
We thank Dr. Sophie Valcke very much for the comments and for the help of improving the English 

grammar and syntax. We’d like to reply the comments one by one as follows. 

 

Major comments 

1. p.5 L14: You conclude «Figure 1 demonstrates the poor performance of the P2P implementation» 

but you do not address the referee 2 comments that : 

1- the results can be affected by the decomposition strategy and 

2- the decrease in time at the end of the graph in Fig 1 (i.e. for more than 96 cores) should be 

remarked upon as one may wonder if it will ocntinue to go down. 

Please modify your text to address these two comments. 

 

Response: The corresponding context has been modified. Please refer to P5 L10-L11 for the first 

comment of the referee 2, and P5 L26-L30 for the second comment. 

 

2. I do not understand the sentences on Fig. 15 « If the number of cores per toy model is less than 24, 

the MPI message number per process is set to be the number of cores. Otherwise, the MPI message 

number per process is set to 24. ». Similarly, I do not understand how you can choose the number of 

MPI messages per process and make it vary (see last paragraph on p.11 and Fig.16, or 2nd paragraph 

on p.12 and Fig.17, and many other places in the text). Can you explain ? 

 

Response: We replaced “the number of MPI messages per process” with “the communication depth per 

sender process in the P2P implementation”. The communication depth of one process is defined as the 

number of the communications that a process is associated with (please refer to P5 L17-L22). For how 

to make the communication depth per sender process in the P2P implementation vary, please refer to Fig. 

14 and Algorithm 1. 

 

3. Section 5.2: I appreciate that you added a test with up to 1024 cores to answer referee1's related 

comment. But the results illustrated in Fig. 16, 17 and 18 with a toy model still go only up to 192 

cores. As referee1, I would have expected that you perform these analysis with higher number of 

cores; this should be quite straightforward as they are based on toy models and it is easy to increase 

the size of the grid of a toy model and the number of cores used. As referee1, I do not understand 

why you did not produce those tests at higher number of cores. If there are sound arguments not to 

do so, please explain. 

 

Response: In the revised version, up to 1024 cores are used in Fig. 15, 16 and 17. 

 

4. Last paragraph of section 5.2 and Fig 19: The results on Fig 19 show that the adaptive library is only 

marginally better for 512, 768, 1024 cores. Therefore, I think the sentence «These results indicate 

that our proposed implementations can significantly improve the performance of data transfer for 

higher model resolution.” is misleading and should be rephrased. 

 

Response: In our mind, we always refer the P2P implementation as the default baseline for evaluating 

the adaptive data transfer library, because the paper proposes the butterfly implementation. This 

misleading sentence has been rephrased in the revised version, please refer to P13 L14-L17. 



5. Section 5.4: you explain that the P2P implementation is sufficient in the interpolation case because 

the number of MPI messages is small but you should clarify that this is probably linked to the fact 

that the two grids have close parallel decompositions as stressed by referee2. 

 

Response: The fact that the P2P implementation can significantly outperform the butterfly 

implementation because the parallel decompositions are similar has been stated in the revised version 

(please refer to P14 L20-L24). 

 

6. Section 5.4: again the conclusion of the paragraph is somewhat misleading. In this case, there is no 

real benefit brought by the adaptive library and it should be expressed clearly. Please rewrite the last 

sentence of section 5.4 accordingly. 

 

Response: The conclusion has been corrected. Please refer to P14 L25-L28. 

 

7. Section 5.5 : this section describes the comparison between the P2P and the adaptive library but not 

with the butterfly implementation so one cannot really conclude on the real improvement brought 

by the adaptive library. The same comparison should be done with the butterfly implementation as 

a baseline. Also it is please clarify if Figure 23 shows the gain in data transfer time only or the gain 

with respect to the whole model time. Finally, I do not understand the sentence « This performance 

improvement would not be low because the model coupling only takes a very small proportion of 

execution time in the simple coupled model GAMIL2-CLM3 and the parallel scalability of the two 

coupled models GAMIL2 and CLM3 is not good. “ Please clarify and rephrase. 

 

Response: The performance speedup corresponding to the butterfly implementation has been added. 

Please refer to Fig. 22 and P15 L8-L12. 

 

8. Section 6; as underlined by referee1's comment #14, the concusions are still week if not misleading. 

Please rework on the conclusions according to the comments made above.  

 

Response: The conclusions as well as the abstract have been improved. Please refer to P1 L26-L28 and 

P15 L24-L26. 

 

Other comments 

1. Grammar and syntax: please consider the attached version of your current manuscript with some 

propositions to improve the english grammar and syntax. 

 

Response: Thanks a lot for the help of improving the English grammar and syntax. Your modifications 

have been merged into the current revised version. 

 

2. Title of the paper : Please give a more precise title and mention « adaptive library » in it, something 

like : « A new data transfer adaptive library improving model coupling. »  

 

Response: The title has been modified according to your suggestion. 

 



3. In your reply, you mention that the «version number has been added into the software» but I do not 

see any specific number or name for your library in the text and it is indeed missing, alos in the title. 

 

Response: Thanks a lot for this suggestion. We have added the version number of the adaptive data 

transfer library (please refer to P16 L1). 

 

4. p.2 : when you refer to OASIS, please use also Valcke et al 2015, which describes the latest OASIS3-

MCT version (see the modified document). 

 

Response: We have referred to the latest OASIS3-MCT version. Please refer to P2 L30 and P20 L25-

L26. 

 

5. p. 3, L16-17: Your statement “can only scale to about 100 processor cores when using OASIS3 

(Valcke, 2013) and to about 1000 processor cores when using OASIS3-MCT (Valcke et al., 2013);” 

is not correct. The reference does not show that the data transfer does not scale for more than 1000 

cores; instead it shows that the data transfer does scale for up to 1000 cores. Please remove the 

sentence or rephrase it. 

 

Response: This sentence has been removed. 

 

6. p.4, L18-20 : It seems awkward to conclude here that «P2P implementation can achieve good 

performance when rearranging data fields for a parallel interpolation in a component model» as this 

is indeed shown in section 5.4 and Fig. 22; this should be removed at this point in the text. 

 

Response: This sentence has been removed. 

 

7. p.4, L21: The references Valcke, 2013; Valcke et al., 2013 do not show that P2P is “not efficient 

enough when transferring data between component models” as stated. Please remove those 

references there. 

 

Response: Those references have been removed. 

 

8. Fig 4 : I think the legend of the x axis should be changed from « number of cores per process » for 

« number of cores per model » ; can you confirm and make the change ? 

 

Response: The original Fig. 4 about the total number of messages has been replaced by the original Fig. 

6 (now Fig. 4 in this revised version) about the average communication depth, because the average 

communication depth is more relative to the performance of the P2P implementation. 

 

9. p.6, 2nd paragraph : I do not understand why you refer to Fig 6 and Fig 3. Please explain or remove 

the reference. 

 

Response: Those references have been removed, please refer to P6 L21-L24. 

 



10. Fig 12 : I do not understand the meaning of the last sentence « Each process of the sender is mapped 

onto a process of the butterfly kernel, while every two processes of the receiver are mapped onto 

one process of the butterfly kernel». I think it does not bring any additional information. In particular, 

if the receiver has 10 processes and if only 3 processes of the receiver are used for the butterfly 

kernel, how can this be 'every two processes of the receiver' . Could you please explain or remove 

the sentence? 

 

Response: This sentence has been removed (please refer to Fig. 11). 

 

11. 2nd paragraph of 5.3 and Fig. 20: The last sentence “When each component uses 192 cores, the 

adaptive data transfer library is 4.01 times faster than the P2P implementation” is right but Fig. 20 

also shows that butterfly and adaptive seem to converge when increasing the number of cores per 

model. This should also be described in the text. 

 

Response: The corresponding context has been improved according to this suggestion (please refer to 

P13 L31- P4 L2). 

 

12. Figures 15 to 22, it would be better to change « Library » for « Adaptive library » or « Adaptive » 

 

Response: These figures have been improved accordingly (please refer to Fig. 14 to 21). 

 

13. Figure 20 and your response to Referee2's comment #7: I do not understand the sentence « The P2P 

results are from the adaptive data transfer library which switches to the P2P implementation. » and 

this is not mentioned in the text. Please clearly explain what it means. 

 

Response: The corresponding context has been improved (please refer to Fig. 19 and P9 L30- P10 L1) 
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Abstract 13 

Data transfer means transferring data fields between two component models or rearranging data 14 

fields among processes of the same component model.from a sender to a recevier. It is a 15 

fundamental and most frequently used operation of a coupler. Most versions of state-of-the-art 16 

couplers currently use an implementation based on the point-to-point (P2P) communication of 17 

the Message Passing Interface (MPI) (refer such an implementation as “P2P implementation” 18 

for short). In this paper, we revealrevealed the drawbacks of the P2P implementation when the 19 

parallel decompositions of the sender and the receiver are different, including low 20 

communication bandwidth due to small message size, variable and big number of MPI 21 

messagescommunication depth, as well as network contention. To overcome these drawbacks, 22 

we proposeproposed a butterfly implementation for data transfer. Although the butterfly 23 

implementation can outperform the P2P implementation in many cases, it degrades the 24 

performance in some cases becausewhen the total message size transferred by sender and the 25 

butterfly implementation is larger thanreceiver have similar parallel decompositions or the total 26 

message size transferred by the P2P implementation.number of processor cores used for 27 

running models is small. To further improvemake data transfer always keep the optimal 28 

performance, we designdesigned and implementimplemented an adaptive data transfer library 29 

mailto:ygw@tsinghua.edu.cn
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that combines the advantages of both butterfly implementation and P2P implementation. 1 

Performance evaluation shows thatAs the adaptive data transfer library significantly 2 

improvescan adaptively use the performance ofbetter implementation for data transfer, it 3 

outperforms the P2P implementation in mostmany cases, and while does not decrease the 4 

performance in any cases. Now, the adaptive data transfer library is open to the public and has 5 

been imported into a coupler version C-Coupler1 for performance improvement of data transfer. 6 

We believe that other coupler versionscouplers can also benefit from it.  7 

 8 

1 Introduction 9 

Climate System Models (CSMs) and Earth System Models (ESMs) are fundamental tools for 10 

simulating, predicting and projecting climate. A CSM or an ESM generally integrates several 11 

component models, such as an atmosphere model, a land surface model, an ocean model and a 12 

sea-ice model, into a coupled system to simulate the behaviours of of the climate system, 13 

including the interactions between components of the climate system. More and more coupled 14 

models have sprung up in the world. For example, the number of coupled model configurations 15 

in the Coupled Model Intercomparison Project (CMIP) has increased from less than 30 (used 16 

for CMIP3) to more than 50 (used for CMIP5). 17 

High-performance computing is an essential technical support for model development, 18 

especially for higher and higher resolutions of models. Modern high-performance computers 19 

integrate an increasing number of processor cores for higher and higher computation 20 

performance. Therefore, efficient parallelization, which enables a model to utilize more 21 

processor cores for acceleration, becomes a technical focus in model development; and a 22 

number of component models with efficient parallelization have sprung up. For example, the 23 

Community Ice CodE (CICE; Hunke et al., 2008, 2013) at 0.1° horizontal resolution can scale 24 

to 30,000 processor cores on the IBM Blue Gene/L (Dennis et al., 2008); the Parallel Ocean 25 

Program (POP; Kerbyson, 2005; Smith et al., 2010) at 0.1° horizontal resolution can also scale 26 

to 30,000 processor cores on the IBM Blue Gene/L and 10,000 processor cores on a Cray XT3 27 

(Dennis, 2007); the Community Atmosphere Model (CAM; Morrison et al., 2008; Neale et al., 28 

2010, 2012) with a spectral element dynamical core (CAM-SE) at 0.25° horizontal resolution 29 

can scale to 86,000 processor cores on a Cray XT5 (Dennis et al., 2012).  30 

A coupler is an important component in a coupled system. It links component models together 31 

to construct a coupled model, and controls the integration of the whole coupled model (Valcke 32 
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et al, 2012). A number of couplers now are available, e.g., the Model Coupling Toolkit (MCT; 1 

Jacob et al., 2005), the Ocean Atmosphere Sea Ice Soil coupling software (OASIS) coupler 2 

(Redler et al., 2010; Valcke, 2013; Valcke et al, 2015), the Earth System Modelling Framework 3 

(ESMF; Hill et al., 2004), the CPL6 coupler (Craig et al., 2005), the CPL7 coupler (Craig et al., 4 

2012), the Flexible Modelling System (FMS) coupler (Balaji et al., 2006), the Bespoke 5 

Framework Generator (BFG; Ford et al., 2006; Armstrong et al., 2009) and the community 6 

coupler version 1 (C-Coupler1; Liu et al., 2014).  7 

A coupler generally has much smaller overhead than the component models in acurrent coupled 8 

systemsystems. However, it is potentially a time-consuming component of ain future coupled 9 

model in futuremodels. This is because more and more component models (such as land-ice 10 

model, chemistry model and biogeochemical model) will be coupled into a coupled model, and 11 

the coupling frequency between component models will be higher and higher. Data transfer is 12 

a fundamental and most frequently used operation in a coupler. It is responsible for transferring 13 

data fields between the processes of two component models and for rearranging data fields 14 

among processes of the same component model for parallel data interpolation. 15 

A coupler may become a bottleneck for efficient parallelization of future coupled models. The 16 

most obvious reason is that the current implementation of data transfer in a state-of-the-art 17 

coupler is not efficient enough for transferring data fields between component models. For 18 

example, the data transfer from a component with a logically rectangular grid (of 1021×1442 19 

grid points) to a component with a Gaussian Reduced T799 grid (with 843,000 grid points) can 20 

only scale to about 100 processor cores when using OASIS3 (Valcke, 2013) and to about 1000 21 

processor cores when using OASIS3-MCT (Valcke et al., 2013); the data transfermay be not 22 

efficient enough. For example, due to the low efficiency of data transfer, the coupling from a 23 

component model with a horizontal grid (of 576×384 grid points) to another component model 24 

with another horizontal grid (of 3600×2400 grid points) can only scale to about 500 processor 25 

cores when using the CPL7 coupler (Craig et al., 2012). Therefore, it is highly desirable to 26 

improve the parallelizationparallel data transfer of couplers.  27 

In this study, we first propose a butterfly implementation of data transfer. Since the P2P 28 

implementation and the butterfly implementation can outperform each other in different cases 29 

(SectionSect. 5), we next develop an adaptive data transfer library that includes both 30 

implementations and can adaptively use the better one for data transfer. Performance evaluation 31 

demonstrates that such a library significantly improves the performance of data 32 
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transferoutperforms the P2P implementations in most cases and does not degrade the 1 

performance in any case. This library has been imported into C-Coupler1 with slight code 2 

modification. We believe that other coupler versionscouplers can also benefit from it. 3 

The reminderremainder of this paper is organized as follows. We briefly introduce the 4 

implementation of data transfer in existing couplers in Section 2. Details of the butterfly 5 

implementation and the adaptive data transfer library are presented in Sections 3 and 4, 6 

respectively. The performances of data transfer implementations are evaluated in Section 5. 7 

Conclusions are given in Section 6.  8 

2 Data transfer implementations in existing couplers 9 

2.1 P2P implementation 10 

Almost all state-of-the-art couplers use a similar implementation for data transfer. To achieve 11 

parallel data transfer, MCT first generates a communication router (known as the data mapping 12 

between processes) according to the parallel decompositions (the distribution of grid points 13 

among the processes) of two component modelsthe sender and the receiver, and then uses the 14 

point-to-point (P2P) communication of the Message Passing Interface (MPI) to transfer the data. 15 

A data field will be transferred from a process of the source component modelsender to a 16 

process of the target component modelreceiver, only when the two processes have common 17 

grid points. In the following context, we call this “P2P implementation” for short. 18 

Since MCT has already been imported into OASIS3-MCT, the CPL6 coupler and the CPL7 19 

coupler, these couplers also use the P2P implementation for data transfer. Although the other 20 

couplers such as ESMF, OASIS4, the FMS coupler and C-Coupler1 do not directly import MCT, 21 

they also use the P2P implementation for data transfer.  22 

2.2 Performance bottlenecks of the P2P implementation 23 

Although the P2P implementation can achieve good performance when rearranging data fields 24 

for a parallel interpolation in a component model, it is not efficient enough when transferring 25 

data between component models (Craig et al., 2012; Valcke, 2013; Valcke et al., 2013; Liu et 26 

al., 2014). To reveal why the P2P implementation is not efficient enough, we firstTo motivate 27 

this work, we first investigate the performance characteristics of the P2P implementation, and 28 

therefore derive a benchmark from a real coupled model GAMIL2-CLM3, which includes 29 

GAMIL2 (Li et al., 2013) that is an atmosphere model and CLM3 (Oleson et al., 2004; 30 
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Dickinson et al., 2006) that is a land surface model. GAMIL2 and CLM3 share the same 1 

horizontal grid of 7,680 (128×60) grid points, but have different parallel decompositions: 2 

GAMIL2 uses a regular 2-D parallel decomposition, while CLM3 uses an irregular 2-D parallel 3 

decomposition where the grid points are assigned to the processes in a round-robin fashion. 4 

In this benchmark, there is only the data transfer with the P2P implementation between two 5 

data modelsthe sender and the receiver with the same horizontal grid of GAMIL2-CLM3. The 6 

parallel decomposition of the source data modelsender is derived from CLM3, and the parallel 7 

decomposition of target data modelthe receiver is derived from GAMIL2. A high-performance 8 

computer named Tansuo100 at Tsinghua University, China is used for the performance tests. It 9 

has 700 computing nodes, each of which contains two six-core Intel Xeon X5670 CPUs and 32 10 

GB main memory. All computing nodes are connected by a high-speed InfiniBand network 11 

with peak communication bandwidth of 5 GB/s. 12 

To evaluate the parallel performance of the P2P implementation, 14 2-D coupling fields are 13 

transferred between the two data models.sender and the receiver. In each test, the two data 14 

modelssender and the receiver use the same number of processes. Since there are 12 15 

CPUprocessor cores on each computing node, the number of processes is set to be an integral 16 

multiple of 12. When the process number of processes is less than 12, the two data modelssender 17 

and the receiver are located on two different computing nodes. The two data modelssender and 18 

the receiver do not share the same computing node, so the communication of the P2P 19 

implementation must go through the InfiniBand network.  20 

Figure 1 demonstrates thethat poor performanceparallel scalability of the P2P implementation 21 

can be obtained when the parallel decompositions of the sender and receiver are different. It is 22 

well known that the communication performance heavily depends on message size. As shown 23 

in Fig. 2, the P2P communication bandwidth achieved generally increases with message size. 24 

So when the message size is small (for example, smaller than 4 KB), the communication 25 

bandwidth achieved is very low. The message size in the P2P implementation decreases with 26 

the increment of process number of processes of models (Fig. 3), indicating that the 27 

communication bandwidth becomes lower with the increment of process number. of processes. 28 

The performance of data transfer also heavily depends on the MPI message number.another 29 

term of communication depth, which is defined as the number of the communications that a 30 

process is associated with. The communication depth is determined by the parallel 31 

decompositions of the sender and the receiver. In the P2P implementation, if one process of the 32 
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sender/receiver has common grid points with N processes of the receiver/sender, the 1 

communication depth of this process is N. As shown in Fig. 4, the message number variation 2 

of average communication depth in the P2P implementation increases with increment of 3 

process is consistent with the variation of the execution time of the P2P implementation in Fig. 4 

1: both the average communication depth and the execution time of the P2P implementation 5 

increase with the number of cores from 6 to 48, and go down with the number. Here, we may 6 

conclude that the decrease of message size and the increase of message of cores from 96 to 192. 7 

Lower execution time of the P2P implementation will be obtained if more cores are used (the 8 

maximum number are primaryof cores in both Fig. 1 and Fig. 4 is limited to 192 because 9 

GAMIL2-CLM3 will not be further accelerated when using more cores) since the average 10 

communication depth will further go down. To further reveal possible reasons for the poor 11 

performance of the P2P implementation when increasing the process number. However, the 12 

parallel scalability, we evaluate the ideal performance shownand actual performance in Fig. 5. 13 

The ideal performance is much better than the actual performance. The, and the ratio between 14 

the ideal performance and the actual performance significantly increases with the increment of 15 

processorthe number of processes. The significant gap between the ideal performance and the 16 

actual performance is due to network contention. For example, when multiple P2P 17 

communications share the same sourcesender process or targetreceiver process (Fig. 6),, they 18 

must wait in an order. 19 

3 Butterfly implementation for better performance of data transfer 20 

The drawbacks of the P2P implementation when the sender and the receiver use different 21 

parallel decompositions can be concludedidentified as low communication bandwidth due to 22 

small message size, variable and big number of MPI messagescommunication depth, as well as 23 

network contention. To overcome these drawbacks, a prospective solution is to organize the 24 

communication for data transfer of data using a better structure, so that we investigatealgorithm, 25 

e.g., the butterfly structurealgorithm (Fig. 76), which has already been usedstudied in the field 26 

of computercomputing sciences (Chong et al., 1994; Foster, 1995; Heckbert et al., 1995; 27 

Hemmert et al., 2005; Kim et al., 2007; Jan et al., 2013; Petagon et al, 2016). For example, inIn 28 

hardware aspect, the traditional butterfly structurealgorithm and its transformation have been 29 

used to design networks (Chong et al., 1994; Kim et al., 2007); in software aspect, the butterfly 30 

structurealgorithm has been used to improve the parallel algorithms with all-to-all 31 
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communications (Foster, 1995), e.g., Fast Fourier Transform (FFT; Heckbert et al., 1995; 1 

Hemmert et al., 2005), matrix transposition (Petagon et al, 2016) and sorting (Jan et al., 2013).  2 

Unfortunately, the improved all-to-all communication with theclassical butterfly 3 

structurealgorithm cannot be used as is to improve data transfer, because it requires that one 4 

process must communicatecommunicates with every other process, that the communication 5 

load among processes is balanced and that the number of processes must be a power of 2, while 6 

the. In practice, data transfer for model coupling has different charateristics, i.e., one process 7 

needs to communicate with a part of other processes (Fig. 6),, the communication load among 8 

processes is always unbalanced (Fig. 3) and the process number of processes cannot be 9 

restricted to a power of 2. Therefore, to benefit from the butterfly structure, we should 10 

designpropose here a new implementation of data transfer, which is called the involving an 11 

additional butterfly implementation hereafter.  12 

The butterfly implementation uses a butterfly structurekernel to transfer data from the sender 13 

with the source parallel decomposition to the receiver with the target parallel decomposition. 14 

We call the communication following the butterfly structure “the butterfly kernel”. As the 15 

process number of processes of the butterfly kernel must be a power of 2, while the process 16 

number of processes of the sender or the receiver needare not be a power of 2, the butterfly 17 

implementation (see Fig. 8) has a process mapping from the sender onto the butterfly kernel 18 

and a process mapping from the butterfly kernel onto the receiver, andnecessarily, the butterfly 19 

kernel has its own source parallel decomposition and target parallel decomposition, which are 20 

determined by theand process mappings. are needed from the sender onto the butterfly kernel 21 

and from the butterfly kernel onto the receiver (see Fig. 7). Next, we will present the butterfly 22 

kernel and the process mappings, respectively.  23 

3.1 Butterfly kernel 24 

The first question for the butterfly kernel is how to decide its process number. of processes. 25 

Any process of the sender or the receiver can be used as a process offor the butterfly kernel. 26 

Given that the total number of unique processes of the sender and receiver is NT, the process 27 

number of processes of the butterfly kernel (NB) can be any power of 2, which is no larger than 28 

NT. We propose to select the maximum number in order for maximum utilization of resources. 29 

We prefer to pick out unique processes first from the sender, and then from the receiver if the 30 

sender does not have enough processes.  31 
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The butterfly kernel is responsible for rearranging the distribution of data among the processes 1 

from the source parallel decomposition to the target parallel decomposition. Given the process 2 

number of processes N=2n, there are n stages in the butterfly kernel. In a stage, all processes 3 

are divided into a number of pairs and the two processes of a pair uses MPI P2P communication 4 

to exchange data. Given a process P in the butterfly kernel, afterAfter each stage, the number 5 

of thebutterfly kernel processes that may have the data of P that will finally belong to any one 6 

process on the target parallel decomposition will become a half. Figure 76 is an example for 7 

further illustration, where Di
j means the data is originally in process Pi according to the source 8 

parallel decomposition and is finally in process Pj according to the target parallel decomposition. 9 

Before the first stage, all processes (P0~P7) may have the data of P0 on the target parallel 10 

decomposition. After the first stage, only four processes (P0, P2, P4 and P6) may have that data; 11 

and after the second stage, only two processes (P0 and P4) may have it.  12 

To reveal the advantages and disadvantages of the two implementations, we measure the 13 

characteristics of the two implementations based on the benchmark introduced in Section 2.2. 14 

The results show that the total message size transferred by the butterfly implantation is larger 15 

than that by the P2P implementation (Fig. 98), which is the major disadvantage of the butterfly 16 

implementation. Meanwhile, comparing with the P2P implementation, the butterfly 17 

implementation hascan have the following advantages: 18 

1)  bigger message size for better communication bandwidth (Fig. 109);  19 

2)  balanced number of MPI messagesand smaller communication depth among processes (Fig. 20 

1110);  21 

3) ordered communications among processes and fewer communications operated concurrently 22 

(Fig. 1110), which can dramatically reduce network contention. 23 

3.2 Process mapping 24 

In this subsection, we will introduce the process mappings from the sender to the butterfly 25 

kernel and from the butterfly kernel to the receiver. To minimize the overhead of process 26 

mapping from the butterfly kernel to the receiver, we map one or multiple processes of the 27 

butterfly kernel onto a process of the receiver if the butterfly kernel has more processes than 28 

the receiver; otherwise, we map a process of the butterfly kernel onto one or multiple processes 29 

of the receiver. In other words, there is no multiple-to-multiple process mapping between the 30 
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butterfly kernel and the receiver. Similarly, there is no multiple-to-multiple process mapping 1 

between the sender and the butterfly kernel.  2 

Processes of the sender or the receiver may be unbalanced in terms of the size of the data 3 

transferred, which may result in unbalanced communications among processes of the butterfly 4 

kernel. As mentioned in Section 3.1, at each stage of the butterfly kernel, all processes are 5 

divided into a number of pairs, each of which is involved in P2P communications. To improve 6 

the balance of communications among the processes in the butterfly kernel, one solution is to 7 

try to make the process pairs at each stage more balanced in terms of data size of P2P 8 

communications, so we propose to reorder the processes of the sender or the receiver according 9 

to data size. At the first stage, each time we pick out the process with the largest data size and 10 

the process with the smallest data size from the remaining processes that have not been paired, 11 

to generate a process group. For the next stage, the outputs of two process groups from the 12 

previous stage are paired into a bigger process groups in a similar way. After finishing the 13 

iterative pairing throughout all stages, all processes of the sender or the receiver are reordered.  14 

The iterative pairing also requires the number of processes to be a power of 2. Given that the 15 

process number of processes of the sender (or receiver) is NC and the process number of 16 

processes of the butterfly kernel is NB, we first pad empty processes (whose data size is zero) 17 

before the iterative pairing to make the process number of processes of the sender (or receiver) 18 

be a power of 2 (donated NP), which is no smaller than NB. Therefore, the reordered NP 19 

processes after the iterative pairing can be divided into NB groups, each of which contains NP/NB 20 

processes with consecutive reordered indexes and maps onto a unique process of the butterfly 21 

kernel.  22 

Figure 1211 shows an example of the process mapping, where the sender has five processes 23 

(S0-S4 in Fig. 12a11a), the receiver has 10 processes (R0-R9 in Fig. 12b11b), and the butterfly 24 

kernel uses eight processes (B0-B7 in Fig. 12c11c). At the first, empty processes are padded to 25 

the sender (S5-S7 in Fig. 12a11a) and the receiver (R10-R15 in Fig. 12b11b). Next, the iterative 26 

pairing is conducted for the sender and the receiver, respectively. The iterative pairing has three 27 

stages for the sender. At the first stage, the eight processes of the sender are divided into four 28 

groups {S1,S7}, {S0,S6}, {S2,S5} and {S4,S3} (Fig. 12a11a), according to the data size 29 

corresponding to each process. These four process groups are divided into two bigger groups 30 

({{S4,S3},{S2,S5}} and {{S1,S7}, {S0,S6}} at the second stage (Fig. 12a11a). Finally, one process 31 

group {{{S4,S3},{S2,S5}}, {{S1,S7}, {S0,S6}}} is obtained at the third stage (Fig. 12a11a), and 32 
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the eight processes of the sender are reordered as S4, S3, S2, S5, S1, S7, S0 and S6, each one of 1 

which isbeing mapped onto one process of the butterfly kernel (Fig. 12c11c). Similarly, the 2 

iterative pairing has four stages for the receiver, and the 16 processes of the receiver are 3 

reordered as R9, R15, R7, R12, R4, R8, R3, R10, R1, R14, R5, R13, R0, R6, R2 and R11 finally, each 4 

twowith pairs of which arethese being mapped onto one process of the butterfly kernel (Fig. 5 

12c11c). 6 

4 Adaptive data transfer library 7 

Now, we have two kinds of implementations (the P2P implementation and the butterfly 8 

implementation) for data transfer. Although the butterfly implementation can effectively 9 

improve the performance of data transfer in many cases (examples are given in Section 5), it 10 

has some drawbacks: 1) it generally has a larger total message size of communications than the 11 

P2P implementation; 2) its stage number of stages  is log2N (where N is the number of processes 12 

for the butterfly kernel) (Foster, 1995), which may be bigger than the average number of MPI 13 

messages per processcommunication depth in the P2P implementation in some cases (for 14 

example, the data rearrangement forwhen the sender and the receiver use the similar parallel 15 

interpolationdecompositions). Therefore, it is possible that the P2P implementation 16 

outperforms the butterfly implementation in some cases (examples are given in Section 5).. To 17 

achieve optimal performance for data transfer, we propose an adaptive data transfer library that 18 

can take the advantages of the two implementations in all cases.   19 

As introduced in Section 3.1, the butterfly implementation is divided into multiple stages. 20 

Actually, the data transfer in one stage can be viewed as a P2P implementation with only one 21 

MPI message per process. Inspired by this fact, we try to design an adaptive approach that can 22 

combine the butterfly and P2P implementations, where some stages in the butterfly 23 

implementation are skipped with theand replaced by P2P implementationscommunication of 24 

more MPI messages per process. IfWhen all stages of the butterfly implementation are skipped, 25 

the adaptive data transfer library will switchcompletely switches to the original P2P 26 

implementation. That is to say, the adaptive data transfer can adaptively choose the optimal 27 

implementation from the P2P implementation and the butterfly implementation. Figure 1312 28 

shows an example of the adaptive data transfer library with eight processes, where Stage 2 of 29 

the butterfly implementation is skipped with theand replaced by P2P 30 

implementationcommunication of three MPI messages per process. 31 
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The most significant challenge toof such an adaptive approach is how to determine which 1 

stage(s) of the butterfly implementation should be skipped. The first attempt was to design a 2 

cost model that can accurately predict the performance of data transfer in various 3 

implementations. We eventually gave up this becauseapproach as it was almost impossible to 4 

accurately predict the performance of the communications on a high-performance computer, 5 

especially when a lot of users share the computer to run various applications. Performance 6 

profiling which means directly measuring the performance of data transfer is more practical to 7 

determine an appropriate implementation, because the simulation of Earthearth system 8 

modelling always takes a long time to run. Figure 1413 shows our flowchart of how the adaptive 9 

data transfer library determines an appropriate implementation. It consists of an initialization 10 

segment and a profiling segment. The initialization segment generates the process mappings 11 

and a candidate implementation that is a butterfly implementation with no skipped stages. The 12 

profiling segment iterates through each stage of the butterfly implementation to determine 13 

whether the current stage should be skipped or kept. In an iteration, the profiling segment first 14 

generates a temporary implementation based on the candidate implementation where the current 15 

stage is skipped, and then runs the temporary implementation to get the time the data transfer 16 

takes. When the temporary implementation is more efficient than the candidate implementation, 17 

the current stage is skipped and the temporary implementation replaces the candidate 18 

implementation. When the profiling segment finishes, the appropriate implementation is set to 19 

be the candidate implementation. To reduce the overhead introduced by the adaptive data 20 

transfer library, the profiling segment truly transfers the data for model coupling. In other words, 21 

before obtaining an appropriateoptimal implementation, the data is transferred by the profiling 22 

segment.  23 

5 Performance evaluation 24 

In this section, we empirically evaluate the adaptive data transfer library, through comparing it 25 

to the P2P implementation and the butterfly implementation and the P2P implementation. Both 26 

toy models and realistic models (GAMIL2-CLM3 and CESM) are used for the performance 27 

evaluation. GAMIL2-CLM3 has been introduced in Section 2.2. CESM (Hurrell et al., 2013) is 28 

a state-of-the-art ESM developed by the National Center for Atmospheric Research (NCAR). 29 

All the experiments are run on the high performance computer Tansuo100.  30 
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Next, we will evaluate the overhead of initialization, the performance inof transferring data 1 

transferfields between two different component models and the performance inof rearranging 2 

data rearrangementfields intra a component model for parallel interpolation. 3 

5.1 Overhead of initialization 4 

We first evaluate the initialization overhead of data transfer implementations. As shown in Fig. 5 

1514, the initialization overhead of each implementation increases with the increment of core 6 

number. The initialization overhead of the butterfly implementation is a little higher than that 7 

of the P2P implementation, while the initialization overhead of the adaptive data transfer library 8 

is 2-3 folds higher than that of the P2P implementation, because the adaptive data transfer 9 

library uses extra time on the performance profiling (please refer tosee Section 4). Considering 10 

that one data transfer instance should only be initialized at the beginning and executed many 11 

times in a coupled model, we can conclude that the initialization overhead of the adaptive data 12 

transfer library is reasonable, especially when the simulation is executed for a very long time.  13 

5.2 Performance of data transfer between toy models 14 

As mentioned in Section 3, the butterfly implementation has different characterizations 15 

compared to the P2P implementation. Many The factors that can impact the performance of a 16 

data transfer implementation including MPI message numbergenerally include the 17 

communication depth, the size of the data to be transferred (also knownreferred to as the number 18 

of fields in this evaluation) and the number of cores used. In this subsection, we evaluate the 19 

impact of each factor on the performance of data transfer affected by each of these factors. for 20 

different implementations. We first build two toy models that both use the same logically 21 

rectangular grid (of 192×96480 grid points).. Coupling fields are transferred between the two 22 

toy models. In eachFor any test, the two toy models use the same number of cores, and each 23 

process has the same MPI message number.. Next, we evaluate the performance of data transfer 24 

through varying one factor andwhile fixing the other two factors.  25 

In the first experiment, we fix the number of cores to be 1921024 and the number of coupling 26 

field numberfields to be 10, andwhile only vary the communication depth in the P2P 27 

implementation. In each test, all processes of the sender have the same communication depth. 28 

As the communication depth is determined by the parallel decompositions of the sender and the 29 

receiver, we design an algorithm (Algorithm 1) that can generate the parallel decompositions 30 
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of the two toy models according to the average communication depth of the sender in the P2P 1 

implementation. MPI message number per process. Figure 1615 shows the execution time of 2 

one data transfer with different implementations when varyingincreasing the MPI message 3 

numbercommunication depth per sender process in the P2P implementation from 1 to 9690. 4 

The P2P implementation can outperform the butterfly implementation when the MPI message 5 

numbercommunication depth is small (say, smaller than 12 in Fig. 1615), while the butterfly 6 

implementation can outperform the P2P implementation when the MPI message 7 

numbercommunication depth is big (say, bigger than 12 in Fig. 1615). The adaptive data 8 

transfer library has the best performance. Moreovercan adaptively choose the optimal 9 

implementation from the P2P implementation and the butterfly implementation, and moreover, 10 

it improves the performance based on the butterfly implementation when the MPI message 11 

numbercommunication depth is big, because some butterfly stages in the adaptive data transfer 12 

library have beenof the butterfly implementation are skipped with the P2P implementation.. 13 

When the MPI message number per process is 96communication depth is 90, the adaptive data 14 

transfer library can achieve a 13.919.2-fold performance speedup compared to the P2P 15 

implementation. 16 

In the second experiment, we fix the number of cores and MPI message number the 17 

communication depth per sender process in the P2P implementation, and vary the number of 18 

coupling field numberfields transferred. Figure 1716 shows the execution time of one data 19 

transfer with different implementations in this experiment. The results show that the execution 20 

time of each implementation increases with the increment of data size. When MPI message 21 

numberthe communication depth per sender process in the P2P implementation is small (Figs. 22 

17a16a and 17b16b), the performance of the butterfly implementation is poorer than that of the 23 

P2P implementation, especially when the number of 2-D coupling fields gets bigger. The 24 

adaptive data transfer library achieves similar performance asWhen the communication depth 25 

per sender process in the P2P implementation, because it switches to the P2P implementation. 26 

When the MPI message number per process  is big (Figs. 17c16c and 17d), both16d), the 27 

butterfly implementation and adaptive data transfer library significantly 28 

outperformoutperforms the P2P implementation, however, the advantage of the butterfly 29 

implementation decreases with the increment of the number of coupling fields. The results also 30 

demonstrate that the adaptive data transfer library can adaptively choose the optimal 31 

implementation from the P2P implementation and the butterfly implementation, and can further 32 
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improve the adaptive data transfer library achieves better performance thanbased on the 1 

butterfly implementation.  2 

In the third experiment, we fix MPI message numberthe communication depth per sender 3 

process in the P2P implementation to be 24 and the number of coupling field numberfields 4 

transferred to be 10, and vary the number of cores used. Figure 1817 shows the execution time 5 

of one data transfer with different implementations when varying the number of cores. The 6 

results show that bothP2P implementation outperforms the butterfly implementation and 7 

adaptive data transfer library achieve better parallel scalability, when small number of cores are 8 

used (say, smaller than the P2P implementation. The execution time of the P2P implementation 9 

slightly increases with the increment of the number of cores used. However, the execution times 10 

of the butterfly implementation and adaptive data transfer library slightly decrease with the 11 

increment of the number of the cores used. The 256 in Fig. 17); while the butterfly 12 

implementation outperforms the P2P implementation, while when large number of cores are 13 

used (say, larger than 256 in Fig.17). Similar to above two experiments, the adaptive data 14 

transfer library achieves better performance thancan adaptively choose the optimal 15 

implementation from the P2P implementation and the butterfly implementation. 16 

The resolutionresolutions of models becomesbecome higher and higher these days. How about 17 

the performance of the data transfer implementations when model resolution 18 

becomesresolutions become higher?  Higher model resolution meansresolutions mean that a 19 

model will use more processor cores for accelerating a simulation, while the average number 20 

of grid points per processor core can remain constant. Considering that the numbers of grid 21 

points are always balanced among the processes of a model, we make each process (which runs 22 

on a unique processor core) of the toy models evenly have around 96 grid points in this 23 

evaluation, while enabling processes to have different message numberscommunication depth 24 

and different message sizes. (the average communication depth of the sender in P2P 25 

implementation is 34). As shown in Fig. 1918, although the execution times of all data transfer 26 

implementations increase withwhen increasing the incrementnumber of processor core 27 

numbercores (from 64 to 1024), both the butterfly implementation and significantly 28 

outperforms the P2P implementation. So the adaptive data transfer library significantly 29 

outperform the P2P implementation, and the adaptive data transfer library achieves the best 30 

performance. These results indicate that our proposed implementations can significantly 31 

improveadaptively chooses the performance of data transfer for higherbutterfly implementation, 32 
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and further slightly outperforms the butterfly implementation when each model resolutionuses 1 

more than 512 cores because some butterfly stages are skipped.  2 

5.3 Performance of data transfer between realistic models 3 

In this subsection, we evaluate the performance using two realistic models: GAMIL2-CLM3 4 

(horizontal resolution of 2.8°×2.8°) and CESM (resolution of 1.9x2.5_gx1v6).  5 

For CESM, we use the data transfer between the coupler CPL7 (Craig et al., 2012) and the land 6 

surface model CLM4 (Oleson et al., 2004), where 32 2-D coupling fields on the CLM4 7 

horizontal grid (the grid size is 144×96=13824) are transferred. Figure 2019 shows the 8 

performance of one data transfer of different implementations when increasing the process 9 

number of processes of both CPL7 and CLM4 from 6 to 192. When the process number of 10 

processes is small (say, smaller than 24 in Fig. 2019), the butterfly implementation is much 11 

poorer than the P2P implementation, and. In this case, the adaptive data transfer library achieves 12 

similar performance aschooses the P2P implementation becasue it switches toas the P2Poptimal 13 

implementation. However, when the process number of processes gets bigger (say, larger than 14 

24 in Fig. 2019), the adaptive data transfer library dramaticallybutterfly implementation 15 

outperforms the P2P implementation with more speedup and also . In this case, the adaptive 16 

data transfer library based on the butterfly implementation skippes some stages, so it 17 

outperforms the butterfly implementation. implmentation. Figure 19 also shows that the 18 

butterfly implementaion and the adaptive transfer library seem to converge when increasing the 19 

number of cores per model. When each componentmodel uses 192 cores, the adaptive data 20 

transfer library is 4.01 times faster than the P2P implementation.  21 

For GAMIL2-CLM3, we use the data transfer from CLM3 to GAMIL2 where 14 2-D coupling 22 

fields on the GAMIL2 horizontal grid (whose grid size is 128×60=7680) are transferred. Figure 23 

2120 shows the execution time of one data transfer of each implementation when increasing 24 

the process number of processes of both GAMIL2 and CLM3 from 6 to 192. The results in Fig. 25 

2120 confirm that the adaptive data transfer library can constantly showadaptively choose the 26 

best performanceoptimal implementation from the P2P implmentation and the butterfly 27 

implementation. Compared to the P2P implementation, the adaptive data transfer library 28 

achieves an 11.68-fold performance speedup when the process number of processes is 96, but 29 

achieves a much lower speedup (only 3.48-fold) when the process number of processes is 192. 30 
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This is because the average MPI message numbercommunication depth per process in the P2P 1 

implementation reduces from 32 to 18 when the number of process increases from 96 to 192.  2 

5.4 Performance of data rearrangement for interpolation 3 

Besides data transfer between different component models, there is another kind of data transfer 4 

in model coupling that rearranges data inside a model for parallel interpolation of fields between 5 

different grids. Here, we use the data rearrangement for the parallel interpolation from the 6 

atmosphere grid (whose grid size is 144×96=13824) to the ocean grid (whose grid size is 7 

320×384=122880) in the coupled model CESM for further evaluation. As mentioned 8 

aboveshown on Fig. 21, the P2P implentation is sufficient for data rearrangement. 9 

However,implementation significantly outperforms the butterfly implementation is much 10 

poorer than the P2P implementation (.Fig. 22). This is because the MPI message number is very 11 

small (forcorresponding parallel decompositions for data rearrangement are always similar 12 

while similar parallel decompositions generally introduce small communication depth. For 13 

example, average MPI message number per processcommunication depth in the P2P 14 

implementation corresponding to Fig. 21 is only 6.49 when eachthe model uses 96 cores) for 15 

data rearrangement. On the other hand. In this case, the adaptive P2P implementation is chosen 16 

as the optimal implementation of the data transfer library, so the data transfer library achieves 17 

almost the same performance as the P2P implementation, because it switcheslibrary does not 18 

provide real benefit compared to the P2P implementation. Therefore, the adaptive data transfer 19 

library can always show the best performance. 20 

5.5 Performance impovementimprovement for a coupled model 21 

With the performance improvement of data transfer, we expect that the adaptive data transfer 22 

library will improve the performance of coupled models. For this evaluation, we first 23 

importimported the adaptive data transfer library into C-Coupler1 and then useused the coupled 24 

model GAMIL2-CLM3 that uses C-Coupler1 for coupling to measure performance results. As 25 

shown in Fig. 2322, the adaptive data transfer library achieves higher performance 26 

improvement (when the P2P implementation is used as the baseline) for GAMIL2-CLM3 when 27 

using more processor cores. When each component model uses 128 processor cores, the 28 

butterfly implementation achieves ~4.6% performance improvement, and the adaptive data 29 

transfer library achieves ~7% performance improvement. This6.9% performance improvement 30 

would not be low because the model coupling only takes a very small proportion of execution 31 
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time in. So the simple coupled model GAMIL2-CLM3 and the parallel scalabilitydata transfer 1 

library can improve the performance of data transfer, and then improve the performance of the 2 

twowhole coupled models GAMIL2 and CLM3 is not good. . 3 

 4 

6 Conclusions 5 

Data transfer is thea fundamental and most frequently used operation in a coupler. This paper 6 

demonstratedshowed that the current P2P implementation of data transfer currently used in 7 

most state-of-the-art couplers for data transfer is inefficient for transferring data between two 8 

component models. To improvewhen the parallel decompositions of the sender and the receiver 9 

are different, and further reaveled the corresponding performance of data transferbottlenecks. 10 

To overcome these bottlenecks, we proposed a butterfly implementation. However, compared 11 

to the P2P implementation, the butterfly implementation has both advantages and disadvantages. 12 

The evaluation results showed that the the butterfly implementation did not always that can 13 

outperform the P2P implementation. To achieve better parallel implemention in many cases, 14 

however, degrades the performance in some cases, for example, when a small number of cores 15 

are used to run models or the parallel decompositions of data transfer, we builtthe sender and 16 

receiver are similar. We therefore further designed and implemented an adaptive data transfer 17 

library, which combines the advantages of both butterfly implementation and P2P 18 

implementation. The evaluation results demonstrated that can not only adaptively choose an 19 

optimal implementation from the P2P implementation and the butterfly implemtation, but also 20 

further improve the performance based on the butterfly implementation through skipping some 21 

butterfly stages. Compared to the P2P implementation, the adaptive data transfer library can 22 

significantly improve the performance of data transfer so as to improve a coupled modelwhen 23 

the parallel decompositions of the sender and the receiver are different.  24 

The initialization overhead for the adaptive data transfer library could become expensive when 25 

using a large number of processor cores. In the future version, the adaptive data transfer will 26 

allow users to record the results of performance profiling offline to save the time used for 27 

performance profiling in next runs of the same coupled model. 28 

Code availability 29 

The source code of the adaptive data transfer library version 1.0 is available at 30 

https://github.com/zhang-cheng09/Data_transfer_lib. 31 

https://github.com/zhang-cheng09/Data_transfer_lib


 18 

Acknowledgements 1 

This work is supported in part by the Natural Science Foundation of China (no. 41275098), the 2 

National Grand Fundamental Research 973 Program of China (no. 2013CB956603) and the 3 

Tsinghua University Initiative Scientific Research Program (no. 20131089356). 4 

5 



 19 

References 1 

Armstrong, C. W., Ford, R. W., and Riley, G. D.: Coupling integrated Earth System Model 2 

components with BFG2, Concurrency and Computation: Practice and Experience, 3 

2009;21;767–791, doi:10.1002/cpe.1348, 2009. 4 

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Malyshev, S., and Stouffer, R. J.: 5 

The Exchange Grid: a mechanism for data exchange between Earth system components on 6 

independent grids, In Parallel Computational Fluid Dynamics 2005 Theory and Applications, 7 

2006, 179-186, doi: 10.1016/B978-044452206-1/50021-5, 2006. 8 

Chong, F. T., and Brewer, E. A.: Packaging and multiplexing of hierarchical scalable expanders, 9 

Parallel Computer Routing and Communication, Springer Berlin Heidelberg, 1994:200-214. 10 

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for Earth system modelling 11 

developed for CCSM4 and CESM1, Int. J. High Perform. C., 26, 31-42, 12 

doi:10.1177/1094342011428141, 2012. 13 

Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson, J., Ong, E., Ding, C., and He, Y.: 14 

CPL6: the New Extensible, High Performance Parallel Coupler for the Community Climate 15 

System Model, Int. J. High Perform. C., 19, 309–327, 2005. 16 

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, In IEEE 17 

International Parallel & Distributed Processing Symposium, Long Beach, CA, 2007. 18 

Dennis, J. M. and Tufo, H. M.: Scaling climate simulation applications on the IBM Blue Gene/L 19 

system, IBM J. Res. Dev., 52, 117-126, DOI:10.1147/rd.521.0117, 2008. 20 

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., 21 

Taylor, M. A., and Worley, P. H.: CAM-SE: a scalable spectral element dynamical core for the 22 

Community Atmosphere Model, Int. J. High Perform. C., 26, 74-89, 23 

doi:10.1177/1094342011428142, 2012. 24 

Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M., Yang, 25 

Z.-L., and Zeng X.: The Community Land surface model and its climate statistics as a 26 

component of the Community Climate System Model, Journal of Climate, 19(11), 2302–2324, 27 

2006. 28 



 20 

Ford, R. W., Riley, G. D., Bane, M. K., Armstrong, C. W., and Freeman, T. L.: GCF: a general 1 

coupling framework, Concurrency and Computation: Practice and Experience, 18(2), 163–181, 2 

2006. 3 

Foster I.: Designing and building parallel programs: concepts and tools for parallel software 4 

engineering, Addison-Wesley, 1995. 5 

Heckbert P.: Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm, Computer 6 

Graphics, 2: 15-463, 1995. 7 

Hemmert, K. S., and K. D. Underwood.: An analysis of the double-precision floating-point FFT 8 

on FPGAs. Field-Programmable Custom Computing Machines, 2005. FCCM 2005. 13th 9 

Annual IEEE Symposium on IEEE, 2005:171-180. 10 

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.: The Architecture of the Earth 11 

System Modelling Framework, Computing in Science & Engineering, 6(1), 18–28, 2004. 12 

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-13 

F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., 14 

Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., 15 

Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: a framework for 16 

collaborative research, Bulletin of the American Meteorological Society, 94(9), 1339–1360, 17 

2013. 18 

Hunke, E. C. and Lipscomb W. H.: CICE: the Los Alamos Sea Ice Model Documentation and 19 

Software User’s Manual 4.0, Technical Report LA-CC-06-012, Los Alamos National 20 

Laboratory, T-3 Fluid Dynamics Group, 2008. 21 

Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: the Los 22 

Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.0, LA-CC-06-23 

012, Los Alamos National Laboratory, Los Alamos NM, 87545, 115, 2013. 24 

Jacob, R., Larson, J., and Ong, E.: M × N Communication and Parallel Interpolation in 25 

Community Climate System Model version 3 using the Model Coupling Toolkit, International 26 

Journal of High Performance Computing Applications, 19(3), 293–307, 2005. 27 

Jan, B., Montrucchio, B., Ragusa, C., Khan, F. G., and Khan, O.: Parallel butterfly sorting 28 

algorithm on gpu, Acta Press, 2013. 29 



 21 

Kerbyson, D. J., and Jones, P. W.: A performance model of the parallel ocean program, 1 

International Journal of High Performance Computing Applications, 19(3), 261-276, 2 

doi:10.1177/1094342005056114, 2005. 3 

Kim J., Dally W. J., and Abts D.: Flattened butterfly: A cost-efficient topology for high-radix 4 

networks, ISCA, 2007, 35(2):126-137. 5 

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W., Wang, Y., Huang, W., Shi, X., 6 

Pu, Y., G. and Yang.: Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 7 

(GAMIL2), Advances in Atmospheric Sciences, 30, 855–867, doi:10.1007/s00376-013-2157-8 

5, 2013. 9 

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji, Y., and Wang, L.: C-Coupler1: a 10 

Chinese community coupler for Earth system modeling, Geoscientific Model Development, 11 

7(5), 2281-2302, doi:10.5194/gmd-7-2281-2014, 2014. 12 

Morrison, H., and A. Gettelman: A new two-moment bulk stratiform cloud microphysics 13 

scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and 14 

numerical tests, Journal of Climate, 21(15), 3642–3659, doi:10.1175/2008JCLI2105.1, 2008. 15 

Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, 16 

D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W. D., Zhang, M., and Lin, S.: 17 

Description of the NCAR Community Atmosphere Model (CAM 4.0), National Center for 18 

Atmospheric Research Ncar Koha Opencat, TN-485+STR, 222p., 2010. 19 

Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, 20 

A. J., Garcia, R., Kinnison, D., Lamarque, J. F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., 21 

Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, 22 

S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community 23 

Atmosphere Model (CAM 5.0), National Center for Atmospheric Research Ncar Koha 24 

Opencat,TN-486+STR, 289p., 2012 25 

Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., 26 

Houser, P., Levis, S., Niu, G. Y., Thornton, P., Vertenstein, M., Yang, Z. L., and Zeng, X.: 27 

Technical Description of the Community Land Surface Model (CLM), National Center for 28 

Atmospheric Research Ncar Koha Opencat, TN-461+STR, 186p., 2004. 29 



 22 

Petagon, R., and Werapun, J.: Embedding the optimal all-to-all personalized exchange on 1 

multistage interconnection networks + + mathContainer Loading Mathjax, Journal of Parallel 2 

& Distributed Computing 88(2016):16-30. 3 

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4–a coupling software for next generation Earth 4 

System Modelling, Geoscientific Model Development, 3(1), 87–104, doi:10.5194/gmd-3-87-5 

2010, 2010. 6 

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz. J., Eden, 7 

C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., 8 

Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Parallel Ocean 9 

Program (POP) reference manual ocean component of the Community Climate System Model 10 

(CCSM) and Community Earth System Model (CESM), Los Alamos National Laboratory, 11 

LAUR-10-01853, available at 12 

http://www.cesm.ucar.edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf (last access: 15 13 

October 2015), 141 p., 2010. 14 

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J., 15 

O’Kuinghttons, R., Riley, G. D., and Vertenstein, M.: Coupling technologies for Earth System 16 

Modelling, Geoscientific Model Development, 5(6), 1589–1596, doi:10.5194/gmd-5-1589-17 

2012, 2012. 18 

Valcke, S.: The OASIS3 coupler: a European climate modelling community software, 19 

Geoscientific Model Development, 6(2), 373–388, doi:10.5194/gmd-6-373-2013, 2013. 20 

Valcke, S., Craig, T., and Coquart, L.: The OASIS3-MCT parallel coupler, in: The Second 21 

Workshop on Coupling Technologies for Earth System Models (CW2013), available at: 22 

https://wiki.cc.gatech.edu/CW2013/images/a/a0/OASIS_MCT_abstract.pdf (last access: 15 23 

October 2015), 2013. 24 

Valcke, S., Craig, T. and Coquart, L.: OASIS3-MCT User Guide, OASIS3-MCT_3.0, 25 

Technical Report TR/CMGC/15/38, Cerfacs, France, 2015 26 

  27 



 23 

Algorithm 1. Generating the parallel decompositions of the sender and the receiver according to an average 

communication depth of the sender in the P2P implementation.  

Input Number of processes of the sender: M 

Number of processes of the receiver: N 

Number of points in the grid: Grid_pnts 

Average communication depth per process of the sender in the P2P implementation: 

Avg_send_depth, Avg_send_depth ≤ N 

The flag that specifies whether the communication depths among processes are the same: 

Is_balanced 

Output Parallel decomposition of the sender 

Parallel decomposition of the receiver 

1 Determine the parallel decomposition of the sender 

Considering that the numbers of grid points are always balanced among the processes of a model, 

assign around Grid_pnts/M grid points to each process of the sender.  

 

2 Determine the communication depth of each process of the sender 

2.1     If the flag Is_balanced is set to true, set the communication depth of each process of the sender 

to be Avg_send_depth; 

2.2 Otherwise, randomly determine the communication depth of each process of the sender 

2.2.1         Initialize the communication depth of each process of the sender to be 1 

2.2.2         Randomly select a process of the sender whose communication depth does not exceed N and 

Grid_pnts/M, and then increase its communication depth by 1, until the average 

communication depth of all processes of the sender reaches Avg_send_depth.  

 

3 Determine the grid points of each communication 

For each process of the sender, assign the corresponding grid points to all communications of 

this process (a grid point belongs to only one communication) 

3.1 If the flag Is_balanced is set to true, assign the grid points to all communications evenly.  

3.2         Otherwise, assign the grid points to each communication randomly  

3.2.1             Assign one grid point to each communication 

3.2.2             For each of remaining grid points, randomly select a communication for it 

  

4 Determine the parallel decomposition of the receiver through assigning the grid points in each 

communication to a process of the receiver 

For each process of the sender, assign the grid points in each communication of it to a distinct 

receiver process: to make the numbers of grid points balance among the processes of the receiver 

in the final parallel decomposition, a communication with bigger number of grid points will be 

assigned to a receiver process with smaller total number of grid points that have been assigned 

to it. 

1 
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 1 

Figure 1. Average execution time of the P2P implementation when transferring 14 2-D fields 2 

from CLM3 to GAMIL2. In each test, the atmosphere model GAMIL2 and the land surface 3 

model CLM3 use the same number of cores; they do not share the same computing nodenodes. 4 

The horizontal grid of the 14 2-D fields contains 7680 (128×60) grid points. 5 

6 
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 1 

Figure 2. Variation of bandwidth (y-axis) of an MPI P2P communication with respect to the 2 

increment of message size (x-axis). The results are generated from our benchmark. In the 3 

benchmark, one process sends messages with different sizes to the other process. The two 4 

processes of the P2P communication run on two different computing nodes of Tansuo100.   5 

6 
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 1 

Figure 3.  Variation of message size of the P2P implementation (y-axis) in GAMIL2-CLM3 2 

with respect to the increment of core number of cores per model (x-axis). The experimental 3 

setup is similar to that shown in Fig. 1. 4 

5 
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1 

  2 

Figure 4. Variation of total MPI message number the communication depth of one process (y-3 

axis) ofusing the P2P implementation in GAMIL2-CLM3 with respect to the incrementnumber 4 

of core numbercores per model (x-axis). The experimental setup is similar to that shown in Fig. 5 
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  1 

Figure 5. Ideal and actual bandwidths of the P2P implementation (y-axis) in GAMIL2-CLM3 2 

when gradually increasing the number of cores used by each component model (x-axis). The 3 

experimental setup is similar to that shown in Fig. 1. The ideal bandwidth is calculated from 4 

the message size and the MPI bandwidth measured in Fig. 2; and the actual bandwidth is 5 

calculated from Fig. 1. 6 

7 
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 1 

Figure 6. Variation of message number of one process (y-axis) using the P2P implementation 2 

in GAMIL2-CLM3 with respect to the increment of core number (x-axis). The experimental 3 

setup is similar to that shown in Fig. 1. 4 
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Figure 76. An example of the butterfly kernel with eight processes. Each colored row stands 2 

for one process (P0-P7). There are multiple stages (each column of arrows represents a stage 3 

(Stage 1 to Stage 3)) in the butterfly kernel. Each arrow stands for an MPI P2P communication 4 

from one process to another. Di
j means the data is originally in process Pi according to the 5 

source parallel decomposition and is finally in process Pj according to the target parallel 6 

decomposition. 7 

8 
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Target parallel decomposition
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Process mappingProcess mapping

 1 

Figure 87. The butterfly implementation, which is composed of three parts: the butterfly kernel; 2 

process mapping from the sender to the butterfly kernel; and process mapping from the butterfly 3 

kernel to the receiver. 4 

 5 

6 
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 1 

Figure 98. Total message size transferred by P2P implementation and butterfly implementation 2 

(y-axis) in GAMIL2-CLM3, when varying the number of cores used by each model (x-axis). 3 

The experimental setup is similar to that shown in Fig. 1. 4 

5 
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 1 

Figure 109. Average message size transferred by P2P implementation and butterfly 2 

implementation  (y-axis) in GAMIL2-CLM3, when varying the number of cores used by each 3 

model (x-axis). The experimental setup is similar to that shown in Fig. 1. 4 

5 
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 1 

Figure 1110. Maximum message numbercommunication depth, average message 2 

numbercommunication depth and minimum message number of processescommunication 3 

depth in P2P implementation and butterfly implementation (y-axis), when varying the number 4 

of cores used by each model (x-axis) in GAMIL2-CLM3. The experimental setup is similar to 5 

that shown in Fig. 1.  6 

7 
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  1 

Figure 1211.  An example of process mappings, given that the sender has five processes (S0-2 

S4), the receiver has 10 processes (R0-R9) (there is no common process between the sender and 3 

receiver), and the butterfly kernel contains eight processes (B0-B7). Panels (a) and (b) show 4 

how to iteratively pair processes of the sender and receiver, respectively. There are 5 

multiple stages in the iterative pairing of processes of the sender and receiver. In each stage, 6 

the processes in the same color are grouped into one process pair. Panel (c) shows how to map 7 

the reordered processes of the sender and receiver onto the processes of the butterfly kernel. 8 

All five processes of the sender and three processes of the receiver are used as the processes 9 

of the butterfly kernel. Each process of the sender is mapped onto a process of the butterfly 10 

kernel, while every two processes of the receiver are mapped onto one process of the butterfly 11 

kernel. 12 
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Figure 1312. An example of the adaptive data transfer library with eight processes, where Stage 2 

2 of the butterfly implementation is skipped with theand replaced by P2P 3 

implementationcommunication of three MPI messages per process. 4 

5 
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Begin

Carry on the process mapping from the source model to the Butterfly 
kernel and the process mapping from the Butterfly kernel to the target 

model.

Initialize a candidate implementation where no stages are skipped. 

Initialize Stage_num to be the stage number of the adaptive library.
Initialize current stage Current_stage to be 1.

Run the candidate implementation.
Record the execution time  as Cand_time.

Current_stage <= Stage_num

Initialize a temporary implementation based on the candidate 
implementation where Current_stage is skipped 

Run the temporary implementation.
Record the execution time of data transfer  as Temp_time.

Temp_time < Cand_time

Delete the temporary 
implementation.

Delete the candidate implementation.
Replace the candidate implementation with the temporary 

implementation.
Set Cand_time to be Temp_time.

Current_stage = Current_stage + 1

Yes

No
Yes

EndNo

Initialize

Profiling

 1 

Figure 1413. A flowchart for determining an appropriate implementation of the adaptive data 2 

transfer library.  3 

4 
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 1 

Figure 1514. Initialization time (y-axis) of one data transfer between two toy models using a 2 

rectangular grid (of 192×96 grid points) when varying the number of cores used by each toy 3 

model (x-axis). There are 10 2-D coupling fields transferred from the source toy model to the 4 

target toy model. In each test, all processes of the sender in the P2P implementation have the 5 

same communication depth. If the number of cores per toy model used is less than 24, the MPI 6 

message numbercommunication depth per sender process in the P2P implementation is setequal 7 

to be the number of cores. Otherwise, the MPI message number per model; otherwise, the 8 

communication depth per sender process in the P2P implementation is set to 24. The parallel 9 

decompositions of the sender and the receiver for a given setting of communication depth are 10 

generated by Algorithm 1.  11 

  12 
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 1 

 2 

Figure 1615. Average execution time (y-axis) of one data transfer between two toy models with 3 

the same rectangular grid (of 192×96480 grid points) when varying the MPI message 4 

numbercommunication depth per sender process in the P2P implementation (x-axis). Each toy 5 

model is run with 1921024 cores. There are 10 2-D coupling fields transferred from the source 6 

toy model to the target toy model. 7 

  8 
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Figure 1716. Average execution time (y-axis) of one data transfer between two toy models with 1 

the same rectangular grid (of 192×96480 grid points) when varying the number of coupling 2 

fields transferred (x-axis). There are four simulation tests for the evaluation. In simulation (a), 3 

each toy model is run with 48256 cores, and the MPI message numbercommunication depth 4 

per sender process in the P2P implementation is 12. In simulation (b), each toy model is run 5 

with 1921024 cores, and the MPI message numbercommunication depth per sender process is 6 

in the P2P implementation 12. In simulation (c), each toy model is run with 48256 cores, and 7 

the MPI message numbercommunication depth per sender process in the P2P implementation 8 

is 48. In simulation (d), each toy model is run with 1921024 cores (or processes), and the MPI 9 

message numbercommunication depth per sender process in the P2P implementation is 48.  10 

11 
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 1 

 2 

Figure 1817. Average execution time (y-axis) of one data transfer between two toy models with 3 

the same rectangular grid (of 192×96480 grid points) when varying the number of cores used 4 

by each toy model (x-axis). There are 10 2-D coupling fields transferred from the source toy 5 

model to the target toy model. In each test, the MPI message numbercommunication depth per 6 

sender process in the P2P implementation is set to 24. 7 

 8 

9 
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 1 

Figure 1918. Average execution time (y-axis) of one data transfer between two toy models. In 2 

this evaluation, each process (running on a unique processor core) of the toy models have 96 3 

grid points, while different processes have different message numberscommunication depth and 4 

different message sizes in the P2P implementation. The number of coupling fields transferred 5 

is set to 20. 6 

  7 
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 1 

Figure 2019. Average execution time (y-axis) of one data transfer between the land surface 2 

model CLM4 and the coupler CPL7 in CESM when varying the number of cores used by each 3 

model (x-axis): 32 coupling fields on the CLM horizontal grid (the grid size is 144×96=13824) 4 

are transferred from the land surface model CLM4 to the coupler CPL7. The P2Pperformance 5 

results of the P2P implementation are fromobtained through running the adaptive data transfer 6 

library whichwhen it completely switches to the original P2P implementation. 7 
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 1 

Figure 2120. Average execution time (y-axis) of one data transfer between the atmosphere 2 

model GAMIL2 and the land surface model CLM3 in GAMIL2-CLM3 when varying the 3 

number of cores used by each model (x-axis): 14 coupling fields on the GAMIL2 horizontal 4 

grid (the grid size is 128×60=7680) are transferred from the land surface model CLM3 to the 5 

atmosphere model GAMIL2.  6 
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 1 

Figure 2221. Average execution time (y-axis) of one data rearrangement for the parallel 2 

interpolation from the atmosphere grid (the grid size is 144×96=13824) to the ocean grid (the 3 

grid size is 320×384=122880) in CESM when varying the number of cores used by each model 4 

(x-axis). 5 

 6 

7 
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 2 

Figure 2322. Performance imporvement of the coupled model GAMIL2-CLM3 achieved by 3 

the butterfly implementation and the adaptive data transfer library, with the performancewhole 4 

model time of GAMIL2-CLM3 using the P2P implementation as the baseline.  5 


