
 1

A new adaptive data transfer library for model coupling 1

C. Zhang2,1, L. Liu1,3, G. Yang2,1,3, R. Li2,1, and B. Wang1,3,4 2

[1]{Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth 3

System Science (CESS), Tsinghua University, Beijing, China} 4

[2]{Department of Computer Science and Technology, Tsinghua University, Beijing, China} 5

[3]{Joint Center for Global Change Studies (JCGCS), Beijing, China} 6

[4]{State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical 7

Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 8

Beijing, China.} 9

Correspondence to: L. Liu (liuli-cess@tsinghua.edu.cn), G. Yang (ygw@tsinghua.edu.cn) 10

 11

Abstract 12

Data transfer means transferring data fields from a sender to a receiver. It is a fundamental 13

and frequently used operation of a coupler. Most versions of state-of-the-art couplers 14

currently use an implementation based on the point-to-point (P2P) communication of the 15

Message Passing Interface (MPI) (referred to as “P2P implementation” hereafter). In this 16

paper, we reveal the drawbacks of the P2P implementation when the parallel decompositions 17

of the sender and the receiver are different, including low communication bandwidth due to 18

small message size, variable and high number of MPI messages, as well as network 19

contention. To overcome these drawbacks, we propose a butterfly implementation for data 20

transfer. Although the butterfly implementation outperforms the P2P implementation in many 21

cases, it degrades the performance when the sender and the receiver have similar parallel 22

decompositions or when the number of processes used for running models is small. To ensure 23

data transfer with optimal performance, we design and implement an adaptive data transfer 24

library that combines the advantages of both butterfly implementation and P2P 25

implementation. As the adaptive data transfer library automatically uses the best 26

implementation for data transfer, it outperforms the P2P implementation in many cases while 27

it does not decrease the performance in any cases. Now, the adaptive data transfer library is 28

mailto:ygw@tsinghua.edu.cn

 2

open to the public and has been imported into the C-Coupler1 coupler for performance 1

improvement of data transfer. We believe that other couplers can also benefit from it. 2

 3

1 Introduction 4

Climate System Models (CSMs) and Earth System Models (ESMs) are fundamental tools for 5

simulating, predicting and projecting climate. A CSM or an ESM generally integrates several 6

component models, such as an atmosphere model, a land surface model, an ocean model and a 7

sea-ice model, into a coupled system to simulate the behaviours of the climate system, 8

including the interactions between components of the climate system. More and more coupled 9

models have sprung up in the world. For example, the number of coupled model 10

configurations in the Coupled Model Intercomparison Project (CMIP) has increased from less 11

than 30 (used for CMIP3) to more than 50 (used for CMIP5). 12

High-performance computing is an essential technical support for model development, 13

especially for higher and higher resolutions of models. Modern high-performance computers 14

integrate an increasing number of processor cores for higher and higher computation 15

performance. Therefore, efficient parallelization, which enables a model to utilize more 16

processor cores for acceleration, becomes a technical focus in model development; and a 17

number of component models with efficient parallelization have sprung up. For example, the 18

Community Ice CodE (CICE; Hunke et al., 2008, 2013) at 0.1° horizontal resolution can scale 19

to 30,000 processor cores on the IBM Blue Gene/L (Dennis et al., 2008); the Parallel Ocean 20

Program (POP; Kerbyson, 2005; Smith et al., 2010) at 0.1° horizontal resolution can also 21

scale to 30,000 processor cores on the IBM Blue Gene/L and 10,000 processor cores on a 22

Cray XT3 (Dennis, 2007); the Community Atmosphere Model (CAM; Morrison et al., 2008; 23

Neale et al., 2010, 2012) with a spectral element dynamical core (CAM-SE) at 0.25° 24

horizontal resolution can scale to 86,000 processor cores on a Cray XT5 (Dennis et al., 2012). 25

A coupler is an important component in a coupled system. It links component models together 26

to construct a coupled model, and controls the integration of the whole coupled model 27

(Valcke et al, 2012). A number of couplers now are available, e.g., the Model Coupling 28

Toolkit (MCT; Jacob et al., 2005), the Ocean Atmosphere Sea Ice Soil coupling software 29

(OASIS) coupler (Redler et al., 2010; Valcke, 2013; Valcke et al, 2015), the Earth System 30

Modelling Framework (ESMF; Hill et al., 2004), the CPL6 coupler (Craig et al., 2005), the 31

CPL7 coupler (Craig et al., 2012), the Flexible Modelling System (FMS) coupler (Balaji et al., 32

 3

2006), the Bespoke Framework Generator (BFG; Ford et al., 2006; Armstrong et al., 2009) 1

and the community coupler version 1 (C-Coupler1; Liu et al., 2014). 2

A coupler generally has much smaller overhead than the component models in current 3

coupled systems. However, it is potentially a time-consuming component in future coupled 4

models. This is because more and more component models (such as land-ice model, 5

chemistry model and biogeochemical model) will be coupled into a coupled model, and the 6

coupling frequency between component models will be higher and higher. Data transfer is a 7

fundamental and frequently used operation in a coupler. It is responsible for transferring data 8

fields between the processes of two component models and for rearranging data fields among 9

processes of the same component model for parallel data interpolation. 10

A coupler may become a bottleneck for efficient parallelization of future coupled models. The 11

most obvious reason is that the current implementation of data transfer in a state-of-the-art 12

coupler may be not efficient enough. For example, due to the low efficiency of data transfer, 13

the coupling from a component model with a horizontal grid (of 576×384 grid points) to 14

another component model with another horizontal grid (of 3600×2400 grid points) can only 15

scale to about 500 processor cores when using the CPL7 coupler (Craig et al., 2012). 16

Therefore, it is highly desirable to improve the parallel data transfer of couplers. 17

In this study, we first propose a butterfly implementation of data transfer. Since the P2P 18

implementation and the butterfly implementation can outperform each other in different cases 19

(Sect. 5), we next develop an adaptive data transfer library that includes both implementations 20

and can adaptively use the better one for data transfer. Performance evaluation demonstrates 21

that such a library significantly outperforms the P2P implementations in most cases and does 22

not degrade the performance in any case. This library has been imported into C-Coupler1 with 23

slight code modification. We believe that other couplers can also benefit from it. 24

The remainder of this paper is organized as follows. We briefly introduce the implementation 25

of data transfer in existing couplers in Section 2. Details of the butterfly implementation and 26

the adaptive data transfer library are presented in Sections 3 and 4, respectively. The 27

performances of data transfer implementations are evaluated in Section 5. Conclusions are 28

given in Section 6. 29

 4

2 Data transfer implementations in existing couplers 1

2.1 P2P implementation 2

Almost all state-of-the-art couplers use a similar implementation for data transfer. To achieve 3

parallel data transfer, MCT first generates a communication router (known as the data 4

mapping between processes) according to the parallel decompositions (the distribution of grid 5

points among the processes) of the sender and the receiver, and then uses the point-to-point 6

(P2P) communication of the Message Passing Interface (MPI) to transfer the data. A data 7

field will be transferred from a process of the sender to a process of the receiver, only when 8

the two processes have common grid points. In the following context, we call this “P2P 9

implementation” for short. 10

Since MCT has already been imported into OASIS3-MCT, the CPL6 coupler and the CPL7 11

coupler, these couplers also use the P2P implementation for data transfer. Although the other 12

couplers such as ESMF, OASIS4, the FMS coupler and C-Coupler1 do not directly import 13

MCT, they also use the P2P implementation for data transfer. 14

2.2 Performance bottlenecks of the P2P implementation 15

In this work, we first investigate the performance characteristics of the P2P implementation, 16

and therefore derive a benchmark from a real coupled model GAMIL2-CLM3, which 17

includes GAMIL2 (Li et al., 2013) that is an atmosphere model and CLM3 (Oleson et al., 18

2004; Dickinson et al., 2006) that is a land surface model. GAMIL2 and CLM3 share the 19

same horizontal grid of 7,680 (128×60) grid points, but have different parallel decompositions: 20

GAMIL2 uses a regular 2-D parallel decomposition, while CLM3 uses an irregular 2-D 21

parallel decomposition where the grid points are assigned to the processes in a round-robin 22

fashion. 23

In this benchmark, there is only the data transfer with the P2P implementation between the 24

sender and the receiver with the same horizontal grid of GAMIL2-CLM3. The parallel 25

decomposition of the sender is derived from CLM3, and the parallel decomposition of the 26

receiver is derived from GAMIL2. A high-performance computer named Tansuo100 at 27

Tsinghua University, China is used for the performance tests. It has 700 computing nodes, 28

each of which contains two six-core Intel Xeon X5670 CPUs and 32 GB main memory. All 29

 5

computing nodes are connected by a high-speed InfiniBand network with peak 1

communication bandwidth of 5 GB/s. 2

To evaluate the parallel performance of the P2P implementation, 14 2-D coupling fields are 3

transferred between the sender and the receiver. In each test, the sender and the receiver use 4

the same number of processes. Since there are 12 processor cores on each computing node, 5

the number of processes is set to be an integral multiple of 12. The sender and the receiver are 6

located on different computing nodes and the communication of the P2P implementation must 7

go through the InfiniBand network. 8

Figure 1 demonstrates that poor parallel scalability of the P2P implementation can be 9

obtained when the parallel decompositions of the sender and receiver are different. It is well 10

known that the communication performance heavily depends on message size. As shown in 11

Fig. 2, the P2P communication bandwidth achieved generally increases with message size. So 12

when the message size is small (for example, smaller than 4 KB), the communication 13

bandwidth achieved is very low. The message size in the P2P implementation decreases when 14

the number of model processes increases (Fig. 3), indicating that the communication 15

bandwidth becomes lower when increasing the number of processes. The performance of data 16

transfer also heavily depends on the number of MPI messages. As shown in Fig. 4, the 17

variation of average number of MPI messages in the P2P implementation is consistent with 18

the variation of the execution time in Fig. 1: both increase with the number of processes from 19

6 to 48, and go down with the number of processes from 96 to 192. Lower execution time of 20

the P2P implementation will be obtained if more processes are used (the maximum number of 21

processes in both Fig. 1 and Fig. 4 is limited to 192 because GAMIL2-CLM3 will not be 22

further accelerated when using more processes) since the average number of MPI messages 23

will further go down. 24

To further reveal possible reasons for the poor parallel scalability, we evaluate the ideal 25

performance and actual performance in Fig. 5. The ideal performance is much better than the 26

actual performance, and the ratio between the ideal performance and the actual performance 27

significantly increases when increasing the number of processes. The significant gap between 28

the ideal performance and the actual performance is due to network contention. For example, 29

when multiple P2P communications share the same sender process or receiver process, they 30

must wait in order. 31

 6

3 Butterfly implementation for better performance of data transfer 1

The drawbacks of the P2P implementation when the sender and the receiver use different 2

parallel decompositions can be identified as low communication bandwidth due to small 3

message size, variable and high number of MPI messages, as well as network contention. To 4

overcome these drawbacks, a prospective solution is to organize the transfer of data using a 5

better algorithm, e.g., the butterfly algorithm (Fig. 6), which has already been studied in 6

computing sciences (Chong et al., 1994; Foster, 1995; Heckbert et al., 1995; Hemmert et al., 7

2005; Kim et al., 2007; Jan et al., 2013; Petagon et al, 2016). In hardware aspect, the 8

traditional butterfly algorithm and its transformation have been used to design networks 9

(Chong et al., 1994; Kim et al., 2007); in software aspect, the butterfly algorithm has been 10

used to improve the parallel algorithms with all-to-all communications (Foster, 1995), e.g., 11

Fast Fourier Transform (FFT; Heckbert et al., 1995; Hemmert et al., 2005), matrix 12

transposition (Petagon et al, 2016) and sorting (Jan et al., 2013). 13

Unfortunately, the classical butterfly algorithm cannot be used as is to improve data transfer, 14

because it requires that one process communicates with every other process, that the 15

communication load among processes is balanced and that the number of processes must be a 16

power of 2. In practice, data transfer for model coupling has different characteristics, i.e., one 17

process needs to communicate with a part of other processes, the communication load among 18

processes is always unbalanced and the number of processes cannot be restricted to a power 19

of 2. Therefore, we propose here a new implementation of data transfer involving an 20

additional butterfly kernel to transfer data from the sender with the source parallel 21

decomposition to the receiver with the target parallel decomposition. As the number of 22

processes of the butterfly kernel must be a power of 2, while the number of processes of the 23

sender or the receiver are not necessarily, the butterfly kernel has its own source and target 24

parallel decompositions, and process mappings are needed from the sender onto the butterfly 25

kernel and from the butterfly kernel onto the receiver (see Fig. 7). Next, we present the 26

butterfly kernel and the process mappings, respectively. 27

3.1 Butterfly kernel 28

The first question for the butterfly kernel is how to decide its number of processes. Any 29

process of the sender or receiver can be used as a process for the butterfly kernel. Given that 30

the total number of unique processes of the sender and receiver is NT, the number of processes 31

 7

of the butterfly kernel (NB) can be any power of 2, which is no larger than NT. We propose to 1

select the maximum number in order to maximize utilization of resources. We prefer to pick 2

out unique processes first from the sender, and then from the receiver if the sender does not 3

have enough processes. 4

The butterfly kernel is responsible for rearranging the distribution of data among the 5

processes from the source parallel decomposition to the target parallel decomposition. Given 6

the number of processes N=2n, there are n stages in the butterfly kernel. In a stage, all 7

processes are divided into a number of pairs and the two processes of a pair uses MPI P2P 8

communication to exchange data. After each stage, the number of butterfly kernel processes 9

that may have the data that will finally belong to any one process on the target parallel 10

decomposition will become a half. Figure 6 is an example for further illustration, where Di
j 11

means the data is originally in process Pi according to the source parallel decomposition and 12

is finally in process Pj according to the target parallel decomposition. Before the first stage, 13

all processes (P0~P7) may have the data of P0 on the target parallel decomposition. After the 14

first stage, only four processes (P0, P2, P4 and P6) may have that data; and after the second 15

stage, only two processes (P0 and P4) may have it. 16

To reveal the advantages and disadvantages of the two implementations, we measure the 17

characteristics of the two implementations based on the benchmark introduced in Section 2.2. 18

The results show that the total amount of data transferred by the butterfly implementation is 19

larger than that by the P2P implementation (Fig. 8), which is the major disadvantage of the 20

butterfly implementation. Meanwhile, comparing with the P2P implementation, the butterfly 21

implementation can have the following advantages: 22

1) bigger message size for better communication bandwidth (Fig. 9); 23

2) balanced and smaller number of MPI processes among processes (Fig. 10); 24

3) ordered communications among processes and fewer communications operated 25

concurrently (Fig. 10), which can dramatically reduce network contention. 26

3.2 Process mapping 27

In this subsection, we will introduce the process mappings from the sender to the butterfly 28

kernel and from the butterfly kernel to the receiver. To minimize the overhead of process 29

mapping from the butterfly kernel to the receiver, we map one or multiple processes of the 30

 8

butterfly kernel onto a process of the receiver if the butterfly kernel has more processes than 1

the receiver; otherwise, we map a process of the butterfly kernel onto one or multiple 2

processes of the receiver. In other words, there is no multiple-to-multiple process mapping 3

between the butterfly kernel and the receiver. Similarly, there is no multiple-to-multiple 4

process mapping between the sender and the butterfly kernel. 5

Processes of the sender or the receiver may be unbalanced in terms of the data size transferred, 6

which may result in unbalanced communications among processes of the butterfly kernel. As 7

mentioned in Section 3.1, at each stage of the butterfly kernel, all processes are divided into a 8

number of pairs, each of which is involved in P2P communications. To improve the balance 9

of communications among the processes in the butterfly kernel, one solution is to try to make 10

the process pairs at each stage more balanced in terms of data size of P2P communications, so 11

we propose to reorder the processes of the sender or the receiver according to data size. At the 12

first stage, each time we pick out the process with the largest data size and the process with 13

the smallest data size from the remaining processes that have not been paired, to generate a 14

process group. For the next stage, the outputs of two process groups from the previous stage 15

are paired into a bigger process groups in a similar way. After finishing the iterative pairing 16

throughout all stages, all processes of the sender or the receiver are reordered. 17

The iterative pairing also requires the number of processes to be a power of 2. Given that the 18

number of processes of the sender (or receiver) is NC and the number of processes of the 19

butterfly kernel is NB, we first pad empty processes (whose data size is zero) before the 20

iterative pairing to make the number of processes of the sender (or receiver) be a power of 2 21

(donated NP), which is no smaller than NB. Therefore, the reordered NP processes after the 22

iterative pairing can be divided into NB groups, each of which contains NP/NB processes with 23

consecutive reordered indexes and maps onto a unique process of the butterfly kernel. 24

Figure 11 shows an example of the process mapping, where the sender has five processes (S0-25

S4 in Fig. 11a), the receiver has 10 processes (R0-R9 in Fig. 11b), and the butterfly kernel uses 26

eight processes (B0-B7 in Fig. 11c). At first, empty processes are padded to the sender (S5-S7 27

in Fig. 11a) and the receiver (R10-R15 in Fig. 11b). Next, the iterative pairing is conducted for 28

the sender and the receiver, respectively. The iterative pairing has three stages for the sender. 29

At the first stage, the eight processes of the sender are divided into four groups {S1,S7}, 30

{S0,S6}, {S2,S5} and {S4,S3} (Fig. 11a), according to the data size corresponding to each 31

process. These four process groups are divided into two bigger groups ({{S4,S3},{S2,S5}} and 32

 9

{{S1,S7}, {S0,S6}} at the second stage (Fig. 11a). Finally, one process group 1

{{{S4,S3},{S2,S5}}, {{S1,S7}, {S0,S6}}} is obtained at the third stage (Fig. 11a), and the eight 2

processes of the sender are reordered as S4, S3, S2, S5, S1, S7, S0 and S6, each one being mapped 3

onto one process of the butterfly kernel (Fig. 11c). Similarly, the iterative pairing has four 4

stages for the receiver, and the 16 processes of the receiver are reordered as R9, R15, R7, R12, 5

R4, R8, R3, R10, R1, R14, R5, R13, R0, R6, R2 and R11 finally, with pairs of these being mapped 6

onto one process of the butterfly kernel (Fig. 11c). 7

4 Adaptive data transfer library 8

Now, we have two kinds of implementations (the P2P implementation and the butterfly 9

implementation) for data transfer. Although the butterfly implementation can effectively 10

improve the performance of data transfer in many cases (examples are given in Section 5), it 11

has some drawbacks: 1) it generally has a larger total amount of data transferred than the P2P 12

implementation; 2) its number of stages is log2N (where N is the number of processes for the 13

butterfly kernel) (Foster, 1995), which may be bigger than the average number of MPI 14

messages in the P2P implementation in some cases (for example, when the sender and the 15

receiver use the similar parallel decompositions). Therefore, it is possible that the P2P 16

implementation outperforms the butterfly implementation in some cases. To achieve optimal 17

performance for data transfer, we propose an adaptive data transfer library that can take the 18

advantages of the two implementations in all cases. 19

As introduced in Section 3.1, the butterfly implementation is divided into multiple stages. 20

Actually, the data transfer in one stage can be viewed as a P2P implementation with only one 21

MPI message per process. Inspired by this fact, we try to design an adaptive approach that can 22

combine the butterfly and P2P implementations, where some stages in the butterfly 23

implementation are skipped and replaced by P2P communication of more MPI messages per 24

process. When all stages of the butterfly implementation are skipped, the adaptive data 25

transfer library completely switches to the original P2P implementation. That is to say, the 26

adaptive data transfer can adaptively choose the optimal implementation from the P2P 27

implementation and the butterfly implementation. Figure 12 shows an example of the 28

adaptive data transfer library with eight processes, where Stage 2 of the butterfly 29

implementation is skipped and replaced by P2P communication of three MPI messages per 30

process. 31

 10

The most significant challenge of such an adaptive approach is to determine which stage(s) of 1

the butterfly implementation should be skipped. The first attempt was to design a cost model 2

that can accurately predict the performance of data transfer in various implementations. We 3

eventually gave up this approach as it was almost impossible to accurately predict the 4

performance of the communications on a high-performance computer, especially when a lot 5

of users share the computer to run various applications. Performance profiling which means 6

directly measuring the performance of data transfer is more practical to determine an 7

appropriate implementation, because the simulation of earth system modelling always takes a 8

long time to run. Figure 13 shows our flowchart of how the adaptive data transfer library 9

determines an appropriate implementation. It consists of an initialization segment and a 10

profiling segment. The initialization segment generates the process mappings and a candidate 11

implementation that is a butterfly implementation with no skipped stages. The profiling 12

segment iterates through each stage of the butterfly implementation to determine whether the 13

current stage should be skipped or kept. In an iteration, the profiling segment first generates a 14

temporary implementation based on the candidate implementation where the current stage is 15

skipped, and then runs the temporary implementation to get the time the data transfer takes. 16

When the temporary implementation is more efficient than the candidate implementation, the 17

current stage is skipped and the temporary implementation replaces the candidate 18

implementation. When the profiling segment finishes, the appropriate implementation is set to 19

be the candidate implementation. To reduce the overhead introduced by the adaptive data 20

transfer library, the profiling segment truly transfers the data for model coupling. In other 21

words, before obtaining an optimal implementation, the data is transferred by the profiling 22

segment. 23

5 Performance evaluation 24

In this section, we empirically evaluate the adaptive data transfer library, through comparing 25

it to the P2P implementation and the butterfly implementation. Both toy models and realistic 26

models (GAMIL2-CLM3 and CESM) are used for the performance evaluation. GAMIL2-27

CLM3 has been introduced in Section 2.2. CESM (Hurrell et al., 2013) is a state-of-the-art 28

ESM developed by the National Center for Atmospheric Research (NCAR). All the 29

experiments are run on the high performance computer Tansuo100. 30

 11

Next, we will evaluate the overhead of initialization, the performance of transferring data 1

fields between two toy models and between different realistic component models, and the 2

performance of rearranging data fields within a component model for parallel interpolation. 3

5.1 Overhead of initialization 4

We first evaluate the initialization overhead of data transfer implementations. As shown in 5

Fig. 14, the initialization overhead of each implementation increases when increasing the 6

number of processes. The initialization overhead of the butterfly implementation is a little 7

higher than that of the P2P implementation, while the initialization overhead of the adaptive 8

data transfer library is 2-3 folds higher than that of the P2P implementation, because the 9

adaptive data transfer library uses extra time on the performance profiling (see Section 4). 10

Considering that one data transfer instance should only be initialized at the beginning and 11

executed many times in a coupled model, we can conclude that the initialization overhead of 12

the adaptive data transfer library is reasonable, especially when the simulation is executed for 13

a very long time. 14

5.2 Performance of data transfer between toy models 15

The factors that can impact the performance of a data transfer implementation generally 16

include the number of MPI messages, the size of the data to be transferred (also referred to as 17

the number of fields in this evaluation) and the number of processes used. In this subsection, 18

we evaluate the impact of each factor on the performance of data transfer for different 19

implementations. We first build two toy models that both use the same logically rectangular 20

grid of 192×480 grid points. Coupling fields are transferred between the two toy models. For 21

any test, the two toy models use the same number of processes. Next, we evaluate the 22

performance of data transfer through varying one factor while fixing the other two factors. 23

In the first experiment, we fix the number of processes to be 1024 and the number of coupling 24

fields to be 10, while only vary the number of MPI messages in the P2P implementation. In 25

each test, all processes of the sender have the same number of MPI messages. As the number 26

of MPI messages is determined by the parallel decompositions of the sender and the receiver, 27

we design an algorithm (Algorithm 1) that can generate the parallel decompositions of the two 28

toy models according to the average number of MPI messages of the sender in the P2P 29

implementation. Figure 15 shows the execution time of one data transfer with different 30

 12

implementations when increasing the number of MPI messages per sender process in the P2P 1

implementation from 1 to 90. The P2P implementation can outperform the butterfly 2

implementation when the number of MPI messages is small (say, smaller than 12 in Fig. 15), 3

while the butterfly implementation can outperform the P2P implementation when the number 4

of MPI messages is big (say, bigger than 12 in Fig. 15). The adaptive data transfer library can 5

adaptively choose the optimal implementation from the P2P implementation and the butterfly 6

implementation, and moreover, it improves the performance based on the butterfly 7

implementation when the number of MPI messages is big, because some butterfly stages of 8

the butterfly implementation are skipped. When the number of MPI messages is 90, the 9

adaptive data transfer library can achieve a 19.2-fold performance speedup compared to the 10

P2P implementation. 11

In the second experiment, we fix the number of processes and the number of MPI processes 12

per sender process in the P2P implementation, and vary the number of coupling fields 13

transferred. Figure 16 shows the execution time of one data transfer with different 14

implementations in this experiment. The results show that the execution time of each 15

implementation increases with the increment of data size. When the number of MPI processes 16

per sender process in the P2P implementation is small (Figs. 16a and 16b), the performance of 17

the butterfly implementation is poorer than that of the P2P implementation, especially when 18

the number of 2-D coupling fields gets bigger. When the number of MPI messages per sender 19

process in the P2P implementation is big (Figs. 16c and 16d), the butterfly implementation 20

significantly outperforms the P2P implementation, however, the advantage of the butterfly 21

implementation decreases when increasing the number of coupling fields. The results also 22

demonstrate that the adaptive data transfer library can adaptively choose the optimal 23

implementation from the P2P implementation and the butterfly implementation, and can 24

further improve the performance based on the butterfly implementation. 25

In the third experiment, we fix the number of MPI messages per sender process in the P2P 26

implementation to be 24 and the number of coupling fields transferred to be 10, and vary the 27

number of processes used. Figure 17 shows the execution time of one data transfer with 28

different implementations when varying the number of processes. The P2P implementation 29

outperforms the butterfly implementation, when small number of processes are used (say, 30

smaller than 256 in Fig. 17); while the butterfly implementation outperforms the P2P 31

implementation when large number of processes are used (say, larger than 256 in Fig.17). 32

 13

Similar to above two experiments, the adaptive data transfer library can adaptively choose the 1

optimal implementation from the P2P implementation and the butterfly implementation. 2

The resolution of models become higher and higher these days. How about the performance 3

of the data transfer implementations when model resolution becomes higher? Higher model 4

resolution means that a model will use more processes for accelerating a simulation, while the 5

average number of grid points per process can remain constant. Considering that the numbers 6

of grid points are always balanced among the processes of a model, we make each process 7

(which runs on a unique processor core) of the toy models evenly have around 96 grid points 8

in this evaluation, while enabling processes to have different number of MPI messages and 9

different message sizes (the average number of MPI messages of the sender in P2P 10

implementation is 34). As shown in Fig. 18, although the execution times of all data transfer 11

implementations increase when increasing the number of processes (from 64 to 1024), the 12

butterfly implementation significantly outperforms the P2P implementation. So the adaptive 13

data transfer library adaptively chooses the butterfly implementation, and further slightly 14

outperforms the butterfly implementation when each model uses more than 512 processes 15

because some butterfly stages are skipped. 16

5.3 Performance of data transfer between realistic models 17

In this subsection, we evaluate the performance using two realistic models: GAMIL2-CLM3 18

(horizontal resolution of 2.8°×2.8°) and CESM (resolution of 1.9x2.5_gx1v6). 19

For CESM, we use the data transfer between the coupler CPL7 (Craig et al., 2012) and the 20

land surface model CLM4 (Oleson et al., 2004), where 32 2-D coupling fields on the CLM4 21

horizontal grid (the grid size is 144×96=13824) are transferred. Figure 19 shows the 22

performance of one data transfer of different implementations when increasing the number of 23

processes of both CPL7 and CLM4 from 6 to 192. When the number of processes is small 24

(say, smaller than 24 in Fig. 19), the butterfly implementation is much poorer than the P2P 25

implementation. In this case, the adaptive data transfer library chooses the P2P 26

implementation as the optimal implementation. However, when the number of processes gets 27

bigger (say, larger than 24 in Fig. 19), the butterfly implementation outperforms the P2P 28

implementation. In this case, the adaptive data transfer library based on the butterfly 29

implementation skips some stages, so it outperforms the butterfly implementation. Figure 19 30

also shows that the butterfly implementation and the adaptive transfer library seem to 31

 14

converge when increasing the number of processes per model. When each model uses 192 1

processes, the adaptive data transfer library is 4.01 times faster than the P2P implementation. 2

For GAMIL2-CLM3, we use the data transfer from CLM3 to GAMIL2 where 14 2-D 3

coupling fields on the GAMIL2 horizontal grid (whose grid size is 128×60=7680) are 4

transferred. Figure 20 shows the execution time of one data transfer of each implementation 5

when increasing the number of processes of both GAMIL2 and CLM3 from 6 to 192. The 6

results in Fig. 20 confirm that the adaptive data transfer library can adaptively choose the 7

optimal implementation from the P2P implementation and the butterfly implementation. 8

Compared to the P2P implementation, the adaptive data transfer library achieves an 11.68-9

fold performance speedup when the number of processes is 96, but achieves a much lower 10

speedup (only 3.48-fold) when the number of processes is 192. This is because the average 11

number of MPI messages per process in the P2P implementation reduces from 32 to 18 when 12

the number of process increases from 96 to 192. 13

5.4 Performance of data rearrangement for interpolation 14

Besides data transfer between different component models, there is another kind of data 15

transfer in model coupling that rearranges data inside a model for parallel interpolation of 16

fields between different grids. Here, we use the data rearrangement for the parallel 17

interpolation from the atmosphere grid (whose grid size is 144×96=13824) to the ocean grid 18

(whose grid size is 320×384=122880) in the coupled model CESM for further evaluation. As 19

shown on Fig. 21, the P2P implementation significantly outperforms the butterfly 20

implementation. This is because the parallel decompositions before and after data 21

rearrangement are always similar which leads to small number of MPI messages. For example, 22

average number of MPI messages in the P2P implementation corresponding to Fig. 21 is only 23

6.49 when the model uses 96 processes. In this case, the P2P implementation is chosen as the 24

optimal implementation of the data transfer library, so the data transfer library does not 25

provide real benefit compared to the P2P implementation. 26

5.5 Performance improvement for a coupled model 27

With the performance improvement of data transfer, we expect that the adaptive data transfer 28

library will improve the performance of coupled models. For this evaluation, we first 29

imported the adaptive data transfer library into C-Coupler1, used it in the coupled model 30

 15

GAMIL2-CLM3, and measured performance results. As shown in Fig. 22, the adaptive data 1

transfer library achieves higher speedup with respect to the whole model time (when the P2P 2

implementation is used as the baseline) for GAMIL2-CLM3 when using more than 16 3

processes. When each component model uses 128 processes, the butterfly implementation 4

achieves ~4.6% performance improvement, and the adaptive data transfer library achieves 5

~6.9% performance improvement. So the data transfer library can improve the performance of 6

data transfer, and then improve the performance of the whole coupled model. 7

6 Conclusions 8

Data transfer is a fundamental and frequently used operation in a coupler. This paper showed 9

that the P2P implementation currently used in most state-of-the-art couplers for data transfer 10

is inefficient when the parallel decompositions of the sender and the receiver are different, 11

and further revealed the corresponding performance bottlenecks. We showed that the butterfly 12

implementation can outperform the P2P implementation in many cases but degrades the 13

performance in some cases, for example when a small number of processes are used to run 14

models or when the parallel decompositions of the sender and receiver are similar. We 15

therefore designed and implemented an adaptive data transfer library that automatically 16

chooses an optimal implementation between the P2P one and the butterfly one and also 17

further improves the performance based on the butterfly implementation through skipping 18

some butterfly stages. Compared to the P2P implementation, the adaptive data transfer library 19

can improve the performance of data transfer when the parallel decompositions of the sender 20

and the receiver are different. 21

The initialization overhead for the adaptive data transfer library could become expensive 22

when using a large number of processes. In the future version, the adaptive data transfer will 23

allow users to record the results of performance profiling offline to save the time used for 24

performance profiling in next runs of the same coupled model. 25

Code availability 26

The source code of the adaptive data transfer library version 1.0 is available at 27

https://github.com/zhang-cheng09/Data_transfer_lib. 28

Acknowledgements 29

https://github.com/zhang-cheng09/Data_transfer_lib

 16

This work is supported in part by the Natural Science Foundation of China (no. 41275098), 1

the National Grand Fundamental Research 973 Program of China (no. 2013CB956603) and 2

the Tsinghua University Initiative Scientific Research Program (no. 20131089356). 3

4

 17

References 1

Armstrong, C. W., Ford, R. W., and Riley, G. D.: Coupling integrated Earth System Model 2

components with BFG2, Concurrency and Computation: Practice and Experience, 3

2009;21;767–791, doi:10.1002/cpe.1348, 2009. 4

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Malyshev, S., and Stouffer, R. J.: 5

The Exchange Grid: a mechanism for data exchange between Earth system components on 6

independent grids, In Parallel Computational Fluid Dynamics 2005 Theory and Applications, 7

2006, 179-186, doi: 10.1016/B978-044452206-1/50021-5, 2006. 8

Chong, F. T., and Brewer, E. A.: Packaging and multiplexing of hierarchical scalable 9

expanders, Parallel Computer Routing and Communication, Springer Berlin Heidelberg, 10

1994:200-214. 11

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for Earth system 12

modelling developed for CCSM4 and CESM1, Int. J. High Perform. C., 26, 31-42, 13

doi:10.1177/1094342011428141, 2012. 14

Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson, J., Ong, E., Ding, C., and He, Y.: 15

CPL6: the New Extensible, High Performance Parallel Coupler for the Community Climate 16

System Model, Int. J. High Perform. C., 19, 309–327, 2005. 17

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, In IEEE 18

International Parallel & Distributed Processing Symposium, Long Beach, CA, 2007. 19

Dennis, J. M. and Tufo, H. M.: Scaling climate simulation applications on the IBM Blue 20

Gene/L system, IBM J. Res. Dev., 52, 117-126, DOI:10.1147/rd.521.0117, 2008. 21

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., 22

Taylor, M. A., and Worley, P. H.: CAM-SE: a scalable spectral element dynamical core for 23

the Community Atmosphere Model, Int. J. High Perform. C., 26, 74-89, 24

doi:10.1177/1094342011428142, 2012. 25

Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M., 26

Yang, Z.-L., and Zeng X.: The Community Land surface model and its climate statistics as a 27

component of the Community Climate System Model, Journal of Climate, 19(11), 2302–2324, 28

2006. 29

 18

Ford, R. W., Riley, G. D., Bane, M. K., Armstrong, C. W., and Freeman, T. L.: GCF: a 1

general coupling framework, Concurrency and Computation: Practice and Experience, 18(2), 2

163–181, 2006. 3

Foster I.: Designing and building parallel programs: concepts and tools for parallel software 4

engineering, Addison-Wesley, 1995. 5

Heckbert P.: Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm, Computer 6

Graphics, 2: 15-463, 1995. 7

Hemmert, K. S., and K. D. Underwood.: An analysis of the double-precision floating-point 8

FFT on FPGAs. Field-Programmable Custom Computing Machines, 2005. FCCM 2005. 13th 9

Annual IEEE Symposium on IEEE, 2005:171-180. 10

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.: The Architecture of the Earth 11

System Modelling Framework, Computing in Science & Engineering, 6(1), 18–28, 2004. 12

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-13

F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., 14

Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., 15

Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: a framework for 16

collaborative research, Bulletin of the American Meteorological Society, 94(9), 1339–1360, 17

2013. 18

Hunke, E. C. and Lipscomb W. H.: CICE: the Los Alamos Sea Ice Model Documentation and 19

Software User’s Manual 4.0, Technical Report LA-CC-06-012, Los Alamos National 20

Laboratory, T-3 Fluid Dynamics Group, 2008. 21

Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: the Los 22

Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.0, LA-CC-06-23

012, Los Alamos National Laboratory, Los Alamos NM, 87545, 115, 2013. 24

Jacob, R., Larson, J., and Ong, E.: M × N Communication and Parallel Interpolation in 25

Community Climate System Model version 3 using the Model Coupling Toolkit, International 26

Journal of High Performance Computing Applications, 19(3), 293–307, 2005. 27

Jan, B., Montrucchio, B., Ragusa, C., Khan, F. G., and Khan, O.: Parallel butterfly sorting 28

algorithm on gpu, Acta Press, 2013. 29

 19

Kerbyson, D. J., and Jones, P. W.: A performance model of the parallel ocean program, 1

International Journal of High Performance Computing Applications, 19(3), 261-276, 2

doi:10.1177/1094342005056114, 2005. 3

Kim J., Dally W. J., and Abts D.: Flattened butterfly: A cost-efficient topology for high-radix 4

networks, ISCA, 2007, 35(2):126-137. 5

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W., Wang, Y., Huang, W., Shi, 6

X., Pu, Y., G. and Yang.: Evaluation of Grid-point Atmospheric Model of IAP LASG version 7

2 (GAMIL2), Advances in Atmospheric Sciences, 30, 855–867, doi:10.1007/s00376-013-8

2157-5, 2013. 9

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji, Y., and Wang, L.: C-Coupler1: a 10

Chinese community coupler for Earth system modeling, Geoscientific Model Development, 11

7(5), 2281-2302, doi:10.5194/gmd-7-2281-2014, 2014. 12

Morrison, H., and A. Gettelman: A new two-moment bulk stratiform cloud microphysics 13

scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and 14

numerical tests, Journal of Climate, 21(15), 3642–3659, doi:10.1175/2008JCLI2105.1, 2008. 15

Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., 16

Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W. D., Zhang, M., and 17

Lin, S.: Description of the NCAR Community Atmosphere Model (CAM 4.0), National 18

Center for Atmospheric Research Ncar Koha Opencat, TN-485+STR, 222p., 2010. 19

Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., 20

Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J. F., Marsh, D., Mills, M., Smith, A. K., 21

Tilmes, S., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. 22

C., Ghan, S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR 23

Community Atmosphere Model (CAM 5.0), National Center for Atmospheric Research Ncar 24

Koha Opencat,TN-486+STR, 289p., 2012 25

Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., 26

Houser, P., Levis, S., Niu, G. Y., Thornton, P., Vertenstein, M., Yang, Z. L., and Zeng, X.: 27

Technical Description of the Community Land Surface Model (CLM), National Center for 28

Atmospheric Research Ncar Koha Opencat, TN-461+STR, 186p., 2004. 29

 20

Petagon, R., and Werapun, J.: Embedding the optimal all-to-all personalized exchange on 1

multistage interconnection networks + + mathContainer Loading Mathjax, Journal of Parallel 2

& Distributed Computing 88(2016):16-30. 3

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4–a coupling software for next generation 4

Earth System Modelling, Geoscientific Model Development, 3(1), 87–104, doi:10.5194/gmd-5

3-87-2010, 2010. 6

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz. J., Eden, 7

C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., 8

Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Parallel Ocean 9

Program (POP) reference manual ocean component of the Community Climate System Model 10

(CCSM) and Community Earth System Model (CESM), Los Alamos National Laboratory, 11

LAUR-10-01853, available at 12

http://www.cesm.ucar.edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf (last access: 15 13

October 2015), 141 p., 2010. 14

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J., 15

O’Kuinghttons, R., Riley, G. D., and Vertenstein, M.: Coupling technologies for Earth 16

System Modelling, Geoscientific Model Development, 5(6), 1589–1596, doi:10.5194/gmd-5-17

1589-2012, 2012. 18

Valcke, S.: The OASIS3 coupler: a European climate modelling community software, 19

Geoscientific Model Development, 6(2), 373–388, doi:10.5194/gmd-6-373-2013, 2013. 20

Valcke, S., Craig, T., and Coquart, L.: The OASIS3-MCT parallel coupler, in: The Second 21

Workshop on Coupling Technologies for Earth System Models (CW2013), available at: 22

https://wiki.cc.gatech.edu/CW2013/images/a/a0/OASIS_MCT_abstract.pdf (last access: 15 23

October 2015), 2013. 24

Valcke, S., Craig, T. and Coquart, L.: OASIS3-MCT User Guide, OASIS3-MCT_3.0, 25

Technical Report TR/CMGC/15/38, Cerfacs, France, 2015. 26

http://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf 27

28

 21

 1

Algorithm 1. Generating the parallel decompositions of the sender and the receiver according to an average

number of MPI messages of the sender in the P2P implementation.

Input Number of processes of the sender: M

Number of processes of the receiver: N

Number of points in the grid: Grid_pnts

Average number of MPI messages per process of the sender in the P2P implementation:

Avg_send_msgs, Avg_send_msgs ≤ N

The flag that specifies whether the number of MPI messages among processes are the same:

Is_balanced

Output Parallel decomposition of the sender

Parallel decomposition of the receiver

1 Determine the parallel decomposition of the sender

Considering that the numbers of grid points are always balanced among the processes of a

model, assign around Grid_pnts/M grid points to each process of the sender.

2 Determine the number of MPI messages of each process of the sender

2.1 If the flag Is_balanced is set to true, set the number of MPI messages of each process of the

sender to be Avg_send_msgs;

2.2 Otherwise, randomly determine the number of MPI messages of each process of the sender

2.2.1 Initialize the number of MPI messages of each process of the sender to be 1

2.2.2 Randomly select a process of the sender whose number of MPI messages does not exceed N

and Grid_pnts/M, and then increase its number of MPI messages by 1, until the average

number of MPI messages of all processes of the sender reaches Avg_send_msgs.

3 Determine the grid points of each MPI message

For each process of the sender, assign the corresponding grid points to all MPI messages of

this process (a grid point belongs to only one MPI message)

3.1 If the flag Is_balanced is set to true, assign the grid points to all MPI messages evenly.

3.2 Otherwise, assign the grid points to each MPI message randomly

3.2.1 Assign one grid point to each MPI message

3.2.2 For each of remaining grid points, randomly select an MPI message for it

4 Determine the parallel decomposition of the receiver through assigning the grid points in each

MPI message to a process of the receiver

For each process of the sender, assign the grid points in each MPI message of it to a distinct

receiver process: to make the numbers of grid points balance among the processes of the

receiver in the final parallel decomposition, an MPI message with bigger number of grid points

will be assigned to a receiver process with smaller total number of grid points that have been

assigned to it.

2

 22

 1

 2

Figure 1. Average execution time of the P2P implementation when transferring 14 2-D fields 3

from CLM3 to GAMIL2. In each test, the atmosphere model GAMIL2 and the land surface 4

model CLM3 have the same number of processes; they do not share the same computing 5

nodes. The horizontal grid of the 14 2-D fields contains 7680 (128×60) grid points. 6

7

 23

 1

Figure 2. Variation of bandwidth (y-axis) of an MPI P2P communication with respect to the 2

message size (x-axis). The results are generated from our benchmark. In the benchmark, one 3

process sends messages with different sizes to the other process. The two processes of the P2P 4

communication run on two different computing nodes of Tansuo100. 5

6

 24

 1

 2

Figure 3. Variation of message size of the P2P implementation (y-axis) in GAMIL2-CLM3 3

with respect to the number of processes per model (x-axis). The experimental setup is similar 4

to that shown in Fig. 1. 5

6

 25

 1

 2

Figure 4. Variation of the number of MPI messages of one process (y-axis) using the P2P 3

implementation in GAMIL2-CLM3 with respect to the number of processes per model (x-4

axis). The experimental setup is similar to that shown in Fig. 1. 5

6

 26

 1

 2

Figure 5. Ideal and actual bandwidths of the P2P implementation (y-axis) in GAMIL2-CLM3 3

when gradually increasing the number of processes per model (x-axis). The experimental 4

setup is similar to that shown in Fig. 1. The ideal bandwidth is calculated from the message 5

size and the MPI bandwidth measured in Fig. 2; and the actual bandwidth is calculated from 6

Fig. 1. 7

 8

9

 27

Source parallel decomposition of
butterfly kernel

Target parallel decomposition of
butterfly kernel

D7
0 D

7
1 D

7
2 D

7
3 D

7
4 D

7
5 D

7
6 D

7
7 D6

1 D
7

1 D
6

3 D
7

3 D
6

5 D
7

5 D
6

7 D
7

7 D4
3 D

5
3 D

6
3 D

7
3 D

4
7 D

5
7 D

6
7 D

7
7P7

D6
0 D

6
1 D

6
2 D

6
3 D

6
4 D

6
5 D

6
6 D

6
7 D0

6 D
1

6 D
2

6 D
3

6 D
4

6 D
5

6 D
6

6 D
7

6D6
0 D

7
0 D

6
2 D

7
2 D

6
4 D

7
4 D

6
6 D

7
6 D4

2 D
5

2 D
6

2 D
7

2 D
4

6 D
5

6 D
6

6 D
7

6P6

D5
0 D

5
1 D

5
2 D

5
3 D

5
4 D

5
5 D

5
6 D

5
7 D0

5 D
1

5 D
2

5 D
3

5 D
4

5 D
5

5 D
6

5 D
7

5D4
1 D

5
1 D

4
3 D

5
3 D

4
5 D

5
5 D

4
7 D

5
7 D4

1 D
5

1 D
6

1 D
7

1 D
4

5 D
5

5 D
6

5 D
7

5P5

D4
0 D

4
1 D

4
2 D

4
3 D

4
4 D

4
5 D

4
6 D

4
7 D0

4 D
1

4 D
2

4 D
3

4 D
4

4 D
5

4 D
6

4 D
7

4D4
0 D

5
0 D

4
2 D

5
2 D

4
4 D

5
4 D

4
6 D

5
6 D4

0 D
5

0 D
6

0 D
7

0 D
4

4 D
5

4 D
6

4 D
7

4P4

D3
0 D

3
1 D

3
2 D

3
3 D

3
4 D

3
5 D

3
6 D

3
7 D2

1 D
3

1 D
2

3 D
3

3 D
2

5 D
3

5 D
2

7 D
3

7 D0
3 D

1
3 D

2
3 D

3
3 D

4
3 D

5
3 D

6
3 D

7
3D0

3 D
1

3 D
2

3 D
3

3 D
0

7 D
1

7 D
2

7 D
3

7P3

D2
0 D

2
1 D

2
2 D

2
3 D

2
4 D

2
5 D

2
6 D

2
7 D2

0 D
3

0 D
2

2 D
3

2 D
2

4 D
3

4 D
2

6 D
3

6 D0
2 D

1
2 D

2
2 D

3
2 D

4
2 D

5
2 D

6
2 D

7
2D0

2 D
1

2 D
2

2 D
3

2 D
0

6 D
1

6 D
2

6 D
3

6P2

D1
0 D

1
1 D

1
2 D

1
3 D

1
4 D

1
5 D

1
6 D

1
7 D0

1 D
1

1 D
0

3 D
1

3 D
0

5 D
1

5 D
0

7 D
1

7 D0
1 D

1
1 D

2
1 D

3
1 D

0
5 D

1
5 D

2
5 D

3
5 D0

1 D
1

1 D
2

1 D
3

1 D
4

1 D
5

1 D
6

1 D
7

1P1

D0
0 D

0
1 D

0
2 D

0
3 D

0
4 D

0
5 D

0
6 D

0
7 D0

0 D
1

0 D
0

2 D
1

2 D
0

4 D
1

4 D
0

6 D
1

6 D0
0 D

1
0 D

2
0 D

3
0 D

0
4 D

1
4 D

2
4 D

3
4 D0

0 D
1

0 D
2

0 D
3

0 D
4

0 D
5

0 D
6

0 D
7

0P0

Stage 1 Stage 2 Stage 3

D0
7 D

1
7 D

2
7 D

3
7 D

4
7 D

5
7 D

6
7 D

7
7

 1

Figure 6. An example of the butterfly kernel with eight processes. Each colored row stands 2

for one process (P0-P7). There are multiple stages (each column of arrows represents a stage 3

(Stage 1 to Stage 3)) in the butterfly kernel. Each arrow stands for an MPI P2P 4

communication from one process to another. Di
j means the data is originally in process Pi 5

according to the source parallel decomposition and is finally in process Pj according to the 6

target parallel decomposition. 7

8

 28

Receiver

Target parallel decomposition

Butterfly Kernel

Source parallel decomposition

Target parallel decomposition

Sender

Source parallel decomposition

Process mappingProcess mapping

Process mappingProcess mapping

 1

Figure 7. The butterfly implementation, which is composed of three parts: the butterfly kernel; 2

process mapping from the sender to the butterfly kernel; and process mapping from the 3

butterfly kernel to the receiver. 4

 5

6

 29

 1

 2

Figure 8. Total amount of data transferred by P2P implementation and butterfly 3

implementation (y-axis) in GAMIL2-CLM3, when varying the number of processes per 4

model(x-axis). The experimental setup is similar to that shown in Fig. 1. 5

6

 30

 1

 2

Figure 9. Average message size transferred by P2P implementation and butterfly 3

implementation (y-axis) in GAMIL2-CLM3, when varying the number of processes per 4

model(x-axis). The experimental setup is similar to that shown in Fig. 1. 5

6

 31

 1

 2

Figure 10. Maximum number of MPI messages, average number of MPI messages and 3

minimum MPI messages in P2P implementation and butterfly implementation (y-axis), when 4

varying the number of processes per model (x-axis) in GAMIL2-CLM3. The experimental 5

setup is similar to that shown in Fig. 1. 6

7

 32

 1

Figure 11. An example of process mappings, given that the sender has five processes (S0-S4), 2

the receiver has 10 processes (R0-R9) (there is no common process between the sender and 3

receiver), and the butterfly kernel contains eight processes (B0-B7). Panels (a) and (b) show 4

how to iteratively pair processes of the sender and receiver, respectively. There are 5

multiple stages in the iterative pairing of processes of the sender and receiver. In each stage, 6

the processes in the same color are grouped into one process pair. Panel (c) shows how to map 7

the reordered processes of the sender and receiver onto the processes of the butterfly kernel. 8

 33

D7
0 D

7
1 D

7
2 D

7
3 D

7
4 D

7
5 D

7
6 D

7
7 D4

3 D
5

3 D
6

3 D
7

3 D
4

7 D
5

7 D
6

7 D
7

7
P7

D6
0 D

6
1 D

6
2 D

6
3 D

6
4 D

6
5 D

6
6 D

6
7 D0

6 D
1

6 D
2

6 D
3

6 D
4

6 D
5

6 D
6

6 D
7

6D4
2 D

5
2 D

6
2 D

7
2 D

4
6 D

5
6 D

6
6 D

7
6

P6

D5
0 D

5
1 D

5
2 D

5
3 D

5
4 D

5
5 D

5
6 D

5
7 D0

5 D
1

5 D
2

5 D
3

5 D
4

5 D
5

5 D
6

5 D
7

5D4
1 D

5
1 D

6
1 D

7
1 D

4
5 D

5
5 D

6
5 D

7
5

P5

D4
0 D

4
1 D

4
2 D

4
3 D

4
4 D

4
5 D

4
6 D

4
7 D0

4 D
1

4 D
2

4 D
3

4 D
4

4 D
5

4 D
6

4 D
7

4D4
0 D

5
0 D

6
0 D

7
0 D

4
4 D

5
4 D

6
4 D

7
4

P4

D3
0 D

3
1 D

3
2 D

3
3 D

3
4 D

3
5 D

3
6 D

3
7 D0

3 D
1

3 D
2

3 D
3

3 D
4

3 D
5

3 D
6

3 D
7

3D0
3 D

1
3 D

2
3 D

3
3 D

0
7 D

1
7 D

2
7 D

3
7

P3

D2
0 D

2
1 D

2
2 D

2
3 D

2
4 D

2
5 D

2
6 D

2
7 D0

2 D
1

2 D
2

2 D
3

2 D
4

2 D
5

2 D
6

2 D
7

2D0
2 D

1
2 D

2
2 D

3
2 D

0
6 D

1
6 D

2
6 D

3
6

P2

D1
0 D

1
1 D

1
2 D

1
3 D

1
4 D

1
5 D

1
6 D

1
7 D0

1 D
1

1 D
2

1 D
3

1 D
0

5 D
1

5 D
2

5 D
3

5 D0
1 D

1
1 D

2
1 D

3
1 D

4
1 D

5
1 D

6
1 D

7
1

P1

D0
0 D

0
1 D

0
2 D

0
3 D

0
4 D

0
5 D

0
6 D

0
7 D0

0 D
1

0 D
2

0 D
3

0 D
0

4 D
1

4 D
2

4 D
3

4 D0
0 D

1
0 D

2
0 D

3
0 D

4
0 D

5
0 D

6
0 D

7
0

P0

Stage 1 Stage 3

D0
7 D

1
7 D

2
7 D

3
7 D

4
7 D

5
7 D

6
7 D

7
7

Source parallel decomposition of
butterfly kernel

Target parallel decomposition of
butterfly kernel

 1

Figure 12. An example of the adaptive data transfer library with eight processes, where Stage 2

2 of the butterfly implementation is skipped and replaced by P2P communication of three 3

MPI messages per process. 4

5

 34

Begin

Carry on the process mapping from the source model to the Butterfly
kernel and the process mapping from the Butterfly kernel to the target

model.

Initialize a candidate implementation where no stages are skipped.

Initialize Stage_num to be the stage number of the adaptive library.
Initialize current stage Current_stage to be 1.

Run the candidate implementation.
Record the execution time as Cand_time.

Current_stage <= Stage_num

Initialize a temporary implementation based on the candidate
implementation where Current_stage is skipped

Run the temporary implementation.
Record the execution time of data transfer as Temp_time.

Temp_time < Cand_time

Delete the temporary
implementation.

Delete the candidate implementation.
Replace the candidate implementation with the temporary

implementation.
Set Cand_time to be Temp_time.

Current_stage = Current_stage + 1

Yes

No
Yes

EndNo

Initialize

Profiling

 1

Figure 13. A flowchart for determining an appropriate implementation of the adaptive data 2

transfer library. 3

4

 35

 1

Figure 14. Initialization time (y-axis) of one data transfer between two toy models using a 2

rectangular grid (of 192×96 grid points) when varying the number of processes per model(x-3

axis). There are 10 2-D coupling fields transferred from the source toy model to the target toy 4

model. In each test, all processes of the sender in the P2P implementation have the same 5

number of MPI messages. If the number of processes per model is less than 24, the number of 6

MPI messages per sender process in the P2P implementation is equal to the number of 7

processes per model; otherwise, the number of MPI messages per sender process in the P2P 8

implementation is 24. The parallel decompositions of the sender and the receiver for a given 9

average number of MPI messages are generated by Algorithm 1. 10

11

 36

 1

 2

Figure 15. Average execution time (y-axis) of one data transfer between two toy models with 3

the same rectangular grid (of 192×480 grid points) when varying the number of MPI 4

messages per sender process in the P2P implementation (x-axis). Each toy model is run with 5

1024 processes. There are 10 2-D coupling fields transferred from the source toy model to the 6

target toy model. 7

8

 37

 1

Figure 16. Average execution time (y-axis) of one data transfer between two toy models with 2

the same rectangular grid (of 192×480 grid points) when varying the number of coupling 3

fields transferred (x-axis). There are four simulation tests for the evaluation. In simulation (a), 4

each toy model is run with 256 processes, and the number of MPI messages per sender 5

process in the P2P implementation is 12. In simulation (b), each toy model is run with 1024 6

processes, and the number of MPI messages per sender process is in the P2P implementation 7

12. In simulation (c), each toy model is run with 256 processes, and the number of MPI 8

messages per sender process in the P2P implementation is 48. In simulation (d), each toy 9

model is run with 1024 processes, and the number of MPI messages per sender process in the 10

P2P implementation is 48. 11

12

 38

 1

 2

Figure 17. Average execution time (y-axis) of one data transfer between two toy models with 3

the same rectangular grid (of 192×480 grid points) when varying the number of processes per 4

model (x-axis). There are 10 2-D coupling fields transferred from the source toy model to the 5

target toy model. In each test, the number of MPI messages per sender process in the P2P 6

implementation is 24. 7

8

 39

 1

Figure 18. Average execution time (y-axis) of one data transfer between two toy models. In 2

this evaluation, each process (running on a unique processor core) of the toy models have 96 3

grid points, while different processes have different number of MPI messages and different 4

message sizes in the P2P implementation. The number of coupling fields transferred is set to 5

20. 6

7

 40

 1

Figure 19. Average execution time (y-axis) of one data transfer between the land surface 2

model CLM4 and the coupler CPL7 in CESM when varying the number of processes per 3

model (x-axis): 32 coupling fields on the CLM horizontal grid (the grid size is 144×96=13824) 4

are transferred from the land surface model CLM4 to the coupler CPL7. The performance 5

results of the P2P implementation are obtained through running the adaptive data transfer 6

library forcing it to completely switch to the original P2P implementation. 7

8

 41

 1

Figure 20. Average execution time (y-axis) of one data transfer between the atmosphere 2

model GAMIL2 and the land surface model CLM3 in GAMIL2-CLM3 when varying the 3

number of processes per model (x-axis): 14 coupling fields on the GAMIL2 horizontal grid 4

(the grid size is 128×60=7680) are transferred from the land surface model CLM3 to the 5

atmosphere model GAMIL2. 6

7

 42

 1

Figure 21. Average execution time (y-axis) of one data rearrangement for the parallel 2

interpolation from the atmosphere grid (the grid size is 144×96=13824) to the ocean grid (the 3

grid size is 320×384=122880) in CESM when varying the number of processes per model (x-4

axis). 5

6

 43

 1

Figure 22. Performance improvement with respect to the whole model time for the coupled 2

model GAMIL2-CLM3 achieved by the butterfly implementation and the adaptive data 3

transfer library, using the P2P implementation as the baseline. 4

