
We thank all reviewers a lot for the comments and suggestions.

Reply to Referee1

1. Grammar and syntax needs to be considered much more carefully.

Response: We carefully improved the grammar and syntax in the revised version.

2. The software does not contain any version number.

Response: The version number has been added into the software.

3. In the introduction the authors raise the impression that they address high-resolution climate

model applications running on modern high-performance compute systems where a single model
employs several thousand processors or cores. Later on the algorithmic approach is investigated
with test cases at very coarse resolution o(2 degrees) on a comparatively low number of cores
(192) and leave the reader alone with any guess about the scalability of their approach.

Response: The performance of data transfer between high-resolution toy models has been evaluated,
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and
Fig. 19).

4. P8983,L1: Is it the number of coupled models or the number of coupled model configurations the

authors have in mind?

Response: It means the number of coupled model configurations (please refer to P2 L10 - L11).

5. P8984,L27: Do you believe or are you convinced?

Response: The sentence is modified as “We believe that other coupler versions can also benefit from it”
(please refer to P3 L28 – L29).

6. The main - if not the only - purpose of section 2 is to provide the reader with an overview about the

communication algorithms which are used in existing coupling software. In essence this section is
telling us that all existing coupling software products use P2P communication. I wonder why I have
to read approx. 85 lines to arrive at this. An overview of existing coupler software has already been
published elsewhere – among the GMD - and the author should be able to reference those rather
than providing another overview.

Response: The overview about the data transfer in existing coupler is shrunk (please refer to P4 L4 –
L16). We have merged it and the original Section 3 into Section 2 of the revised version (please refer to
P4 L3 – P5 L30).

7. In section 4 the headline raises the expectation that we can learn how the butterfly algorithm works.

The reader is not really guided through this section. Is the numbered list in sec 4.1 based on findings

by the authors? In this case some piece of information is missing which guides the reader to this
statement. In case it is not based on the authors findings a reference is missing. Fig. 6 (and likewise
Fig 8) does not help me at all to learn how the butterfly algorithm works. If each of the 8 processes
P0 to P8 already has all data D0 to D8 I cannot see any necessity for communication. What is the
information that shall be transported to the reader with the colours?

Response: The butterfly algorithm is more clearly explained in Section 3 (please refer to P6 L1 – P9
L12). An example is given to explain the numbered list in Section 3.1 (please refer to P7 L21 – L30, Fig.
9, Fig. 10, Fig. 11). More information is added to help the understanding of the butterfly implementation
(please refer to P7 L2 – L20, Fig. 7, Fig. 13).

8. I would have loved to be guided through Fig 7 in the text a little bit. If this Figure is not important

at all it should be removed.

Response: Please refer to P8 L30 – P9 L12 and Fig. 12.

9. In section 5 it remains unclear (to me at least) how the adaptive process works and I would

appreciate if this was clarified in a revised version. Does this work as a kind of self-learning
algorithm where the optimal path is determined of the first n data exchanges of a model integration
or is this part of the initialisation procedure beforehand and made available already for the first data
exchange?

Response: Please refer to P10 L22 – L25.

10. The first sentence of section 6 does not make sense to me. Having read the previous sections the

authors put the focus of the reader to the adaptive transfer library. Now the authors propose the
butterfly implementation as well. Later we learn that the butterfly approach can be outperformed.
At the end of the section the authors show that for coupled climate models the P2P communication
is as good as the adaptive transfer library, probably because the adaptive transfer library completely
switches to P2P in the latter case. I think that this is an important finding and should be emphasized.
It tells us that the P2P which is used in existing coupler software is not that bad. But is also tell me
that the paper is severely suffering from a clear structure. If my conclusion (P2P is sufficient) is
wrong the authors will need to put more effort in getting the reader onto the correct track.

Response: The first sentence of the original Section 6 has been removed in the revised version. The
manuscript is restructure and the finding is emphasized (please refer to P9 L30 – L31, P12 L13 – L14,
P13 L19 – L20, P14 L14 - L15).

11. Table 1 and Fig 10 are not really addressed. Are they required to understand the adaptive data

transfer library? These can be removed of shifted to the user guide.

Response: They are removed in the revised version and added to the user guide.

12. Could Fig 9 be replaced by a real flow chart rather than providing pseudo code?

Response: Please refer to Fig. 14 and P10 L3 – L25.

13. In section 6 the performance of the data transfer is evaluated by using a coupled climate model with

roughly 2 degree grid horizontal grid spacing using 192 processes. As there are 8400 cores available
Tansuo100 I would have expected to see an evaluation of the performance at least with a toy model
and exploring the scalability of the adaptive data transfer library up to several thousand cores.
Unless there are sound arguments why this cannot be done this raises the impression that the authors
are trying to hide something. The dynamical core sets an upper limit to the number of cores that can
reasonably be employed - when the communication starts dominating over the computing part (MPI
messages required for the boundary exchange required for advection and diffusion operators versus
the time for the forward integration of the less and less points left on a single core). With roughly 2
degree resolution we have probably reached this point with 192 processes. Here it would be nice to
know how much percentage of the overall compute time is consumed by the data exchange, and
how much wall clock time can be gained for a single run of the coupled model. Last but not least,
how important is the load imbalance between the processes as the boundary exchange between the
model components (atmosphere and ocean) provides a synchronisation point, either explicitly or
implicitly, where the components have to wait for each others.

Response: The performance of data transfer between high-resolution toy models has been evaluated,
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and
Fig. 19). As shown in Fig. 23, we use GAMIL2-CLM3 to measure the performance improvement resulted
from the adaptive data transfer library for one realistic coupled model (Please refer to P14 L17 – L28
and Fig. 23). In the evaluation, the maximum core number of each component model is 128, because two
component models will not achieved better performance when using more 128 CPU cores.

14. The conclusions are weak if not misleading. Fig. 17 does not really confirm the last statement, that

“the adaptive transfer library can effectively improve the performance of data transfer in model
coupling. What can we conclude or expect for model with higher resolution than those investigated
in this study?

Response: The performance of data transfer between high-resolution toy models has been evaluated,
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and
Fig. 19).

Reply to Referee2

1. They show a good understanding of the current state-of-the-art in climate models but are missing

some of the history of butterfly networks in parallel computer design.

Response: Some related works about the butterfly networks and algorithms are introduced in section 3
of the revised version (P6 L6 – L13).

2. In their performance testing, the results can also be affected by the decomposition strategy
(decomposing the domain by lat-lon blocks or by latitude stripes). It’s not clear if the two land and
atmosphere domains have different decomposition strategies which would impact performance.
Please clarify.

Response: Parallel decompositions of component models can affect the performance of data transfer. For
example, GAMIL and CLM3 has different parallel decompositions, so data transfer between them has
big communication depth, and the adaptive data transfer library can significantly improve the
performance of data transfer (please refer to P13 L25 – P14 L3); For the data rearrangement in parallel
interpolation, the source parallel decomposition is similar to the target parallel decomposition, so the
communication depth is small and the performance of data transfer will not be improved because the
adaptive data transfer library will switch to the P2P implementation in this case (please refer to P14 L4
– L16). As component models have different computation characteristics, their parallel decompositions
are usually different.

3. Overall this algorithm appears to be most useful on medium-sized grids and modest processor counts.
That’s ok but these limitations should be mentioned or data for larger cases presented.

Response: The performance of data transfer between high-resolution toy models has been evaluated,
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and
Fig. 19).

Specific Comments

4. The decrease in time at the end of the graph in Figure 1 should be remarked upon. Will it continue

to go down?

Response: Figure 1 is measured from the benchmark derived from GAMIL2-CLM3. The component
models GAMIL2 and CLM3 can only scale to 128 processor cores, so we did not measure the time for
more cores.

5. It’s not clear what generated the data in Figure 2. Is that a P2P test program from an MPI distribution?

And was it on the same machine?

Response: Please refer to Fig. 2.

6. The initialization overhead for the adaptive library could become to expensive at 1K and larger

processor counts even if its only run once. It might be better to run it offline and read in the results
when the climate model starts. Again a large case would help.

Response: Thanks a lot for this suggestion. It will be our future work. Please refer to P15 L13 – L16.

7. For Figure 15, are the “P2P” results from the unaltered CPL7 coupler or from the P2P option in their

library? Please clarify.

Response: The P2P results are measured from the adaptive data transfer library which switches to the
P2P implementation. Please refer to Fig. 20.

8. Technical Corrections: “network contention” is the preferred phrase instead of “jam of network

communication” or “jams in communication”.

Response: “jam of network communication” and “jams in communication” has been replaced with
“network contention” in the revised version (P1 L20, P5 L28, P6 L4, and P7 L30).

9. There is more odd English phrasing throughout.

Response: We carefully improved the grammar and syntax in the revised version.

 1

Improving Data Transfer for Model Coupling 1

C. Zhang2,1, L. Liu1,3, G. Yang2,1,3, R. Li2,1, and B. Wang1,3,4 2

[1]{Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System 3

Science (CESS), Tsinghua University, Beijing, China} 4

[2]{Department of Computer Science and Technology, Tsinghua University, Beijing, China} 5

[3]{Joint Center for Global Change Studies (JCGCS), Beijing, China} 6

[4]{State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical 7

Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 8

Beijing, China.} 9

Correspondence to: L. Liu (liuli-cess@tsinghua.edu.cn), G. Yang (ygw@tsinghua.edu.cn) 10

 11

Abstract 12

Data transfer, which means transferring data fields between two component models or 13

rearranging data fields among processes of the same component model,. It is a fundamental and 14

most frequently used operation of a coupler. Most versions of state-of-the-art coupler 15

versionscouplers currently use an implementation based on the point-to-point (P2P) 16

communication of the Message Passing Interface (MPI) (callrefer such an implementation as 17

“P2P implementation” for short). In this paper, we reveal the drawbacks of the P2P 18

implementation, including low communication bandwidth due to small message size, variable 19

and big number of MPI messages, and jams during communication.as well as network 20

contention. To overcome these drawbacks, we propose a butterfly implementation for data 21

transfer. Although the butterfly implementation can outperform the P2P implementation in 22

many cases, it degrades the performance in some cases because the total message size 23

transferred by the butterfly implementation is larger than thatthe total message size transferred 24

by the P2P implementation. To make thefurther improve data transfer completely improved, 25

we design and implement an adaptive data transfer library that combines the advantages of both 26

butterfly implementation and P2P implementation. Performance evaluation shows that the 27

adaptive data transfer library significantly improves the performance of data transfer in most 28

cases, and does not decrease the performance in any cases. Now, the adaptive data transfer 29

mailto:ygw@tsinghua.edu.cn

 2

library is open to the public and has been imported into a coupler version C-Coupler1 for 1

performance improvement of data transfer. We believe that it can also improve other coupler 2

versions can also benefit from it. 3

 4

1 Introduction 5

Climate System Models (CSMs) and Earth System Models (ESMs) are fundamental tools for 6

simulating, predicting and projecting the climate. A CSM or an ESM generally integrates 7

several component models, such as an atmosphere model, a land surface model, an ocean model, 8

and a sea-ice model, into a coupled system, to simulate the behaviorsbehaviours of andof the 9

climate system, including the interactions between components of the climate system. More 10

and more ESMscoupled models have sprung up in the world. For example, the number of 11

coupled model versionsconfigurations in the Coupled Model Intercomparison Project (CMIP) 12

has increased from less than 30 (used for CMIP3) to more than 50 (used for CMIP5). 13

High-performance computing is an essential technical support for model development, 14

especially for higher and higher resolutions of models. Modern high-performance computers 15

integrate an increasing number of processor cores for higher and higher computation 16

performance. Therefore, efficient parallelization, which enables a model to utilize more 17

processor cores for acceleration, becomes a technical focus in model development,; and a 18

number of component models with efficient parallelization have sprung up. For example, the 19

Community Ice CodE (CICE; Hunke et al., 2008, 2013) at 0.1° horizontal resolution can scale 20

to 30,000 processor cores on the IBM Blue Gene/L (Dennis et al., 2008); the Parallel Ocean 21

Program (POP; Kerbyson, 2005; Smith et al., 2010) at 0.1° horizontal resolution can also scale 22

to 30,000 processor cores on the IBM Blue Gene/L and to 10,000 processor cores on a Cray 23

XT3 (Dennis, 2007); the Community Atmosphere Model (CAM; Morrison et al., 2008; Neale 24

et al., 2010, 2012) with thea spectral element dynamical core (CAM-SE) at 0.25° horizontal 25

resolution can scale to 86,000 processor cores on a Cray XT5 (Dennis et al., 2012). To achieve 26

an efficient parallelization of a coupled model, each component model requires to be efficiently 27

parallelized. 28

A coupler is an important component in a coupled system. It links component models together 29

to construct a coupled model, and controls the integration of the whole coupled model. (Valcke, 30

2012). A number of couplers now are available for model coupling, e.g., the Model Coupling 31

Toolkit (MCT; Jacob et al., 20152005), the Ocean Atmosphere Sea Ice Soil coupling software 32

 3

(OASIS) coupler (Redler et al., 2010; Valcke, 2013), the Earth System Modelling Framework 1

(ESMF; Hill et al., 2004), the CPL6 coupler (Craig et al., 2005), the CPL7 coupler (Craig et al., 2

2012), the Flexible Modelling System (FMS) coupler (Balaji et al., 2006), the Bespoke 3

Framework Generator (BFG; Ford et al., 2006; Armstrong et al., 2009),) and the community 4

coupler version 1 (C-Coupler1; Liu et al.,), among others. Most of the existing couplers provide 5

fundamental coupling functions that include data transfer between component models and data 6

interpolation between different model grids (Valcke et al., 2012). 7

A coupler generally has much smaller overhead than otherthe component models. in a coupled 8

system. However, it is potentially a time-consuming component in an ESMof a coupled model 9

in future. This is because there will be more and more component models (such as land-ice 10

model, chemistry model and biogeochemical model) will be coupled into an ESMa coupled 11

model, and the coupling frequency between component models will be morehigher and more 12

frequenthigher. Data transfer is a fundamental and most frequently used operation in a coupler. 13

It is responsible for transferring data fields between the processes of two component models 14

and responsible for rearranging data fields among various processes of the same component 15

model for parallel data interpolation. 16

A coupler may become a bottleneck for efficient parallelization of future coupled models. The 17

most obvious reason is that the current implementation of data transfer in a state-of-the-art 18

coupler is not efficient enough. for transferring data fields between component models. For 19

example, the data transfer from a component with a logically rectangular grid (of 1021×1442 20

grid points) to a component with a Gaussian Reduced T799 grid (with 843,000 grid points) can 21

only scale to about 100 processor cores when using OASIS3 (Valcke, 2013) and to about 1000 22

processor cores when using OASIS3-MCT (Valcke et al., 2013); the data transfer from a 23

component model with a horizontal grid (of 576×384 grid points) to another component model 24

with another horizontal grid (of 3600×2400 grid points) can only scale to about 500 processor 25

cores when using the CPL7 coupler (Craig et al., 2012). Therefore, it is highly desirable to 26

improve the parallelization of couplers. 27

In this study, we first propose a butterfly implementation of data transfer. Since the P2P 28

implementation and thenthe butterfly implementation can outperform each other in different 29

cases (Section 5), we next develop an adaptive data transfer library that is open to the 30

publicincludes both implementations and can adaptively use the better one for data transfer. 31

Performance evaluation demonstrates that such a library significantly improves the 32

 4

performance of data transfer in most cases and does not decreasedegrade the performance in 1

any casescase. This library has been imported into C-Coupler1 with slight code modification. 2

We believe it can be easily imported intothat other coupler versions for better performance of 3

data transfercan also benefit from it. 4

The reminder of this paper is organized as follows. We briefly introduce the implementation of 5

data transfer in existing couplers in Section 2. We analyze performance bottlenecks of the 6

existing implementation in Section 3. Details of the butterfly implementation and the adaptive 7

data transfer library are presented in Sections 43 and 54, respectively. The 8

performanceperformances of the butterfly implementation and the adaptive data transfer library 9

isimplementations are evaluated in Section 6. Conclusion is5. Conclusions are given in Section 10

76. 11

2 Implementation of Data transfer implementations in existing couplers 12

In this section, we focus on the implementation of data transfer in existing couplers, including 13

MCT (Jacob et al., 2015), the OASIS coupler (Redler et al., 2010; Valcke, 2013; Valcke et al., 14

2013), ESMF (Hill et al., 2004), the FMS coupler (Balaji et al., 2006), the CPL6 coupler (Craig 15

et al., 2005), the CPL7 coupler (Craig et al., 2012)), and C-Coupler1 (Liu et al., 2014). More 16

details of these couplers can be found in the citations given. 17

2.1 MCT 18

MCT works as a library for model coupling. It can be directly used to construct a coupled model 19

with different component models, and can also be used to develop other couplers, such as 20

OASIS3-MCT, the CPL6 coupler and the CPL7 coupler. It provides fundamental coupling 21

functions, i.e., data transfer and data interpolation, in parallel. To achieve a parallel data transfer, 22

MCT first generates a communication router (known as the data mapping between processes) 23

according to the parallel decompositions of the two component models, and next uses the point-24

to-point (P2P) communication of the Message Passing Interface (MPI) to transfer data. A data 25

field will be transferred from a process of the source component model to a process of the target 26

component model, only when the two processes have common grid points. A data transfer can 27

serve multiple data fields that will be packed into one MPI message for better communication 28

performance. 29

On the other hand, parallel interpolation can also introduce data exchange among processes of 30

the same component model. Interpolation is generally performed by the calculation of matrix-31

 5

vector multiplication. To achieve efficient parallelization of interpolation, MCT can rearrange 1

the layout of the data field among processes, to enable the matrix-vector multiplication to be 2

performed locally on each process. The data rearrangement is essentially a data transfer. 3

2.2 The OASIS coupler 4

The OASIS coupler is mainly developed by the European Centre for Research and Advanced 5

Training in Scientific Computing (CERFACS) since 1991. OASIS3 (Valcke, 2013a) is a 2-D 6

version of the OASIS coupler with broad usage. To transfer a field from one component model 7

to another, a process of OASIS3 first gathers the field from the processes of the source 8

component model and then scatters the field to the processes of the target component model. 9

Each process of OASIS3 can transfer one model field, so that multiple model fields can be 10

transferred in parallel. However, the parallelism of such an implementation is limited by the 11

number of coupling fields. To solve this problem, MCT has been used to develop the latest 12

version of the OASIS coupler (OASIS3-MCT). 13

OASIS4 is a 3-D version of the OASIS coupler. The data exchange library in the PRISM 14

System Model Interface Library (PSMILe; Redler, 2010), which performs communication with 15

MPI, is used to perform the data transfer in OSIS4. Similar to MCT, each process only needs 16

to send or receive the data of its local decomposition. 17

In OASIS3, the interpolation of a field is carried out by only one process. Like the 18

implementation of data transfer in OASIS3, the data needed interpolation will be gathered from 19

all processes of the corresponding component model before the interpolation, and will be 20

scattered to all processes after the interpolation. In OASIS4 and OASIS3-MCT, the 21

interpolation is performed in parallel, where all processes of the corresponding component 22

model cooperatively perform the interpolation at the same time. The data rearrangement for the 23

parallel interpolation is implemented by PSMILe in OASIS4 and by MCT in OASIS3-MCT. 24

2.3 ESMF 25

Earth System Modeling Framework (ESMF) is a widely used software framework for model 26

development, which defines a superstructure for the architecture of component models and an 27

infrastructure with common coupling functions for model coupling. In ESMF, the coupler 28

components are responsible for regridding and transferring data among component models. The 29

coupler components build the corresponding relationship between the data of the source model 30

 6

and the data of the target model according to their parallel decomposition. Then, the data are 1

transferred in parallel according to the corresponding relationship. 2

2.4 The FMS coupler 3

FMS is a software framework developed by the Geophysical Fluid Dynamics Laboratory 4

(GFDL). It supports the development, construction, execution, and scientific interpretation of 5

models. The FMS coupler deploys an exchange grid to perform the coupling. Given the grids 6

of two component models, their exchange grid is generated by all the vertices in the two grids. 7

The coupling fields from a source component model to a target component model, are first 8

interpolated onto the exchange grid, and then averaged onto the target grid. Data transfer among 9

different processors is performed with MPI P2P communications. 10

2.5 The CPL6 coupler 11

The CPL6 coupler is a centralized coupler for the Community Climate System Model version 12

3 (CCSM3; Collins et al., 2006) developed at the National Center for Atmospheric Research 13

(NCAR). The data transfer between component models must go through the coupler. The CPL6 14

coupler integrates MCT for data transfer and data interpolation. Therefore, the data transfer 15

between component models is processed in parallel with MPI P2P communications and can 16

serve multiple model fields at the same time for better communication performance. 17

2.6 The CPL7 coupler 18

The CPL7 coupler is the latest coupler version from the NCAR. It has been used for the ESMs 19

of the Community Climate System Model version 4 (CCSM4; Gent et al., 2011) and the 20

Community Earth System Model (CESM; Hurrell et al., 2013). Similar to the CPL6 coupler, 21

the CPL7 coupler is also a centralized coupler, where the data transfer between component 22

models must go through the coupler. The CPL7 coupler also integrates MCT for data transfer 23

and data interpolation. Moreover, the CPL7 coupler supports the coupling interface based on 24

ESMF and can use the coupling functions in ESMF for data transfer and data interpolation. 25

2.7 C-Coupler1 26

C-Coupler1 is a Chinese community coupler for Earth system modeling. It achieves 3D 27

coupling with flexible 3D interpolation, and supports direct coupling without a specific coupler 28

 7

component to improve the parallel performance. Its implementation of data transfer is derived 1

from the corresponding implementation in MCT. In other words, C-Coupler1 first generates a 2

communication router according to the parallel decompositions of the component models, and 3

then uses the MPI P2P communication to transfer the coupling fields in parallel. To further 4

improve the communication performance, model fields with different data types, different 5

model grids, or different parallel decompositions can be served by the same data transfer. 6

2.1 P2P implementation 7

Almost all state-of-the-art couplers use a similar implementation for data transfer. To achieve 8

parallel data transfer, MCT first generates a communication router (known as the data mapping 9

between processes) according to the parallel decompositions (the distribution of grid points 10

among the processes) of two component models, and then uses the point-to-point (P2P) 11

communication of the Message Passing Interface (MPI) to transfer the data. A data field will 12

be transferred from a process of the source component model to a process of the target 13

component model, only when the two processes have common grid points. In the following 14

context, we call this “P2P implementation” for short. 15

Since MCT has already been imported into OASIS3-MCT, the CPL6 coupler and the CPL7 16

coupler, these couplers also use the P2P implementation for data transfer. Although the other 17

couplers such as ESMF, OASIS4, the FMS coupler and C-Coupler1 do not directly import MCT, 18

they also use the P2P implementation for data transfer. 19

2.2 Performance bottlenecks of the P2P implementation 20

3 Performance bottlenecks of existing implementations 21

The implementations of data transfer in Although the state-of-the-art couplers are similar, 22

which can be concluded as the MPI P2P communication that transfers data among the processes 23

according to the two corresponding parallel decompositions. In the following context, we call 24

such an implementation “P2P implementation”can achieve good performance when rearranging 25

data fields for short.a parallel interpolation in a component model, it is not efficient enough 26

when transferring data between component models (Craig et al., 2012; Valcke, 2013; Valcke et 27

al., 2013; Liu et al., 2014). To reveal why the P2P implementation is inefficientnot efficient 28

enough, we first derive a benchmark from a real coupled model version GAMIL2-CLM3, where 29

which includes GAMIL2 (Li et al., 2013) that is an atmosphere model and CLM3 (Oleson et 30

 8

al., 2004); Dickinson et al., 2006) that is a land surface model. GAMIL2 and CLM3 share the 1

same horizontal grid of 7,680 (128×60) grid points. , but have different parallel decompositions: 2

GAMIL2 uses a regular 2-D parallel decomposition, while CLM3 uses an irregular 2-D parallel 3

decomposition where the grid points are assigned to the processes in a round-robin fashion. 4

In this benchmark, there is only the data transfer with P2P implementation between two data 5

models with the same grid as the horizontal grid of GAMIL2-CLM3. The parallel 6

decompositionsdecomposition of the source data model is derived from CLM3, and the parallel 7

decomposition of target data models are the same as those of CLM3 andmodel is derived from 8

GAMIL2, respectively. A high-performance computer named Tansuo100 at Tsinghua 9

University, China is used for the performance testingtests. It has 700 computing nodes, each of 10

which contains two six-core Intel Xeon X5670 CPUs and 32 GB main memory. All computing 11

nodes are connected by a high-speed InfiniBand network with peak communication bandwidth 12

of 5 GB/s. 13

To evaluate the parallel performance of the P2P implementation, 14 2-D coupling fields are 14

transferred between the two data models. In each test, the two data models haveuse the same 15

number of processes. AsSince there are 12 CPU cores on each computing node, the number of 16

processes is set to be an integral multiple of 12. When the process number is less than 12, the 17

two data models are located on two different computing nodes. The two data models do not 18

share the same computing node, so the communication of the P2P implementation must go 19

through the InfiniBand network. 20

Figure 1 demonstrates the poor performance of the P2P implementation. It is well known that 21

the performance of communication performance heavily depends on message size. As shown 22

in FigureFig. 2, the P2P communication bandwidth achieved generally increases with message 23

size;. So when the message size is small (for example, smaller than 4 KB), the communication 24

bandwidth achieved is very low. The message size in the P2P implementation decreases with 25

increment of process number of models (FigureFig. 3), indicating that the communication 26

bandwidth getsbecomes lower with increasethe increment of process number. The performance 27

of a data transfer also heavily depends on the MPI message number of MPI messages.. As 28

shown in FigureFig. 4, the message number of MPI messages in the P2P implementation 29

increases with increment of process number. Here, we may conclude that the decrease of 30

message size and the increase of message number of MPI messages are primary reasons for the 31

poor performance of the P2P implementation when increasing the process number. However, 32

 9

the ideal performance shown in FigureFig. 5 is much better than the actual performance. The 1

ratio between the ideal performance and the actual performance significantly increases with the 2

increment of processor number. The significant gap between the ideal performance and the 3

actual performance is due to the jam of network communication.contention. For example, when 4

multiple P2P communications share the same source process or target process, (Fig. 6), they 5

must wait in an order. 6

3 Butterfly implementation for better performance of data transfer 7

To improve the performance of data transfer, a new implementation should be able to overcome 8

The drawbacks of the P2P implementation, which can be concluded as low communication 9

bandwidth due to small message size, variable and big number of MPI messages, and jams in 10

communications. We therefore proposeas well as network contention. To overcome these 11

drawbacks, a prospective solution is to organize the communication for data transfer using a 12

new implementation called the butterfly implementation. As shown in Figure 6, it is similar to 13

the better structure, so that we investigate the butterfly structure (Fig. 7), which has already 14

been used in the field of computer (Chong et al., 1994; Foster, 1995; Heckbert et al., 1995; 15

Hemmert et al., 2005; Kim et al., 2007; Jan et al., 2013; Petagon et al, 2016). For example, in 16

hardware aspect, the traditional butterfly diagramstructure and its transformation have been 17

used to design networks (Chong et al., 1994; Kim et al., 2007); in software aspect, the butterfly 18

structure has been used to improve the parallel algorithms with all-to-all communications 19

(Foster, 1995), e.g., Fast Fourier Transform (FFT; Heckbert, 1995). The most significant 20

challenge to the butterfly implementation is that the process number needs to be 2n, where n is 21

a non-negative integer, while the process number of data transfer generally can be any positive 22

integer. To resolve this challenge, we investigated how to efficiently map processes between et 23

al., 1995; Hemmert et al., 2005), matrix transposition (Petagon et al, 2016) and sorting (Jan et 24

al., 2013). 25

Unfortunately, the improved all-to-all communication with the butterfly implementation and 26

the sender/receiver. Next, we will introducestructure cannot be used to improve data transfer, 27

because it requires that one process must communicate with every other process, that the 28

communication load among processes is balanced and that the number of processes must be a 29

power of 2, while the data transfer for model coupling has different charateristics, i.e., one 30

process needs to communicate with a part of other processes (Fig. 6), the communication load 31

among processes is always unbalanced (Fig. 3) and the process number cannot be restricted to 32

 10

a power of 2. Therefore, to benefit from the butterfly structure, we should design a new 1

implementation andof data transfer, which is called the butterfly implementation hereafter. 2

The butterfly implementation uses a butterfly structure to transfer data from the sender with the 3

source parallel decomposition to the receiver with the target parallel decomposition. We call 4

the communication following the butterfly structure “the butterfly kernel”. As the process 5

number of the butterfly kernel must be a power of 2, while the process number of the sender or 6

the receiver need not be a power of 2, the butterfly implementation (see Fig. 8) has a process 7

mapping. from the sender onto the butterfly kernel and a process mapping from the butterfly 8

kernel onto the receiver, and the butterfly kernel has its own source parallel decomposition and 9

target parallel decomposition, which are determined by the process mappings. Next, we will 10

present the butterfly kernel and the process mappings, respectively. 11

3.1 The Butterfly implementationkernel 12

The butterfly implementation aims to rearrange the dataThe first question for the butterfly 13

kernel is how to decide its process number. Any process of the sender or the receiver can be 14

used as a process of the butterfly kernel. Given that the total number of unique processes of the 15

sender and receiver is NT, the process number of the butterfly kernel (NB) can be any power of 16

2, which is no larger than NT. We propose to select the maximum number in order for maximum 17

utilization of resources. We prefer to pick out unique processes first from the sender, and then 18

from the receiver if the sender does not have enough processes. 19

The butterfly kernel is responsible for rearranging the distribution of data among the processes 20

from the source parallel decomposition to the target parallel decomposition. As shown in Figure 21

6, there are multiple stages in the butterfly implementation. Given Given the process number 22

N=2n, the number of stages is there are n+1. Each stages in the butterfly kernel. In a stage has 23

a unique parallel decomposition. The parallel decompositions of the first stage and last stage 24

are determined by the source and target parallel decompositions, respectively, while the parallel 25

decompositions of the other stages are determined by the first and last stages. Between any two 26

successive stages, all processes are splitdivided into a number of pairs and the two processes of 27

eacha pair exchange data according to the corresponding parallel decompositions usinguses 28

MPI P2P communication to exchange data. Given a process P in the butterfly kernel, after each 29

stage, the number of the processes that may have the data of P on the target parallel 30

decomposition will become a half. Figure 7 is an example for further illustration, where Dij 31

 11

means the data is originally in process Pi according to the source parallel decomposition and is 1

finally in process Pj according to the target parallel decomposition. Before the first stage, all 2

processes (P0~P7) may have the data of P0 on the target parallel decomposition. After the first 3

stage, only four processes (P0, P2, P4 and P6) may have; and after the second stage, only two 4

processes (P0 and P4) may have. 5

Compared to the existingTo reveal the advantages and disadvantages of the two 6

implementations of data transfer, we measure the characteristics of the two implementations 7

based on the benchmark introduced in Section 2.2. The results show the total message size 8

transferred by the butterfly implantation is larger than that by the P2P implementation (Fig. 9), 9

which is the major disadvantage of the butterfly implementation. Meanwhile, comparing with 10

the P2P implementation, the butterfly implementation has the following advantages: 11

1) bigger message size for better communication bandwidth. The message size is M/(2N) on 12

average, where M is the total size of data to be transferred and N is the process number. (Fig. 13

10); 14

2) balanced number of MPI messages among processes. Each process performs log2N times of 15

MPI communication. (Fig. 11); 16

3) ordered communications among processes and fewer communications operated concurrently. 17

The jam of network communication (Fig. 11), which can be dramatically reducedreduce 18

network contention. 19

3.2 Process mapping 20

Process number of the butterfly kernel must be 2n, where n is a non-negative integer, while 21

process number of sender or receiver can be any positive integer. The first question is how to 22

decide the number of processes of the butterfly kernel? Any process of the sender or receiver 23

can be used as a process of the butterfly kernel. Given that the total number of unique processes 24

of the sender and receiver is NT, the process number of the butterfly kernel (NB) can be any 25

power of 2, which is no larger than NT. For example, we can select the maximum number in 26

order for maximum utilization of resources. When NB<NT, we prefer to pick out processes first 27

from the sender, and then from the receiver if the sender does not have enough processes, in 28

order to save the overhead of process mapping from the sender to the butterfly kernel. 29

 12

The second question is how to decide process mapping from the sender to the butterfly kernel 1

and from the butterfly kernel to the receiver.In this subsection, we will introduce the process 2

mappings from the sender to the butterfly kernel and from the butterfly kernel to the receiver. 3

To minimize the overhead of process mapping from the butterfly kernel to the receiver, we 4

makemap one or multiple processes of the butterfly kernel map toonto a process of the receiver 5

if the butterfly kernel has more processes than the receiver; otherwise, we makemap a process 6

of the butterfly kernel map toonto one or multiple processes of the receiver. In other words, 7

there is no multiple-to-multiple process mapping between the butterfly kernel and the receiver. 8

Similarly, there is no multiple-to-multiple process mapping between the sender and the butterfly 9

kernel. Processes of the sender or receiver may be unbalanced in terms of size of the data 10

transferred, which may result in unbalanced communications between processes of the butterfly 11

kernel. 12

Processes of the sender or the receiver may be unbalanced in terms of the size of the data 13

transferred, which may result in unbalanced communications among processes of the butterfly 14

kernel. As mentioned in Section 43.1, at each stage of the butterfly kernel, all processes are 15

splitdivided into a number of pairs, each of which is involved in P2P communications. To 16

improve the balance of communications among the processes in the butterfly kernel, one 17

solution is to try to make the process pairs at each stage more balanced in terms of data size of 18

P2P communications. To achieve balanced data size among process pairs,, so we propose to 19

take consideration of the sorting order of reorder the processes in terms of the sender or the 20

receiver according to data size. For example, for the remaining processes that have not been 21

paired,At the first stage, each time we can pairpick out the process with the largest data size 22

and the process with the smallest data size. The pairing of the processes should be conducted 23

iteratively among stages of the butterfly kernel. All processes are taken as the input for the first 24

stage, while output of the pairing for one stage will be the input from the remaining processes 25

that have not been paired, to generate a process group. For the next stage., the outputs of two 26

process groups from the previous stage are paired into a bigger process groups in a similar way. 27

After finishing the iterative pairing throughthroughout all stages, all processes of the sender or 28

the receiver are reordered. 29

The iterative pairing also requires the number of processes to be a power of 2. Given that the 30

process number of processes of the sender (or receiver) is NC and the process number of the 31

butterfly kernel is NB, we propose to first pad empty processes (thewhose data size is 0zero) 32

 13

before the iterative pairing to make the process number of the processes for the sender (or 1

receiver) be a power of 2 (donated NP), which is no smaller than NB. Therefore, the reordered 2

NP processes after the iterative pairing can be divided into NB groups, each of which contains 3

NP/NB processes with consecutive reordered indexes and maps toonto a unique process of the 4

butterfly kernel. 5

Figure 712 shows an example for further illustration of the process mapping., where the sender 6

has five processes (S0-S4 in Fig. 12a), the receiver has 10 processes (R0-R9 in Fig. 12b), and the 7

butterfly kernel uses eight processes (B0-B7 in Fig. 12c). At the first, empty processes are 8

padded to the sender (S5-S7 in Fig. 12a) and the receiver (R10-R15 in Fig. 12b). Next, the iterative 9

pairing is conducted for the sender and the receiver, respectively. The iterative pairing has three 10

stages for the sender. At the first stage, the eight processes of the sender are divided into four 11

groups {S1,S7}, {S0,S6}, {S2,S5} and {S4,S3} (Fig. 12a), according to the data size 12

corresponding to each process. These four process groups are divided into two bigger groups 13

({{S4,S3},{S2,S5}} and {{S1,S7}, {S0,S6}} at the second stage (Fig. 12a). Finally, one process 14

group {{{S4,S3},{S2,S5}}, {{S1,S7}, {S0,S6}}} is obtained at the third stage (Fig. 12a), and the 15

eight processes of the sender are reordered as S4, S3, S2, S5, S1, S7, S0 and S6, each one of which 16

is mapped onto one process of the butterfly kernel (Fig. 12c). Similarly, the iterative pairing 17

has four stages for the receiver, and the 16 processes of the receiver are reordered as R9, R15, 18

R7, R12, R4, R8, R3, R10, R1, R14, R5, R13, R0, R6, R2 and R11 finally, each two of which are 19

mapped onto one process of the butterfly kernel (Fig. 12c). 20

4 Adaptive data transfer library 21

Now, we have two kinds of implementations (the P2P implementation and the butterfly 22

implementation) for data transfer. Although the butterfly implementation can effectively 23

improve the performance of data transfer, it still in many cases (examples are given in Section 24

5), it has some drawbacks: 1) it generally has a larger total message size of communications 25

than the P2P implementation; 2) its stage number is log2N (where N is the number of processes 26

for the butterfly kernel) (Foster, 1995), which may be bigger than the average number of MPI 27

messages per process in the P2P implementation. in some cases (for example, the data 28

rearrangement for parallel interpolation). Therefore, it is possible that the P2P implementation 29

outperforms the butterfly implementation in some cases (examples are given in Section 65). To 30

achieve optimal performance for data transfer, we propose an adaptive data transfer library that 31

can keeptake the advantages of the two implementations in all cases. 32

 14

As introduced in Section 43.1, the butterfly implementation is divided into multiple stages. 1

Each stage has a unique intermediate parallel decomposition. Actually, the data transfer 2

between two successive stagesin one stage can be viewed as a P2P implementation with only 3

one MPI message per process. Inspired by this fact, we try to design an adaptive approach that 4

can combine the butterfly and P2P implementations, where some stages in the butterfly 5

implementation are skipped with the P2P implementations of more MPI messages per process. 6

If all stages of the butterfly implementation are skipped, the adaptive data transfer library will 7

switch to the P2P implementation. Figure 813 shows an example of the adaptive data transfer 8

library with 8eight processes, where Stage 12 of the butterfly implementation is skipped with 9

the P2P implementation of 3three MPI messages per process. 10

The most significant challenge to such an adaptive approach is how to determine which stage(s) 11

of the butterfly implementation should be skipped. The first solution isattempt was to design a 12

cost model that can accurately predict the performance of data transfer in various 13

implementations. We eventually gave up this solution because it was almost impossible to 14

accurately predict the performance of the communications on a high-performance computer, 15

especially when a lot of users share the computer to run various applications. Performance 16

profiling which means directly measuring the performance of data transfer is more practical to 17

determine an appropriate implementation, because the simulation forof Earth system 18

modelingmodelling always takes a long time to run. To obtain an appropriate implementation 19

ofFigure 14 shows our flowchart of how the adaptive data transfer library, we try to successively 20

skip determines an appropriate implementation. It consists of an initialization segment and a 21

profiling segment. The initialization segment generates the stages of theprocess mappings and 22

a candidate implementation that is a butterfly implementation. If skipping one stage can achieve 23

better performance, this with no skipped stages. The profiling segment iterates through each 24

stage of the butterfly implementation to determine whether the current stage willshould be 25

skipped; otherwise, it will be or kept. Figure 9 shows a flowchart for determining an In an 26

iteration, the profiling segment first generates a temporary implementation based on the 27

candidate implementation where the current stage is skipped, and then runs the temporary 28

implementation to get the time the data transfer takes. When the temporary implementation is 29

more efficient than the candidate implementation, the current stage is skipped and the temporary 30

implementation replaces the candidate implementation. When the profiling segment finishes, 31

the appropriate implementation ofis set to be the candidate implementation. To reduce the 32

overhead introduced by the adaptive data transfer library. In the algorithm, a stage mask array 33

 15

(Stage_mask in the flowchart) specifies which stages are skipped., the profiling segment truly 1

transfers the data for model coupling. In detail, each array element corresponds to a stage of the 2

butterfly implementation. If the value of an array element is false, its corresponding stage is 3

skipped with a P2P implementation. Otherwise, its corresponding stage is kept.other words, 4

before obtaining an appropriate implementation, the data is transferred by the profiling segment. 5

The source code of the adaptive data transfer library is mainly written in C++, while the 6

application programming interfaces (APIs) are written in Fortran because most couplers and 7

models are programmed in Fortran. Table 1 lists the APIs, and Figure 10 shows an example of 8

how to use these APIs. The adaptive data transfer library can transfer 2-D and 3-D fields at the 9

same time. Now, it is publicly available at a website (see the code availability section). 10

5 Performance evaluation 11

In order to improve the performance of data transfer for model coupling, we propose the 12

butterfly implementation and an adaptive data transfer library that combines the butterfly 13

implementation and the traditional P2P implementation. In this section, we empirically evaluate 14

the adaptive data transfer library, through comparing it to the butterfly implementation and the 15

P2P implementation. Both toy models and realistic models (GAMIL2-CLM3 and CESM) are 16

used for the performance evaluation. GAMIL2-CLM3 has been introduced in Section 32.2. 17

CESM (Hurrell et al., 2013) is a state-of-the-art ESM developed by the National Center for 18

Atmospheric Research (NCAR.). All the experiments are run on the high performance 19

computer Tansuo100 that has been introduced in Section 3. 20

In the following contextNext, we will respectively evaluate the overhead of initialization, the 21

performance in data transfer and the performance in data rearrangement for parallel 22

interpolation. 23

5.1 Overhead of initialization 24

We first evaluate the overhead of initialization overhead of differentdata transfer 25

implementations of data transfer.. As shown in Figure 11Fig. 15, the overheads of initialization 26

of all the three implementations increaseoverhead of each implementation increases with the 27

increment of core number. The initialization overhead of the butterfly implementation is a little 28

higher than that of the P2P implementation, while the initialization overhead of the adaptive 29

data transfer library is 4-52-3 folds higher than that of the P2P implementation, because the 30

adaptive data transfer library uses extra time on the performance profiling. (please refer to 31

 16

Section 4). Considering that one data transfer instance should only be initialized only one time 1

at the beginning and executed many times in an ESMa coupled model, we can conclude that 2

the initialization overhead of the adaptive data transfer library is reasonable, especially when 3

the simulation is executed for a very long time. 4

5.2 Performance of data transfer between toy models 5

In this As mentioned in Section 3, the butterfly implementation has different characterizations 6

compared to the P2P implementation. Many factors can impact the performance of a data 7

transfer implementation including MPI message number, the size of data to be transferred (also 8

known as the number of fields in this evaluation) and the number of cores used. In this 9

subsection, we evaluate the performance of data transfer (excluding the initialization overhead) 10

withaffected by each of these factors. We first build two toy models that use the same logically 11

rectangular grid (of 192×96 grid points). Coupling fields are transferred between the two toy 12

models. In each test, the two toy models haveuse the same process number of cores, and each 13

process has the same MPI message number. The MPI message number of one process can be 14

modified through adjusting the parallel decompositions of the toy models. The factors that 15

impact the performance of a data transfer implementation include the commutation number, the 16

size of the data to be transferred (also known as the number of fields in this evaluation) and the 17

number of processes. Next, we evaluate the performance of data transfer through varying 18

theseone factor and fixing the other factors. 19

Given a fixed processIn the first experiment, we fix the number of cores to be 192 and a fixed 20

2-Dthe coupling field number ofto be 10, and vary MPI message number per process. Figure 21

1216 shows the execution time of one data transfer ofwith different implementations when 22

varying the MPI message number of eachper process from 1 to 96. The P2P implementation 23

can outperform the butterfly implementation when the MPI message number is small (say, 24

smaller than 12 in Figure 12Fig. 16), while the butterfly implementation can outperform the 25

P2P implementation when the MPI message number is big (say, bigger than 12 in Figure 12). 26

OurFig. 16). The adaptive data transfer library can completely keephas the best performance of 27

the P2P and butterfly implementations.. Moreover, it further improves the performance based 28

on the butterfly implementation when the MPI message number is big, because some butterfly 29

stages in the adaptive data transfer library have been skipped with the P2P implementation. 30

When the MPI message number per process is 96, the adaptive data transfer library can achieve 31

a 13.9-fold performance speedup compared to the P2P implementation. 32

 17

Given different numbers of processesIn the second experiment, we fix the number of cores and 1

different numbers of MPI messagesmessage number per process, and vary the coupling field 2

number transferred. Figure 1317 shows the execution time of one data transfer inwith different 3

implementations when varying the number of 2-D coupling fields to be transferred.in this 4

experiment. The results show that the execution time of each implementation increases with the 5

increment of data size. When the MPI message number per process is small (Figures 13aFigs. 6

17a and 13b17b), the performance of the butterfly implementation is poorer than that of the P2P 7

implementation, especially when the number of 2-D coupling fields gets bigger. However, The 8

adaptive data transfer library achieves similar performance withas the P2P implementation, 9

because it switches to the P2P implementation. When the MPI message number per process is 10

big (Figures 13cFigs. 17c and 13d17d), both the butterfly implementation and adaptive data 11

transfer library significantly outperform the P2P implementation, and the adaptive data transfer 12

library further achieves better performance than the butterfly implementation. 13

Given a fixedIn the third experiment, we fix MPI message number per process to be 24 and a 14

fixed 2-Dthe coupling field number transferred to be 10, and vary the number of cores. Figure 15

1418 shows the execution time of one data transfer inwith different implementations when 16

varying the number of cores. The results show that both the butterfly implementation and 17

adaptive data transfer library achieve better parallel scalability than the P2P implementation. 18

The execution time of the P2P implementation slightly increases with the increment of the 19

number of cores used. However, the execution times of the butterfly implementation and 20

adaptive data transfer library slightly decrease with the increment of the number of the cores 21

used. The butterfly implementation outperforms the P2P implementation, andwhile the adaptive 22

data transfer library achieves better performance than the butterfly implementation. 23

The resolution of models becomes higher and higher these days. How about the performance 24

of the data transfer implementations when model resolution becomes higher? Higher model 25

resolution means that a model will use more processor cores for accelerating simulation, while 26

the average number of grid points per processor core can remain constant. Considering that the 27

numbers of grid points are always balanced among the processes of a model, we make each 28

process (which runs on a unique processor core) of the toy models have 96 grid points in this 29

evaluation, while enabling processes to have different message numbers and different message 30

sizes. As shown in Fig. 19, although the execution times of all data transfer implementations 31

increase with the increment of processor core number (from 64 to 1024), both the butterfly 32

 18

implementation and the adaptive data transfer library significantly outperform the P2P 1

implementation, and the adaptive data transfer library achieves the best performance. These 2

results indicate that our proposed implementations can significantly improve the performance 3

of data transfer for higher model resolution. 4

5.3 Performance of data transfer between realistic models 5

Previous evaluation with toy models reveals that the adaptive data transfer library can achieve 6

the best performance among different implementations. In this subsection, we evaluate the 7

performance withusing two realistic models: GAMIL2-CLM3 (horizontal resolution of 8

2.8°×2.8°) and CESM (resolution of 1.9x2.5_gx1v6). 9

For CESM, we use the data transfer between the coupler CPL7 (Craig et al., 2012) and the land 10

surface model CLM4 (Oleson et al., 2004), where 32 2-D coupling fields on the CLM4 11

horizontal grid (the grid size is 144×96=13824) are transferred. Figure 1520 shows the 12

performance of one data transfer of different implementations when increasing the process 13

number of both CPL7 and CLM4 from 6 to 192. When the process number is small (say, smaller 14

than 24 in Figure 15Fig. 20), the butterfly implementation is much poorer than the P2P 15

implementation, and the adaptive data transfer library achieves similar performance as the P2P 16

implementation. becasue it switches to the P2P implementation. However, when the process 17

number gets bigger (say, larger than 24 in Figure 15Fig. 20), the adaptive data transfer library 18

dramatically outperforms the P2P implementation with more speedup and also outperforms the 19

butterfly implementation. When each component uses 192 cores, the adaptive data transfer 20

library is 4.01 times faster than the P2P implementation. 21

For GAMIL2-CLM3, we use the data transfer from CLM3 to GAMIL2 where 14 2-D coupling 22

fields on the GAMIL2 horizontal grid (thewhose grid size is 128×60=7680) are transferred. 23

Figure 1621 shows the execution time of one data transfer of each implementation when 24

increasing the process number of both GAMIL2 and CLM3 from 6 to 192. The results in Figure 25

16Fig. 21 confirm that the adaptive data transfer library can constantly keepshow the best 26

performance among different implementations. Compared to the P2P implementation, the 27

adaptive data transfer library achieves an 11.68-fold performance speedup when the process 28

number is 96, but achieves a much lower speedup (only 3.48-fold) when the process number is 29

192. This is because that the average MPI message number per process reduces from 32 to 18 30

when the number of process increases from 96 to 192. 31

 19

5.4 Performance of data rearrangement for interpolation 1

For model coupling, besides theBesides data transfer between different component models, 2

there is the otheranother kind of data transfer in model coupling that rearranges the data inside 3

a model in order for parallel interpolation of fields between different grids. Here, we use the 4

data rearrangement for the parallel interpolation from the atmosphere grid (thewhose grid size 5

is 144×96=13824) to the ocean grid (thewhose grid size is 320×384=122880) in the coupled 6

model CESM for further evaluation. The results show thatAs mentioned above, the P2P 7

implentation is sufficient for data rearrangement. However, the butterfly implementation is 8

much poorer than the P2P implementation (Figure 17Fig. 22). This is because the MPI message 9

number is very small (for example, average MPI message number per process is only 6.49 when 10

each model uses 96 cores) for data rearrangement. As a resultOn the other hand, the adaptive 11

data transfer library achieves almost the same performance as the P2P implementation. , 12

because it switches to the P2P implementation. Therefore, the adaptive data transfer library can 13

always show the best performance. 14

5.5 Performance impovement for a coupled model 15

With the performance improvement of data transfer, we expect that the adaptive data transfer 16

library will improve the performance of coupled models. For this evaluation, we first import 17

the adaptive data transfer library into C-Coupler1 and then use the coupled model GAMIL2-18

CLM3 that uses C-Coupler1 for coupling to measure performance results. As shown in Fig. 23, 19

the adaptive data transfer library achieves higher performance improvement (when the P2P 20

implementation is used as the baseline) for GAMIL2-CLM3 when using more processor cores. 21

When each component model uses 128 processor cores, the adaptive data transfer library 22

achieves ~7% performance improvement. This performance improvement would not be low 23

because the model coupling only takes a very small proportion of execution time in the simple 24

coupled model GAMIL2-CLM3 and the parallel scalability of the two coupled models 25

GAMIL2 and CLM3 is not good. 26

6 Conclusions 27

Data transfer is the fundamental and most frequently used operation in a coupler. This paper 28

demonstrated that the current implementation (which is named as the P2P implementation in 29

this paper) of data transfer in most state-of-the-art couplers is not efficientinefficient for 30

transferring data between two component models. To improve the parallel performance of data 31

 20

transfer, we proposed a butterfly implementation. However, the compared to the P2P 1

implementation, the butterfly implementation has both advantages and disadvantages, 2

comparing with the P2P implementation. The evaluation results showed that the butterfly 3

implementation did not always outperform the P2P implementation. To completely achieve 4

better parallel performance of data transfer, we built an adaptive data transfer library, which 5

combines the advantages of theboth butterfly implementation and P2P implementation. The 6

evaluation results demonstrated that, the adaptive data transfer library can always achieve the 7

best performance, comparing with the butterfly implementation and P2P implementation. That 8

is to say the adaptive data transfer library can effectivelysignificantly improve the performance 9

of data transfer inso as to improve a coupled model coupling.. 10

The initialization overhead for the adaptive data transfer library could become expensive when 11

using a large number of processor cores. In the future version, the adaptive data transfer will 12

allow users to record the results of performance profiling offline to save the time used for 13

performance profiling in next runs of the same coupled model. 14

Code availability 15

The source code of the adaptive data transfer library is available at https://github.com/zhang-16

cheng09/Data_transfer_lib. 17

Acknowledgements 18

This work is supported in part by the Natural Science Foundation of China (no. 41275098), the 19

National Grand Fundamental Research 973 Program of China (no. 2013CB956603),) and the 20

Tsinghua University Initiative Scientific Research Program (no. 20131089356). 21

22

https://github.com/zhang-cheng09/Data_transfer_lib
https://github.com/zhang-cheng09/Data_transfer_lib

 21

References 1

Armstrong, C. W., Ford, R. W., and Riley, G. D.: Coupling integrated Earth System Model 2

components with BFG2, Concurrency and Computation: Practice and Experience, 3

2009;21;767–791, doi:10.1002/cpe.1348, 2009. 4

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Malyshev, S., and Stouffer, R. J.: 5

The Exchange Grid: a mechanism for data exchange between Earth system components on 6

independent grids, In Parallel Computational Fluid Dynamics 2005 Theory and Applications, 7

2006, 179-186, doi: 10.1016/B978-044452206-1/50021-5, 2006. 8

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, CChong, F. T., and 9

Brewer, E. A.: Packaging and multiplexing of hierarchical scalable expanders, Parallel 10

Computer Routing and Communication, Springer Berlin Heidelberg, 1994:200-214. 11

. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, 12

W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The Community Climate System 13

Model Version 3 (CCSM3), Journal of Climate, 19(11), 2122–2143, 2006. 14

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for Earth system modelling 15

developed for CCSM4 and CESM1, Int. J. High Perform. C., 26, 31-42, 16

doi:10.1177/1094342011428141, 2012. 17

Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson, J., Ong, E., Ding, C., and He, Y.: 18

CPL6: the New Extensible, High Performance Parallel Coupler for the Community Climate 19

System Model, Int. J. High Perform. C., 19, 309–327, 2005. 20

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, In IEEE 21

International Parallel & Distributed Processing Symposium, Long Beach, CA, 2007. 22

Dennis, J. M. and Tufo, H. M.: Scaling climate simulation applications on the IBM Blue Gene/L 23

system, IBM J. Res. Dev., 52, 117-126, DOI:10.1147/rd.521.0117, 2008. 24

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., 25

Taylor, M. A., and Worley, P. H.: CAM-SE: a scalable spectral element dynamical core for the 26

Community Atmosphere Model, Int. J. High Perform. C., 26, 74-89, 27

doi:10.1177/1094342011428142, 2012. 28

Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M., Yang, 29

Z.-L., and Zeng X.: The Community Land surface model and its climate statistics as a 30

 22

component of the Community Climate System Model, Journal of Climate, 19(11), 2302–2324, 1

2006. 2

Ford, R. W., Riley, G. D., Bane, M. K., Armstrong, C. W., and Freeman, T. L.: GCF: a general 3

coupling framework, Concurrency and Computation: Practice and Experience, 18(2), 163–181, 4

2006. 5

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., 6

Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and 7

Zhang, M.: The Community Climate System Model version 4, J. Climate, 24, 4973–4991, 2011. 8

Foster I.: Designing and building parallel programs: concepts and tools for parallel software 9

engineering, Addison-Wesley, 1995. 10

Heckbert P.: Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm, Computer 11

Graphics, 2: 15-463, 1995. 12

Hemmert, K. S., and K. D. Underwood.: An analysis of the double-precision floating-point FFT 13

on FPGAs. Field-Programmable Custom Computing Machines, 2005. FCCM 2005. 13th 14

Annual IEEE Symposium on IEEE, 2005:171-180. 15

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.: The Architecture of the Earth 16

System Modelling Framework, Computing in Science & Engineering, 6(1), 18–28, 2004. 17

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-18

F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., 19

Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., 20

Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: a framework for 21

collaborative research, Bulletin of the American Meteorological Society, 94(9), 1339–1360, 22

2013. 23

Hunke, E. C. and Lipscomb W. H.: CICE: the Los Alamos Sea Ice Model Documentation and 24

Software User’s Manual 4.0, Technical Report LA-CC-06-012, Los Alamos National 25

Laboratory, T-3 Fluid Dynamics Group, 2008. 26

Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: the Los 27

Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.0, LA-CC-06-28

012, Los Alamos National Laboratory, Los Alamos NM, 87545, 115, 2013. 29

 23

Jacob, R., Larson, J., and Ong, E.: M × N Communication and Parallel Interpolation in 1

Community Climate System Model version 3 using the Model Coupling Toolkit, International 2

Journal of High Performance Computing Applications, 19(3), 293–307, 2005. 3

Jan, B., Montrucchio, B., Ragusa, C., Khan, F. G., and Khan, O.: Parallel butterfly sorting 4

algorithm on gpu, Acta Press, 2013. 5

Kerbyson, D. J., and Jones, P. W.: A performance model of the parallel ocean program, 6

International Journal of High Performance Computing Applications, 19(3), 261-276, 7

doi:10.1177/1094342005056114, 2005. 8

Kim J., Dally W. J., and Abts D.: Flattened butterfly: A cost-efficient topology for high-radix 9

networks, ISCA, 2007, 35(2):126-137. 10

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W., Wang, Y., Huang, W., Shi, X., 11

Pu, Y., G. and Yang.: Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 12

(GAMIL2), Advances in Atmospheric Sciences, 30, 855–867, doi:10.1007/s00376-013-2157-13

5, 2013. 14

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji, Y., and Wang, L.: C-Coupler1: a 15

Chinese community coupler for Earth system modeling, Geoscientific Model Development, 16

7(5), 2281-2302, doi:10.5194/gmd-7-2281-2014, 2014. 17

Morrison, H., and A. Gettelman: A new two-moment bulk stratiform cloud microphysics 18

scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and 19

numerical tests, Journal of Climate, 21(15), 3642–3659, doi:10.1175/2008JCLI2105.1, 2008. 20

Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, 21

D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W. D., Zhang, M., and Lin, S.: 22

Description of the NCAR Community Atmosphere Model (CAM 4.0), National Center for 23

Atmospheric Research Ncar Koha Opencat, TN-485+STR, 222p., 2010. 24

Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, 25

A. J., Garcia, R., Kinnison, D., Lamarque, J. F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., 26

Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, 27

S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community 28

Atmosphere Model (CAM 5.0), National Center for Atmospheric Research Ncar Koha 29

Opencat,TN-486+STR, 289p., 2012. 30

 24

Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., 1

Houser, P., Levis, S., Niu, G. Y., Thornton, P., Vertenstein, M., Yang, Z. L., and Zeng, X.: 2

Technical Description of the Community Land Surface Model (CLM), National Center for 3

Atmospheric Research Ncar Koha Opencat, TN-461+STR, 186p., 2004. 4

Petagon, R., and Werapun, J.: Embedding the optimal all-to-all personalized exchange on 5

multistage interconnection networks + + mathContainer Loading Mathjax, Journal of Parallel 6

& Distributed Computing 88(2016):16-30. 7

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4–a coupling software for next generation Earth 8

System Modelling, Geoscientific Model Development, 3(1), 87–104, doi:10.5194/gmd-3-87-9

2010, 2010. 10

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz. J., Eden, 11

C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., 12

Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Parallel Ocean 13

Program (POP) reference manual ocean component of the Community Climate System Model 14

(CCSM) and Community Earth System Model (CESM), Los Alamos National Laboratory, 15

LAUR-10-01853, available at 16

http://www.cesm.ucar.edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf (last access: 15 17

October 2015), 141 p., 2010. 18

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J., 19

O’Kuinghttons, R., Riley, G. D., and Vertenstein, M.: Coupling technologies for Earth System 20

Modelling, Geoscientific Model Development, 5(6), 1589–1596, doi:10.5194/gmd-5-1589-21

2012, 2012. 22

Valcke, S.: The OASIS3 coupler: a European climate modelling community software, 23

Geoscientific Model Development, 6(2), 373–388, doi:10.5194/gmd-6-373-2013, 2013. 24

Valcke, S., Craig, T., and Coquart, L.: The OASIS3-MCT parallel coupler, in: The Second 25

Workshop on Coupling Technologies for Earth System Models (CW2013), available at: 26

https://wiki.cc.gatech.edu/CW2013/images/a/a0/OASIS_MCT_abstract.pdf (last access: 15 27

October 2015), 2013. 28

 29

 30

 25

Table 1. The application program interfaces (APIs) of the adaptive data transfer library. 1

Couplers or component models can improve the performance of data transfer through calling 2

these APIs. 3

API Brief description Parameter description

instance_id = data_transfer_
register_instance(local_comm,
global_rank_remote_root, action)

This API registers one
data transfer instance
and returns the index of
this data transfer
instance. A component
model can register
multiple different data
transfer instances.

This API takes local
communicator local_comm,
global rank of the root process
in the remote model
global_rank_remote_root and
the transfer direction action
(send, recv or sendrecv) as
input, and returns the instance
index instance_id.

call data_transfer_register
_decomp(instance_id,
num_grid_cells, num_local_cells,
local_cells_global_index)

This API registers one
parallel decomposition
to one data transfer
instance.

This API takes the instance
index instance_id, the number
of grid cells num_grid_cells,
the number of local cells
num_local_cells and the
global index of local cells
local_cells_global_index as
input.

call data_transfer_register_field
(instance_id, data_buf, input)

This API registers a
coupling field to enable
one data transfer
instance to access the
memory space of this
field. One data transfer
instance can register
multiple coupling
fields.

This API takes the instance
index instance_id, the
memory space of this field
data_buf and the action of this
field input (true stands for
input field and false stands for
output field) as input.

call data_transfer_register_mask
(instance_id, mask_array)

This API registers a
mask array to enable
one data transfer
instance to transfer
different coupling fields
at different coupling
steps.

This API takes the instance
index instance_id and the
mask array mask_array as
input.

call data_transfer_init_instance
(instance_id)

This API initializes one
data transfer instance.

This API takes the instance
index instance_id as input.

call data_transfer_exec
_instance(instance_id)

This API executes one
data transfer instance.

This API takes the instance
index instance_id as input.

call
data_transfer_final_instance
(instance_id)

This API finalizes one
data transfer instance.

This API takes the instance
index instance_id as input.

 4

5

 26

 1

Figure 1. Average execution time of the P2P implementation when transferring 14 2-D fields 2

from CLM3 to GAMIL2. In each test, the atmosphere model GAMIL2 and the land surface 3

model CLM3 use the same number of cores and; they do not share the same computing node. 4

The horizontal grid of the 14 2-D fields contains 7680 (128×60) grid points. 5

6

 27

 1

Figure 2. Variation of bandwidth (y-axis) of an MPI P2P communication with respect to the 2

increment of message size. (x-axis). The results are generated from our benchmark. In the 3

benchmark, one process sends messages with different sizes to the other process. The two 4

processes of the P2P communication run on two different computing nodes. of Tansuo100. 5

6

 28

 1

Figure 3. Variation of maximum message size of the P2P implementation (y-axis) in GAMIL2-2

CLM3 with respect to the increment of processcore number. (x-axis). The experimental setup 3

here is similar withto that shown in Fig. 1. 4

5

398.13

110.36

14.44

4.48

1.53

0.66 0.55
0.33

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1 2 6 12 24 48 96 192

M
es

sa
ge

 s
iz

e
(K

B
)

Number of cores per model

Maximum

Average

 29

 1

Figure 4. Variation of total MPI message number of MPI messages (y-axis) of the P2P 2

implementation in GAMIL2-CLM3 with respect to the increment of processcore number (x-3

axis). The experimental setup here is similar withto that shown in Fig. 1. 4

5

1

4

36

144

567

1815
3071 3505

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 2 6 12 24 48 96 192

C
om

m
un

ic
at

io
n

nu
m

be
r

Number of cores per process

 30

 1
Figure 5. The Ideal and actual bandwidths of the P2P implementation (y-axis) in GAMIL2-2

CLM3 when gradually increasing the number of processes for cores used by each component 3

model. (x-axis). The experimental setup here is similar withto that shown in FigureFig. 1. The 4

ideal bandwidth is calculated from the message size and the MPI bandwidth measured in 5

FigureFig. 2,; and the actual bandwidth is calculated from Fig. 1. 6

7

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

6 12 24 48 96 192

B
an

dw
id

th
(G

B
/s

)

Number of cores per model

Ideal
Actual

 31

 1

Figure 6. Variation of message number of one process (y-axis) using the P2P implementation 2

in GAMIL2-CLM3 with respect to the increment of core number (x-axis). The experimental 3

setup is similar to that shown in Fig. 1. 4

5

1

2

4

8

16

32

64

1 2 6 12 24 48 96 192

C
om

m
un

ic
at

io
n

nu
m

be
r

Number of cores per model

Maxmum
Minimum
Average

 32

Source parallel decomposition of
butterfly kernel

Target parallel decomposition of
butterfly kernel

D7
0 D

7
1 D

7
2 D

7
3 D

7
4 D

7
5 D

7
6 D

7
7 D6

1 D
7

1 D
6

3 D
7

3 D
6

5 D
7

5 D
6

7 D
7

7 D4
3 D

5
3 D

6
3 D

7
3 D

4
7 D

5
7 D

6
7 D

7
7P7

D6
0 D

6
1 D

6
2 D

6
3 D

6
4 D

6
5 D

6
6 D

6
7 D0

6 D
1

6 D
2

6 D
3

6 D
4

6 D
5

6 D
6

6 D
7

6D6
0 D

7
0 D

6
2 D

7
2 D

6
4 D

7
4 D

6
6 D

7
6 D4

2 D
5

2 D
6

2 D
7

2 D
4

6 D
5

6 D
6

6 D
7

6P6

D5
0 D

5
1 D

5
2 D

5
3 D

5
4 D

5
5 D

5
6 D

5
7 D0

5 D
1

5 D
2

5 D
3

5 D
4

5 D
5

5 D
6

5 D
7

5D4
1 D

5
1 D

4
3 D

5
3 D

4
5 D

5
5 D

4
7 D

5
7 D4

1 D
5

1 D
6

1 D
7

1 D
4

5 D
5

5 D
6

5 D
7

5P5

D4
0 D

4
1 D

4
2 D

4
3 D

4
4 D

4
5 D

4
6 D

4
7 D0

4 D
1

4 D
2

4 D
3

4 D
4

4 D
5

4 D
6

4 D
7

4D4
0 D

5
0 D

4
2 D

5
2 D

4
4 D

5
4 D

4
6 D

5
6 D4

0 D
5

0 D
6

0 D
7

0 D
4

4 D
5

4 D
6

4 D
7

4P4

D3
0 D

3
1 D

3
2 D

3
3 D

3
4 D

3
5 D

3
6 D

3
7 D2

1 D
3

1 D
2

3 D
3

3 D
2

5 D
3

5 D
2

7 D
3

7 D0
3 D

1
3 D

2
3 D

3
3 D

4
3 D

5
3 D

6
3 D

7
3D0

3 D
1

3 D
2

3 D
3

3 D
0

7 D
1

7 D
2

7 D
3

7P3

D2
0 D

2
1 D

2
2 D

2
3 D

2
4 D

2
5 D

2
6 D

2
7 D2

0 D
3

0 D
2

2 D
3

2 D
2

4 D
3

4 D
2

6 D
3

6 D0
2 D

1
2 D

2
2 D

3
2 D

4
2 D

5
2 D

6
2 D

7
2D0

2 D
1

2 D
2

2 D
3

2 D
0

6 D
1

6 D
2

6 D
3

6P2

D1
0 D

1
1 D

1
2 D

1
3 D

1
4 D

1
5 D

1
6 D

1
7 D0

1 D
1

1 D
0

3 D
1

3 D
0

5 D
1

5 D
0

7 D
1

7 D0
1 D

1
1 D

2
1 D

3
1 D

0
5 D

1
5 D

2
5 D

3
5 D0

1 D
1

1 D
2

1 D
3

1 D
4

1 D
5

1 D
6

1 D
7

1P1

D0
0 D

0
1 D

0
2 D

0
3 D

0
4 D

0
5 D

0
6 D

0
7 D0

0 D
1

0 D
0

2 D
1

2 D
0

4 D
1

4 D
0

6 D
1

6 D0
0 D

1
0 D

2
0 D

3
0 D

0
4 D

1
4 D

2
4 D

3
4 D0

0 D
1

0 D
2

0 D
3

0 D
4

0 D
5

0 D
6

0 D
7

0P0

Stage 1 Stage 2 Stage 3

D0
7 D

1
7 D

2
7 D

3
7 D

4
7 D

5
7 D

6
7 D

7
7

 1
Figure 7. An example of the butterfly implementation with 8 processes. The butterfly 2

implementation targets to rearrange the data from the source parallel decomposition to the target 3

parallel decomposition.kernel with eight processes. Each colored row stands for aone process 4

(P0-P7). Di represents the subset of data corresponding to process Pi determined by the target 5

parallel decomposition. There are multiple stages (each colored column of arrows represents a 6

stage (Stage 01 to Stage 3)) in the butterfly implementation, and each stage has a unique parallel 7

decomposition.kernel. Each arrow stands for an MPI P2P communication from one process to 8

another. Dij means the data is originally in process Pi according to the source parallel 9

decomposition and is finally in process Pj according to the target parallel decomposition. 10

11

 33

Receiver
Target parallel decomposition

Butterfly Kernel
Source parallel decomposition

Target parallel decomposition

Sender

Source parallel decomposition

Process mappingProcess mapping

Process mappingProcess mapping

 1

Figure 8. The butterfly implementation, which is composed of three parts: the butterfly kernel; 2

process mapping from the sender to the butterfly kernel; and process mapping from the butterfly 3

kernel to the receiver. 4

 5

6

 34

 1

Figure 9. Total message size transferred by P2P implementation and butterfly implementation 2

(y-axis) in GAMIL2-CLM3, when varying the number of cores used by each model (x-axis). 3

The experimental setup is similar to that shown in Fig. 1. 4

5

 35

 1

Figure 10. Average message size transferred by P2P implementation and butterfly 2

implementation (y-axis) in GAMIL2-CLM3, when varying the number of cores used by each 3

model (x-axis). The experimental setup is similar to that shown in Fig. 1. 4

5

 36

 1

Figure 11. Maximum message number, average message number and minimum message 2

number of processes in P2P implementation and butterfly implementation (y-axis), when 3

varying the number of cores used by each model (x-axis) in GAMIL2-CLM3. The experimental 4

setup is similar to that shown in Fig. 1. 5

6

 37

1
Figure 7. 2

Figure 12. An example of process mappingmappings, given that the sender has 5five 3

processes (S0-S4), the receiver has 10 processes (R0-R9) (there is no common process between 4

the sender and receiver), and the butterfly kernel contains 8eight processes (B0-B7). Panels (a) 5

and (b) show how to iteratively pair processes of the sender and receiver, respectively. There 6

are multiple stages in the iterative pairing of processes of the sender and receiver. In each 7

stage, the processes in the same color are grouped into one process pair. Panel (c) shows how 8

to map the reordered processes of the sender and receiver toonto the processes of the butterfly 9

kernel. All the 5five processes of the sender are and three processes of the receiver are used 10

foras the processes of the butterfly kernel. Each process of the sender is mapped toonto a 11

𝑅0 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6

554 848 685 580 527 831 387

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7

1413 1797 1194 1093 1134 0 0 0

𝑅0 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8 𝑅9 𝑅10 𝑅11 𝑅12 𝑅13 𝑅14 𝑅15

554 848 685 580 527 831 387 829 510 880 0 0 0 0 0 0

{S1 S7} {S0 S6} {S2 S5} {S4 S3}

{{S4 S3} {S2 S5}} {{S1 S7} {S0 S6}}

{{{S4 S3} {S2 S5}} {{S1 S7} {S0 S6}}}

{R9 R15} {R1 R14} {R5 R13} {R7 R12} {R2 R11} {R3 R10} {R0 R6} {R4 R8}

{{R4 R8} {R3 R10}} {{R0 R6} {R2 R11}} {{R9 R15} {R7 R12}} {{R1 R14} {R5 R13}}

{{{R9 R15} {R7 R12}} {{R4 R8} {R3 R10}}} {{{R1 R14} {R5 R13}} {{R0 R6} {R2 R11}}}

{{{{R9 R15} {R7 R12}} {{R4 R8} {R3 R10}}} {{{R1 R14} {R5 R13}} {{R0 R6} {R2 R11}}}}

Data size

Padding

Stage 1:

Stage 2:

Stage 3:

(a)

Data size

Padding

Stage 1:

Stage 2:

Stage 3:

Stage 4:

(b)

𝐵0 = 𝑆4 𝐵1 = 𝑆3 𝐵2 = 𝑆2 𝐵3 = 𝑅0 𝐵4 = 𝑆1 𝐵5 = 𝑅5 𝐵6 = 𝑆0 𝐵7 = 𝑅2

𝑆4 𝑆3 𝑆2 𝑆5 𝑆1 𝑆7 𝑆0 𝑆6

𝑅9 𝑅15 𝑅1 𝑅14 𝑅4 𝑅8 𝑅0 𝑅6 𝑅7 𝑅12 𝑅5 𝑅13 𝑅3 𝑅10 𝑅2 𝑅11

Sender

Butterfly

Receiver

(c)

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4

1413 1797 1194 1093 1134

𝑅7

829

𝑅8

510

𝑅9

880

 38

process of the butterfly kernel, while eachevery two processes of the receiver are mapped 1

toonto one process of the butterfly kernel. 2

D7
0 D

7
1 D

7
2 D

7
3 D

7
4 D

7
5 D

7
6 D

7
7 D4

3 D
5

3 D
6

3 D
7

3 D
4

7 D
5

7 D
6

7 D
7

7
P7

D6
0 D

6
1 D

6
2 D

6
3 D

6
4 D

6
5 D

6
6 D

6
7 D0

6 D
1

6 D
2

6 D
3

6 D
4

6 D
5

6 D
6

6 D
7

6D4
2 D

5
2 D

6
2 D

7
2 D

4
6 D

5
6 D

6
6 D

7
6

P6

D5
0 D

5
1 D

5
2 D

5
3 D

5
4 D

5
5 D

5
6 D

5
7 D0

5 D
1

5 D
2

5 D
3

5 D
4

5 D
5

5 D
6

5 D
7

5D4
1 D

5
1 D

6
1 D

7
1 D

4
5 D

5
5 D

6
5 D

7
5

P5

D4
0 D

4
1 D

4
2 D

4
3 D

4
4 D

4
5 D

4
6 D

4
7 D0

4 D
1

4 D
2

4 D
3

4 D
4

4 D
5

4 D
6

4 D
7

4D4
0 D

5
0 D

6
0 D

7
0 D

4
4 D

5
4 D

6
4 D

7
4

P4

D3
0 D

3
1 D

3
2 D

3
3 D

3
4 D

3
5 D

3
6 D

3
7 D0

3 D
1

3 D
2

3 D
3

3 D
4

3 D
5

3 D
6

3 D
7

3D0
3 D

1
3 D

2
3 D

3
3 D

0
7 D

1
7 D

2
7 D

3
7

P3

D2
0 D

2
1 D

2
2 D

2
3 D

2
4 D

2
5 D

2
6 D

2
7 D0

2 D
1

2 D
2

2 D
3

2 D
4

2 D
5

2 D
6

2 D
7

2D0
2 D

1
2 D

2
2 D

3
2 D

0
6 D

1
6 D

2
6 D

3
6

P2

D1
0 D

1
1 D

1
2 D

1
3 D

1
4 D

1
5 D

1
6 D

1
7 D0

1 D
1

1 D
2

1 D
3

1 D
0

5 D
1

5 D
2

5 D
3

5 D0
1 D

1
1 D

2
1 D

3
1 D

4
1 D

5
1 D

6
1 D

7
1

P1

D0
0 D

0
1 D

0
2 D

0
3 D

0
4 D

0
5 D

0
6 D

0
7 D0

0 D
1

0 D
2

0 D
3

0 D
0

4 D
1

4 D
2

4 D
3

4 D0
0 D

1
0 D

2
0 D

3
0 D

4
0 D

5
0 D

6
0 D

7
0

P0

Stage 1 Stage 3

D0
7 D

1
7 D

2
7 D

3
7 D

4
7 D

5
7 D

6
7 D

7
7

Source parallel decomposition of
butterfly kernel

Target parallel decomposition of
butterfly kernel 3

Figure 813. An example of the adaptive data transfer library given 8with eight processes, where 4

Stage 12 of the butterfly implementation is skipped with the P2P implementation of 3three MPI 5

messages per process. 6

 7

 39

Input: Process number of the butterfly implementation Proc_num

Output: Stage mask array of the butterfly implementation Stage_mask

Program Profiling

Begin

Set the stage number Stage_num to be log2Porc_num+1

For i=0 to Stage_num-1; then set Stage_mask[i] to be true
 Execute the butterfly instance with the stage mask array Stage_mask, and record the
execution time as best_timer

 For i=0 to Stage_num-1

 Do

 Set Stage_mask[i] to be false

 Execute the butterfly instance with the stage mask array Stage_mask, and record the
execution time as cur_timer

 If best_timer is larger than cur_timer

 Set best_timer to be cur_timer

 Else set Stage_mask[i] to be true

 End do

End
 1

Figure 10. An example of how to implement data transfer with the APIs of the adaptive data 2

transfer library. The APIs of the adaptive data transfer library are marked in red. 3

 4

5

 40

Begin

Carry on the process mapping from the source model to the Butterfly
kernel and the process mapping from the Butterfly kernel to the target

model.

Initialize a candidate implementation where no stages are skipped.

Initialize Stage_num to be the stage number of the adaptive library.
Initialize current stage Current_stage to be 1.

Run the candidate implementation.
Record the execution time as Cand_time.

Current_stage <= Stage_num

Initialize a temporary implementation based on the candidate
implementation where Current_stage is skipped

Run the temporary implementation.
Record the execution time of data transfer as Temp_time.

Temp_time < Cand_time

Delete the temporary
implementation.

Delete the candidate implementation.
Replace the candidate implementation with the temporary

implementation.
Set Cand_time to be Temp_time.

Current_stage = Current_stage + 1

Yes

No
Yes

EndNo

Initialize

Profiling

 1

Figure 914. A flowchart for determining an appropriate implementation of the adaptive data 2

transfer library. 3

4

 41

 1
Figure 11.Figure 15. Initialization time (y-axis) of one data transfer between two toy models 2

using a rectangular grid (of 192×96 grid points) when varying the number of cores used by each 3

toy model (x-axis). There are 10 2-D coupling fields transferred from the source toy model to 4

the target toy model. If the number of cores per toy model is less than 24, the MPI message 5

number per process is set to be the number of cores. Otherwise, the MPI message number per 6

process is set to 24. 7

8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 6 12 24 48 96 192

Ti
m

e(
s)

Number of cores per model

Library
P2P
Butterfly

 42

 1
Figure 1216. Average execution time (y-axis) forof one data transfer between two toy models 2

with the same rectangular grid (of 192×96 grid points) when varying the MPI message number 3

per process (x-axis). Each toy model is run with 192 cores (or processes).. There are 10 2-D 4

coupling fields transferred from the source toy model to the target toy model. 5

6

 43

 1
Figure 1317. Average execution time (y-axis) of one data transfer between two toy models with 2

the same rectangular grid (of 192×96 grid points) when varying the number of coupling fields 3

transferred (x-axis). There are four simulation tests for the evaluation. In simulation (a), each 4

toy model is run with 48 cores, and the MPI message number per process is 12. In simulation 5

(b), each toy model is run with 192 cores, and the MPI message number per process is 12. In 6

simulation (c), each toy model is run with 48 cores, and the MPI message number per process 7

is 48. In simulation (d), each toy model is run with 192 cores (or processes)), and the MPI 8

message number per process is 48. 9

10

 44

 1
Figure 1418. Average execution time (y-axis) of one data transfer between two toy models with 2

the same rectangular grid (of 192×96 grid points) when varying the number of cores used by 3

each toy model (x-axis). There are 10 2-D coupling fields transferred from the source toy model 4

to the target toy model. In each test, the MPI message number per process is set to 24. 5

6

 45

 1

Figure 15.Figure 19. Average execution time (y-axis) of one data transfer between two toy 2

models. In this evaluation, each process (running on a unique processor core) of the toy models 3

have 96 grid points, while different processes have different message numbers and different 4

message sizes. The number of coupling fields transferred is set to 20. 5

6

 46

 1

Figure 20. Average execution time (y-axis) of one data transfer between the land surface model 2

CLM4 and the coupler CPL7 in CESM when varying the number of cores used by each model 3

(x-axis): 32 coupling fields on the CLM horizontal grid (the grid size is 144×96=13824) are 4

transferred from the land surface model CLM4 to the coupler CPL7. The P2P results are from 5

the adaptive data transfer library which switches to the P2P implementation. 6

7

 47

 1
Figure 1621. Average execution time (y-axis) of one data transfer between the atmosphere 2

model GAMIL2 and the land surface model CLM3 in GAMIL2-CLM3 when varying the 3

number of cores used by each model (x-axis): 14 coupling fields on the GAMIL2 horizontal 4

grid (the grid size is 128×60=7680) are transferred from the land surface model CLM3 to the 5

atmosphere model GAMIL2. 6

7

 48

 1
Figure 1722. Average execution time (y-axis) of one data rearrangement for the parallel 2

interpolation from the atmosphere grid (the grid size is 144×96=13824) to the ocean grid (the 3

grid size is 320×384=122880) in CESM when varying the number of cores used by each model 4

(x-axis). 5

6

 49

 1

Figure 23. Performance imporvement of the coupled model GAMIL2-CLM3 achieved by the 2

adaptive data transfer library, with the performance of GAMIL2-CLM3 using the P2P 3

implementation as the baseline. 4

