

::::::
solvers

:::
are

:::::::::
commonly

:::::::::
configured

:::
via command-line options

to use
::::::::
parameters

::::
(see

:::::::::::
listing 1 for

:::::::::::::::::
ILU-preconditioning

::
or260

:::::::
listing 2

:::
for multigrid preconditioningare given in listing 2

:
).
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3 Monte Carlo Spectral Integration

There are two reasons why radiative transfer is so expensive
computationally. On one hand, a single monochromatic cal-
culation is already quite complex. On the other hand, radia-265

tive transfer calculations have to be integrated over a wide
spectral range. Even if correlated-k methods are used, the
number of radiative transfer calculations is on the order of
a hundred. As a result, it becomes unacceptable to perform
a full spectral integration at every dynamical time step, even270

with simple 1D two-stream solvers. This means that in most
models, radiative transfer is performed at a lower rate than
other physical processes. Pincus and Stevens (2009) pro-
posed that instead of calculating radiative transfer spectrally
dense and temporally sparse, one may sample only one spec-275

tral band at every model time step. The argument is that the
error which is introduced by the coarse spectral sampling
is averaged out over time and remains random and uncorre-
lated

::
in

:::::
space

:::
and

::::
time. As we mentioned in section 2.1, the

three dimensional radiative transfer necessitates to compute280

the entire domain for one and the same spectral band instead
of individual bands for each vertical column. In the follow-
ing we will refer to the adapted version as uniform Monte-
Carlo-Spectral-Integration. It is not clear if the assumptions
about the errors being random and uncorrelated still hold true285

if we reduce the sampling noise. To reason that the still
holds true in the case of uniform spectral sampling, we

:::
The

::::::
uniform

::::::::
sampling

:::::::
relaxes

:::
the

:::::::::
assumption

::::
that

:::
the

:::::
errors

:::
are

::::::::::
uncorrelated

::
in

:::::
space

:::
and

::
it

:
is
::::::::
therefore

:::
not

::::
clear

:::::::
whether

::
it

:
is

:::
still

:::::
valid.

:::
We repeated the numerical experiment in close re-290

semblance to the original paper of Pincus and Stevens (2009)

:::
and

:::::::
examine

::::
the

::::::
results

::
to

:::::::
validate

:::
the

:::::::::::
applicability

::
of

:::
the

::::::
uniform

:
Monte-Carlo-Spectral-Integration.

There, they used the model setup for the DYCOMS-II
simulation (details in Stevens et al. (2005)). They show re-295

sults for nocturnal simulations. In contrast, here we show
results with a constant zenith angle θ = 45◦. Radiative
transfer is computed with a 1D δ-Eddington two-stream
solver. The simulation is started with Monte-Carlo-Spectral-
Integration and from 2.5 hours on, also calculated with300

the full spectral integration and the uniform Monte-Carlo-
Spectral-Integration. Note, the good agreement between the
full spectral sampling simulation and the one with the orig-
inal Monte-Carlo-Spectral-Integration in fig. 1. The uni-
form formulation of Monte-Carlo-Spectral-Integration leads305

to high frequency changes in the average liquid water con-
tent (LWC). These fluctuation in LWC do however not lead
to major differences in the evolution of the boundary layer
clouds or turbulent kinetic energy. To put the changes in
LWC into perspective, we ran the simulation again with the

:
a310

::::::
random

::::::::::
perturbation

:::
on

:::
the

::::::::
boundary

::::
layer

::::::::::
temperature

::::
field.

:::
The

:::::::::
magnitude

::
of

:::
the

::::::::::
perturbation

::
is
::::::
chosen

::
to
:::
be

::::::::
uniformly

:::::::::
distributed

:::::::
between

::::
−.5

::::
and

:::
.5

::
K

::::
and

:::
has

::
a
:::::

zero
:::::
mean.

:::
We

::::
find

::::
that

:::
the

::::::::::
temperature

:::::::::::
perturbation

:::::::
induces

::::::
similar

:::::::::
differences

::
to

::::
the

::::
flow

::
as

:::::
does

:::
the

:
Monte-Carlo-Spectral-315
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Figure 1: Intercomparison of the DYCOMS II simulation,
once forced with the full radiation (solid line), with the orig-
inal Monte-Carlo-Spectral-Integration (dotted) and with the
uniform version (dashed). The dash-dotted line is a calcula-
tion with full spectral integration but with the four-stream
solver instead of the two-stream solver. On the top panel,
the vertically integrated turbulent kinetic energy, in the mid-
dle the mean liquid water content (conditionally sampled and
weighted by physical height) and in the bottom panel the
mean cloud top height.

Integration.
::::::::::::

Furthermore,
:::
we

:::::::::
additional

:::
ran

:::
the

:::::::::
simulation

::::
with

:::
the

::
δ-four-stream solver

:::::::::::::::
(Liou et al., 1988). While ar-

guably both are good radiative transfer solvers, the choice
of the solver leads to bigger and biased changes

::::::::
differences

than the uniform Monte-Carlo-Spectral-Integration. The
:::
and320

::::
even

:::::::::
introduces

:
a
::::
bias

::
in
:::

the
:::::::::

evolution
::
of

:::
the

:::::
cloud

::::::
height.

:::
We

:::::::
therefore

:::::::::
conclude,

:::
that

:::::
while

:::
the uniform Monte-Carlo-

Spectral-Integration may very well introduce
::::::::::
considerable

small scale errorsbut ,
::
it
:
nevertheless seems to be a viable

approximation for this type
::::
kind

:
of simulations. Addition-325

ally, we repeated the same kind of experiment for several
other scenarios (broken cumulus and deep convection), all
confirming the applicability of the uniform Monte-Carlo-
Spectral-Integration.
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4 Performance Statistics330

To determine the parallel scaling behavior when using an
increasing number of processors, one usually conducts two
experiments: First, a so called “strong-scaling” experiment
where the problem size stays constant while the number of
processors is gradually increased. We speak of linear strong-335

scaling behavior if the time needed to solve the problem is
reduced proportional to the number of used processors. Sec-
ondly, a “weak-scaling” experiment where the problem size
and the number of processors are increased linearly, i.e. the
workload per processor is fixed. Linear weak-scaling effi-340

ciency implies that the time-to-solution remains constant.

4.1 Strong scaling

We hypothesized earlier (section 2.2) that a good initial
guess for the iterative solver results in a faster convergence
rate. To test this assumption we performed two strong scal-345

ing (problem size stays the same) simulations. One “clear-
sky” experiment without clouds in which the difference be-
tween radiation calls is minimal and a “warm-bubble” case
with a strong cloud deformation and displacement in between
time steps. These two situations enclose what the solver may350

be used for and are hence the extreme cases with respect to
the computational effort.

Both scenarios have principally the same setup with a do-
main length of 10 km at a horizontal resolution of 100 m.
The model domain is divided into 50 vertical layers with355

70 m resolution at the surface and a vertical grid stretching of
2 %. The atmosphere is moist and neutrally stable (see sec-
tion 6 for namelist parameters). Simulations are performed
with warm cloud microphysics, a constant surface temper-
ature, without Monte-Carlo-Spectral-Integration and a dy-360

namic timestep of about 2 s.
Both scenarios are run forward in time for an hour for dif-

ferent solar zenith angles and with varying matrix solvers and
preconditioners (presented in section 2.2.1). The difference
between the first and the second simulation is the external365

forcing that was applied. The “clear-sky”-case is initialized
with less moisture, weaker initial wind and no temperature
perturbation. No clouds develop in the course of the simu-
lation. In contrast, the second case is initialized with a satu-
rated moisture profile, a strong wind field and a positive, bell370

shaped, temperature perturbation in the lower atmosphere.
The temperature perturbation leads to a rising warm bubble
which leads to a cloud shortly after. The initial forcing and
latent heat release leads to strong updrafts up to 19 m s−1

while the horizontal wind with up to 15 m s−1 quickly dis-375

places the cloud sidewards. This strong deformation should
give an upper bound on the dissimilarity between calls to the
radiation scheme and therefore reduce the quality of the ini-
tial guess. To illustrate the general behavior of the strong-
and weak scaling experiments, fig. 2 depicts the warm bub-380

ble simulation (for the purpose of visualization without initial

horizontal wind) – once driven by 1D radiative transfer and
once more with the TenStream solver.

Figure 3 presents the increase in runtime of the TenStream
solver compared to a 1D calculation. All timings are taken385

as a best of three and simulations were performed on the
IBM Power6 “Blizzard” at DKRZ (Deutsches Klimarechen-
zentrum), Hamburg in SMT mode1. To solve for the direct
and diffuse fluxes, the matrix coefficients for the radiation
propagation (stored in a 6-dim look-up table) need to be de-390

termined for given local optical properties. Retrieving the
transport coefficients from the look-up table and the respec-
tive linear interpolation (green bar) takes about as long as the
1D radiative transfer calculation alone and is expectedly in-
dependent of parallelization and the initial guess of the solu-395

tion. For larger zenith angles, i.e. lower sun angles, the calcu-
lation of direct radiation becomes more and more expensive
because of the increasing communication between proces-
sors. Note that the computational effort also increases in case
of single core runs – the iterative solver needs more iterations400

because of its treatment of cyclic boundary conditions. The
“clear-sky” simulations are computationally cheaper than the
more challenging cloud producing “warm-bubble” simula-
tions. In the former, the solver often converges in just one
iteration where as in the latter, rather complex case, more it-405

erations are needed. Note that the ILU preconditioning weak-
ens if more processors are used. The ILU is a serial precon-
ditioner and in the case of parallel computations, it is applied
to each sub-domain independently. The ILU-preconditioner
hence can not propagate information between processors.410

The performance of Multi-Grid preconditioning (GAMG)
is less affected by parallelization. The number of iterations
until converged stays close to constant (independent of the
number of processors). The GAMG preconditioning out-
performs the ILU preconditioning for many-core systems415

whereas the setup cost of the coarse grids as well as the in-
terpolation and restriction operators are more expensive if the
problem is solved on a few cores only. In summary, we expect
the increase in runtime compared to traditionally employed
1D two-stream solvers to be in the range between five to ten420

times.

4.2 Weak scaling

We examine the weak-scaling behavior using the earlier pre-
sented simulation (see section 4.1) but run it only for 10 min.
The experiment uses multigrid preconditioning and only per-425

forms calculations in the thermal spectral range. The number
of grid points is chosen to be 16 by 16 per MPI-rank (≈ 105

unknown fluxes or≈ 106 transfer coefficients per processor).
The simulations were performed at three different machi-
nes/networks (see table 1). Please note that the simulations430

for Mistral (see table 1) do not fill up the entire nodes (24

1SMT – Simultaneous Multithreading (2 ranks/core)
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1D δ-Eddington two-stream

15min 30min 45min 60min

TenStream

15min 30min 45min 60min

Figure 2: Volume rendered perspective on liquid water content and solar atmospheric heating rates of the warm-bubble experi-
ment (initialized without horizontal wind). The two upper panels depict a simulation which was driven by 1D radiative transfer
and the two lower panels show a simulation where radiative transfer is computed with the TenStream solver ( solar zenith angle
θ = 60◦; const. surface fluxes). Three-dimensional effects in atmospheric heating rates introduce anisotropy which in turn has
a feedback on cloud evolution. Domain dimensions are 12.8 km× 12.8 km horizontally and 5 km vertically at a resolution
of 50 m in each direction. See section 6 for simulation parameters. Gray bar in the legend represents the alpha channel and
determines the transparency of the individual colors for the volume renderer.
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Figure 3: Two strong scaling tests for a clear-sky and a strongly forced scenario. Vertical axis is the increase of computational
time normalized to a delta-eddington two-stream calculation (solvers only). Horizontal axis is for different solar zenith an-
gles (θ = None means thermal only, no solar radiation). The stacked bars denoting time used for the individual components
of the solver. “Coeff” meaning the time needed to retrieve and interpolate the transport coefficients. Ediff is the elapsed time
that was used to set up the source term and solve for the diffuse radiation; the same for the direct radiation in Edir. The bars
are labeled with the corresponding matrix preconditioning.

Ranks / Cores Memory-
Node Bandwidth

Mistral 24 2x12@2.5GHz 112GB s−1

Blizzard 64 4x 8@4.7GHz 37GB s−1

Thunder 16 2x 8@2.6GHz 76GB s−1

Table 1: Details on the computers used in this work. Mistral
and Blizzard are Intel-Haswell and IBM Power6 supercom-
puters at DKRZ, Hamburg, respectively. Thunder denotes a
Linux Cluster at ZMAW, Hamburg. Columns are the number
of MPI ranks used per compute node, the number of sockets
and cores, and the maximum memory-bandwidth per node as
measured by the streams (McCalpin, 1995) benchmark.

cores) since UCLA–LES can currently only run on a number
of cores which is a power of two.

Figure 4 presents the weak-scaling efficiency f , defined
by:

f =
tsinglecore
tmulticore

· 100%

The scaling behavior can be separated into two regimes:
the efficiency on one compute node and the efficiency of435

the network communication. As long as we stick to one
node (fig. 4a), the loss of scaling concerns the 3D TenStream
solver as well as the 1D two-stream solver. Reasons for the
reduced efficiency may be cache-issues, hyper-threading or
memory-bus saturation. The scaling behavior for more than440

one node (fig. 4b) shows a close to linear scaling for the 1D
two-stream solver and a decrease in performance in the case
of the TenStream solver. The limiting factor here is network
latency and throughput.
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Figure 4: Weak scaling efficiency running UCLA–LES with interactive radiation schemes. Experiments measure the time for
the radiation solvers only (i.e. no dynamics or computation of optical properties). Timings are given as a best of 10 runs.
Weak scaling efficiency is given for the TenStream solver (triangle markers) as well as for a two-stream solver (hexagonal
markers). (Left) scaling behavior compared to single core computations (remaining on one compute node). (Right) Compute
node parallel scaling (normalized against a single node). The individually colored lines correspond to different machines (see
table 1 for details) and calculations once done with the δ-eddington two-stream solver (hexagons) and once with the TenStream
solver (triangles).

5 Conclusions445

We described the necessary steps to couple the 3D TenStream
radiation solver to the UCLA–LES model. From a techni-
cal perspective, this involved the reorganization of the loop
structure, i.e. first calculate the optical properties for the en-
tire domain and then solve the radiative transfer.450

It was not obvious that the Monte-Carlo-Spectral-
Integration would still be valid for 3D radiative transfer. To
that end, we conducted numerical experiments (DYCOMS II)
in close resemblance to the work of Pincus and Stevens
(2009) and find that the Monte-Carlo-Spectral-Integration455

holds true, even in case of horizontally coupled radiative
transfer where the same spectral band is used for the entire
domain.

The convergence rate of iterative solvers is highly de-
pendent on the applied matrix-preconditioner. In this work,460

we tested two different matrix-preconditioners for the Ten-
Stream solver: First, an incomplete LU decomposition and
secondly the algebraic multigrid-preconditioner, GAMG.We
found hat the GAMG preconditioning is superior to the ILU
in most cases and especially so for highly parallel simula-465

tions.
The increase in runtime is dependent on the complexity of

the simulation (how much the atmosphere changes between
radiation calls) and the solar zenith angle. We evaluated the
performance of the TenStream solver in a weak and strong470

scaling experiment and presented runtime comparisons to a

1D δ-eddington two-stream solver. The increase in runtime
for the radiation calculations ranges from a factor of five up
to ten. The total runtime of the LES simulation increased
roughly by a factor of two to three. A only twofold increase475

in runtime allows extensive studies concerning the impact of
three dimensional radiative heating on cloud evolution and
organization.

This study aimed at documenting the performance and ap-
plicability of the TenStream solver in the context of high-480

resolution modeling. Subsequent work has to quantify the
impact of three dimensional radiative heating rates on the dy-
namics of the model.

6 Code availability

The UCLA–LES model is publicly available at https://github.485

com/uclales. The calculations were done with the modi-
fied radiation interface which is available at git-revision
“bbcc4e08ed4cc0789b33e9f2165ac63a7d0573ef”.

To obtain a copy of the TenStream code, please contact one
of the authors. This study used the TenStream model at git-490

revision “e0252dd9591579d7bfb8f374ca3b3e6ce9788cd2“. For the sake of
reproducibility we provide the input parameters for the here
mentioned UCLA–LES computations along with the Ten-
Stream sources.
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Appendix A: Input parameters for the PETSc solvers495

Listing 1: BiConjugate-Gradient-Squared iterative solver.
The block-jacobi preconditioner does a Incomplete LU pre-
conditioning on each rank with fill level 1 independent of its
neighbouring ranks
−k s p _ t y p e bcgs
−p c _ t y p e b j a c o b i
−s u b _ p c _ t y p e i l u
−s u b _ p c _ f a c t o r _ l e v e l s 1

Listing 2: Flexible GMRES solver with algebraic multigrid
preconditioning. Use plain aggregation to generate coarse
representation (dropping values less than .1 to reduce coarse
matrix complexity) and use up to 5 iterations of SOR on
coarse grids
−k s p _ t y p e fgmres500

−k s p _ r e u s e _ p r e c o n d i t i o n e r
−p c _ t y p e gamg
−pc_gamg_type agg
−pc_gamg_agg_nsmooths 0
−p c _ g a m g _ t h r e s h o l d . 1505

−pc_gamg_square_graph 1
−m g _ l e v e l s _ k s p _ t y p e r i c h a r d s o n
−m g _ l e v e l s _ p c _ t y p e s o r
−m g _ l e v e l s _ k s p _ m a x _ i t 5
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