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Reply to Referee1 
 

1. Grammar and syntax needs to be considered much more carefully. 
 
Response: We carefully improved the grammar and syntax in the revised version. 
 
2. The software does not contain any version number. 
 
Response: The version number has been added into the software. 
 
3. In the introduction the authors raise the impression that they address high-resolution climate 

model applications running on modern high-performance compute systems where a single model 
employs several thousand processors or cores. Later on the algorithmic approach is investigated 
with test cases at very coarse resolution o(2 degrees) on a comparatively low number of cores 
(192) and leave the reader alone with any guess about the scalability of their approach. 

 
Response: The performance of data transfer between high-resolution toy models has been evaluated, 
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and 
Fig. 19). 
 
4. P8983,L1: Is it the number of coupled models or the number of coupled model configurations the 

authors have in mind? 
 
Response: It means the number of coupled model configurations (please refer to P2 L10 - L11). 
 
5. P8984,L27: Do you believe or are you convinced? 
 
Response: The sentence is modified as “We believe that other coupler versions can also benefit from it” 
(please refer to P3 L28 – L29). 
 
6. The main - if not the only - purpose of section 2 is to provide the reader with an overview about the 

communication algorithms which are used in existing coupling software. In essence this section is 
telling us that all existing coupling software products use P2P communication. I wonder why I have 
to read approx. 85 lines to arrive at this. An overview of existing coupler software has already been 
published elsewhere – among the GMD - and the author should be able to reference those rather 
than providing another overview. 

 
Response: The overview about the data transfer in existing coupler is shrunk (please refer to P4 L4 – 
L16). We have merged it and the original Section 3 into Section 2 of the revised version (please refer to 
P4 L3 – P5 L30). 
 
7. In section 4 the headline raises the expectation that we can learn how the butterfly algorithm works. 

The reader is not really guided through this section. Is the numbered list in sec 4.1 based on findings 



by the authors? In this case some piece of information is missing which guides the reader to this 
statement. In case it is not based on the authors findings a reference is missing. Fig. 6 (and likewise 
Fig 8) does not help me at all to learn how the butterfly algorithm works. If each of the 8 processes 
P0 to P8 already has all data D0 to D8 I cannot see any necessity for communication. What is the 
information that shall be transported to the reader with the colours? 

 
Response: The butterfly algorithm is more clearly explained in Section 3 (please refer to P6 L1 – P9 
L12). An example is given to explain the numbered list in Section 3.1 (please refer to P7 L21 – L30, Fig. 
9, Fig. 10, Fig. 11). More information is added to help the understanding of the butterfly implementation 
(please refer to P7 L2 – L20, Fig. 7, Fig. 13). 
 
8. I would have loved to be guided through Fig 7 in the text a little bit. If this Figure is not important 

at all it should be removed. 
 
Response: Please refer to P8 L30 – P9 L12 and Fig. 12. 
 
9. In section 5 it remains unclear (to me at least) how the adaptive process works and I would 

appreciate if this was clarified in a revised version. Does this work as a kind of self-learning 
algorithm where the optimal path is determined of the first n data exchanges of a model integration 
or is this part of the initialisation procedure beforehand and made available already for the first data 
exchange? 

 
Response: Please refer to P10 L22 – L25. 
 
10. The first sentence of section 6 does not make sense to me. Having read the previous sections the 

authors put the focus of the reader to the adaptive transfer library. Now the authors propose the 
butterfly implementation as well. Later we learn that the butterfly approach can be outperformed. 
At the end of the section the authors show that for coupled climate models the P2P communication 
is as good as the adaptive transfer library, probably because the adaptive transfer library completely 
switches to P2P in the latter case. I think that this is an important finding and should be emphasized. 
It tells us that the P2P which is used in existing coupler software is not that bad. But is also tell me 
that the paper is severely suffering from a clear structure. If my conclusion (P2P is sufficient) is 
wrong the authors will need to put more effort in getting the reader onto the correct track. 

 
Response: The first sentence of the original Section 6 has been removed in the revised version. The 
manuscript is restructure and the finding is emphasized (please refer to P9 L30 – L31, P12 L13 – L14, 
P13 L19 – L20, P14 L14 - L15). 
 
11. Table 1 and Fig 10 are not really addressed. Are they required to understand the adaptive data 

transfer library? These can be removed of shifted to the user guide. 
 
Response: They are removed in the revised version and added to the user guide. 
 
12. Could Fig 9 be replaced by a real flow chart rather than providing pseudo code? 



 
Response: Please refer to Fig. 14 and P10 L3 – L25. 
 
13. In section 6 the performance of the data transfer is evaluated by using a coupled climate model with 

roughly 2 degree grid horizontal grid spacing using 192 processes. As there are 8400 cores available 
Tansuo100 I would have expected to see an evaluation of the performance at least with a toy model 
and exploring the scalability of the adaptive data transfer library up to several thousand cores. 
Unless there are sound arguments why this cannot be done this raises the impression that the authors 
are trying to hide something. The dynamical core sets an upper limit to the number of cores that can 
reasonably be employed - when the communication starts dominating over the computing part (MPI 
messages required for the boundary exchange required for advection and diffusion operators versus 
the time for the forward integration of the less and less points left on a single core). With roughly 2 
degree resolution we have probably reached this point with 192 processes. Here it would be nice to 
know how much percentage of the overall compute time is consumed by the data exchange, and 
how much wall clock time can be gained for a single run of the coupled model. Last but not least, 
how important is the load imbalance between the processes as the boundary exchange between the 
model components (atmosphere and ocean) provides a synchronisation point, either explicitly or 
implicitly, where the components have to wait for each others. 

 
Response: The performance of data transfer between high-resolution toy models has been evaluated, 
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and 
Fig. 19). As shown in Fig. 23, we use GAMIL2-CLM3 to measure the performance improvement resulted 
from the adaptive data transfer library for one realistic coupled model (Please refer to P14 L17 – L28 
and Fig. 23). In the evaluation, the maximum core number of each component model is 128, because two 
component models will not achieved better performance when using more 128 CPU cores. 
 
14. The conclusions are weak if not misleading. Fig. 17 does not really confirm the last statement, that 

“the adaptive transfer library can effectively improve the performance of data transfer in model 
coupling. What can we conclude or expect for model with higher resolution than those investigated 
in this study? 

 
Response: The performance of data transfer between high-resolution toy models has been evaluated, 
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and 
Fig. 19). 
 
  



Reply to Referee2 

 
1. They show a good understanding of the current state-of-the-art in climate models but are missing 

some of the history of butterfly networks in parallel computer design. 

Response: Some related works about the butterfly networks and algorithms are introduced in section 3 
of the revised version (P6 L6 – L13). 

 

2. In their performance testing, the results can also be affected by the decomposition strategy 
(decomposing the domain by lat-lon blocks or by latitude stripes). It’s not clear if the two land and 
atmosphere domains have different decomposition strategies which would impact performance. 
Please clarify. 

 
Response: Parallel decompositions of component models can affect the performance of data transfer. For 
example, GAMIL and CLM3 has different parallel decompositions, so data transfer between them has 
big communication depth, and the adaptive data transfer library can significantly improve the 
performance of data transfer (please refer to P13 L25 – P14 L3); For the data rearrangement in parallel 
interpolation, the source parallel decomposition is similar to the target parallel decomposition, so the 
communication depth is small and the performance of data transfer will not be improved because the 
adaptive data transfer library will switch to the P2P implementation in this case (please refer to P14 L4 
– L16). As component models have different computation characteristics, their parallel decompositions 
are usually different. 
 

3. Overall this algorithm appears to be most useful on medium-sized grids and modest processor counts. 
That’s ok but these limitations should be mentioned or data for larger cases presented. 

Response: The performance of data transfer between high-resolution toy models has been evaluated, 
where each model employs about one thousand processor cores (please refer to P12 L29 – P13 L9 and 
Fig. 19). 
 
Specific Comments 
 
4. The decrease in time at the end of the graph in Figure 1 should be remarked upon. Will it continue 

to go down? 
 
Response: Figure 1 is measured from the benchmark derived from GAMIL2-CLM3. The component 
models GAMIL2 and CLM3 can only scale to 128 processor cores, so we did not measure the time for 
more cores. 
 
5. It’s not clear what generated the data in Figure 2. Is that a P2P test program from an MPI distribution? 

And was it on the same machine? 
 



Response: Please refer to Fig. 2. 
 
6. The initialization overhead for the adaptive library could become to expensive at 1K and larger 

processor counts even if its only run once. It might be better to run it offline and read in the results 
when the climate model starts. Again a large case would help. 

 
Response: Thanks a lot for this suggestion. It will be our future work. Please refer to P15 L13 – L16. 
 
7. For Figure 15, are the “P2P” results from the unaltered CPL7 coupler or from the P2P option in their 

library? Please clarify. 
 
Response: The P2P results are measured from the adaptive data transfer library which switches to the 
P2P implementation. Please refer to Fig. 20. 
 
8. Technical Corrections: “network contention” is the preferred phrase instead of “jam of network 

communication” or “jams in communication”. 
 
Response: “jam of network communication” and “jams in communication” has been replaced with 
“network contention” in the revised version (P1 L20, P5 L28, P6 L4, and P7 L30). 
 
9. There is more odd English phrasing throughout. 
 
Response: We carefully improved the grammar and syntax in the revised version. 
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 11 

Abstract 12 

Data transfer, which means transferring data fields between two component models or 13 

rearranging data fields among processes of the same component model,. It is a fundamental and 14 

most frequently used operation of a coupler. Most versions of state-of-the-art coupler 15 

versionscouplers currently use an implementation based on the point-to-point (P2P) 16 

communication of the Message Passing Interface (MPI) (callrefer such an implementation as 17 

“P2P implementation” for short). In this paper, we reveal the drawbacks of the P2P 18 

implementation, including low communication bandwidth due to small message size, variable 19 

and big number of MPI messages, and jams during communication.as well as network 20 

contention. To overcome these drawbacks, we propose a butterfly implementation for data 21 

transfer. Although the butterfly implementation can outperform the P2P implementation in 22 

many cases, it degrades the performance in some cases because the total message size 23 

transferred by the butterfly implementation is larger than thatthe total message size transferred 24 

by the P2P implementation. To make thefurther improve data transfer completely improved, 25 

we design and implement an adaptive data transfer library that combines the advantages of both 26 

butterfly implementation and P2P implementation. Performance evaluation shows that the 27 

adaptive data transfer library significantly improves the performance of data transfer in most 28 

cases, and does not decrease the performance in any cases. Now, the adaptive data transfer 29 
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library is open to the public and has been imported into a coupler version C-Coupler1 for 1 

performance improvement of data transfer. We believe that it can also improve other coupler 2 

versions can also benefit from it.  3 

 4 

1 Introduction 5 

Climate System Models (CSMs) and Earth System Models (ESMs) are fundamental tools for 6 

simulating, predicting and projecting the climate. A CSM or an ESM generally integrates 7 

several component models, such as an atmosphere model, a land surface model, an ocean model, 8 

and a sea-ice model, into a coupled system, to simulate the behaviorsbehaviours of andof the 9 

climate system, including the interactions between components of the climate system. More 10 

and more ESMscoupled models have sprung up in the world. For example, the number of 11 

coupled model versionsconfigurations in the Coupled Model Intercomparison Project (CMIP) 12 

has increased from less than 30 (used for CMIP3) to more than 50 (used for CMIP5). 13 

High-performance computing is an essential technical support for model development, 14 

especially for higher and higher resolutions of models. Modern high-performance computers 15 

integrate an increasing number of processor cores for higher and higher computation 16 

performance. Therefore, efficient parallelization, which enables a model to utilize more 17 

processor cores for acceleration, becomes a technical focus in model development,; and a 18 

number of component models with efficient parallelization have sprung up. For example, the 19 

Community Ice CodE (CICE; Hunke et al., 2008, 2013) at 0.1° horizontal resolution can scale 20 

to 30,000 processor cores on the IBM Blue Gene/L (Dennis et al., 2008); the Parallel Ocean 21 

Program (POP; Kerbyson, 2005; Smith et al., 2010) at 0.1° horizontal resolution can also scale 22 

to 30,000 processor cores on the IBM Blue Gene/L and to 10,000 processor cores on a Cray 23 

XT3 (Dennis, 2007); the Community Atmosphere Model (CAM; Morrison et al., 2008; Neale 24 

et al., 2010, 2012) with thea spectral element dynamical core (CAM-SE) at 0.25° horizontal 25 

resolution can scale to 86,000 processor cores on a Cray XT5 (Dennis et al., 2012). To achieve 26 

an efficient parallelization of a coupled model, each component model requires to be efficiently 27 

parallelized. 28 

A coupler is an important component in a coupled system. It links component models together 29 

to construct a coupled model, and controls the integration of the whole coupled model. (Valcke, 30 

2012). A number of couplers now are available for model coupling, e.g., the Model Coupling 31 

Toolkit (MCT; Jacob et al., 20152005), the Ocean Atmosphere Sea Ice Soil coupling software 32 
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(OASIS) coupler (Redler et al., 2010; Valcke, 2013), the Earth System Modelling Framework 1 

(ESMF; Hill et al., 2004), the CPL6 coupler (Craig et al., 2005), the CPL7 coupler (Craig et al., 2 

2012), the Flexible Modelling System (FMS) coupler (Balaji et al., 2006), the Bespoke 3 

Framework Generator (BFG; Ford et al., 2006; Armstrong et al., 2009),) and the community 4 

coupler version 1 (C-Coupler1; Liu et al., ), among others. Most of the existing couplers provide 5 

fundamental coupling functions that include data transfer between component models and data 6 

interpolation between different model grids (Valcke et al., 2012).  7 

A coupler generally has much smaller overhead than otherthe component models. in a coupled 8 

system. However, it is potentially a time-consuming component in an ESMof a coupled model 9 

in future. This is because there will be more and more component models (such as land-ice 10 

model, chemistry model and biogeochemical model) will be coupled into an ESMa coupled 11 

model, and the coupling frequency between component models will be morehigher and more 12 

frequenthigher. Data transfer is a fundamental and most frequently used operation in a coupler. 13 

It is responsible for transferring data fields between the processes of two component models 14 

and responsible for rearranging data fields among various processes of the same component 15 

model for parallel data interpolation. 16 

A coupler may become a bottleneck for efficient parallelization of future coupled models. The 17 

most obvious reason is that the current implementation of data transfer in a state-of-the-art 18 

coupler is not efficient enough. for transferring data fields between component models. For 19 

example, the data transfer from a component with a logically rectangular grid (of 1021×1442 20 

grid points) to a component with a Gaussian Reduced T799 grid (with 843,000 grid points) can 21 

only scale to about 100 processor cores when using OASIS3 (Valcke, 2013) and to about 1000 22 

processor cores when using OASIS3-MCT (Valcke et al., 2013); the data transfer from a 23 

component model with a horizontal grid (of 576×384 grid points) to another component model 24 

with another horizontal grid (of 3600×2400 grid points) can only scale to about 500 processor 25 

cores when using the CPL7 coupler (Craig et al., 2012). Therefore, it is highly desirable to 26 

improve the parallelization of couplers.  27 

In this study, we first propose a butterfly implementation of data transfer. Since the P2P 28 

implementation and thenthe butterfly implementation can outperform each other in different 29 

cases (Section 5), we next develop an adaptive data transfer library that is open to the 30 

publicincludes both implementations and can adaptively use the better one for data transfer. 31 

Performance evaluation demonstrates that such a library significantly improves the 32 
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performance of data transfer in most cases and does not decreasedegrade the performance in 1 

any casescase. This library has been imported into C-Coupler1 with slight code modification. 2 

We believe it can be easily imported intothat other coupler versions for better performance of 3 

data transfercan also benefit from it. 4 

The reminder of this paper is organized as follows. We briefly introduce the implementation of 5 

data transfer in existing couplers in Section 2. We analyze performance bottlenecks of the 6 

existing implementation in Section 3. Details of the butterfly implementation and the adaptive 7 

data transfer library are presented in Sections 43 and 54, respectively. The 8 

performanceperformances of the butterfly implementation and the adaptive data transfer library 9 

isimplementations are evaluated in Section 6. Conclusion is5. Conclusions are given in Section 10 

76.  11 

2 Implementation of Data transfer implementations in existing couplers 12 

In this section, we focus on the implementation of data transfer in existing couplers, including 13 

MCT (Jacob et al., 2015), the OASIS coupler (Redler et al., 2010; Valcke, 2013; Valcke et al., 14 

2013), ESMF (Hill et al., 2004), the FMS coupler (Balaji et al., 2006), the CPL6 coupler (Craig 15 

et al., 2005), the CPL7 coupler (Craig et al., 2012)), and C-Coupler1 (Liu et al., 2014). More 16 

details of these couplers can be found in the citations given. 17 

2.1 MCT 18 

MCT works as a library for model coupling. It can be directly used to construct a coupled model 19 

with different component models, and can also be used to develop other couplers, such as 20 

OASIS3-MCT, the CPL6 coupler and the CPL7 coupler. It provides fundamental coupling 21 

functions, i.e., data transfer and data interpolation, in parallel. To achieve a parallel data transfer, 22 

MCT first generates a communication router (known as the data mapping between processes) 23 

according to the parallel decompositions of the two component models, and next uses the point-24 

to-point (P2P) communication of the Message Passing Interface (MPI) to transfer data. A data 25 

field will be transferred from a process of the source component model to a process of the target 26 

component model, only when the two processes have common grid points. A data transfer can 27 

serve multiple data fields that will be packed into one MPI message for better communication 28 

performance. 29 

On the other hand, parallel interpolation can also introduce data exchange among processes of 30 

the same component model. Interpolation is generally performed by the calculation of matrix-31 
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vector multiplication. To achieve efficient parallelization of interpolation, MCT can rearrange 1 

the layout of the data field among processes, to enable the matrix-vector multiplication to be 2 

performed locally on each process. The data rearrangement is essentially a data transfer. 3 

2.2 The OASIS coupler 4 

The OASIS coupler is mainly developed by the European Centre for Research and Advanced 5 

Training in Scientific Computing (CERFACS) since 1991. OASIS3 (Valcke, 2013a) is a 2-D 6 

version of the OASIS coupler with broad usage. To transfer a field from one component model 7 

to another, a process of OASIS3 first gathers the field from the processes of the source 8 

component model and then scatters the field to the processes of the target component model. 9 

Each process of OASIS3 can transfer one model field, so that multiple model fields can be 10 

transferred in parallel. However, the parallelism of such an implementation is limited by the 11 

number of coupling fields. To solve this problem, MCT has been used to develop the latest 12 

version of the OASIS coupler (OASIS3-MCT). 13 

OASIS4 is a 3-D version of the OASIS coupler. The data exchange library in the PRISM 14 

System Model Interface Library (PSMILe; Redler, 2010), which performs communication with 15 

MPI, is used to perform the data transfer in OSIS4. Similar to MCT, each process only needs 16 

to send or receive the data of its local decomposition.  17 

In OASIS3, the interpolation of a field is carried out by only one process. Like the 18 

implementation of data transfer in OASIS3, the data needed interpolation will be gathered from 19 

all processes of the corresponding component model before the interpolation, and will be 20 

scattered to all processes after the interpolation. In OASIS4 and OASIS3-MCT, the 21 

interpolation is performed in parallel, where all processes of the corresponding component 22 

model cooperatively perform the interpolation at the same time. The data rearrangement for the 23 

parallel interpolation is implemented by PSMILe in OASIS4 and by MCT in OASIS3-MCT. 24 

2.3 ESMF 25 

Earth System Modeling Framework (ESMF) is a widely used software framework for model 26 

development, which defines a superstructure for the architecture of component models and an 27 

infrastructure with common coupling functions for model coupling. In ESMF, the coupler 28 

components are responsible for regridding and transferring data among component models. The 29 

coupler components build the corresponding relationship between the data of the source model 30 



 6 

and the data of the target model according to their parallel decomposition. Then, the data are 1 

transferred in parallel according to the corresponding relationship. 2 

2.4 The FMS coupler 3 

FMS is a software framework developed by the Geophysical Fluid Dynamics Laboratory 4 

(GFDL). It supports the development, construction, execution, and scientific interpretation of 5 

models. The FMS coupler deploys an exchange grid to perform the coupling. Given the grids 6 

of two component models, their exchange grid is generated by all the vertices in the two grids. 7 

The coupling fields from a source component model to a target component model, are first 8 

interpolated onto the exchange grid, and then averaged onto the target grid. Data transfer among 9 

different processors is performed with MPI P2P communications. 10 

2.5 The CPL6 coupler 11 

The CPL6 coupler is a centralized coupler for the Community Climate System Model version 12 

3 (CCSM3; Collins et al., 2006) developed at the National Center for Atmospheric Research 13 

(NCAR). The data transfer between component models must go through the coupler. The CPL6 14 

coupler integrates MCT for data transfer and data interpolation. Therefore, the data transfer 15 

between component models is processed in parallel with MPI P2P communications and can 16 

serve multiple model fields at the same time for better communication performance.  17 

2.6 The CPL7 coupler 18 

The CPL7 coupler is the latest coupler version from the NCAR. It has been used for the ESMs 19 

of the Community Climate System Model version 4 (CCSM4; Gent et al., 2011) and the 20 

Community Earth System Model (CESM; Hurrell et al., 2013). Similar to the CPL6 coupler, 21 

the CPL7 coupler is also a centralized coupler, where the data transfer between component 22 

models must go through the coupler. The CPL7 coupler also integrates MCT for data transfer 23 

and data interpolation. Moreover, the CPL7 coupler supports the coupling interface based on 24 

ESMF and can use the coupling functions in ESMF for data transfer and data interpolation.  25 

2.7 C-Coupler1 26 

C-Coupler1 is a Chinese community coupler for Earth system modeling. It achieves 3D 27 

coupling with flexible 3D interpolation, and supports direct coupling without a specific coupler 28 



 7 

component to improve the parallel performance. Its implementation of data transfer is derived 1 

from the corresponding implementation in MCT. In other words, C-Coupler1 first generates a 2 

communication router according to the parallel decompositions of the component models, and 3 

then uses the MPI P2P communication to transfer the coupling fields in parallel. To further 4 

improve the communication performance, model fields with different data types, different 5 

model grids, or different parallel decompositions can be served by the same data transfer. 6 

2.1 P2P implementation 7 

Almost all state-of-the-art couplers use a similar implementation for data transfer. To achieve 8 

parallel data transfer, MCT first generates a communication router (known as the data mapping 9 

between processes) according to the parallel decompositions (the distribution of grid points 10 

among the processes) of two component models, and then uses the point-to-point (P2P) 11 

communication of the Message Passing Interface (MPI) to transfer the data. A data field will 12 

be transferred from a process of the source component model to a process of the target 13 

component model, only when the two processes have common grid points. In the following 14 

context, we call this “P2P implementation” for short. 15 

Since MCT has already been imported into OASIS3-MCT, the CPL6 coupler and the CPL7 16 

coupler, these couplers also use the P2P implementation for data transfer. Although the other 17 

couplers such as ESMF, OASIS4, the FMS coupler and C-Coupler1 do not directly import MCT, 18 

they also use the P2P implementation for data transfer.  19 

2.2 Performance bottlenecks of the P2P implementation 20 

3 Performance bottlenecks of existing implementations 21 

The implementations of data transfer in Although the state-of-the-art couplers are similar, 22 

which can be concluded as the MPI P2P communication that transfers data among the processes 23 

according to the two corresponding parallel decompositions. In the following context, we call 24 

such an implementation “P2P implementation”can achieve good performance when rearranging 25 

data fields for short.a parallel interpolation in a component model, it is not efficient enough 26 

when transferring data between component models (Craig et al., 2012; Valcke, 2013; Valcke et 27 

al., 2013; Liu et al., 2014). To reveal why the P2P implementation is inefficientnot efficient 28 

enough, we first derive a benchmark from a real coupled model version GAMIL2-CLM3, where 29 

which includes GAMIL2 (Li et al., 2013) that is an atmosphere model and CLM3 (Oleson et 30 
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al., 2004); Dickinson et al., 2006) that is a land surface model. GAMIL2 and CLM3 share the 1 

same horizontal grid of 7,680 (128×60) grid points. , but have different parallel decompositions: 2 

GAMIL2 uses a regular 2-D parallel decomposition, while CLM3 uses an irregular 2-D parallel 3 

decomposition where the grid points are assigned to the processes in a round-robin fashion. 4 

In this benchmark, there is only the data transfer with P2P implementation between two data 5 

models with the same grid as the horizontal grid of GAMIL2-CLM3. The parallel 6 

decompositionsdecomposition of the source data model is derived from CLM3, and the parallel 7 

decomposition of target data models are the same as those of CLM3 andmodel is derived from 8 

GAMIL2, respectively. A high-performance computer named Tansuo100 at Tsinghua 9 

University, China is used for the performance testingtests. It has 700 computing nodes, each of 10 

which contains two six-core Intel Xeon X5670 CPUs and 32 GB main memory. All computing 11 

nodes are connected by a high-speed InfiniBand network with peak communication bandwidth 12 

of 5 GB/s. 13 

To evaluate the parallel performance of the P2P implementation, 14 2-D coupling fields are 14 

transferred between the two data models. In each test, the two data models haveuse the same 15 

number of processes. AsSince there are 12 CPU cores on each computing node, the number of 16 

processes is set to be an integral multiple of 12. When the process number is less than 12, the 17 

two data models are located on two different computing nodes. The two data models do not 18 

share the same computing node, so the communication of the P2P implementation must go 19 

through the InfiniBand network.  20 

Figure 1 demonstrates the poor performance of the P2P implementation. It is well known that 21 

the performance of communication performance heavily depends on message size. As shown 22 

in FigureFig. 2, the P2P communication bandwidth achieved generally increases with message 23 

size;. So when the message size is small (for example, smaller than 4 KB), the communication 24 

bandwidth achieved is very low. The message size in the P2P implementation decreases with 25 

increment of process number of models (FigureFig. 3), indicating that the communication 26 

bandwidth getsbecomes lower with increasethe increment of process number. The performance 27 

of a data transfer also heavily depends on the MPI message number of MPI messages.. As 28 

shown in FigureFig. 4, the message number of MPI messages in the P2P implementation 29 

increases with increment of process number. Here, we may conclude that the decrease of 30 

message size and the increase of message number of MPI messages are primary reasons for the 31 

poor performance of the P2P implementation when increasing the process number. However, 32 
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the ideal performance shown in FigureFig. 5 is much better than the actual performance. The 1 

ratio between the ideal performance and the actual performance significantly increases with the 2 

increment of processor number. The significant gap between the ideal performance and the 3 

actual performance is due to the jam of network communication.contention. For example, when 4 

multiple P2P communications share the same source process or target process, (Fig. 6), they 5 

must wait in an order. 6 

3 Butterfly implementation for better performance of data transfer 7 

To improve the performance of data transfer, a new implementation should be able to overcome 8 

The drawbacks of the P2P implementation, which can be concluded as low communication 9 

bandwidth due to small message size, variable and big number of MPI messages, and jams in 10 

communications. We therefore proposeas well as network contention. To overcome these 11 

drawbacks, a prospective solution is to organize the communication for data transfer using a 12 

new implementation called the butterfly implementation. As shown in Figure 6, it is similar to 13 

the better structure, so that we investigate the butterfly structure (Fig. 7), which has already 14 

been used in the field of computer (Chong et al., 1994; Foster, 1995; Heckbert et al., 1995; 15 

Hemmert et al., 2005; Kim et al., 2007; Jan et al., 2013; Petagon et al, 2016). For example, in 16 

hardware aspect, the traditional butterfly diagramstructure and its transformation have been 17 

used to design networks (Chong et al., 1994; Kim et al., 2007); in software aspect, the butterfly 18 

structure has been used to improve the parallel algorithms with all-to-all communications 19 

(Foster, 1995), e.g., Fast Fourier Transform (FFT; Heckbert, 1995). The most significant 20 

challenge to the butterfly implementation is that the process number needs to be 2n, where n is 21 

a non-negative integer, while the process number of data transfer generally can be any positive 22 

integer. To resolve this challenge, we investigated how to efficiently map processes between et 23 

al., 1995; Hemmert et al., 2005), matrix transposition (Petagon et al, 2016) and sorting (Jan et 24 

al., 2013).  25 

Unfortunately, the improved all-to-all communication with the butterfly implementation and 26 

the sender/receiver. Next, we will introducestructure cannot be used to improve data transfer, 27 

because it requires that one process must communicate with every other process, that the 28 

communication load among processes is balanced and that the number of processes must be a 29 

power of 2, while the data transfer for model coupling has different charateristics, i.e., one 30 

process needs to communicate with a part of other processes (Fig. 6), the communication load 31 

among processes is always unbalanced (Fig. 3) and the process number cannot be restricted to 32 
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a power of 2. Therefore, to benefit from the butterfly structure, we should design a new 1 

implementation andof data transfer, which is called the butterfly implementation hereafter.  2 

The butterfly implementation uses a butterfly structure to transfer data from the sender with the 3 

source parallel decomposition to the receiver with the target parallel decomposition. We call 4 

the communication following the butterfly structure “the butterfly kernel”. As the process 5 

number of the butterfly kernel must be a power of 2, while the process number of the sender or 6 

the receiver need not be a power of 2, the butterfly implementation (see Fig. 8) has a process 7 

mapping. from the sender onto the butterfly kernel and a process mapping from the butterfly 8 

kernel onto the receiver, and the butterfly kernel has its own source parallel decomposition and 9 

target parallel decomposition, which are determined by the process mappings. Next, we will 10 

present the butterfly kernel and the process mappings, respectively.  11 

3.1 The Butterfly implementationkernel 12 

The butterfly implementation aims to rearrange the dataThe first question for the butterfly 13 

kernel is how to decide its process number. Any process of the sender or the receiver can be 14 

used as a process of the butterfly kernel. Given that the total number of unique processes of the 15 

sender and receiver is NT, the process number of the butterfly kernel (NB) can be any power of 16 

2, which is no larger than NT. We propose to select the maximum number in order for maximum 17 

utilization of resources. We prefer to pick out unique processes first from the sender, and then 18 

from the receiver if the sender does not have enough processes.  19 

The butterfly kernel is responsible for rearranging the distribution of data among the processes 20 

from the source parallel decomposition to the target parallel decomposition. As shown in Figure 21 

6, there are multiple stages in the butterfly implementation. Given Given the process number 22 

N=2n, the number of stages is there are n+1. Each  stages in the butterfly kernel. In a stage has 23 

a unique parallel decomposition. The parallel decompositions of the first stage and last stage 24 

are determined by the source and target parallel decompositions, respectively, while the parallel 25 

decompositions of the other stages are determined by the first and last stages. Between any two 26 

successive stages, all processes are splitdivided into a number of pairs and the two processes of 27 

eacha pair exchange data according to the corresponding parallel decompositions usinguses 28 

MPI P2P communication to exchange data. Given a process P in the butterfly kernel, after each 29 

stage, the number of the processes that may have the data of P on the target parallel 30 

decomposition will become a half. Figure 7 is an example for further illustration, where Dij 31 
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means the data is originally in process Pi according to the source parallel decomposition and is 1 

finally in process Pj according to the target parallel decomposition. Before the first stage, all 2 

processes (P0~P7) may have the data of P0 on the target parallel decomposition. After the first 3 

stage, only four processes (P0, P2, P4 and P6) may have; and after the second stage, only two 4 

processes (P0 and P4) may have.  5 

Compared to the existingTo reveal the advantages and disadvantages of the two 6 

implementations of data transfer, we measure the characteristics of the two implementations 7 

based on the benchmark introduced in Section 2.2. The results show the total message size 8 

transferred by the butterfly implantation is larger than that by the P2P implementation (Fig. 9), 9 

which is the major disadvantage of the butterfly implementation. Meanwhile, comparing with 10 

the P2P implementation, the butterfly implementation has the following advantages: 11 

1)  bigger message size for better communication bandwidth. The message size is M/(2N) on 12 

average, where M is the total size of data to be transferred and N is the process number. (Fig. 13 

10);  14 

2)  balanced number of MPI messages among processes. Each process performs log2N times of 15 

MPI communication. (Fig. 11);  16 

3) ordered communications among processes and fewer communications operated concurrently. 17 

The jam of network communication (Fig. 11), which can be dramatically reducedreduce 18 

network contention. 19 

3.2 Process mapping 20 

Process number of the butterfly kernel must be 2n, where n is a non-negative integer, while 21 

process number of sender or receiver can be any positive integer. The first question is how to 22 

decide the number of processes of the butterfly kernel? Any process of the sender or receiver 23 

can be used as a process of the butterfly kernel. Given that the total number of unique processes 24 

of the sender and receiver is NT, the process number of the butterfly kernel (NB) can be any 25 

power of 2, which is no larger than NT. For example, we can select the maximum number in 26 

order for maximum utilization of resources. When NB<NT, we prefer to pick out processes first 27 

from the sender, and then from the receiver if the sender does not have enough processes, in 28 

order to save the overhead of process mapping from the sender to the butterfly kernel.  29 
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The second question is how to decide process mapping from the sender to the butterfly kernel 1 

and from the butterfly kernel to the receiver.In this subsection, we will introduce the process 2 

mappings from the sender to the butterfly kernel and from the butterfly kernel to the receiver. 3 

To minimize the overhead of process mapping from the butterfly kernel to the receiver, we 4 

makemap one or multiple processes of the butterfly kernel map toonto a process of the receiver 5 

if the butterfly kernel has more processes than the receiver; otherwise, we makemap a process 6 

of the butterfly kernel map toonto one or multiple processes of the receiver. In other words, 7 

there is no multiple-to-multiple process mapping between the butterfly kernel and the receiver. 8 

Similarly, there is no multiple-to-multiple process mapping between the sender and the butterfly 9 

kernel. Processes of the sender or receiver may be unbalanced in terms of size of the data 10 

transferred, which may result in unbalanced communications between processes of the butterfly 11 

kernel.  12 

Processes of the sender or the receiver may be unbalanced in terms of the size of the data 13 

transferred, which may result in unbalanced communications among processes of the butterfly 14 

kernel. As mentioned in Section 43.1, at each stage of the butterfly kernel, all processes are 15 

splitdivided into a number of pairs, each of which is involved in P2P communications. To 16 

improve the balance of communications among the processes in the butterfly kernel, one 17 

solution is to try to make the process pairs at each stage more balanced in terms of data size of 18 

P2P communications. To achieve balanced data size among process pairs,, so we propose to 19 

take consideration of the sorting order of reorder the processes in terms of the sender or the 20 

receiver according to data size. For example, for the remaining processes that have not been 21 

paired,At the first stage, each time we can pairpick out the process with the largest data size 22 

and the process with the smallest data size. The pairing of the processes should be conducted 23 

iteratively among stages of the butterfly kernel. All processes are taken as the input for the first 24 

stage, while output of the pairing for one stage will be the input from the remaining processes 25 

that have not been paired, to generate a process group. For the next stage., the outputs of two 26 

process groups from the previous stage are paired into a bigger process groups in a similar way. 27 

After finishing the iterative pairing throughthroughout all stages, all processes of the sender or 28 

the receiver are reordered.  29 

The iterative pairing also requires the number of processes to be a power of 2. Given that the 30 

process number of processes of the sender (or receiver) is NC and the process number of the 31 

butterfly kernel is NB, we propose to first pad empty processes (thewhose data size is 0zero) 32 
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before the iterative pairing to make the process number of the processes for the sender (or 1 

receiver) be a power of 2 (donated NP), which is no smaller than NB. Therefore, the reordered 2 

NP processes after the iterative pairing can be divided into NB groups, each of which contains 3 

NP/NB processes with consecutive reordered indexes and maps toonto a unique process of the 4 

butterfly kernel.  5 

Figure 712 shows an example for further illustration of the process mapping., where the sender 6 

has five processes (S0-S4 in Fig. 12a), the receiver has 10 processes (R0-R9 in Fig. 12b), and the 7 

butterfly kernel uses eight processes (B0-B7 in Fig. 12c). At the first, empty processes are 8 

padded to the sender (S5-S7 in Fig. 12a) and the receiver (R10-R15 in Fig. 12b). Next, the iterative 9 

pairing is conducted for the sender and the receiver, respectively. The iterative pairing has three 10 

stages for the sender. At the first stage, the eight processes of the sender are divided into four 11 

groups {S1,S7}, {S0,S6}, {S2,S5} and {S4,S3} (Fig. 12a), according to the data size 12 

corresponding to each process. These four process groups are divided into two bigger groups 13 

({{S4,S3},{S2,S5}} and {{S1,S7}, {S0,S6}} at the second stage (Fig. 12a). Finally, one process 14 

group {{{S4,S3},{S2,S5}}, {{S1,S7}, {S0,S6}}} is obtained at the third stage (Fig. 12a), and the 15 

eight processes of the sender are reordered as S4, S3, S2, S5, S1, S7, S0 and S6, each one of which 16 

is mapped onto one process of the butterfly kernel (Fig. 12c). Similarly, the iterative pairing 17 

has four stages for the receiver, and the 16 processes of the receiver are reordered as R9, R15, 18 

R7, R12, R4, R8, R3, R10, R1, R14, R5, R13, R0, R6, R2 and R11 finally, each two of which are 19 

mapped onto one process of the butterfly kernel (Fig. 12c). 20 

4 Adaptive data transfer library 21 

Now, we have two kinds of implementations (the P2P implementation and the butterfly 22 

implementation) for data transfer. Although the butterfly implementation can effectively 23 

improve the performance of data transfer, it still in many cases (examples are given in Section 24 

5), it has some drawbacks: 1) it generally has a larger total message size of communications 25 

than the P2P implementation; 2) its stage number is log2N (where N is the number of processes 26 

for the butterfly kernel) (Foster, 1995), which may be bigger than the average number of MPI 27 

messages per process in the P2P implementation. in some cases (for example, the data 28 

rearrangement for parallel interpolation). Therefore, it is possible that the P2P implementation 29 

outperforms the butterfly implementation in some cases (examples are given in Section 65). To 30 

achieve optimal performance for data transfer, we propose an adaptive data transfer library that 31 

can keeptake the advantages of the two implementations in all cases.   32 
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As introduced in Section 43.1, the butterfly implementation is divided into multiple stages. 1 

Each stage has a unique intermediate parallel decomposition. Actually, the data transfer 2 

between two successive stagesin one stage can be viewed as a P2P implementation with only 3 

one MPI message per process. Inspired by this fact, we try to design an adaptive approach that 4 

can combine the butterfly and P2P implementations, where some stages in the butterfly 5 

implementation are skipped with the P2P implementations of more MPI messages per process. 6 

If all stages of the butterfly implementation are skipped, the adaptive data transfer library will 7 

switch to the P2P implementation. Figure 813 shows an example of the adaptive data transfer 8 

library with 8eight processes, where Stage 12 of the butterfly implementation is skipped with 9 

the P2P implementation of 3three MPI messages per process. 10 

The most significant challenge to such an adaptive approach is how to determine which stage(s) 11 

of the butterfly implementation should be skipped. The first solution isattempt was to design a 12 

cost model that can accurately predict the performance of data transfer in various 13 

implementations. We eventually gave up this solution because it was almost impossible to 14 

accurately predict the performance of the communications on a high-performance computer, 15 

especially when a lot of users share the computer to run various applications. Performance 16 

profiling which means directly measuring the performance of data transfer is more practical to 17 

determine an appropriate implementation, because the simulation forof Earth system 18 

modelingmodelling always takes a long time to run. To obtain an appropriate implementation 19 

ofFigure 14 shows our flowchart of how the adaptive data transfer library, we try to successively 20 

skip determines an appropriate implementation. It consists of an initialization segment and a 21 

profiling segment. The initialization segment generates the stages of theprocess mappings and 22 

a candidate implementation that is a butterfly implementation. If skipping one stage can achieve 23 

better performance, this with no skipped stages. The profiling segment iterates through each 24 

stage of the butterfly implementation to determine whether the current stage willshould be 25 

skipped; otherwise, it will be  or kept. Figure 9 shows a flowchart for determining an In an 26 

iteration, the profiling segment first generates a temporary implementation based on the 27 

candidate implementation where the current stage is skipped, and then runs the temporary 28 

implementation to get the time the data transfer takes. When the temporary implementation is 29 

more efficient than the candidate implementation, the current stage is skipped and the temporary 30 

implementation replaces the candidate implementation. When the profiling segment finishes, 31 

the appropriate implementation ofis set to be the candidate implementation. To reduce the 32 

overhead introduced by the adaptive data transfer library. In the algorithm, a stage mask array 33 
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(Stage_mask in the flowchart) specifies which stages are skipped., the profiling segment truly 1 

transfers the data for model coupling. In detail, each array element corresponds to a stage of the 2 

butterfly implementation. If the value of an array element is false, its corresponding stage is 3 

skipped with a P2P implementation. Otherwise, its corresponding stage is kept.other words, 4 

before obtaining an appropriate implementation, the data is transferred by the profiling segment.  5 

The source code of the adaptive data transfer library is mainly written in C++, while the 6 

application programming interfaces (APIs) are written in Fortran because most couplers and 7 

models are programmed in Fortran. Table 1 lists the APIs, and Figure 10 shows an example of 8 

how to use these APIs. The adaptive data transfer library can transfer 2-D and 3-D fields at the 9 

same time. Now, it is publicly available at a website (see the code availability section).   10 

5 Performance evaluation 11 

In order to improve the performance of data transfer for model coupling, we propose the 12 

butterfly implementation and an adaptive data transfer library that combines the butterfly 13 

implementation and the traditional P2P implementation. In this section, we empirically evaluate 14 

the adaptive data transfer library, through comparing it to the butterfly implementation and the 15 

P2P implementation. Both toy models and realistic models (GAMIL2-CLM3 and CESM) are 16 

used for the performance evaluation. GAMIL2-CLM3 has been introduced in Section 32.2. 17 

CESM (Hurrell et al., 2013) is a state-of-the-art ESM developed by the National Center for 18 

Atmospheric Research (NCAR.). All the experiments are run on the high performance 19 

computer Tansuo100 that has been introduced in Section 3.  20 

In the following contextNext, we will respectively evaluate the overhead of initialization, the 21 

performance in data transfer and the performance in data rearrangement for parallel 22 

interpolation. 23 

5.1 Overhead of initialization 24 

We first evaluate the overhead of initialization overhead of differentdata transfer 25 

implementations of data transfer.. As shown in Figure 11Fig. 15, the overheads of initialization 26 

of all the three implementations increaseoverhead of each implementation increases with the 27 

increment of core number. The initialization overhead of the butterfly implementation is a little 28 

higher than that of the P2P implementation, while the initialization overhead of the adaptive 29 

data transfer library is 4-52-3 folds higher than that of the P2P implementation, because the 30 

adaptive data transfer library uses extra time on the performance profiling. (please refer to 31 
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Section 4). Considering that one data transfer instance should only be initialized only one time 1 

at the beginning and executed many times in an ESMa coupled model, we can conclude that 2 

the initialization overhead of the adaptive data transfer library is reasonable, especially when 3 

the simulation is executed for a very long time. 4 

5.2 Performance of data transfer between toy models 5 

In this As mentioned in Section 3, the butterfly implementation has different characterizations 6 

compared to the P2P implementation. Many factors can impact the performance of a data 7 

transfer implementation including MPI message number, the size of data to be transferred (also 8 

known as the number of fields in this evaluation) and the number of cores used. In this 9 

subsection, we evaluate the performance of data transfer (excluding the initialization overhead) 10 

withaffected by each of these factors. We first build two toy models that use the same logically 11 

rectangular grid (of 192×96 grid points). Coupling fields are transferred between the two toy 12 

models. In each test, the two toy models haveuse the same process number of cores, and each 13 

process has the same MPI message number. The MPI message number of one process can be 14 

modified through adjusting the parallel decompositions of the toy models. The factors that 15 

impact the performance of a data transfer implementation include the commutation number, the 16 

size of the data to be transferred (also known as the number of fields in this evaluation) and the 17 

number of processes. Next, we evaluate the performance of data transfer through varying 18 

theseone factor and fixing the other factors.  19 

Given a fixed processIn the first experiment, we fix the number of cores to be 192 and a fixed 20 

2-Dthe coupling field number ofto be 10, and vary MPI message number per process. Figure 21 

1216 shows the execution time of one data transfer ofwith different implementations when 22 

varying the MPI message number of eachper process from 1 to 96. The P2P implementation 23 

can outperform the butterfly implementation when the MPI message number is small (say, 24 

smaller than 12 in Figure 12Fig. 16), while the butterfly implementation can outperform the 25 

P2P implementation when the MPI message number is big (say, bigger than 12 in Figure 12). 26 

OurFig. 16). The adaptive data transfer library can completely keephas the best performance of 27 

the P2P and butterfly implementations.. Moreover, it further improves the performance based 28 

on the butterfly implementation when the MPI message number is big, because some butterfly 29 

stages in the adaptive data transfer library have been skipped with the P2P implementation. 30 

When the MPI message number per process is 96, the adaptive data transfer library can achieve 31 

a 13.9-fold performance speedup compared to the P2P implementation. 32 
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Given different numbers of processesIn the second experiment, we fix the number of cores and 1 

different numbers of MPI messagesmessage number per process, and vary the coupling field 2 

number transferred. Figure 1317 shows the execution time of one data transfer inwith different 3 

implementations when varying the number of 2-D coupling fields to be transferred.in this 4 

experiment. The results show that the execution time of each implementation increases with the 5 

increment of data size. When the MPI message number per process is small (Figures 13aFigs. 6 

17a and 13b17b), the performance of the butterfly implementation is poorer than that of the P2P 7 

implementation, especially when the number of 2-D coupling fields gets bigger. However, The 8 

adaptive data transfer library achieves similar performance withas the P2P implementation, 9 

because it switches to the P2P implementation. When the MPI message number per process is 10 

big (Figures 13cFigs. 17c and 13d17d), both the butterfly implementation and adaptive data 11 

transfer library significantly outperform the P2P implementation, and the adaptive data transfer 12 

library further achieves better performance than the butterfly implementation.  13 

Given a fixedIn the third experiment, we fix MPI message number per process to be 24 and a 14 

fixed 2-Dthe coupling field number transferred to be 10, and vary the number of cores. Figure 15 

1418 shows the execution time of one data transfer inwith different implementations when 16 

varying the number of cores. The results show that both the butterfly implementation and 17 

adaptive data transfer library achieve better parallel scalability than the P2P implementation. 18 

The execution time of the P2P implementation slightly increases with the increment of the 19 

number of cores used. However, the execution times of the butterfly implementation and 20 

adaptive data transfer library slightly decrease with the increment of the number of the cores 21 

used. The butterfly implementation outperforms the P2P implementation, andwhile the adaptive 22 

data transfer library achieves better performance than the butterfly implementation. 23 

The resolution of models becomes higher and higher these days. How about the performance 24 

of the data transfer implementations when model resolution becomes higher?  Higher model 25 

resolution means that a model will use more processor cores for accelerating simulation, while 26 

the average number of grid points per processor core can remain constant. Considering that the 27 

numbers of grid points are always balanced among the processes of a model, we make each 28 

process (which runs on a unique processor core) of the toy models have 96 grid points in this 29 

evaluation, while enabling processes to have different message numbers and different message 30 

sizes. As shown in Fig. 19, although the execution times of all data transfer implementations 31 

increase with the increment of processor core number (from 64 to 1024), both the butterfly 32 
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implementation and the adaptive data transfer library significantly outperform the P2P 1 

implementation, and the adaptive data transfer library achieves the best performance. These 2 

results indicate that our proposed implementations can significantly improve the performance 3 

of data transfer for higher model resolution.  4 

5.3 Performance of data transfer between realistic models 5 

Previous evaluation with toy models reveals that the adaptive data transfer library can achieve 6 

the best performance among different implementations. In this subsection, we evaluate the 7 

performance withusing two realistic models: GAMIL2-CLM3 (horizontal resolution of 8 

2.8°×2.8°) and CESM (resolution of 1.9x2.5_gx1v6).  9 

For CESM, we use the data transfer between the coupler CPL7 (Craig et al., 2012) and the land 10 

surface model CLM4 (Oleson et al., 2004), where 32 2-D coupling fields on the CLM4 11 

horizontal grid (the grid size is 144×96=13824) are transferred. Figure 1520 shows the 12 

performance of one data transfer of different implementations when increasing the process 13 

number of both CPL7 and CLM4 from 6 to 192. When the process number is small (say, smaller 14 

than 24 in Figure 15Fig. 20), the butterfly implementation is much poorer than the P2P 15 

implementation, and the adaptive data transfer library achieves similar performance as the P2P 16 

implementation. becasue it switches to the P2P implementation. However, when the process 17 

number gets bigger (say, larger than 24 in Figure 15Fig. 20), the adaptive data transfer library 18 

dramatically outperforms the P2P implementation with more speedup and also outperforms the 19 

butterfly implementation. When each component uses 192 cores, the adaptive data transfer 20 

library is 4.01 times faster than the P2P implementation. 21 

For GAMIL2-CLM3, we use the data transfer from CLM3 to GAMIL2 where 14 2-D coupling 22 

fields on the GAMIL2 horizontal grid (thewhose grid size is 128×60=7680) are transferred. 23 

Figure 1621 shows the execution time of one data transfer of each implementation when 24 

increasing the process number of both GAMIL2 and CLM3 from 6 to 192. The results in Figure 25 

16Fig. 21 confirm that the adaptive data transfer library can constantly keepshow the best 26 

performance among different implementations. Compared to the P2P implementation, the 27 

adaptive data transfer library achieves an 11.68-fold performance speedup when the process 28 

number is 96, but achieves a much lower speedup (only 3.48-fold) when the process number is 29 

192. This is because that the average MPI message number per process reduces from 32 to 18 30 

when the number of process increases from 96 to 192.  31 
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5.4 Performance of data rearrangement for interpolation 1 

For model coupling, besides theBesides data transfer between different component models, 2 

there is the otheranother kind of data transfer in model coupling that rearranges the data inside 3 

a model in order for parallel interpolation of fields between different grids. Here, we use the 4 

data rearrangement for the parallel interpolation from the atmosphere grid (thewhose grid size 5 

is 144×96=13824) to the ocean grid (thewhose grid size is 320×384=122880) in the coupled 6 

model CESM for further evaluation. The results show thatAs mentioned above, the P2P 7 

implentation is sufficient for data rearrangement. However, the butterfly implementation is 8 

much poorer than the P2P implementation (Figure 17Fig. 22). This is because the MPI message 9 

number is very small (for example, average MPI message number per process is only 6.49 when 10 

each model uses 96 cores) for data rearrangement. As a resultOn the other hand, the adaptive 11 

data transfer library achieves almost the same performance as the P2P implementation. , 12 

because it switches to the P2P implementation. Therefore, the adaptive data transfer library can 13 

always show the best performance. 14 

5.5 Performance impovement for a coupled model 15 

With the performance improvement of data transfer, we expect that the adaptive data transfer 16 

library will improve the performance of coupled models. For this evaluation, we first import 17 

the adaptive data transfer library into C-Coupler1 and then use the coupled model GAMIL2-18 

CLM3 that uses C-Coupler1 for coupling to measure performance results. As shown in Fig. 23, 19 

the adaptive data transfer library achieves higher performance improvement (when the P2P 20 

implementation is used as the baseline) for GAMIL2-CLM3 when using more processor cores. 21 

When each component model uses 128 processor cores, the adaptive data transfer library 22 

achieves ~7% performance improvement. This performance improvement would not be low 23 

because the model coupling only takes a very small proportion of execution time in the simple 24 

coupled model GAMIL2-CLM3 and the parallel scalability of the two coupled models 25 

GAMIL2 and CLM3 is not good.  26 

6 Conclusions 27 

Data transfer is the fundamental and most frequently used operation in a coupler. This paper 28 

demonstrated that the current implementation (which is named as the P2P implementation in 29 

this paper) of data transfer in most state-of-the-art couplers is not efficientinefficient for 30 

transferring data between two component models. To improve the parallel performance of data 31 
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transfer, we proposed a butterfly implementation. However, the compared to the P2P 1 

implementation, the butterfly implementation has both advantages and disadvantages, 2 

comparing with the P2P implementation. The evaluation results showed that the butterfly 3 

implementation did not always outperform the P2P implementation. To completely achieve 4 

better parallel performance of data transfer, we built an adaptive data transfer library, which 5 

combines the advantages of theboth butterfly implementation and P2P implementation. The 6 

evaluation results demonstrated that, the adaptive data transfer library can always achieve the 7 

best performance, comparing with the butterfly implementation and P2P implementation. That 8 

is to say the adaptive data transfer library can effectivelysignificantly improve the performance 9 

of data transfer inso as to improve a coupled model coupling..  10 

The initialization overhead for the adaptive data transfer library could become expensive when 11 

using a large number of processor cores. In the future version, the adaptive data transfer will 12 

allow users to record the results of performance profiling offline to save the time used for 13 

performance profiling in next runs of the same coupled model. 14 

Code availability 15 

The source code of the adaptive data transfer library is available at https://github.com/zhang-16 

cheng09/Data_transfer_lib. 17 
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Table 1.  The application program interfaces (APIs) of the adaptive data transfer library. 1 

Couplers or component models can improve the performance of data transfer through calling 2 

these APIs. 3 

API Brief description Parameter description 

instance_id = data_transfer_ 
register_instance(local_comm, 
global_rank_remote_root, action) 

This API registers one 
data transfer instance 
and returns the index of 
this data transfer 
instance. A component 
model can register 
multiple different data 
transfer instances. 

This API takes local 
communicator local_comm, 
global rank of the root process 
in the remote model 
global_rank_remote_root and 
the transfer direction action 
(send, recv or sendrecv) as 
input, and returns the instance 
index instance_id. 

call data_transfer_register 
_decomp(instance_id, 
num_grid_cells, num_local_cells, 
local_cells_global_index) 

This API registers one 
parallel decomposition 
to one data transfer 
instance.  

This API takes the instance 
index instance_id, the number 
of grid cells num_grid_cells, 
the number of local cells 
num_local_cells and the 
global index of local cells 
local_cells_global_index as 
input. 

call data_transfer_register_field 
(instance_id, data_buf, input) 

This API registers a 
coupling field to enable 
one data transfer 
instance to access the 
memory space of this 
field. One data transfer 
instance can register 
multiple coupling 
fields. 

This API takes the instance 
index instance_id, the 
memory space of this field 
data_buf and the action of this 
field input (true stands for 
input field and false stands for 
output field) as input.  

call data_transfer_register_mask 
(instance_id, mask_array) 

This API registers a 
mask array to enable 
one data transfer 
instance to transfer 
different coupling fields 
at different coupling 
steps.  

This API takes the instance 
index instance_id and the 
mask array mask_array as 
input. 

call data_transfer_init_instance 
(instance_id) 

This API initializes one 
data transfer instance. 

This API takes the instance 
index instance_id as input. 

call data_transfer_exec 
_instance(instance_id) 

This API executes one 
data transfer instance. 

This API takes the instance 
index instance_id as input. 

call 
data_transfer_final_instance 
(instance_id) 

This API finalizes one 
data transfer instance. 

This API takes the instance 
index instance_id as input. 

 4 

5 
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 1 

Figure 1. Average execution time of the P2P implementation when transferring 14 2-D fields 2 

from CLM3 to GAMIL2. In each test, the atmosphere model GAMIL2 and the land surface 3 

model CLM3 use the same number of cores and; they do not share the same computing node. 4 

The horizontal grid of the 14 2-D fields contains 7680 (128×60) grid points. 5 

6 
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 1 

Figure 2. Variation of bandwidth (y-axis) of an MPI P2P communication with respect to the 2 

increment of message size. (x-axis). The results are generated from our benchmark. In the 3 

benchmark, one process sends messages with different sizes to the other process. The two 4 

processes of the P2P communication run on two different computing nodes. of Tansuo100.   5 

6 
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 1 

Figure 3.  Variation of maximum message size of the P2P implementation (y-axis) in GAMIL2-2 

CLM3 with respect to the increment of processcore number. (x-axis). The experimental setup 3 

here is similar withto that shown in Fig. 1. 4 
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  1 

Figure 4. Variation of total MPI message number of MPI messages (y-axis) of the P2P 2 

implementation in GAMIL2-CLM3 with respect to the increment of processcore number (x-3 

axis). The experimental setup here is similar withto that shown in Fig. 1. 4 
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  1 
Figure 5. The Ideal and actual bandwidths of the P2P implementation (y-axis) in GAMIL2-2 

CLM3 when gradually increasing the number of processes for cores used by each component 3 

model. (x-axis). The experimental setup here is similar withto that shown in FigureFig. 1. The 4 

ideal bandwidth is calculated from the message size and the MPI bandwidth measured in 5 

FigureFig. 2,; and the actual bandwidth is calculated from Fig. 1. 6 
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 1 

Figure 6. Variation of message number of one process (y-axis) using the P2P implementation 2 

in GAMIL2-CLM3 with respect to the increment of core number (x-axis). The experimental 3 

setup is similar to that shown in Fig. 1. 4 
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  1 
Figure 7. An example of the butterfly implementation with 8 processes. The butterfly 2 

implementation targets to rearrange the data from the source parallel decomposition to the target 3 

parallel decomposition.kernel with eight processes. Each colored row stands for aone process 4 

(P0-P7). Di represents the subset of data corresponding to process Pi determined by the target 5 

parallel decomposition. There are multiple stages (each colored column of arrows represents a 6 

stage (Stage 01 to Stage 3)) in the butterfly implementation, and each stage has a unique parallel 7 

decomposition.kernel. Each arrow stands for an MPI P2P communication from one process to 8 

another. Dij means the data is originally in process Pi according to the source parallel 9 

decomposition and is finally in process Pj according to the target parallel decomposition. 10 

11 
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Butterfly  Kernel
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Target parallel decomposition
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Source parallel decomposition

Process mappingProcess mapping

Process mappingProcess mapping

 1 

Figure 8. The butterfly implementation, which is composed of three parts: the butterfly kernel; 2 

process mapping from the sender to the butterfly kernel; and process mapping from the butterfly 3 

kernel to the receiver. 4 
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 1 

Figure 9. Total message size transferred by P2P implementation and butterfly implementation 2 

(y-axis) in GAMIL2-CLM3, when varying the number of cores used by each model (x-axis). 3 

The experimental setup is similar to that shown in Fig. 1. 4 

5 
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 1 

Figure 10. Average message size transferred by P2P implementation and butterfly 2 

implementation  (y-axis) in GAMIL2-CLM3, when varying the number of cores used by each 3 

model (x-axis). The experimental setup is similar to that shown in Fig. 1. 4 

5 
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 1 

Figure 11. Maximum message number, average message number and minimum message 2 

number of processes in P2P implementation and butterfly implementation (y-axis), when 3 

varying the number of cores used by each model (x-axis) in GAMIL2-CLM3. The experimental 4 

setup is similar to that shown in Fig. 1.  5 

6 
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1 
Figure 7.  2 

Figure 12.  An example of process mappingmappings, given that the sender has 5five 3 

processes (S0-S4), the receiver has 10 processes (R0-R9) (there is no common process between 4 

the sender and receiver), and the butterfly kernel contains 8eight processes (B0-B7). Panels (a) 5 

and (b) show how to iteratively pair processes of the sender and receiver, respectively. There 6 

are multiple stages in the iterative pairing of processes of the sender and receiver. In each 7 

stage, the processes in the same color are grouped into one process pair. Panel (c) shows how 8 

to map the reordered processes of the sender and receiver toonto the processes of the butterfly 9 

kernel. All the 5five processes of the sender are  and three processes of the receiver are used 10 

foras the processes of the butterfly kernel. Each process of the sender is mapped toonto a 11 
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process of the butterfly kernel, while eachevery two processes of the receiver are mapped 1 

toonto one process of the butterfly kernel. 2 
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Figure 813. An example of the adaptive data transfer library given 8with eight processes, where 4 

Stage 12 of the butterfly implementation is skipped with the P2P implementation of 3three MPI 5 

messages per process. 6 

  7 
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Input: Process number of the butterfly implementation Proc_num 

Output: Stage mask array of the butterfly implementation Stage_mask 

Program Profiling 

Begin 

Set the stage number Stage_num to be log2Porc_num+1 

For i=0 to Stage_num-1; then set Stage_mask[i] to be true 
    Execute the butterfly instance with the stage mask array Stage_mask, and record the 
execution time as best_timer 

    For i=0 to Stage_num-1 

    Do 

        Set Stage_mask[i] to be false 

        Execute the butterfly instance with the stage mask array Stage_mask, and record the 
execution time as cur_timer 

        If best_timer is larger than cur_timer 

            Set best_timer to be cur_timer 

        Else set Stage_mask[i] to be true 

    End do 

End 
 1 

Figure 10. An example of how to implement data transfer with the APIs of the adaptive data 2 

transfer library. The APIs of the adaptive data transfer library are marked in red. 3 

 4 

5 
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Begin

Carry on the process mapping from the source model to the Butterfly 
kernel and the process mapping from the Butterfly kernel to the target 

model.

Initialize a candidate implementation where no stages are skipped. 

Initialize Stage_num to be the stage number of the adaptive library.
Initialize current stage Current_stage to be 1.

Run the candidate implementation.
Record the execution time  as Cand_time.

Current_stage <= Stage_num

Initialize a temporary implementation based on the candidate 
implementation where Current_stage is skipped 

Run the temporary implementation.
Record the execution time of data transfer  as Temp_time.

Temp_time < Cand_time

Delete the temporary 
implementation.

Delete the candidate implementation.
Replace the candidate implementation with the temporary 

implementation.
Set Cand_time to be Temp_time.

Current_stage = Current_stage + 1

Yes

No
Yes

EndNo

Initialize

Profiling

 1 

Figure 914. A flowchart for determining an appropriate implementation of the adaptive data 2 

transfer library.  3 

4 
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 1 
Figure 11.Figure 15. Initialization time (y-axis) of one data transfer between two toy models 2 

using a rectangular grid (of 192×96 grid points) when varying the number of cores used by each 3 

toy model (x-axis). There are 10 2-D coupling fields transferred from the source toy model to 4 

the target toy model. If the number of cores per toy model is less than 24, the MPI message 5 

number per process is set to be the number of cores. Otherwise, the MPI message number per 6 

process is set to 24. 7 
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 1 
Figure 1216. Average execution time (y-axis) forof one data transfer between two toy models 2 

with the same rectangular grid (of 192×96 grid points) when varying the MPI message number 3 

per process (x-axis). Each toy model is run with 192 cores (or processes).. There are 10 2-D 4 

coupling fields transferred from the source toy model to the target toy model. 5 

6 
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 1 
Figure 1317. Average execution time (y-axis) of one data transfer between two toy models with 2 

the same rectangular grid (of 192×96 grid points) when varying the number of coupling fields 3 

transferred (x-axis). There are four simulation tests for the evaluation. In simulation (a), each 4 

toy model is run with 48 cores, and the MPI message number per process is 12. In simulation 5 

(b), each toy model is run with 192 cores, and the MPI message number per process is 12. In 6 

simulation (c), each toy model is run with 48 cores, and the MPI message number per process 7 

is 48. In simulation (d), each toy model is run with 192 cores (or processes)), and the MPI 8 

message number per process is 48.  9 

10 
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 1 
Figure 1418. Average execution time (y-axis) of one data transfer between two toy models with 2 

the same rectangular grid (of 192×96 grid points) when varying the number of cores used by 3 

each toy model (x-axis). There are 10 2-D coupling fields transferred from the source toy model 4 

to the target toy model. In each test, the MPI message number per process is set to 24. 5 

6 
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 1 

Figure 15.Figure 19. Average execution time (y-axis) of one data transfer between two toy 2 

models. In this evaluation, each process (running on a unique processor core) of the toy models 3 

have 96 grid points, while different processes have different message numbers and different 4 

message sizes. The number of coupling fields transferred is set to 20. 5 

6 
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 1 

Figure 20. Average execution time (y-axis) of one data transfer between the land surface model 2 

CLM4 and the coupler CPL7 in CESM when varying the number of cores used by each model 3 

(x-axis): 32 coupling fields on the CLM horizontal grid (the grid size is 144×96=13824) are 4 

transferred from the land surface model CLM4 to the coupler CPL7. The P2P results are from 5 

the adaptive data transfer library which switches to the P2P implementation. 6 

7 
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 1 
Figure 1621. Average execution time (y-axis) of one data transfer between the atmosphere 2 

model GAMIL2 and the land surface model CLM3 in GAMIL2-CLM3 when varying the 3 

number of cores used by each model (x-axis): 14 coupling fields on the GAMIL2 horizontal 4 

grid (the grid size is 128×60=7680) are transferred from the land surface model CLM3 to the 5 

atmosphere model GAMIL2.  6 

7 
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 1 
Figure 1722. Average execution time (y-axis) of one data rearrangement for the parallel 2 

interpolation from the atmosphere grid (the grid size is 144×96=13824) to the ocean grid (the 3 

grid size is 320×384=122880) in CESM when varying the number of cores used by each model 4 

(x-axis). 5 

6 
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 1 

Figure 23. Performance imporvement of the coupled model GAMIL2-CLM3 achieved by the 2 

adaptive data transfer library, with the performance of GAMIL2-CLM3 using the P2P 3 

implementation as the baseline.  4 


